
ar
X

iv
:2

40
3.

05
10

9v
1 

 [
m

at
h.

R
T

] 
 8

 M
ar

 2
02

4

Cyclic Characters of Alternating Groups

AMRUTHA P

Chennai Mathematical Institute, Siruseri

AMRITANSHU PRASAD AND VELMURUGAN S

The Institute of Mathematical Sciences, Chennai

Homi Bhabha National Institute, Mumbai

Abstract. We determine the decomposition of cyclic characters of alternating
groups into irreducible characters. As an application, we characterize pairs
(w, V ), where w ∈ An and V is an irreducible representation of An such
that w admits a non-zero invariant vector in V . We also establish new global
conjugacy classes for alternating groups, thereby giving a new proof of a result
of Heide and Zalessky on the existence of such classes.

1. Introduction

1.1. Decomposition of Cyclic Characters. Let G be a finite group. Let
V be an irreducible representation of G with character χ. Suppose g ∈ G has order
m, then the eigenvalues of g in V are mth roots of unity. Let ζm be a primitive
mth root of unity. Let aχg,i denote the multiplicity of ζim as an eigenvalue of g in
V . We have

(1) aχg,i =
1

m

m−1
∑

i=0

χ(gi)ζ−i
m .

By Frobenius reciprocity, aχg,i is the multiplicity of V in the representation IndGC ζim,

where C is the cyclic subgroup of G generated by g, and (by abuse of notation)
ζim denotes the character of C that takes g to ζim. A representation of the form

IndGC ζim is called a cyclic representation of G.
For any classical Coxeter group, Kraśkiewicz and Weyman [5] identified cyclic

representations induced from the cyclic subgroup generated by a Coxeter element
g as a sum of certain graded pieces in its co-invariant algebra. This allowed them
to give a combinatorial interpretation of aχg,i. Stembridge [10] gave a combinatorial
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interpretation of all aχg,i for all g in symmetric groups and wreath product groups.

Jöllenbeck and Schocker [4] built on [5] to give a new approach to Stembridge’s
result for symmetric groups using Lie idempotents in the symmetric group algebra.

In this article, we determine the multiplicities aχg,i for alternating groups. Most
irreducible representations of alternating groups are restrictions of irreducible rep-
resentations of symmetric groups. For these representations, the multiplicities aχg,i
are determined by Stembridge’s result. The remaining irreducible representations
of alternating groups are of the form V ±, where V + ⊕ V − is the restriction of an
irreducible representation V of Sn. Let χ (resp., χ±) denote the character of V
(resp., V ±). Given g ∈ An of order m, we know the multiplicity aχg,i of ζ

i
m as an

eigenvalue of g in V from Stembridge’s result. It remains to determine how this
eigenspace splits into eigenspaces of g in V + and V −. We find that, in almost all

cases, it splits equally: aχ
+

g,i = aχ
−

g,i . In the few remaining cases, we determine this

splitting by giving a closed formula for the difference aχ
+

g,i − aχ
−

g,i .

1.2. Outline. In Section 2.1, we recall the character theory of the alternating

group. An important step in computing the difference aχ
+

g,i − aχ
−

g,i is to understand
how cyclic subgroups of An split into conjugacy classes. The interesting case is
where the cyclic subgroup is generated by a permutation whose cycle type has dis-
tinct odd parts. Theorem 2.3 (which is of interesting in its own right) describes
which conjugacy classes the generators of such a cyclic subgroup fall into in terms
of the Jacobi symbol. In Section 2.2, we recall Stembridge’s combinatorial inter-
pretation of aχg,i for cyclic representations of symmetric groups.

In Section 3 we compute the difference aχ
+

g,i −aχ
−

g,i . In most cases, this difference
is zero. In the potentially non-zero cases, the answer is given by Theorem 3.1. Using
Theorem 3.1, we can exactly characterize the cases where the difference is non-zero.
Theorem 3.1 also gives a simple formula for the absolute value of the difference,
from which a simple upper bound is obtained in Corollary 3.4. For representations
induced from trivial and primitive characters, the absolute value of the difference
takes a particularly simple form (Corollary 3.5).

Section 4 gives a characterization (Theorem 4.3) of which irreducible represen-
tations of An occur in a representation induced from the subgroup generated by a
longest cycle in An. This result was obtained by different methods by Yang and
Staroletov [14]. An analogous result for Sn was obtained by Swanson [12]. We use
Swanson’s result and the upper bound in Corollary 3.4.

In Section 5, we use our results to characterize pairs (w, V ), where w ∈ An and
V is an irreducible representation of An such that w admits a non-zero invariant
vector in V . This result is based on a similar characterization for symmetric groups
in [7] and Theorem 4.3. As a consequence, we show that the trivial representation
of An is immersed in almost every irreducible representation of An, in the sense of
Prasad and Raghunathan [9].

Heide and Zalessky[3] called a conjugacy class in a finite group G global if every
irreducible representation of G occurs in the corresponding permutation represen-
tation. They proved the existence of global conjugacy classes of An for all n > 4.
Sundaram [11] characterized the global conjugacy classes of Sn. In Section 6, we
use our results along with those of Sundaram to establish new global conjugacy
classes for alternating groups, thereby giving a new proof of the result of Heide and
Zalessky.
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1.3. Open Questions. We conclude this introduction by mentioning two in-
teresting open questions. In Theorems 5.2 and 6.1 we have seen several examples
of subgroup H of An such that the representation induced from the trivial repre-
sentation of H contains every irreducible representation of An.

Question 1.1. Find subgroups H of An that are maximal with respect to
the property that the representation induced from the trivial representation of H
contains every irreducible representation of An.

In Section 6, we have constructed a plethora of global conjugacy classes for An.
In the spirit of Sundaram’s result for Sn (Theorem 6.2), we ask the following.

Question 1.2. Characterize the global conjugacy classes of An.

2. Preliminaries

2.1. Characters of the Alternating Group. In this section, we outline
how Frobenius [1] expressed irreducible characters of alternating groups in terms
of irreducible characters of symmetric groups. For a detailed exposition, see [8].

Let λ = (λ1, . . . , λl) be a partition of n. The Young diagram of λ is a left-
justified array of boxes with λi boxes in the i-th row. The Young diagram of the
conjugate partition λ′ is obtained by reflecting the Young diagram of λ along the
main diagonal. Thus (3, 3, 1)′ = (3, 2, 2), as shown below.

−→

For every partition λ of n, let χλ denote the irreducible character of Sn correspond-
ing to λ. We have

Theorem 2.1 (Frobenius [1]). Let λ be a partition of n.

(1) If λ 6= λ′ then the restriction of χλ to An is irreducible and is equal to the
restriction of χλ′ to An.

(2) If λ = λ′, then the restriction of χλ to An is the sum of two irreducible
characters of An;

χλ = χ+
λ + χ−

λ ,

where χ−
λ (g) = χ+

λ (wgw
−1) for any w ∈ Sn \An.

Moreover, every irreducible character of An arises in the above manner.

To understand the values of the characters χ±
λ , we introduce Frobenius coor-

dinates of a partition. The Frobenius coordinates of a partition λ are (a1, . . . , ad |
b1, . . . , bd), where d = #{i | λi ≥ i}, and for each i = 1, . . . , d, ai = λi − i and
bi = λ′

i − i. Thus the Frobenius coordinates of (3, 3, 1) are (2, 1|2, 0), while those of
(3, 2, 2) are (2, 0|2, 1). The partition λ is self-conjugate if and only if ai = bi for all
i = 1, . . . , d.

For every partition µ of n, the set [µ] of permutations with cycle type µ forms
a conjugacy class in Sn. Note that [µ] ⊂ An if and only if µ has an even number
of even parts. The conjugacy class [µ] of Sn remains a single conjugacy class in An

unless its parts are all distinct and odd, in which case it is a union of two classes:

[µ] = [µ]
+ ⊔ [µ]

−
, where

[µ]
−
= w[µ]

+
w−1, for any w ∈ Sn \An.
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Given a partition µ = (2a1 + 1, . . . , 2ad + 1) with a1 > · · · > ad, define

φ(µ) = (a1, . . . , ad | a1, . . . , ad) in Frobenius coordinates.

Then φ gives rise to a bijection from the set of partitions with distinct odd parts
onto the set of self-conjugate partitions.

For each partition µ of n, choose a permutation wµ ∈ [µ]. When µ = (2a1 +

1, . . . , 2ad+1), let ǫµ = (−1)
a1+···+ad . Let zµ denote the cardinality of the central-

izer of wµ in Sn. Frobenius showed the following.

Theorem 2.2. Let λ be a self-conjugate partition of n. The values of the
characters χ±

λ are given by

χ±
λ (wµ) =

{

1
2 (ǫµ ±√

ǫµzµ) if λ = φ(µ)
1
2χλ(wµ) otherwise.

(2)

χ±
λ (wwµw

−1) = χ∓
λ (wµ), for any w ∈ Sn \An.(3)

Recall that for an integer i and a prime p, the Legendre symbol is defined by

(

i

p

)

=











1 if i is a non-zero quadratic residue modulo p,

−1 if i is a quadratic non-residue modulo p,

0 if p | i.

For an odd integer n = pe11 · · · pekk , the Jacobi symbol is defined by
(

i

n

)

=

(

i

p1

)e1

· · ·
(

i

pk

)ek

.

We have the following.

Theorem 2.3. Let µ = (µ1, . . . , µk) be a partition of n with distinct odd parts

and i be an integer. Let M =
∏k

j=1 µj. Then wi
µ ∈ [µ]+ (resp., wi

µ ∈ [µ]−) if and

only if ( i
M ) = 1 (resp., ( i

M ) = −1).

Proof. Let Zk denote the ring of integers modulo k. Consider the disjoint
union Z = Zµ1

∐ · · ·∐Zµk
, which has cardinality n. The map w : Z → Z given

by w(a) = a + 1 for a ∈ Zµj
for any 1 ≤ j ≤ k, is a permutation of Z with cycle

type µ. The map wi : Z → Z is given by wi(a) = a + i for any a ∈ Zµj
. Define

σi : Z → Z by σi(a) = ia for any a ∈ Zµj
. Then σi ◦ w(a) = i(a+ 1) = wi ◦ σi(a)

for any a ∈ Zµj
. Thus σiwσ

−1
i = wi. It follows that wi is conjugate to w in An if

and only if σi is an even permutation of Z. Since the sign of a permutation on a
disjoint union of invariant sets is the product of the signs of the permutations on
the invariant sets, it suffices to show that, for any positive integer m, the sign of
the permutation σi : a 7→ ia on Zm is ( i

m ) for any i such that i is coprime to m.
For any odd prime p and any positive integer e, the units group Z∗

pe of Zpe is

a cyclic group of order pe−1(p − 1). Let i be a generator of Z∗
pe . Then the cycles

of σi : a 7→ ia on Zpe are the Z∗
pe -orbits. These are the sets pjZpe − pj+1Zpe for

j = 0, . . . , e. Thus the cycle type of σi on Zpe is (pe−1(p−1), pe−2(p−1), . . . , p−1, 1).
So σi has e even cycles. Since ( i

p ) = −1, σi has sign (−1)
e
= ( i

pe ). Since the map

i 7→ sgnσi and the Jacobi symbol ( i
pe ) are both multiplicative in i, it follows that

for any i coprime to p, the sign of σi on Zpe is ( i
pe ).
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Let m have prime factorization pe11 · · · perk . Then Zm is the direct product of

the cyclic groups Zp
e1
1
, . . . , Zper

k
. For each 1 ≤ j ≤ r let σj

i denote the map that

multiplies the jth factor in the decomposition Zm = Zp
e1
1
×· · ·×Zper

k
by i and fixes

the other factors. Then σi = σ1
i ◦ · · · ◦ σr

i . Therefore, sgn(σi) =
∏r

j=1 sgn(σ
j
i ) =

∏r
j=1(

i

p
ej
j

) = ( i
m ). �

2.2. Cyclic Characters of Symmetric Groups. For each partition µ, let
Cµ denote the cyclic subgroup of Sn generated by the element wµ with cycle type
µ. The order m = mµ of wµ is the least common multiple of the parts of µ. Let
ζm denote a primitive mth root of unity. By abuse of notation, we will use ζim to

denote the character of Cµ that takes wµ to ζim. The representations IndSn

Cµ
ζim, for

i = 0, . . . ,m− 1, are cyclic representations of Sn. Define

aλµ,i = 〈χλ, Ind
Sn

Cµ
ζim〉.

Stembridge [10] gave a combinatorial interpretation of aλµ,i in terms of a statistic
on standard Young tableaux which was called the multi major index by Jöllenbeck
and Schocker [4]. Recall that, for a partition λ of n, a Young tableau of shape λ
is a filling of the boxes of the Young diagram of λ with the numbers 1, . . . , n such
that the entries increase along each row and column.

Definition 2.4 (Descent). Let λ be a partition of n and let T be a standard
Young tableau of shape λ. An integer i is called a descent of T if i+ 1 appears in
a row of T strictly below the row in which i appears. The set of descents of T is
denoted by Des(T ).

Definition 2.5. Let q = (q1, . . . , qk) be a sequence of non-negative integers

summing to n. Let si =
∑i

j=1 qj be its sequence of partial sums. The multi major

index of T with respect to q is defined as the k-tuple majq(T ) whose jth term is

majq(T )j =
∑

{i∈Des(T )|sj−1<i<sj}

(i− sj−1) for 1 ≤ j ≤ k.

Example 2.6. Let T = 1 3 4
2 5 7
6 8

. Then Des(T ) = {1, 4, 5, 7}. We have

maj(3,2,3)(T ) = (1, 1, 2).

The interpretation [4, p. 158] of aλµ,i is

(4) aλµ,i = #
{

T ∈ SYT(λ) |
k
∑

j=1

(m/µj)majµ(T )j ≡ i mod m
}

.

3. Computation of Multiplicities

3.1. The Easy Cases. Suppose λ is a partition of n such that λ 6= λ′. Let
Vλ denote the irreducible representation of Sn with character χλ. Then Vλ is
irreducible when restricted to An. It follows that, for every w ∈ An with cycle type
µ, the multiplicity of ζim as an eigenvalue of wµ in Vλ is aλµ,i from Section 2.2.

If λ = λ′, then the restriction of Vλ to An is the sum of two irreducible repre-

sentations V +
λ and V −

λ , with characters χ+
λ and χ−

λ respectively. Let aλ
±

µ,i denote the



6 AMRUTHA P, AMRITANSHU PRASAD AND VELMURUGAN S

multiplicity of ζim in V ±
λ . It follows from Theorem 2.2 that, unless µ has distinct odd

parts and λ = φ(µ), χ+
λ (w

i
µ) = χ−

λ (w
i
µ) for all i. Hence, by (1) aλ

+

µ,i = aλ
−

µ,i =
1
2a

λ
µ,i.

3.2. The Interesting Case. Suppose that λ = λ′, and µ is a partition with

distinct odd parts such that λ = φ(µ). Let δλ = χ+
λ − χ−

λ . Let dλµ,i = aλ
+

µ,i − aλ
−

µ,i .

Then aλ
±

µ,i =
1
2 (a

λ
µ,i ± dλµ,i). The value of dλµ,i is given by the following theorem.

Theorem 3.1. Let µ = (µ1, . . . , µk) ⊢ n with distinct odd parts, and i be an

integer. Let M =
∏k

j=1 µj and m = lcm(µ1, . . . , µk). Write M =
∏r

j=1 p
ej
j , where

p1, . . . , pr are distinct primes, e1, . . . , es are odd, and es+1, . . . , er are even. Suppose

that m =
∏r

j=1 p
fj
j and i ≡ ujp

dj

j mod p
fj
j with uj coprime to pj and 0 ≤ dj ≤ fj.

Then d
φ(µ)
µ,i 6= 0 if and only if dj = fj − 1 for j = 1, . . . , s, and dj ∈ {fj − 1, fj} for

j = s+ 1, . . . , r. When this happens, we have

d
φ(µ)
µ,i =

√

ǫµM

m

s
∏

j=1

p
fj−1
j

(

ujm/p
fj
j

pj

)

g(pj)

r
∏

j=s+1

(−p
fj−1
j )

∏

dj=fj

(1− pj),

where ǫµ = (−1)
∑k

j=1(µj−1)/2. In particular,

|dφ(µ)µ,i | =
√

M
∏s

j=1 pj

∏

dj=fj
(pj − 1)

∏r
j=s+1 pj

.

Example 3.2. Consider µ = (15, 9, 3). Then
∏3

j=1 µj = 405 = 51 × 34 and

lcm(15, 9, 3) = 45 = 51 × 32. Theorem 3.1 allows us to easily compute

d
φ(µ)
µ,0 = d

φ(µ)
µ,1 = d

φ(µ)
µ,15 = 0, |dφ(µ)µ,3 | = 3, |dφ(µ)µ,9 | = 6.

Proof. By Theorem 2.2, we have

δλ(w
i
µ) =











√
ǫµzµ if wi

µ ∈ [µ]+,

−√
ǫµzµ if wi

µ ∈ [µ]−,

0 otherwise.

Also, wi
µ ∈ [µ]± if and only if (m, i) = 1. Therefore

dλµ,i =
1

m

m−1
∑

l=0

δλ(w
l
µ)ζ

−il
m

=

√
ǫµzµ

m





∑

wl
µ∈[µ]+

ζ−il
m −

∑

wl
µ∈[µ]−

ζ−il
m





=

√

ǫµM

m

m−1
∑

l=0

(

l

M

)

ζ−il
m [by Theorem 2.3].

Let n0 =
∏s

j=1 pj . Then

(

l

M

)

=

{
(

l
n0

)

if (l,M) = 1,

0 otherwise.
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Let hj = m/p
fj
j . Since the greatest common divisor of h1, . . . , hr is 1, there exist

integers c1, . . . , cr such that
∑r

t=1 ctht = 1. Note that ct is a unit modulo pk for
each t = 1, . . . , r. We have

(

l

n0

)

=

(∑r
t=1 lctht

n0

)

=

s
∏

j=1

(∑r
t=1 lctht

pj

)

=

s
∏

j=1

(

lcjhj

pj

)

,

since
∑r

t=1 lctht ≡ lcjhj mod pj . Similarly,

ζilm = ζ
i
∑r

j=1 lcjhj

m =
r
∏

j=1

ζ
ilcj

p
fj
j

.

Therefore,

m−1
∑

l=0

(

l

M

)

ζ−il
m =

∑

l∈Z∗
m

(

l

n0

)

ζilm

=
∑

l∈Z∗
m

s
∏

j=1

(

lcjhj

pj

) r
∏

j=1

ζ
ilcj

p
fj

j

=

s
∏

j=1

(

hj

pj

)

∑

l∈Z∗
m

s
∏

j=1

(

lcj
pj

) r
∏

j=1

ζ
ilcj

p
fj

j

=

s
∏

j=1

(

hj

pj

)

∑

(l1,...,lr)∈Z∗

p
f1
1

×···×Z∗

p
fr
r

s
∏

j=1

(

lj
pj

)

ζ
ilj

p
fj

j

r
∏

j=s+1

ζ
ilj

p
fj

j

=

s
∏

j=1

(

hj

pj

) s
∏

j=1

∑

lj∈Z∗

p
fj
j

(

lj
pj

)

ζ
ilj

p
fj

j

r
∏

j=s+1

∑

lj∈Z∗

p
fj
j

ζ
ilj

p
fj

j

.(5)

The sums in (5) are evaluated in the following lemma, which is easy to prove.

Lemma 3.3. Let p be odd prime p and let f ≥ 1 be an integer. Suppose that

i ≡ upd mod pf , where u is coprime to p, and 0 ≤ d ≤ f . Let g(p) =
∑p−1

l=0

(

l
p

)

ζlp
denote the quadratic Gauss sum. Then

∑

l∈Z∗

pf

(

l

p

)

ζilpf =

{

pd
(

u
p

)

g(p) if d = f − 1,

0 otherwise.

Also,

∑

l∈Z∗

pf

ζilpf =











pf − pf−1 if d = f,

−pf−1 if d = f − 1,

0 otherwise.

Evaluating dλµ,i using (5) and the above lemma the formula for d
φ(µ)
µ,i is obtained.

To get the formula for |dφ(µ)µ,i | we use the fact that |g(p)| = √
p. �

Corollary 3.4. For every partition µ = (µ1, . . . , µk) of an integer n > 1 with

distinct odd parts, let M =
∏k

j=1 µj. Then |dφ(µ)µ,i | <
√
M for every integer i.
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Corollary 3.5. For every partition µ = (µ1, . . . , µk) with distinct odd parts,

let M =
∏k

j=1 µj and m = lcm(µ1, . . . , µk). Suppose M =
∏k

j=1 p
ej
j , where

p1, . . . , pk are distinct primes, and e1, . . . , es are odd, and es+1, . . . , ek are even.

(1) d
φ(µ)
µ,0 6= 0 if and only if M is a square. When this happens,

|dφ(µ)µ,0 | =
√
M
∏

p|M

(1 − p−1),

the product running over primes dividing M .

(2) d
φ(µ)
µ,1 6= 0 if and only if m is square-free. When this happens,

|dφ(µ)µ,1 | =
√

M
∏s

j=1 pj
· 1
∏r

j=s+1 pj
.

4. Some Cyclic Characters of Alternating Groups

For representations V and W of a group G, say that V ≥ W if V contains a
subrepresentation isomorphic to W .

Lemma 4.1. Suppose n 6= 3 is odd. Let µ = (n). Then for every integer r,

|dφ(µ)µ,r | < a
φ(µ)
µ,r . In other words, Ind

Aµ

Cµ
ζrn ≥ V ±

φ(µ).

Proof. When µ = (n), where n = 2m+1, φ(µ) = (m+1, 1m). Let fλ denote
the dimension of the representation Vλ of Sn. By [12, Theorem 1.9],

(6)

∣

∣

∣

∣

aλ,r
fλ

− 1

n

∣

∣

∣

∣

<
1

n2
for every λ ⊢ n such that fλ > n5.

In our case, fφ(µ) =
(

2m
m

)

, since any standard tableau of shape φ(µ) is determined
by which m out of the 2m numbers 2, . . . , 2m+ 1 are in the first row. Note that

(7)

(

2m

m

)

>
4m

2m+ 1
=

2n−1

n
.

For n ≥ 31, 2n−1/n > n5, so (6) gives us

(8) aφ(µ)µ,r > fφ(µ)

(

1

n
− 1

n2

)

>
2n−1(n− 1)

n3
>

√
n > |dφ(µ)µ,r |.

The cases n < 31 are easily checked using SageMath [13]. �

Lemma 4.2. Suppose n > 4 is even. Let µ = (n− 1, 1). Then for every integer

r, |dφ(µ)µ,r | < a
φ(µ)
µ,r .

Proof. We have

aφ(µ)µ,r = 〈IndAn

Cµ
ζrn−1, V

±
φ(µ)〉An

= 〈IndAn

An−1
Ind

An−1

C(n−1)
ζrn−1, V

±
φ(µ)〉An

= 〈IndAn−1

Cn−1
ζrn−1,Res

An

An−1
V ±
φ(µ)〉An−1

by Frobenius reciprocity. In [2] it was shown that ResAn

An−1
V ±
φ((n−1,1)) contains at

least one of the irreducible representations V ±
(n−1). Therefore,

aφ(µ)µ,r ≥ 〈IndAn−1

Cn−1
ζrn−1, V

±
φ((n−1))〉An−1 > 0

by Lemma 4.1. �
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The following theorem is a special case of a result of Yang and Staroletov [14,
Corollary 1.2]. Here we shall deduce it from Swanson’s result [12, Theorem 1.5] for
symmetric groups and the Lemma 4.1.

Theorem 4.3. For integer n > 3, let µ = (n) if n is odd, and let µ = (n− 1, 1)
if n is even. Let m be the order of wµ. Then for every irreducible representation V
of An, and 0 ≤ r ≤ m− 1, we have

IndAn

Cµ
ζrm ≥ V

except when V is one of the following:

(1) V = V(n−1,1) for n odd and r = 0,
(2) V = V(n) and r 6= 0.

Proof. Let n be odd. Then by [12, Theorem 1.5], aλ(n),r > 0 except in the

following cases:

(1) λ = (n− 1, 1) and r = 0
(2) λ = (2, 1n−2) and r = 0
(3) λ = (n) and r 6= 0
(4) λ = (1n) and r 6= 0.

It follows that, if λ is not self-conjugate or λ 6= φ((n)), then IndAn

C(n)
ζrn ≥ Vλ except

in the following cases:

(1) λ = (n− 1, 1) and r = 0
(2) λ = (n) and r 6= 0.

If λ = φ(n), then aλ
±

(n),r = (aλ(n),r ± dλ(n),r)/2, which are positive by Lemma 4.1.

Let n be even. By the Pieri rule, aλ(n−1,1),r ≥ 0 if and only if there exists a

partition η whose Young diagram is obtained by removing a box from the Young
diagram of λ such that aη(n−1,1),r ≥ 0. Applying the previous argument to Sn−1,

we see that aλ(n−1,1),r ≥ 0 except in the following cases:

(1) λ = (n) and r 6= 0
(2) λ = (1n) and r 6= 0.

Hence, if λ is not self-conjugate or λ 6= φ((n − 1, 1)), then IndAn

C(n−1,1)
ζrn−1 ≥ Vλ,

except when λ = (n) and r 6= 0. If λ = φ((n− 1, 1)), then aλ
±

(n−1,1),r = (aλ(n−1,1),r ±
dλ(n−1,1),r)/2, which are positive by Lemma 4.1. �

5. Elementwise Invariant Vectors

Given partitions λ and µ of n, the following characterization of when wµ admits
a non-zero invariant vector in the representation Vλ of Sn was obtained in [7].

Theorem 5.1. The only pairs of partitions (λ, µ) of a given integer n such that
wµ does not admit a nonzero invariant vector in Vλ are the following:

(1) λ = (1n), µ is any partition of n for which wµ is odd,
(2) λ = (n− 1, 1), µ = (n), n ≥ 2,
(3) λ = (2, 1n−2), µ = (n), n ≥ 3 is odd,
(4) λ = (22, 1n−4), µ = (n− 2, 2), n ≥ 5 is odd,
(5) λ = (2, 2), µ = (3, 1),
(6) λ = (23), µ = (3, 2, 1),
(7) λ = (24), µ = (5, 3),
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(8) λ = (4, 4), µ = (5, 3),
(9) λ = (25), µ = (5, 3, 2).

In this section, we carry out a similar analysis for representations of An.

Theorem 5.2. For every irreducible representation V of An, and every w ∈ An,
there exists a non-zero vector in V that is invariant under w unless one of the
following holds:

(1) V = V ±
(2,1) and w ∈ [(3)]±,

(2) V = V ±
(2,2) and w ∈ [(3, 1)]±,

(3) V = V(4,4) and w ∈ [(5, 3)]±.
(4) V = V(n−1,1) and w ∈ [(n)]±, where n > 3 is odd,

Proof. The exceptions in Theorem 5.2 are restrictions to An of the exceptions
in Theorem 5.1, or subrepresentations thereof. Therefore they cannot admit non-
zero invariant vectors.

It only remains to check that for a partition µ with distinct odd parts such that
the representation Vφ(µ) of Sn admits a nonzero invariant vector for wµ, V

±
φ(mu)

admits a nonzero invariant vector for wµ. The case where µ = (n), n 6= 3, was
proved in Lemma 4.1.

Now consider the case where µ is a partition with distinct odd parts, but 3 is
not a part of µ. By induction in stages,

(9) IndAn

Cµ
1 ≥ IndAn∏

k
j=1 Aµj

k
⊗

j=1

Ind
Aµj

C(µj)
1 ≥ IndAn∏

k
j=1 Aµj

k
⊗

j=1

Vφ((µj)).

The first inequality follows from the fact that Cµ is a subgroup of
∏k

j=1 C(µj). The
second inequality follows from Lemma 4.1. It remains to show that

(10) IndAn∏
k
j=1 Aµj

k
⊗

j=1

Vφ((µj)) ≥ V ±
φ(µ).

The character of the left-hand side is invariant under conjugation by elements of
Sn. Therefore, the left hand side contains V +

φ(µ) if and only if it contains V −
φ(µ) (in

which case it contains Vφ(µ)).

Since Ind
Sµj

Aµj
V ±
φ((µj))

= Vφ((µj)), we have

(11) IndSn

An
IndAn∏

k
j=1 Aµj

k
⊗

j=1

V ±
φ((µj))

≥ IndSn∏
k
j=1 Sµj

k
⊗

j=1

Vφ((µj)).

By the Littlewood-Richardson rule [6, Section I.9] the multiplicity of Vφ(µ) in

IndSn

Sµ1×Sn−µ1
Vφ((µ1))⊗Vφ((µ2,...,µk)) is the number of semistandard Young tableaux

of shape φ(µ)/φ((µ1)) and weight φ((µ2, . . . , µk)) whose reverse reading word is a
ballot sequence. But semistandard Young tableau of shape φ(µ)/φ((µ1)) are in
bijection with semistandard tableau of shape φ((µ2, . . . , µk)). Filling all the cells
of the ith row of the Young diagram of φ((µ2, . . . , µk)) with i results in a reverse
reading word that is a ballot sequence. Therefore,

IndSn

Sµ1×Sn−µ1
Vφ((µ1)) ⊗ Vφ((µ2,...,µk)) ≥ Vφ(µ).
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Working recursively with respect to k, we get

IndSn∏
k
j=1 Sµj

k
⊗

j=1

Vφ((µj)) ≥ Vφ(µ).

Now using (11), we get

IndSn

An
IndAn∏

k
j=1 Aµj

k
⊗

j=1

Vφ((µj)) ≥ V ±
φ(µ).

But the only irreducible representations of An, which upon induction to Sn contain
Vφ(µ), are V ±

φ(µ), so (10) must hold.

If µ has 3 as a part, since the cases µ = (3) and µ = (3, 1) are among the
exceptions in Theorem 5.2 we may assume that µ has a part that is greater than
µl = 3 (l has to be k − 1 or k). Suppose µl−1 = 2m + 1. By Theorem 4.3,

Ind
Aµl−1

Cµl−1
1 ≥ V(m,2,1m−1). Also Ind

Aµl

Cµl

1 is the trivial representation of A3. In place

of (9), we can insert different tensor factors in the l − 1st and lth places to get

IndAn

Cµ
1 ≥ IndAn∏

k
j=1 Aµj

k
⊗

j=1

Ind
Aµj

C(µj )
1

≥ IndAn∏
k
j=1 Aµj

k
⊗

j 6=l−1,1

Vφ((µj)) ⊗ V(m,2,1m−1) ⊗ V(13).

By Pieri’s rule, Ind
Sµl−1+3

Sµl−1
×S3

V(m,2,1m−1) ⊗ V(13) ≥ V(m+1,3,2,1m−2) = Vφ(µl−1,3). Pro-

ceeding as with (11), we get IndAn

Cµ
1 ≥ V ±

φ(µ). �

Prasad and Raghunathan introduced the notion of immersion of automorphic
representations in [9]. In the context of representations of a finite group, it can be
formulated as follows:

Definition 5.3. Let U and V be representations of a finite group G. We say
that U is immersed in V if, for every g ∈ G and every λ ∈ C, the multiplicity of λ
as an eigenvalue of g in U does not exceed the multiplicity of λ as an eigenvalue of
g in V .

Theorem 5.2 gives the following result on immersion.

Theorem 5.4. For n ≥ 3, the trivial representation of An is immersed in every
irreducible representation V of An except when

(1) V = V ±
(2,1),

(2) V ±
(2,2) and V(4,4).

(3) V = V(n−1,1) for n > 3 odd.

6. Global Conjugacy Classes

A group G acts on any of its conjugacy classes C by conjugation. Following
Heide and Zalessky [3], a conjugacy class C of a finite group G is called a global
conjugacy class if the corresponding permutation representation of G contains every
irreducible representation of G as a subrepresentation. Equivalently IndGC 1 contains
every irreducible representation of G as a subrepresentation.
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Heide and Zalessky showed that An has a global conjugacy class for n > 4. We
recover their result while establishing a larger family of global conjugacy classes
(compare with the proof of Theorem 4.3 in [3]).

Theorem 6.1. For any positive integer n, let µ be a partition of n with at least
two parts different from (3, 1) and (5, 3) whose parts are odd and distinct. Then
[µ]+ and [µ]− are global conjugacy classes in An.

The proof is based on the following theorem of Sundaram [11, Theorem 5.1].

Theorem 6.2. Let n 6= 4, 8. The permutations with cycle type µ ⊢ n form a
global conjugacy class in Sn if and only if µ has at least two parts, and all its parts
are odd and distinct.

Proof of Theorem 6.1. Let µ be as in the statement of Theorem 6.1. By
Theorem 6.2 (and explicit calculation for µ = (7, 1)), permutations with cycle type
µ form a global conjugacy class in Sn. Let Zµ denote the centralizer of wµ in
An. Since µ has distinct odd parts, Zµ is also the centralizer of wµ in Sn. Thus

IndSn

Zµ
1 ≥ Vλ for every partition of n. If λ 6= λ′ then this implies IndAn

Zµ
1 ≥ Vλ.

Now suppose λ = λ′. The character of IndAn

Zµ
1 is supported on conjugacy

classes of powers of wµ. The only such classes whose cycle types have distinct odd

parts are [µ]±. Therefore, if λ 6= φ(µ), then Schur inner product of IndAn

Zµ
1 and

δλ is zero. It follows that the multiplicities of V +
λ and V −

λ in IndAn

Zµ
1 are equal.

Theorem 6.2 tells us that their sum is positive, so each of them has to be positive.
Finally, consider the case where λ = φ(µ). Since the parts of µ are distinct,

IndAn

Zµ
1 = IndAn∏

k
j=1 Aµj

k
⊗

j=1

Ind
Aµj

C(µj)
1.

Following the proof of Theorem 5.2 from (9) onwards establishes that IndAn

Zµ
1 ≥

V ±
φ(µ). �

Theorem 6.3. For every odd integer p > 3, permutations of cycle type (p, p)
form a global conjugacy class in A2p.

Proof. For p = 5, the result can be verified by direct calculation. Assume
p > 5. The centralizer of w(p,p) in A2p is isomorphic to Cp ×Cp. In the proof of [7,
Lemma 9], it is shown that, for almost all p ≥ q, and all λ ⊢ p + q different from

(1p+q), there exist partitions α ⊢ p and β ⊢ q such that Ind
Sp

Cp
1 ≥ Vα, Ind

Sq

Cq
1 ≥ Vβ ,

and Ind
Sp+q

Sp×Sq
Vα ⊗Vβ ≥ Vλ. The only exception occurs when q is even. Also, since

Cp × Cp ⊂ A2p, the sign representation V(1p+q) also occurs in Ind
S2p

Cp×Cp
1. Thus

Ind
S2p

Cp×Cp
1 ≥ Vλ for all λ ⊢ 2p.

It follows that Ind
A2p

Cp×Cp
1 ≥ Vλ for all λ ⊢ 2p that are not self-conjugate.

The support of the character of Ind
A2p

Cp×Cp
1 only contains permutations that are

conjugate to an element of Cp × Cp. Hence it does not contain any permutations
with cycle type having distinct odd parts. Therefore, the multiplicities of V +

λ and

V −
λ in Ind

A2p

Cp×Cp
1 are equal and positive. �

For partitions λ and µ, let λ∪µ denote the partition obtained by concatenating
the parts of λ and µ and rearranging in weakly decreasing order.
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Theorem 6.4. Suppose λ and µ are partitions with odd parts such that permu-
tations with cycle type λ and µ lie in global conjugacy classes. If λ∪µ is a partition
where no part is repeated more than twice, then every permutation with cycle type
λ ∪ µ lies in a global conjugacy class in A|λ∪µ|.

Proof. Suppose that λ ⊢ l, µ ⊢ m and n = l +m. The hypotheses on λ and
µ imply that the centralizer Zλ∪µ of a permutation with cycle type λ ∪ µ in An is
Zλ × Zµ ⊂ Al ×Am ⊂ An. Therefore,

IndAn

Zλ∪µ
1 = IndAn

Al×Am
IndAl

Zλ
1⊗ IndAm

Zµ
1.

If V is any irreducible representation of An, let U⊗W be some irreducible represen-
tation of Al ×Am that occurs in the restriction of V to Al ×Am. By Theorem 6.1,
IndAl

Zλ
1 ≥ U and IndAm

Zµ
1 ≥ W , so IndAn

Zλ∪µ
1 ≥ IndAn

Al×Am
U⊗W ≥ V (by Frobenius

reciprocity). �
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