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CLASSICAL SEMIRINGS

HUSSEIN BEHZADIPOUR, HENK KOPPELAAR, AND PEYMAN NASEHPOUR

Abstract. In this paper, we investigate semirings whose elements are either
units or zero-divisors (nilpotents) with many examples. While comparing these
semirings with their counterparts in ring theory, we observe that their behavior
is different in many cases.

0. Introduction

Monoids with this property that each element is either a unit or a zero-divisor
have applications in automata theory (see Theorem 7.26 and Example 7.5 in [51]).
Rings with the same property, often called classical rings, have applications in
coding theory, cryptography, and system theory (see Remark 1.8). A specular
kind of classical rings, i.e., the algebra of dual numbers (check Definition 2.11
and Theorem 2.12), is a powerful mathematical tool for kinematic and dynamic
analysis of spatial mechanisms (cf. [48]). Also, note that a subfamily of classical
rings, so-called completely primary rings, have found some interesting applications
in algebraic coding theory (cf. [15]). All these examples motivated the authors of
the current paper to investigate this property in the context of semiring theory.
Since the term “semiring” has different meanings in the literature, it is important
to clarify what we mean by this term from the beginning.

In the current paper, an algebraic structure (S,+, ·, 0, 1) is a semiring if (S,+, 0)
and (S, ·, 1) are commutative monoids, the multiplication distributes on the addi-
tion, and the element zero is absorbing for the multiplication, i.e., s · 0 = 0, for all
s ∈ S. Note that semirings are a generalization of rings and bounded distributive
lattices. Those semirings that are not rings are called proper.

For this paper, it is also crucial to recall the following concepts for a semiring S:

• An element s of S is multiplicatively cancellative (regular) if

sx1 = sx2 (sx1 = 0) =⇒ x1 = x2 (x1 = 0), ∀ x1, x2 ∈ S.

• An element s in S is a zero-divisor (nilpotent) if it is not multiplicatively
regular (sn = 0, for some positive integer n).

Let S be a semiring and consider the following conditions:

(1) S is completely primary (i.e., each element of S is either a unit or nilpotent);
(2) S is classical (i.e., each element of S is either a unit or a zero-divisor);
(3) Each element of S is either a unit or multiplicatively non-cancellative.

Then, we have (1) =⇒ (2) =⇒ (3) and non of the implications is reversible in
general (see Proposition 2.3 and Theorem 3.7).
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The main purpose of the current paper is to investigate the family of “classical
semirings” and its subfamily “completely primary semirings”. Here is a brief sketch
of the contents of our paper:

In §1, we investigate those semirings in which every non-unit is multiplicatively
non-cancellative and in Proposition 1.2, we prove that π-regular semirings have this
property. Inspired by ring theory, we define a semiring S to be π-regular if for any
s ∈ S, there is a t ∈ S and a positive integer n such that sn+1t = sn. Note that
the family of π-regular semirings include periodic semirings (see Definition 1.1 and
Examples 1.3).

Let S a semiring. We recall that a commutative monoid (M,+, 0M ) is said to be
an S-semimodule if there is a function, called scalar multiplication, λ : S×M → M ,
defined by λ(s,m) = s ·m such that the following conditions are satisfied:

• s · (m+ n) = s ·m+ s · n for all s ∈ S and m,n ∈ M ;
• (s+ t) ·m = s ·m+ t ·m and (st) ·m = s · (t ·m) for all s, t ∈ S and m ∈ M ;
• s · 0M = 0M for all s ∈ S and 0S ·m = 0M and 1 ·m = m for all m ∈ M .

Let S be a semiring and A an S-semimodule. Also, let (A, ·) be a commutative
monoid. We recall that A is said to be an S-semialgebra if for all α in S and, a
and b in A, we have

α(a · b) = (αa) · b = a · (αb).

Following the terminology “Jónsson module” in [22], we say an S-semimodule
M is a Jónsson S-semimodule if the cardinality of N is less than the cardinality
of M (i.e., |N | < |M |) for each proper S-subsemimodule N of M (Definition 1.5),
and then in Corollary 1.6, we show that each element of A is either a unit or
multiplicatively non-cancellative if A is a Jónsson S-semialgebra.

After some preparations, we pass to the next section of the paper to investigate
classical semirings. Let us recall that any finite ring is classical (Corollary 1.7).
Surprisingly, it turns out that this is not the case in semiring theory (see Examples
2.4). However, in Theorem 2.5, we prove that a famous family of finite semirings,
i.e., B(n, i)s, are examples of proper classical semirings if i > 0. We also prove that
a direct product of classical semirings is classical. This gives plenty of examples for
classical semirings.

Continuing our investigation of classical semirings in §2, we also show that any
complemented semiring is classical (see Theorem 2.6 and Theorem 2.7). We recall
that an element s of a semiring S is complemented if there is an element s∗ such
that ss∗ = 0 and s + s∗ = 1. A semiring S is complemented if each element of S
is complemented [25, §5]. Notice that Boolean algebras are important examples of
complemented semirings.

Observe that in Lemma 3 in [21], Gill shows that a uniserial ring R is classical
if and only if AnnAnn(b) = (b), for all b ∈ R. As a generalization to this result, we
show that a uniserial semiring S is classical if and only if AnnAnn(b) = (b), for all
b ∈ S (see Theorem 2.15).

In Proposition 2.16, we find a condition for the expectation semirings to be
classical. In fact, we prove that if S is a classical semiring and M an S-semimodule
such that (M,+) is a group, then the expectation semiring S⊕̃M is also classical.

From ring theory, we know that the total quotient ring Q(R) of a ring R is always
classical and a ring R is classical if and only if R = Q(R) [37, Proposition 11.4]. It
turns out that this is not the case in semiring theory. We summarize our findings
in this direction as follows:
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• In Theorem 2.18, we find a semiring S such that Q(S) is not classical.
• In Proposition 2.19, we show that if S is classical, then S = Q(S).
• In Example 2.20, we find some semirings S with S = Q(S) while S is not
classical.

Since nilpotents are zero-divisors, semirings in which their elements are either
units or nilpotents are examples of classical semirings. We call these semirings
completely primary (see Definition 3.1) and devote §3 to discuss them.

Note that the completely primary rings of the form

F2[x1, x2, . . . , xn]

(x2
1, x

2
2, . . . , x

2
n)

,

discussed in Proposition 3.3, have applications in coding theory [15]. However, our
theory of completely primary semirings will be justifiable if we can find some exam-
ples of proper semirings of this kind. This is the task that we do in Proposition 3.5.
We also show that if S is a completely primary semiring and M an S-semimodule
such that (M,+) is a group, then the expectation semiring S⊕̃M is also completely
primary (see Proposition 3.6).

One may have seen in ring theory that any Artinian local ring is completely
primary (see p. 136 in [12]). However, it turns out that there are some finite local
semirings being not completely primary. Actually, in Proposition 3.8, we show
that if S = {0, u, 1} is a multiplicatively idempotent semiring with three elements
such that u+ u 6= 1 (for example, if S is Hu’s or LaGrassa’s semiring explained in
Examples 2.4), then S is local and Artinian but not completely primary.

1. Semiring in which every non-unit is non-cancellative

Let us recall that an element s of a semiring S is multiplicatively cancellative if
sx1 = sx2 implies x1 = x2, for all x1, x2 in S. The main purpose of this section is to
study those semirings in which every non-unit is non-cancellative. Note that not all
semirings have this property. For example, in the semiring of non-negative integers
N0 equipped with ordinary addition and multiplication, each integer number n > 1
is neither a unit nor multiplicatively non-cancellative in N0.

Let us recall that a ring R is called to be π-regular if for any r ∈ R, there is a
y ∈ R and a positive integer n with rn+1y = rn [28, Theorem 3.1]. As Kaplansky
explains in [32], π-regular rings were introduced by McCoy in [41]. Based on this,
we give the following definition:

Definition 1.1. We say a semiring S is π-regular if for any s ∈ S, there is a t ∈ S
and a positive integer n such that sn+1t = sn.

Proposition 1.2. Let S be a π-regular semiring. Then, each element of S is either
a unit or multiplicatively non-cancellative.

Proof. Consider an element s in S. If s is multiplicatively cancellative, then from
sn+1t = sn, we obtain that st = 1 which means that s is a unit. Otherwise, s is
multiplicatively non-cancellative and the proof is complete. �

Examples 1.3. In the following, we give some examples of π-regular semirings:

(1) Any finite semiring S is π-regular because {sn}n∈N has finitely many ele-
ments. Evidently, this implies that there are positive integers m < n such
that sm = sn.



4 H. BEHZADIPOUR, H. KOPPELAAR, AND P. NASEHPOUR

(2) Let us recall that a semiring S is (multiplicatively) periodic if for each s in
S there are positive integers m < n with sm = sn [40, p. 206]. It is clear
that multiplicatively periodic semirings are π-regular.

(3) A ring R is a simply periodic ring if for any x ∈ R, there is a positive
integer n > 1 such that xn = x (see [42] and [54]). Such rings have been
discussed by Jacobson proving that any (associative) simply periodic ring
is commutative (cf. Theorem 11 in [31]). Similar to ring theory, we say
a semiring S is a simply periodic semiring if for any s ∈ S, there is a
positive integer n > 1 such that sn = s. It is evident that simply periodic
semirings are π-regular. Note that multiplicatively idempotent semirings
are examples of simply periodic semirings.

Theorem 1.4. Let S be a semiring and A an S-semialgebra. Suppose that the
S-semimodule A has no proper S-subsemimodule that is isomorphic to A. Then,
each element of A is either a unit or multiplicatively non-cancellative.

Proof. Assume that a is multiplicatively cancellative. Define f : A → A by f(x) =
ax. First, we prove that f is a semimodule homomorphism (i.e., an S-linear map).
It is evident that f preserves addition of A. Now, let α be an arbitrary element of
S and observe that by the properties of the S-semialgebra A, we have:

f(αx) = a(αx) = α(ax) = αf(x).

Now, since a is multiplicatively cancellative, f is injective. This means that f(A)
and A are isomorphic S-semimodules. Since f(A) ⊆ A and A has no proper S-
subsemimodule that is isomorphic to A, we have f(A) = A, i.e., f is surjective. In
particular, f(b) = 1 for some b ∈ A. This means that ab = 1 for some b ∈ A. Thus
a is a unit. This completes the proof. �

Following the terminology “Jónsson algebra” in [19] and “Jónsson module” in
[22], we give the following definition:

Definition 1.5. We say an S-semimodule M is a Jónsson S-semimodule if the
cardinality of N is less than the cardinality of M (i.e., |N | < |M |) for each proper
S-subsemimodule N of M .

Corollary 1.6. Let S be a semiring and A an S-semialgebra. Suppose that the
S-semimodule A is a Jónsson S-semimodule. Then, each element of A is either a
unit or multiplicatively non-cancellative.

Proof. Because A is a Jónsson S-semimodule, A has no proper S-subsemimodule
that is isomorphic to A. So by Theorem 1.4, each element of A is either a unit or
multiplicatively non-cancellative and this completes the proof. �

By definition, a ring R is classical if each element of R is either a unit or a
zero-divisor [37, p. 320]. Since an element of a ring R is non-cancellative if and
only if it is a zero-divisor, we see that each element of a ring R is either a unit
or non-cancellative if and only if R is classical. In view of Proposition 1.2 and
Theorem 1.4, we have the following:

Corollary 1.7. A ring R is classical if one of the following statements hold:

(1) R is finite.
(2) R is simply periodic (cf. [54]).
(3) R is periodic (cf. [8]).
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(4) R is π-regular (cf. Theorem 3.1 in [28]).

Also, let B be an R-algebra. Then, B is classical if B is a Jónsson R-module. In
particular, if K is a field and A a finite dimensional K-algebra, then A is classical
[16, Theorem 1.2.1].

Proof. For the proof of the last statement, we recall that if K is a field and A
is a finite dimensional K-vector space and W is a subspace of V with the same
dimension, then W = V . �

Remark 1.8. In the literature, classical rings are also called “rings of quotients”
[37, p. 320] or “full quotient rings” [9, §3]. Our motivation to study classical
rings and their generalizations in semiring theory is their use in mathematics and
applications in science and engineering as we explain in the following:

(1) Classical rings are discussed in many resources in ring theory [30, Theorem
3], [21, Lemma 3], [23, p. 120], [43, Lemma 1], and [53]. Note that classical
rings have applications in other fields of mathematics like Manis valuation
theory [55, Lemma 3], number theory [6, Proposition 4.1.8], and topological
rings of Colombeau’s generalized numbers (cf. [1, Theorem 2.18] and [14,
Lemma 3.2]).

(2) Classical rings have applications in different areas of science and engineer-
ing. For example, classical rings are discussed in multidimensional systems
theory [5, Definition 3.1], algebraic shift register sequences [26, §A.2.1],
coding theory [4, 29], system theory [10], efficient information-theoretic
multi-party computation [20], and color visual cryptography schemes [18].

(3) Finally, classical rings have been discussed in mathematics education re-
sources. For example, by studying rings in which every non-unit is a zero-
divisor, students can gain a deeper understanding [13] of these important
mathematical structures, as well as their applications.

Inspired by the definition and properties of classical rings, we proceed to define
classical semirings and investigate their properties in the next section:

2. Classical semirings

We collect the unit elements of a semiring S in U(S) and the zero-divisors in
Z(S).

Definition 2.1. We define a semiring S to be classical if each element of S is either
a unit or a zero-divisor. In other words, a semiring S is classical if S = U(S)∪Z(S).

Remark 2.2. It is straightforward to see that if S is a semiring, then U(S)
and Z(S) are disjoint. However, this property does not necessarily hold for non-
associative semirings, even if they are power-associative. For example, all nonzero
elements of sedenions are invertible while infinitely many of them are zero-divisors
as well [7].

The following result shows that not all semirings are classical:

Proposition 2.3. Let (C,≤) be a chain with at least 3 elements such that 0 is
the smallest and 1 is the greatest element of C. Then, (C,max,min) is not a
classical semiring though each element of C is either a unit or multiplicatively non-
cancellative.
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Proof. Let a ∈ C \ {0, 1}. Firstly, a is not a zero-divisor because if ab = 0, then
b = 0. On the other hand, if ab = 1, then a = b = 1. So, a cannot be a unit. Thus
C is not classical. However, note that C is multiplicatively idempotent, and so, C
is simply periodic. By Proposition 1.2, this implies that each element of C is either
a unit or multiplicatively non-cancellative. This completes the proof. �

By Corollary 1.7, any finite ring is classical. Surprisingly, it turns out that this
is not the case in semiring theory.

Examples 2.4. In the following, we give some examples for finite proper semirings
that are not classical:

(1) Let us recall the definition of Hu’s semiring given in [27]. Let H = {0, u, 1}
be totally ordered by 0 < u < 1 and define ⊕ on S as

a⊕ b = max{a, b},

except the case a = b = 1, where 1 ⊕ 1 = u. Then, it is easy to see that
(H,⊕,min) is a semiring [25, Example 1.17]. Since u2 = u, u is neither a
unit nor a zero-divisor. This means that Hu’s semiring is not classical.

(2) Let us recall the definition of LaGrassa’s semiring given in [36]. Define the
binary operations ⊕ and ⊙ on L = {0, u, 1} in a way that they are both
idempotent and we have the following:

1⊕ u = u⊕ 1 = u.

It is easy to see that (L,⊕,⊙) is a semiring [25, Example 6.4]. Since u2 = u,
the element u is neither a unit nor a zero-divisor. Therefore, LaGrassa’s
semiring is not classical.

(3) Let Xn = {−∞, 0, 1, . . . , n}, where n is a positive integer and assume that
−∞ is the smallest element of Xn such that

−∞+ s = −∞ ∀ s ∈ Xn.

Define addition and multiplication on Xn as follows:

x+ y = max{x, y} and xy = min{x+ y, n}.

Then, Xn equipped with above operations is a semiring (see [25, Example
1.8] and [50, Example 1.9]) such that its zero and one are −∞ and 0,
respectively. It is, now, easy to verify that Z(Xn) = {−∞} and U(Xn) =
{0}. Since n is a positive integer, Xn has at least three elements and Xn

contains at least one element that is neither a unit and nor a zero-divisor.
Consequently, for any positive integer n, the semiring Xn is finite and
proper but not classical.

There are some finite and proper semirings that are classical also. For example,
the Boolean semiring B = {0, 1} is a finite and proper semiring that is also classical.
Now, we proceed to find more examples for classical proper semirings of finite order.

Assume that n and i are integer numbers such that n ≥ 2, 0 ≤ i ≤ n − 1, and
set

B(n, i) = {0, 1, . . . , n− 1}.

Define binary operations ⊕ and ⊗ on B(n, i) as follows:

x⊕ y =

{
x+ y, if x+ y ≤ n− 1,

x+ y (mod n− i), otherwise
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and

x⊗ y =

{
xy, if xy ≤ n− 1,

xy (mod n− i), otherwise
.

It is, then, easy to see that (B(n, i),⊕,⊗) is a semiring [25, Example 1.8]. Note
that the semiring B(n, 0) is the ring Zn and B(n, i) is a proper semiring if 1 ≤ i ≤
n − 1. As a generalization to this fact that Zn is a classical ring, we show that
B(n, i) is also a classical semiring:

Theorem 2.5. Let n ≥ 2 be a positive integer and 0 ≤ i ≤ n − 1. Then, B(n, i)
is a classical semiring. In particular, if i > 0, then B(n, i) is an example of the
family of finite proper classical semirings.

Proof. Note that B(n, 0) = Zn is a classical ring [37, Examples 11.6]. Now, let
i > 0 and 2 ≤ x ≤ n− 1 be an element of B(n, i). If x(n− i) > n− 1, then

x(n− i) ≡ 0 (mod n− i).

If not, then we can find a suitable positive integerm > 1 such that xm(n−i) > n−1,
and so,

x(xm−1(n− i)) ≡ 0 (mod n− i).

This shows that each element of B(n, i) except 1 is a zero-divisor. This implies that
the only unit of B(n, i) is the element 1. Thus B(n, i) is a classical semiring, and
it is proper if i > 0. This completes the proof. �

The following result gives plenty of examples for classical semirings:

Theorem 2.6. Let Λ be an index set and Si be a classical semiring for each i ∈ Λ.
Then,

∏
i∈Λ Si is a classical semiring.

Proof. It is clear that

U

(
∏

i∈Λ

Si

)
=
∏

i∈Λ

U(Si).

We will be done if we prove that if at least one of the components of (si) is not
a unit, then (si) is a zero-divisor. Assume that si0 is not a unit in Si0 for some
i0 ∈ Λ. Therefore, by assumption, si0 is a zero-divisor. This implies that there is
a nonzero element zi0 in Si0 such that si0zi0 = 0. Now, define (zi) in

∏
i∈Λ Si such

that zi = 0 if i 6= i0. It is clear that (zi) is nonzero in
∏

i∈Λ Si and (si)(zi) = (0).
This shows that if an element in

∏
i∈Λ Si is not a unit, then it is a zero-divisor, and

so,
∏

i∈Λ Si is classical and the proof is complete. �

Let us recall that an element s of a semiring S is complemented if there is an
element s∗ such that ss∗ = 0 and s+ s∗ = 1. A semiring S is complemented if each
element of S is complemented [25, §5].

Theorem 2.7. Any complemented semiring is classical.

Proof. Let s 6= 1 be an element of a complemented semiring S. Then, there is an
element s∗ such that ss∗ = 0 and s+ s∗ = 1. Since s 6= 1, s∗ needs to be nonzero.
It follows that if s 6= 1, then s is a zero-divisor. Since 1 is a unit, we see that S is
classical and the proof is complete. �
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Sarah Glaz finds some classical rings that are also reduced [23, p. 120]. Let us
recall that a semiring is nilpotent-free if 0 is its only nilpotent element. Now, we
proceed to find some nilpotent-free classical proper semirings.

Corollary 2.8. Any Boolean algebra is a nilpotent-free classical semiring.

Proof. By Theorem 2.7, any Boolean algebra B is classical. On the other hand,
b2 = b, for each b ∈ B. So, B is nilpotent-free and this completes the proof. �

Proposition 2.9. The direct product of classical nilpotent-free semirings is a clas-
sical nilpotent-free semiring.

Proof. It is clear that by Theorem 2.6, the direct product of classical semirings
is classical. On the other hand, let (si) be an element of the direct product of
nilpotent-free semirings and assume that (si)

n = (0). Therefore, sni = 0 for each
i, and so, si = 0, for each i. This means that the direct product of nilpotent-free
semirings is nilpotent-free. This completes the proof. �

Example 2.10. We give some examples of nilpotent-free proper semirings that
are also classical. Let B = {0, 1} be the Boolean semiring and {Fi}i∈Λ a family of
fields. Then,

S = B×
∏

i∈Λ

Fi

is a proper classical nilpotent-free semiring. Note that if Λ is finite and each Fi is
a finite field, then B×

∏
i∈Λ Fi is also finite.

Let us recall that the algebra of dual numbers is a 2-dimensional real algebra
whose elements are of the form a+ bǫ, where a and b are real numbers and ǫ2 = 0.
The algebra of dual numbers is a powerful mathematical tool for kinematic and
dynamic analysis of spatial mechanisms [48]. We define generalized dual number
algebras over an arbitrary ring as follows:

Definition 2.11. Let R be a ring and M = {0, 1}∪{si}
n
i=1 be a monoid with zero

such that 0 is its absorbing element and

sisj = 0, ∀ i, j.

Write elements of the generalized dual number algebra R[S] over R as follows:

a0 +

n∑

i=1

aisi.

In R[S], let addition be component-wise and define multiplication as follows:
(
a0 +

n∑

i=1

aisi

)(
b0 +

n∑

i=1

bisi

)
= a0b0 +

n∑

i=1

(a0bi + aib0)si.

Theorem 2.12. Let R be a classical ring. The generalized dual number algebra
R[S] over R defined in Definition 2.11 is a classical ring.

Proof. Consider the generalized dual number a0+
∑n

i=1 aisi, where ais are arbitrary
elements of the classical ring R. An easy computation shows that if a0 is invertible,
then the multiplicative inverse of a0 +

∑n

i=1 aisi is computed as follows:

1

a0 +
∑n

i=1 aisi
=

1

a0
+

n∑

i=1

−ai
a20

si.
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On the other hand, if a0 is a zero-divisor, then there is a nonzero element x in R
such that a0x = 0. Now, observe that

(
a0 +

n∑

i=1

aisi

)
·

(
n∑

i=1

xsi

)
= 0.

Thus the generalized dual numbers R[S] over R is a classical ring and the proof is
complete. �

A nonempty subset I in a semiring S is an ideal of S if a + b ∈ I and sa ∈ I,
for all a, b ∈ I and s ∈ S. An ideal I is proper if I 6= S. A proper ideal P of S is
prime if ab ∈ P implies that either a ∈ P or b ∈ P , for all a, b ∈ S. All prime ideals
of a semiring S is collected in Spec(S). Maximal ideals of a semiring S is collected
in Max(S). Note that if S is a semiring, then Max(S) is a nonempty subset of
Spec(S) (see Proposition 6.59 and Corollary 7.13 in [25]). Similar to ring theory, if
one collects all nilpotent element of a semiring S in a set Nil(S), then Nil(S) is the
intersection of all prime ideals of the semiring S [25, Proposition 7.28].

Lemma 2.13. Let S be a semiring. Then, the following statements are equivalent:

(1) Each element of S is either a unit or a nilpotent;
(2) Nil(S) is the only prime ideal of S;
(3) Nil(S) is a maximal ideal of S.

Proof. (1) =⇒ (2): Let S be a semiring such that each element of S is either a unit
or a nilpotent. We know that Nil(S) =

⋂
p∈Spec(S) p and U(S) = S \

⋃
m∈Max(S) m

[25, Proposition 6.61]. Since each prime ideal is included in a maximal ideal [25,
Proposition 6.59], we have

⋂

p∈Spec(S)

p =
⋃

p∈Spec(S)

p.

Therefore, S has only one prime ideal, and so, Nil(S) is the only prime ideal of S.
(2) =⇒ (3): Obvious.
(3) =⇒ (1): If Nil(S) is a maximal ideal, then it is the only maximal ideal of

S. On the other hand,

U(S) = S \
⋃

m∈Max(S)

m = S \Nil(S).

This implies that each element of S is either a unit or a nilpotent and the proof is
complete. �

The concept of localization in semiring theory is defined similar to its counterpart
in ring theory [34]. Similar to ring theory, one can prove that if p is a prime ideal
of a semiring S, then the localization Sp of S at S \ p is a local semiring and its
unique maximal ideal is pSp. Also, it is easy to observe that there is a one-to-one
correspondence between the prime ideals of the local semiring Sp and those prime
ideals of S contained in p.

Theorem 2.14. Let S be a semiring such that each prime ideal of S is maximal,
i.e., the Krull dimension of S is zero. Then, S is classical.

Proof. Let S be a semiring such that each prime ideal of S is maximal and m a
maximal ideal of S. Since each prime ideal of S is maximal, the only prime ideal
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of the local semiring (Sm,mSm) is mSm. By Lemma 2.13, any s ∈ m is nilpotent in
Sm, and so, there is a positive integer n such that sn = 0 in Sm. This implies that
for each s ∈ m there is a t ∈ S \ m such that tsn = 0. We may choose the positive
integer n such that tsn−1 6= 0. This shows that if an element s of the semiring S is
not a unit, then it is a zero-divisor. Hence, S is classical, as required. �

Let B be a nonempty subset of a semiring S. The annihilator of B, denoted by
Ann(B), is defined to be the set of all elements s in S such that sb = 0, for all
b ∈ B. If B = {b}, then Ann(B) is simply denoted by Ann(b). An ideal I of S is
principal if it is generated by a single element s of S. In this case, we denote I by
(s).

Valuation theory for rings was introduced by Krull in [35]. Some parts of the
valuation theory for semirings were introduced and discussed in [47]. Let us recall
that a semidomain is a valuation semiring if its ideals are linearly ordered by in-
clusion [47, Theorem 2.4]. More generally, an arbitrary semiring is uniserial if its
ideals are linearly ordered by inclusion [3, Definition 2.2]. Therefore, any (valua-
tion) uniserial semiring is local, i.e., it has only one maximal ideal. The following
is a generalization of Lemma 3 in [21]:

Theorem 2.15. A uniserial semiring S is classical if and only if AnnAnn(b) = (b),
for all b ∈ S.

Proof. Let S be a classical semiring. It is clear that (b) ⊆ AnnAnn(b), for all
b ∈ S. Now, assume that there is a c ∈ S and a nonzero y ∈ S such that y ∈
AnnAnn(c) \ (c). Since S is a uniserial semiring, (c) ⊂ (y). This implies that
c = my, where m is an element of the only maximal ideal m of the semiring S.
Observe that

(y) ⊆ AnnAnn(c) = AnnAnn(my).

Since annihilator operator is an inclusion reversing and a tripotent operator, by
taking annihilator from both sides of the above inclusion, we have

Ann(y) ⊇ Ann(my).

This means that smy = 0 implies sy = 0, for all s ∈ S. Therefore,

(y) ∩ Ann(m) = {0}.

On the other hand, (y) is a nonzero ideal. Now, since ideals of S are totally ordered
by inclusion, Ann(m) = {0}. This means that m is not a zero-divisor. Since S is
classical, m needs to be a unit which is a contradiction because m is an element of
the maximal ideal m. Thus AnnAnn(b) = (b), for all b ∈ S.

Conversely, let AnnAnn(b) = (b), for all b ∈ S and m be an element of S \Z(S).
This implies that Ann(m) = {0}. Therefore, AnnAnn(m) = S. So, (m) = S which
means that m is a unit and the proof is complete. �

Let S be a semiring and M an S-semimodule. On the set S×M , define addition
and multiplication as follows:

• (s1,m1) + (s2,m2) = (s1 + s2,m1 +m2),
• (s1,m1) · (s2,m2) = (s1s2, s1m2 + s2m1).

The set S ×M equipped with above operations is a semiring denoted by S⊕̃M
and called the expectation semiring of the S-semimodule M [24, Example 7.3]. The
additively invertible elements of an S-semimodule M is collected in the set V (M).
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Proposition 2.16. Let S be a semiring and M an S-semimodule such that (M,+)
is a group, i.e., V (M) = M . If S is classical then the expectation semiring S⊕̃M
is also classical.

Proof. Let M be an S-semimodule such that V (M) = M . Assume that (s,m) is
not a unit element of the expectation semiring S⊕̃M . Then, by Theorem 2.2 in
[44], s is not a unit. Since S is classical, s has to be a zero-divisor of S. Again,
by Theorem 2.2 in [44], (s,m) is a zero-divisor of S⊕̃M . Hence, S⊕̃M is classical.
This completes the proof. �

Let R be a ring. The total quotient ring Q(R) of R is a classical ring and a ring
R is classical if and only if R = Q(R) [37, Proposition 11.4]. This is perhaps why
classical rings are also known as “rings of quotients” [37, p. 320]) or “full quotient
rings” [9, §3] in the literature.

Now, let S be a semiring and MC(S) the set of multiplicatively cancellative
elements of S. Then, the localization of S at MC(S) [25, §11], denoted by Q(S)
and called the total quotient semiring, is the counterpart of total quotient ring.
The question arises if the semiring Q(S) is classical for an arbitrary semiring S.
Before answering to this question, we give the following result:

Lemma 2.17. Let S be an entire semiring. Then, Q(S) is entire.

Proof. Let a/b and c/d be elements in Q(S) with (a/b)(c/d) = 0/0. This implies
that ac = 0, since c and d are multiplicatively cancellative. Since S is entire, we
have either a = 0 or c = 0. This means that either a/b = 0/1 or c/d = 0/1. Thus
Q(S) is entire and the proof is complete. �

Theorem 2.18. Let (R,⊕,⊙) be a commutative ring with 1 6= 0 such that there is
a non-trivial zero-divisor n ∈ R. Assume that z /∈ R, and set S = R ∪ {z}. Define
addition + and multiplication · on S as follows:

(1) If s, t ∈ R, then s+ t = s⊕ t, and if s ∈ S, then s+ z = z + s = s.
(2) If s, t ∈ R, then s · t = s⊙ t, and if s ∈ S, then s · z = z · s = z.

Then, Q(S) is not a classical semiring.

Proof. Observe that (S,+, ·, z, 1) is an entire semiring (see Example 1.6 in [25] and
Example 1.1 in [36]). It is clear that r ∈ R is multiplicatively cancellative if and
only if r is regular. This implies that MC(S) = R \ Z(R). Since S is entire, by
Lemma 2.17, Q(S) is entire. Therefore, Z(Q(S)) = {z/1}. Let n be a non-trivial
zero-divisor of the ring R and consider the element n/1 in Q(S). Our claim is that
n/1 is neither a unit nor a zero-divisor. It is clear that n/1 is nonzero in Q(S), and
so, is not a zero-divisor in Q(S) because Q(S) is entire. Also, note that n/1 is not
a unit in Q(S) because if there is an element x/y ∈ Q(S) such that

n/1 · x/y = 1/1,

then nx = y. Since y is not a zero-divisor in R, n is not a zero-divisor in R, a
contradiction. Hence, Q(S) is not classical, as required. �

Proposition 2.19. Let S be a semiring. Then, the following statements hold:

(1) The semiring S can be considered as a subsemiring of Q(S).
(2) If S is classical, then S = Q(S).
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Proof. (1): It is easy to verify that the function S → Q(S) defined by s 7→ s/1 is
injective. Therefore, S can be considered as a subsemiring of Q(S).

(2): Now, let S be classical. Consider an arbitrary element x/s ∈ Q(S), where
x ∈ S and s ∈ MC(S). Since s ∈ MC(S), s cannot be a zero-divisor. Since S is
classical, s is a unit. Now, since x/s = s−1x and s−1x ∈ S, we see that Q(S) ⊆ S.
Now, by (1), we see that S = Q(S) and the proof is complete. �

Let R be a ring. It is easy to see that if R = Q(R), then R is a classical ring.
Now, let S be a semiring such that S = Q(S). The question arises if S is classical.
The following examples show that the answer to this question is negative.

Example 2.20. Let S be a proper non-classical semiring such that it is multiplica-
tively idempotent, i.e., for each u ∈ S, we have u2 = u (consider Hu’s semiring or
LaGrassa’s semiring given in Examples 2.4). It is clear that MC(S) = {1}, and so,
S = Q(S) while S is not classical.

A semiring S is called to be a principal ideal semiring (for short, PIS) if each
ideal of S is principal [46].

It is a famous fact in semiring theory that if S is a commutative semiring, then
the set of all ideals Id(S) of the semiring S is a commutative semiring where addition
and multiplication of ideals of S are defined as following:

I + J = {a+ b : a ∈ I and b ∈ J}

IJ =

{
n∑

i=1

aibi : ai ∈ I, bi ∈ J, n ∈ N

}
.

Note that the only unit element of Id(S) is S. First we prove the following:

Proposition 2.21. Let S be a semiring. Then, the following statements hold:

(1) If Id(S) is classical, then so is the semiring S.
(2) If S is classical and a PIS, then Id(S) is also classical.

Proof. (1): Let Id(S) be classical. If s ∈ S is not a unit in S, then the principal
ideal (s) is a proper ideal of S, and so, it cannot be a unit in Id(S) because the
only unit element of the semiring Id(S) is S. Now, since Id(S) is classical, the ideal
(s) is a zero-divisor on Id(S) which means that there is a nonzero ideal J of S such
that (s)J = (0). Let b be a nonzero element of J . Therefore, sb = 0, and so, s is a
zero-divisor on S. Thus S is classical.

(2): Now, let S be classical. Our purpose is to prove that Id(S) is classical.
Since by assumption, S is a PIS, each element of Id(S) is of the form (s). If (s) is
not a unit, then (s) 6= S and this is equivalent to say that s is not a unit in S. So,
there is a nonzero element t ∈ S such that st = 0. This implies that (s)(t) = (0).
Therefore, (s) is a zero-divisor on Id(S). Thus Id(S) is classical and the proof is
complete. �

Corollary 2.22. If R is a classical and principal ideal ring, then Id(R) is a classical
semiring. Moreover, if R is a finite principal ideal ring, then Id(R) is a finite
classical semiring.

Example 2.23. Let n > 1 be an integer. The ring Zn is a finite principal ideal
ring. So, Id(Zn) is an example of a finite classical semiring.



SEMIRINGS IN WHICH EVERY NON-UNIT IS A ZERO-DIVISOR 13

Since each nilpotent element of a semiring is a zero-divisor, semirings in which
their elements are either units or nilpotents are examples of classical semirings. We
pass to the next section to discuss this subfamily of classical semirings.

3. Completely primary semirings

Let us recall that in commutative ring theory, a ring R is called to be a completely
primary ring if Nil(R) is a maximal ideal [52, Definition 1.2]. A ring R is completely
primary if and only if each element of R is either a unit or a nilpotent (see Exercise
7.4.40 in [17]). Completely primary rings have been discussed in some papers
related to commutative ring theory (cf. [11] and [49]). Inspired by this and in view
of Lemma 2.13, we give the following definition:

Definition 3.1. We say a semiring S is completely primary if each element of S
is either a unit or a nilpotent.

Remark 3.2. Rings whose elements are either units or nilpotents have application
in automata theory [2]. They have been investigated in non-commutative algebra
[33] also. Note that if R is a ring and an R-module M is Artinian, Noetherian,
and indecomposable, then each element the ring EndR(M) (which is usually non-
commutative) is either a unit or a nilpotent (check Lemma 3.25 on p. 77 in [39]).
In non-commutative algebra, such rings are sometimes called metadivision (check
Definition 1 in [38]).

Proposition 3.3. Let K be a field, {xi}i∈Λ indeterminates over K, and mi be
a positive integer for each i ∈ Λ. Consider the ideal I = (xmi

i : i ∈ Λ) of the
polynomial ring R = K[xi : i ∈ Λ]. Then, R/I is a completely primary ring.

Proof. Let p be a prime ideal of R containing I. Since xmi

i is an element of p and
p is prime, p contains the maximal ideal m = (xi : i ∈ Λ) of R and so p = m.
This means that the only prime ideal of R/I is p/I. Hence, by Lemma 2.13, R/I
is completely primary, as required. �

Remark 3.4. The completely primary ring
F2[x1, x2, . . . , xn]

(x2
1, x

2
2, . . . , x

2
n)

has applications in

algebraic coding theory [15].

Now, we proceed to find proper completely primary semirings.

Proposition 3.5. Let (P,+, 0) be an idempotent commutative monoid and set
S = P ∪ {1}. Let us extend addition on S as a+ 1 = 1 + a = 1 for all a ∈ S and
define multiplication over S as ab = 0 for all a, b ∈ P and a · 1 = 1 · a = a for all
a ∈ S. Then, S is a completely primary proper semiring.

Proof. By Proposition 20 in [45], S is a semiring such that the only unit element
of S is 1. Also, since ab = 0, for all a, b ∈ P , a2 = 0, for each a ∈ P . Therefore, all
elements of S except 1 are nilpotent. Since S is an additively idempotent semiring,
S is not a ring. This means that S is a proper semiring such that each element of
S is either a unit or a nilpotent. This completes the proof. �

Proposition 3.6. Let S be a semiring and M an S-semimodule such that (M,+)
is a group, i.e., V (M) = M . Then, the semiring S is completely primary if and
only if the expectation semiring S⊕̃M is completely primary.
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Proof. Let M be an S-semimodule such that V (M) = M . By Theorem 2.2 in [44],
we have the following:

U(S⊕̃M) = U(S)⊕̃M and Nil(S⊕̃M) = Nil(S)⊕̃M.

Hence, the semiring S is completely primary if and only if the expectation semiring
S⊕̃M is completely primary, as required. �

In the following, we describe how to construct proper classical semirings such
that they are not completely primary.

Theorem 3.7. Let Λ be an index set with at least two elements and Si be a com-
pletely primary semiring for each i ∈ Λ. Then,

∏
i∈Λ Si is classical but not com-

pletely primary.

Proof. By Theorem 2.6,
∏

i∈Λ Si is a classical semiring. However, if (si) is an
element of

∏
i Si such that each si is 1 except one of them which is zero, then (si)

is neither a unit nor a nilpotent. This shows that
∏

i Si is not completely primary
and the proof is complete. �

One may have seen in ring theory that any Artinian local ring is completely
primary (see p. 136 in [12]). So, it is quite natural to see if an Artinian local
semiring S is completely primary. It turns out that this is not the case even if S is
finite:

Proposition 3.8. Let S = {0, u, 1} be a multiplicatively idempotent semiring with
three elements such that u+u 6= 1 (for example, let S be Hu’s or LaGrassa’s semir-
ing explained in Examples 2.4). Then, S is local and Artinian but not completely
primary.

Proof. Since S is finite, it is obviously Artinian. Note that the only non-trivial
ideal of S is the principal ideal generated by u which is definitely the only maximal
ideal of S. So, S is local. Clearly, S is not completely primary because u2 = u
which means that u is neither a unit nor a nilpotent. This finishes the proof. �

Proposition 3.9. Let S be a semiring. Then, the following statements hold:

(1) If Id(S) is completely primary, then so is the semiring S.
(2) If S is completely primary and a PIS, then Id(S) is also completely primary.

Proof. (1): Let Id(S) be completely primary. If s ∈ S is not a unit in S, then the
principal ideal (s) is a proper ideal of S, and so, it cannot be a unit in Id(S) because
the only unit element of the semiring Id(S) is S. Now, since Id(S) is completely
primary, the ideal (s) is nilpotent on Id(S) which means that there is positive
integer such that (s)n = (0). This evidently implies that sn = 0. Therefore, s is
nilpotent. Thus S is completely primary.

(2): Now, let S be completely primary. Our purpose is to prove that Id(S) is
completely primary. Since by assumption, S is a PIS, each element of Id(S) is of
the form (s). If (s) is not a unit, then (s) 6= S and this is equivalent to say that
s is not a unit in S. So, sn = 0, for some positive integer n. This implies that
(s)n = (0). Therefore, (s) is nilpotent. Thus Id(S) is completely primary and the
proof is complete. �

Corollary 3.10. If R is a completely primary and principal ideal ring, then Id(R)
is a completely primary semiring.
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Example 3.11. Let p be a prime number and k a positive integer. Since Zpk

is a completely primary and principal ideal ring, Id(Zpk) is a completely primary
semiring.

Remark 3.12. Let us recall that a monoid (M, ·, 1) is a monoid with zero if there
is an element 0 in M such that

m · 0 = 0 ·m = 0, ∀ m ∈ M.

Some of the results of the current paper such as Proposition 1.2, Proposition 2.3,
Theorem 2.6, Proposition 2.9, and Theorem 3.7 can be easily stated and proved for
commutative monoids with zero.
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