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M. BUTORAC, S. KOŽIĆ, A. MEURMAN, AND M. PRIMC

Abstract. In this paper, we recall Lepowsky’s and Wakimoto’s product character
formulas formulated in a new way by using arrays of specialized weighted crystals of

negative roots for affine Lie algebras of type C
(1)
l , D

(2)
l+1 and A

(2)
2l . Lepowsky–Wakimoto’s

infinite periodic products appear as one side of (conjectured) Rogers–Ramanujan-type

combinatorial identities for affine Lie algebras of type C
(1)
l .
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1. Introduction

In the last several decades, numerous applications of Rogers–Ramanujan-type identi-
ties have been extensively studied. For example, in the early eighties, they emerged in the
areas of statistical mechanics [ABF, B] and orthogonal polynomials [AsI, Br3]. On the
other hand, in the last decade, in addition to their well-known role in combinatorics and
number theory (see, e.g., [DK, GOW, W]), their close connections with modular forms
[BCFK], algebraic geometry [BMS, GOR] and double affine Hecke algebras [CF] were in-
vestigated. In this paper, we are interested in a line of research going back to Lepowsky
and Milne [LM], which connected the product sides of Gordon–Andrews–Bressoud’s gen-
eralization [Go, A1, A2, Br1, Br2] of the Rogers–Ramanujan identities with principally

specialized characters of integrable highest weight modules for the affine Lie algebra ŝl2.
Their seminal paper [LM] motivated a research of Lepowsky and Wilson [LW1]–[LW4],
which led to discovery of vertex operators in the principal picture of integrable highest

weight ŝl2-modules and bases of vacuum spaces for the principal Heisenberg subalgebra
which are parametrized by partitions satisfying certain difference conditions.

J. Lepowsky proved that the principally specialized characters of standard modules for
affine Lie algebras can be written as infinite periodic products. M. Wakimoto extended
Lepowsky’s argument for some other specializations of characters. The aim of this paper
is to write explicitly all Lepowsky–Wakimoto’s product formulas for affine Lie algebras

of types C
(1)
l , l ≥ 2, by using arrays of specialized weighted crystals of negative roots for

affine Lie algebras of type C
(1)
l , D

(2)
l+1 and A

(2)
2l . These weighted crystals parametrize root

vectors for negative roots in terms of crystal bases of adjoint representations of Cl and
Bl, and Bl-modules LBl

(ω1) and LBl
(2ω1). Although inspired by the crystal bases theory,

we use only the combinatorial notion of weighted crystals for Cartan matrices, and the
realization of affine Kac–Moody Lie algebras.

As an illustration of the above described approach, we remark that, by using Waki-
moto’s product formula for ch(2,1,1)L

C
(1)
2
(1, 0, 0), and the basis for the basic module

L
C

(1)
2
(1, 0, 0), we get an analogue of Capparelli’s identity:

Theorem. The number of colored partitions satisfying level 1 difference conditions on
the array

7 9 11
5 8 10 12

4 6 9 11
3 5 7 10 13

2 4 6 8 12

equals the number of partitions of n into parts

j ̸≡ 0,±1,±6,±7, 8 mod 16.

This paper, and the above Theorem in particular, was motivated by the results on

Poincaré–Birkhoff–Witt-type bases for standard modules over C
(1)
l in [CMPP, PŠ1, PŠ2].

It is organized as follows. Sections 2–4 serve as an introduction. In Section 2, we pro-
vide some preliminary definitions and results on the affine Kac–Moody Lie algebras and
their representation theory; see [Kac] for more details. Next, in Section 3, we recall the
specialized character formulas of Lepowsky [L] and Wakimoto [W1]. Finally, in Section
4, we consider certain weighted crystals which arise as connected components of tensor
squares of vector representation crystals associated with the complex simple Lie algebras
of types Bl and Cl. An introduction to the theory of crystal bases, which, in particular,
contains all notions and results used in this manuscript, can be found in [HK].



LEPOWSKY’S AND WAKIMOTO’S PRODUCT FORMULAS FOR C
(1)
l 3

In Section 5, we use the weighted crystals from Section 4 to explicitly describe the arrays

of negative root vectors for the affine Lie algebras of type C
(1)
l , D

(2)
l+1 and A

(2)
2l . By assigning

degrees to the negative Chevalley generators with respect to certain specializations, in
Section 6, we turn these arrays into tables of integers, which we refer to as specialized
weighted arrays. Moreover, we express their generating functions in terms of product
formulas. Finally, in Section 7, we employ the product formulas to establish a connection
with the aforementioned specialized character formulas of Lepowsky and Wakimoto.

In Section 8, we use the generating functions from Section 6 to generalize Borcea’s
correspondence [Bor] between specialized characters of certain standard modules for the

affine Lie algebras C
(1)
l and A

(2)
2l to an arbitrary positive integer level. At the end, in

Section 9, we introduce the notion of level k-difference conditions for colored partitions on
arrays connected with a basis of negative root vectors. Using this we recall a conjecture
by [CMPP] on combinatorial identities, that served as one of the motivations for the
present paper.

2. Affine Lie algebras of type C
(1)
l , D

(2)
l+1 and A

(2)
2l

2.1. Realization of affine Lie algebras. Let g be a complex simple Lie algebra of
type Xl and let µ be a diagram automorphism of g of order r (= 1, 2, or 3), see [Kac,
Section 7.9]. Let ⟨·, ·⟩ be an invariant symmetric bilinear form on g, normalized so that

the square length of a long root is 2. The untwisted affine Lie algebra of type X
(1)
l can

then be realized as

g(X
(1)
l ) = g⊗ C[t, t−1]⊕ Cc⊕ Cd

with the following commutation relations: denote by x(n) := x ⊗ tn for x ∈ g, n ∈ Z,
then define

[x(m), y(n)] = [x, y](m+ n) +mδm+n,0⟨x, y⟩c,

c ∈ center(g(X
(1)
l )),

[d, x(n)] = nx(n),

for x, y ∈ g, m,n ∈ Z.
Following [Kac] we shall realize the (twisted) affine Lie algebra of type X

(r)
l as a sub-

algebra of the affine Lie algebra g(X
(1)
l ). For j ∈ Z we set j̄ = j + rZ ∈ Z/rZ and let gj̄

denote the eigenspace of µ on g with eigenvalue e2πij/r. Define

L(g, µ) =
⊕
j∈Z

gj̄ ⊗ tj ⊕ Cc.

Then L(g, µ) is a realization of the (twisted) affine Lie algebra of type X
(r)
l , see [Kac,

Theorem 8.3].

2.2. Affine Lie algebras of type C
(1)
l , D

(2)
l+1 and A

(2)
2l . We denote the Kac–Moody Lie

algebra with generalized Cartan matrix A of type X
(r)
l as g(X

(r)
l ). In this paper we are

interested in three types of affine Lie algebras with Dynkin diagrams in Figure 1.
In the case Xl = Cl we have

g(C
(1)
l ) = Cc⊕ Cd⊕

∐
j∈Z

g(Cl)⊗ tj. (2.1)

In the case Xl = Dl+1, the fixed point subalgebra is g(Bl) [Kac, Proposition 7.9(b)],
and the −1-eigenspace is the g(Bl)-module L(ω1) of highest weight ω1 (a fundamental
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C
(1)
l

1 2 2 1

α0 α1 αl−1 αl

D
(2)
l+1

1 1 1 1

α0 α1 αl−1 αl

A
(2)
2l

2 2 2 1

α0 α1 αl−1 αl

Figure 1. Dynkin diagrams of types C
(1)
l , D

(2)
l+1 and A

(2)
2l

weight) [Kac, Proposition 7.9(g)]. Hence

g(D
(2)
l+1) = Cc⊕ Cd⊕

∐
j∈Z

g(Bl)⊗ t2j ⊕
∐
j∈Z

LBl
(ω1)⊗ t2j+1. (2.2)

In the case Xl = A2l, the fixed point subalgebra is g(Bl) [Kac, Proposition 7.10(b)], and
the −1-eigenspace is the g(Bl)-module L(2ω1) of highest weight 2ω1 [Kac, Proposition
7.10(g)]. Hence

g(A
(2)
2l ) = Cc⊕ Cd⊕

∐
j∈Z

g(Bl)⊗ t2j ⊕
∐
j∈Z

LBl
(2ω1)⊗ t2j+1. (2.3)

Fix a Cartan subalgebra h in g0̄, with g0̄ the fixed point subalgebra of µ on g(Xl) as

above. For a root vector b = x⊗ ti ∈ g(X
(r)
l ) we define the wth(b) as the weight of x with

respect to h i.e. wth(b) = ν if
[h, x] = ν(h)x

for all h ∈ h. By identifying h∗ with the subspace of (h⊕Cc⊕Cd)∗ of weights that take
the value 0 on c and d, we then have

wt(b) = wth(b) + iδ.

For affine Lie algebras of the types C
(1)
l , D

(2)
l+1 and A

(2)
2l , l ≥ 2, we have the following

relations for the imaginary root δ and the canonical central element c of the affine Lie
algebras (see [Kac]):

C
(1)
l : δ = α0 + 2α1 + · · ·+ 2αl−1 + αl, c = h0 + h1 + · · ·+ hl−1 + hl,

D
(2)
l+1 : δ = α0 + α1 + · · ·+ αl−1 + αl, c = h0 + 2h1 + · · ·+ 2hl−1 + hl,

A
(2)
2l : δ = 2α0 + 2α1 + · · ·+ 2αl−1 + αl, c = h0 + 2h1 + · · ·+ 2hl−1 + 2hl.

2.3. Standard modules and the Weyl–Kac character formula. Let A be a sym-
metrizable generalized Cartan matrix and let g(A) be the associated Kac–Moody Lie
algebra, see [Kac, Section 1.3]. Let hi, ei, fi be the usual Kac–Moody generators and
{α1, . . . , αl} the set of simple roots. The root system ∆ then decomposes

∆ = ∆+ ∪ −∆+

where ∆+ = ∆ ∩ {
∑

i Z≥0αi}. With

n+ =
⊕
α∈∆+

gα, n− =
⊕

α∈−∆+

gα
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one then has the triangular decomposition

g(A) = n+ ⊕ h⊕ n−,

where h =
⊕

i Chi is the Cartan subalgebra.
Let Λ ∈ h∗ be a dominant integral weight i.e. Λ(hi) ∈ Z≥0 for all i. The standard module

L(Λ) is then the unique up to isomorphism irreducible highest weight g(A)-module with
highest weight Λ i.e. L(Λ) contains a nonzero vector vΛ of weight Λ, which is annihilated
by n+, and generates L(Λ) as a g(A)-module, cf. [Kac, Section 9.3].

The Weyl group W of g(A) is the group generated by the simple reflections rαi
. The

length ℓ(w) of an element w ∈ W is the minimal ℓ such that w has an expression
w = rαi1

· · · rαiℓ
as a product of simple reflections. Fix an element ρ ∈ h∗ such that

ρ(hi) = 1 for all i.
To formulate the Weyl–Kac character formula we also need a certain ring of formal

series. Consider formal series of the form s =
∑

µ∈h∗ cµe
µ, cµ ∈ C. The support of s is

then {µ; cµ ̸= 0}. The set of series with support contained in a finite union of sets D(λ),
where D(λ) = λ +

∑
i Z≥0(−αi), forms a ring under the multiplication determined by

eλeµ = eλ+µ. Formula (2.4) below takes place in this ring.
Define the character of L(Λ) by

chL(Λ) =
∑
µ∈h∗

dim(L(Λ)µ)e
µ,

which is a series of the above form.

Theorem 2.1 (Weyl–Kac character formula [Kac, Theorem 10.4]). The character of the
standard module L(Λ) satisfies

chL(Λ) =

∑
w∈W (−1)ℓ(w)ew(Λ+ρ)−ρ∏
α∈∆+(1− e−α)dim(g−α)

. (2.4)

3. Lepowsky’s and Wakimoto’s theorems on specializations for C
(1)
l

Let s = (s0, . . . , sl) be a sequence of positive integers. Following [W1], denote by Fs the
homomorphism

Fs : C[[e−α0 , . . . , e−αl ]] → C[[q]]
determined by Fs(e

−αj) = qsj , called the s-specialization.
Let A be an affine GCM, and let

g(A) =
∐
α∈∆

gα ⊕ h⊕ Cc⊕ Cd

be the root space decomposition of g(A). For j ∈ Z set

∆j,s = {α =
∑

kiαi ∈ ∆ |
∑

kisi = j},

and using these define

gj(s;A) =
∐

α∈∆j,s

gα.

Then

g(A) =
∐
j∈Z

gj(s;A)

is a Z-gradation of g(A), where g0 = h⊕ Cc⊕ Cd. We call this the s-gradation of g(A).
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Following [W1], define

Q(s;A) = Fs

( ∏
α∈∆+

(1− e−α)dim g−α

)
=

∞∏
j=1

(1− qj)dim gj(s;A),

the s-specialization of the denominator in the Weyl–Kac character formula.
For L(Λ) an integrable g(A)-module, we denote by

ch(s;A) L(Λ) = Fs(e
−Λ chL(Λ))

the s-specialized character. For Λ =
∑

kiΛi, set sΛ = (k0, . . . , kl).

Theorem 3.1 (Lepowsky’s product formula [L, Theorem 2.6.]). Let Λ be a dominant
integral weight, and set 1 = (1, . . . , 1). Then

ch(1,...,1;A) L(Λ) =
Q(sΛ + 1;AT )

Q(1;A)
.

Remark 3.2. In [L] this is proved more generally in the setting where A is a symmetriz-
able GCM.

The case A = C
(1)
l gives

Theorem 3.3. For a dominant integral weight Λ,

ch(1,...,1;C
(1)
l ) L(Λ) =

Q(sΛ + 1;D
(2)
l+1)

Q(1;C
(1)
l )

(3.1)

(cf. Theorem 7.4).

Let (k0, . . . , kl) be the coordinates of a dominant integral weight Λ =
∑

kiΛi. Set

ϕ(q) =
∞∏
j=1

(1− qj).

Theorem 3.4 ([W1, Section 4]). The following specializations of characters of g(C
(1)
l )-

modules hold:

ch(2,1,...,1;C
(1)
l ) L(Λ) = ϕ(q)−lQ(kl + 1, . . . , k1 + 1, 2(k0 + 1);A

(2)
2l ), (3.2)

(cf. Theorem 7.14),

ch(1,...,1,2;C
(1)
l ) L(Λ) = ϕ(q)−lQ(k0 + 1, . . . , kl−1 + 1, 2(kl + 1);A

(2)
2l ), (3.3)

(cf. Theorem 7.11),

ch(2,1,...,1,2;C
(1)
l ) L(Λ)

=
Q(2(k0 + 1), k1 + 1, . . . , kl−1 + 1, 2(kl + 1);C

(1)
l )

Q(2, 1, . . . , 1, 2;C
(1)
l )

,
(3.4)

(cf. Theorem 7.7),

ch(s;C
(1)
l ) L(

l−1∑
i=0

(2n− 1)Λi + (n− 1)Λl)

= Q(nsl, 2nsl−1, . . . , 2ns0;A
(2)
2l )/Q(s;C

(1)
l ),

(3.5)
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(cf. Theorem 7.17),

ch(s;C
(1)
l ) L((n− 1)Λ0 +

l∑
i=1

(2n− 1)Λi)

= Q(ns0, 2ns1, . . . , 2nsl;A
(2)
2l )/Q(s;C

(1)
l ),

(3.6)

(cf. Theorem 7.19),

ch(s;C
(1)
l ) L((n− 1)Λ0 +

l−1∑
i=1

(2n− 1)Λi + (n− 1)Λl)

= Q(ns0, 2ns1, . . . , 2nsl−1, nsl;D
(2)
l+1)/Q(s;C

(1)
l ),

(3.7)

(cf. Theorem 7.21).

4. Weighted crystals for Cl and Bl

In this section, we introduce some weighted crystals for Cartan matrices of types Cl

and Bl and their tensor products—see [HK, K1, K2, KKMMNN] for the definitions and
results we use. Here we shall not distinguish properly between Uq(g)-modules L(λ) for
quantum groups and g-modules L(λ) for simple Lie algebras—what we really want is a
parametrization of the basis B(λ) of the g-module L(λ) “suggested” by the crystal bases
theory.

4.1. Weighted crystals BCl
(ω1) and BCl

(θ) for Cl, l ≥ 2. We start with l = 2 (see
Figure 2). Kashiwara’s [K1, K2] tensor product of crystals BC2(ω1)⊗BC2(ω1) is the union
BC2(θ) ∪ BC2(ω2) ∪ BC2(0) of C2-crystals (see Figure 3).

1
1 // 2

2 // 2̄
1 // 1̄ .

Figure 2. The crystal of the vector representation for C2

1
1 // 2

2 // 2̄
1 // 1̄

11
1 // 21

1
��

2 // 2̄1
1 // 1̄1

1
��

1

1
��

12

2
��

22
2 // 2̄2

2
��

1̄2

2
��

2

2
��

12̄
1 // 22̄

1
��

2̄2̄
1 // 1̄2̄

1
��

2̄

1
��

11̄ 21̄
2 // 2̄1̄ 1̄1̄ 1̄

Figure 3. The crystal of the tensor square of vector representation for C2

Note that the crystal BC2(θ) parametrizes a weight basis of the adjoint 10-dimensional
representation LC2(θ) of the simple Lie algebra g = g(C2) of type C2 with the highest
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weight vector 11; the crystal BC2(ω2) parametrizes a weight basis of the 5-dimensional rep-
resentation LC2(ω2) with highest weight vector 12; the crystal BC2(0) = {11̄} parametrizes
a weight basis of the 1-dimensional trivial representation.

We can parametrize the weights of BC2(ω1) = {1, 2, 2̄, 1̄} and the root system ∆ of g as

{ϵ1, ϵ2,−ϵ2,−ϵ1} and ∆ = {±(ϵi ± ϵj) | 1 ≤ i ≤ j ≤ 2}\{0},
where, as usual, {ϵ1, ϵ2} is the canonical basis of R2. Then 11 is the root vector for
the maximal root θ = 2ϵ1, and the root vectors 1̄2 and 2̄2̄ for the negative simple roots
−α1 = −ϵ1+ ϵ2 and −α2 = −2ϵ2 are proportional to Chevalley generators f1 and f2. The
elements īi are proportional to simple coroots hi = α∨

i , i = 1, 2 in the Cartan subalgebra

h ⊂ g (cf. [Bou1, Bou2, Car, Hum]). Moreover, the i-arrow
i−→, i = 1, 2, denotes the

action of the Kashiwara operator f̃i (which is, in this case, proportional to the action of
the Chevalley generator fi, i = 1, 2).

In Figure 3, the crystal for the adjoint representation has the shape of a right-angled
triangle with vertices 11, 1̄1 and 1̄1̄. The hypotenuse {11, 22, 2̄2̄, 1̄1̄} consists of root
vectors corresponding to the long roots {2ϵ1, 2ϵ2,−2ϵ2,−2ϵ1}, and the arrows on both
catheti are congruent to the arrows of the crystal for the vector representation.

For l = 3, the crystal BC3(ω1) for the vector representation is shown in Figure 4. The

1
1 // 2

2 // 3
3 // 3̄

2 // 2̄
1 // 1̄

Figure 4. The crystal of the vector representation for C3

tensor product of crystals BC3(ω1) ⊗ BC3(ω1) is the union BC3(θ) ∪ BC3(ω2) ∪ BC3(0) of
C3-crystals (see Figure 5). Except for more complicated crystals, we see again that the

1
1 // 2

2 // 3
3 // 3̄

2 // 2̄
1 // 1̄

11
1 // 21

1
��

2 // 31

1
��

3 // 3̄1

1
��

2 // 2̄1
1 // 1̄1

1
��

1

1
��

12

2
��

22
2 // 32

3 //

2
��

3̄2
2 // 2̄2

2
��

1̄2

2
��

2

2
��

13
1 //

3
��

23

3
��

33
3 // 3̄3

3
��

2̄3
1 //

3
��

1̄3

3
��

3

3
��
3
��

13̄
1 //

2
��

23̄
2 // 33̄

2
��

3̄3̄
2 // 2̄3̄

1 //

2
��

1̄3̄

2
��

3̄

2
��

12̄
1 // 22̄

1
��

32̄

1
��

3 // 3̄2̄

1
��

2̄2̄
1 // 1̄2̄

1
��

2̄

1
��

11̄ 21̄
2 // 31̄

3 // 3̄1̄
2 // 2̄1̄ 1̄1̄ 1̄

Figure 5. The crystal of the tensor square of vector representation for C3

crystal BC3(θ) for the adjoint representation has the shape of a right-angled triangle with
vertices 11, 1̄1 and 1̄1̄ and that the sequences of arrows on both catheti are congruent
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to the sequence of arrows in the crystal BC3(ω1). In general, for l ≥ 3, we have the
Cl-crystal BCl

(ω1) for the vector representation (see Figure 6) and the tensor product
of crystals BCl

(ω1) ⊗ BCl
(ω1) is the union BCl

(θ) ∪ BCl
(ω2) ∪ BCl

(0) of Cl-crystals. The
crystal BCl

(θ) for the adjoint representation of g = g(Cl) of the type Cl has the shape of
a right-angled triangle with vertices 11, 1̄1 and 1̄1̄ and the sequence of arrows on both
catheti are congruent to the sequence of arrows in the crystal BCl

(ω1).

1
1 // 2

2 // · · · · · · l−1 // l
l // l̄

l−1 // · · · · · · 2 // 2̄
1 // 1̄

Figure 6. The crystal of the vector representation for Cl

4.2. Weighted crystals BBl
(ω1) and BBl

(θ) for Bl, l ≥ 2. We start with l = 2 and the
crystal BB2(ω1) for the Cartan matrix B2—it is the crystal of the 5-dimensional vector
representation shown in Figure 7. The tensor product of crystals BB2(ω1) ⊗ BB2(ω1) is

1
1 // 2

2 // 0
2 // 2̄

1 // 1̄.

Figure 7. The crystal of the vector representation for B2

the union BB2(2ω1)∪BB2(θ)∪BB2(0) of B2-crystals (see Figure 8). The crystal BB2(2ω1)
parametrizes a weight basis of the 14-dimensional representation LB2(2ω1) with high-
est weight vector 11; the crystal BB2(0) = {11̄} parametrizes a weight basis of the 1-
dimensional trivial representation. We analyze BB2(2ω1) in the next subsection.
Note that the crystal BB2(θ) parametrizes a weight basis of the adjoint 10-dimensional

representation LB2(θ) of the simple Lie algebra g = g(B2) of type B2 with highest weight
vector 12. By translating the diagonal points 00 and 22̄ down along the secondary diagonal
{1̄1, 2̄2, 00, 22̄, 11̄}, we rectify this crystal to become a triangle (see Figure 9). Note that
we did not change the sequence of arrows going down or going to the right. We

1
1 // 2

2 // 0
2 // 2̄

1 // 1̄

11
1 // 21

1
��

2 // 01
2 //

1
��

2̄1
1 // 1̄1

1
��

1

1
��

12

2
��

22
2 // 02

2 // 2̄2

2
��

1̄2

2
��

2

2
��

10
1 //

2
��

20
2 // 00

2
��

2̄0
1 //

2
��

1̄0

2
��

0

2
��

12̄
1 // 22̄

1
��

02̄

1
��

2̄2̄
1 // 1̄2̄

1
��

2̄

1
��

11̄ 21̄
2 // 01̄

2 // 2̄1̄ 1̄1̄ 1̄

Figure 8. The crystal of the tensor square of vector representation for B2
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12

2
��
10

1 //

2
��

20
2 // 00

2
��

12̄
1 // 22̄

1
��

02̄

1
��

21̄
2 // 01̄

2 // 2̄1̄

12

2
��
10

1 //

2
��

20

2
��

12̄

1
��

00
2 // 02̄

1
��

22̄
1 // 21̄

2 // 01̄
2 // 2̄1̄

Figure 9. Rectifying the crystal for the adjoint B2-module

parametrize the weights of BB2(ω1) = {1, 2, 0, 2̄, 1̄} and the root system ∆ of g as

{ϵ1, ϵ2, 0,−ϵ2,−ϵ1} and ∆ = {±(ϵi ± ϵj) | 1 ≤ i < j ≤ 2} ∪ {±ϵi | i = 1, 2}.

Then 12 ∈ BB2(θ) is the root vector for the maximal root θ = ϵ1 + ϵ2, and the root
vectors 21̄ and 02̄ for the negative simple roots −α1 = −ϵ1 + ϵ2 and −α2 = −ϵ2 are
proportional to the Chevalley generators f1 and f2. The elements 22̄ and 00 are pro-
portional to the simple coroots hi = α∨

i , i = 1, 2 in the Cartan subalgebra h ⊂ g (cf.
[Bou1, Bou2, Car, Hum]). Moreover, the i-arrow, i = 1, 2, denotes the action of the

Kashiwara operator f̃i (which is, in this case, proportional to fi). In Figure 9, the (recti-
fied) crystal for the adjoint representation has the shape of a right-angled triangle with
vertices 12, 22̄ and 2̄1̄. The hypotenuse {12, 20, 02̄, 2̄1̄} consists of root vectors corre-
sponding to the roots {ϵ1 + ϵ2, ϵ2,−ϵ2,−ϵ1 − ϵ2}. Unlike the C2-case, the arrows on both
catheti are not mutually congruent, nor congruent to the arrows of the crystal for the
vector representation. Instead, the arrows on catheti [12, 22̄] are congruent to the arrows
on the segment [2, 1̄] of BB2(ω1), and the arrows on catheti [22̄, 2̄1̄] are congruent to the
arrows on the segment [1, 2̄] of BB2(ω1).
For l = 3, the tensor product BB3(ω1)⊗BB3(ω1) is the union BB3(2ω1)∪BB3(θ)∪BB3(0)

ofB3-crystals (see Figure 10). By translating the diagonal points 00, 33̄ and 22̄ down along
the secondary diagonal {1̄1, 2̄2, 3̄3, 00, 33̄, 22̄, 11̄}, we rectify crystal BB3(θ) to become a
right-angled triangle with vertices 12, 22̄ and 2̄1̄. Again the arrows on catheti [12, 22̄]
are congruent to the arrows on the segment [2, 1̄] of BB3(ω1), and the arrows on catheti
[22̄, 2̄1̄] are congruent to the arrows on the segment [1, 2̄] of BB3(ω1). In general, for
l ≥ 3, we have the Bl crystal BBl

(ω1) for the vector representation (see Figure 11) and
the tensor product of crystals BBl

(ω1)⊗ BBl
(ω1) is the union BBl

(2ω1) ∪ BBl
(θ) ∪ BBl

(0)
of Bl-crystals. By translating the diagonal points diagonally down and to the left, we
rectify crystal BBl

(θ) to become a right-angled triangle with vertices 12, 22̄ and 2̄1̄. The
arrows on catheti [12, 22̄] are congruent to the arrows on the segment [2, 1̄] of BBl

(ω1),
and the arrows on catheti [22̄, 2̄1̄] are congruent to the arrows on the segment [1, 2̄] of
BBl

(ω1).

4.3. Weighted crystals BBl
(2ω1) and BBl

(θ) for Bl, l ≥ 2. The crystal BBl
(2ω1)

parametrizes a weight basis of the irreducible representation LBl
(2ω1) of the simple Lie

algebra g = g(Bl) of type Bl with the highest weight vector 11 ∈ BBl
(ω1)⊗ BBl

(ω1) (see
Figures 8 and 10 for l = 2 and l = 3). This crystal is a right-angled triangle with vertices
11, 1̄1 and 1̄1̄. Note that the midpoint on hypotenuse is missing (i.e. 00 ∈ BBl

(θ)). The
arrows on both catheti are congruent to the arrows on BBl

(ω1).
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1
1 // 2

2 // 3
3 // 0

3 // 3̄
2 // 2̄

1 // 1̄

11
1 // 21

1
��

2 // 31

1
��

3 // 01

1
��

3 // 3̄1

1
��

2 // 2̄1
1 // 1̄1

1
��

1

1
��

12

2
��

22
2 // 32

3 //

2
��

02
3 //

2
��

3̄2
2 // 2̄2

2
��

1̄2

2
��

2

2
��

13
1 //

3
��

23

3
��

33
3 // 03

3 // 3̄3

3
��

2̄3
1 //

3
��

1̄3

3
��

3

3
��
3
��

10
1 //

3
��

20

3
��

2 // 30
3 // 00

3
��

3̄0

3
��

2 // 2̄0
1 //

3
��

1̄0

3
��

0

3
��
3
��

13̄
1 //

2
��

23̄
2 // 33̄

2
��

03̄

2
��

3̄3̄
2 // 2̄3̄

1 //

2
��

1̄3̄

2
��

3̄

2
��

12̄
1 // 22̄

1
��

32̄

1
��

3 // 02̄

1
��

3 // 3̄2̄

1
��

2̄2̄
1 // 1̄2̄

1
��

2̄

1
��

11̄ 21̄
2 // 31̄

3 // 01̄
3 // 3̄1̄

2 // 2̄1̄ 1̄1̄ 1̄

Figure 10. The crystal of the tensor square of vector representation for B3

1
1 // 2

2 // · · · · · · l−1 // l
l // 0

l // l̄
l−1 // · · · · · · 2 // 2̄

1 // 1̄

Figure 11. The crystal of the vector representation for Bl

5. Arrays of negative root vectors for C
(1)
l , D

(2)
l+1 and A

(2)
2l

5.1. The array of negative root vectors for C
(1)
l . Since the crystal BCl

(λ) parametrizes
a weight basis of the g(Cl)-module LCl

(λ), from (2.1) we get (a parametrization of) a

weight basis of g(C
(1)
l )

{c, d} ∪ B
C

(1)
l
, where B

C
(1)
l

=
⋃
j∈Z

BCl
(θ)⊗ tj. (5.1)

For b ∈ BCl
(θ) and i ∈ Z, set bi = b ⊗ ti. Note that this is a weight vector in the affine

Lie algebra g(C
(1)
l ) of weight

wt(b⊗ ti) = wth(b) + iδ.

In each triangle BCl
(θ) ⊂ BCl

(ω1)⊗BCl
(ω1) (see Figures 3 and 5 for l = 2 and l = 3), the

h-weight changes by a negative simple root −αi, i ∈ {1, . . . , l}, when passing from one
column to the next, or from one row to the next, according to the sequence of arrows in
the crystal of the vector representation in Figure 6. We can “glue” the triangles BCl

(θ)⊗tj

in B
C

(1)
l

in such a way that this rule also holds for the negative simple root

−α0 = θ − δ = 2ϵ1 − δ,
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where “gluing” means that we place together the catheti of the triangles BC2(θ) ⊗ ti+1

and BC2(θ) ⊗ ti along the congruent arrows (see Figures 12 and 13 for l = 2 and Figure
14 in general). In this way, B

C
(1)
l

obtains the structure of a crystal graph (i.e. weighted

oriented graph), where dashed 0-arrows represent the action of the Kashiwara operator

f̃0 (or Chevalley’s generator f0).

Remark 5.1. In the theory of crystal bases, the previous construction is called the
affinization of BCl

with the notation B
C

(1)
l

= B̄Cl
= Baff

Cl
(cf. [HK]). Since the notion of

a crystal has many layers, from a simple combinatorial notion of colored directed graph
to the notion of crystal basis for a quantum group Uq(g), for BCl

we prefer the term the

array of root vectors for C
(1)
l or the arrangement of root vectors for C

(1)
l . For us, B

C
(1)
l

is

a part of the basis {c, d} ∪ B
C

(1)
l

of g(C
(1)
l ) and the i-arrows, i = 0, 1, . . . , l, indicate how

the action of Chevalley’s generators fi changes the weight of a basis element, i.e.

wt(fib) = wt(b)− αi, i = 0, 1, . . . , l, b ∈ B
C

(1)
l
.

1̄1i+1
1 //

0

��

1̄2i+1
2 //

0

��

1̄2̄i+1
1 //

0
��

1̄1̄i+1

0
��

11i
1 // 21i

2 // 2̄1i
1 // 1̄1i

Figure 12. Gluing the catheti of triangles in B
C

(1)
2

Remark 5.2. We shall usually write the array B
C

(1)
l

rotated by π/4. We shall mainly

write only negative root vectors B−
C

(1)
l

, starting from the left column with f0 = 11 ⊗ t−1,

f1 = 1̄2⊗t0, . . . , fl = l̄l̄⊗t0 (for l = 2 see Figure 15), with f0 in the bottom row. Finally,
for our purposes, it is not necessary to specify precisely the elements bi ∈ B

C
(1)
l
, as all

the information needed is encoded in the “colored” arrows and “positions of triangles”
BCl

(θ) ⊗ ti (for l = 2 see Figure 16 where the positions of the triangles are denoted by
“circles” and “bullets”).

Proposition 5.3. The array of negative root vectors for C
(1)
l , denoted by B−

C
(1)
l

, is a col-

ored directed graph. Its nodes, which represent the basis vectors of g(C
(1)
l )−, are organized

into 2l + 1 rows and two sequences of diagonals with 2l + 1 (or fewer) nodes. Its arrows
indicate the action of Chevalley’s generators f0, f1, . . . , fl on the negative root subspaces
and they are colored by 0, 1, . . . , l, respectively. Removing the arrows of color 0, which
correspond to the action of f0 = 11⊗ t−1, the graph decomposes into an infinite union of
connected subgraphs. We shall refer to these subgraphs as triangles. The first triangle,
positioned in the upper left corner, corresponds to the root vector basis of l2-dimensional
Lie subalgebra n− ⊗ t0 ∼= n− of the simple Lie algebra g(Cl) of type Cl. The remain-
ing triangles are crystal graphs BCl

(θ) of the adjoint representation of g(Cl) given over
LCl

(θ)⊗ ti with i < 0. The weights of nodes in B−
C

(1)
l

are periodic with period δ. We place

the Chevalley generator f0 in the bottom row.
The main property of B−

C
(1)
l

is that the weights of the corresponding points on two

adjacent diagonals differ by −αi if there is an i-arrow between these two diagonals. The
sequence of arrows between diagonals is determined by the sequence of arrows in BCl

(ω1).
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11i+1

1
��

21i+1
1 //

2
��

22i+1

2
��

2̄1i+1

1
��

2̄2i+1
2 // 2̄2̄i+1

1
��

1̄1i+1
1 //

0

��

1̄2i+1
2 //

0

��

1̄2̄i+1
1 //

0
��

1̄1̄i+1

0
��

11i
1 // 21i

1

��

2 // 2̄1i
1 // 1̄1i

1
��

0 // 11i−1

1

��
22i

2 // 2̄2i

2
��

1̄2i

2
��

0 // 21i−1

2
��

1 //

2
��

22i−1

2
��

2̄2̄i
1 // 1̄2̄i

1
��

0 // 2̄1i−1

1
��

2̄2i−1
2 // 2̄2̄i−1

1
��

1̄1̄i
0 // 1̄1i−1

1 // 1̄2i−1
2 // 1̄2̄i−1

1 // 1̄1̄i−1

Figure 13. Gluing triangles in B
C

(1)
2

1̄1i+1
1 //

0
��

1̄2i+1
2 //

0
��

· · · l−1 // 1̄li+1
l //

0
��

1̄l̄i+1
l−1 //

0
��

· · · 2 // 1̄2̄i+1
1 //

0
��

1̄1̄i+1

0
��

11i
1 // 21i

2 // · · · l−1 // l1i
l // l̄1i

l−1 // · · · 2 // 2̄1i
1 // 1̄1i

Figure 14. Gluing the catheti of triangles BCl
(θ)⊗ ti+1 and BCl

(θ)⊗ ti

Example 5.4. The array B−
C

(1)
2

is given in Figure 15. The triangle with vertices 2̄2̄0, 1̄20

and 1̄1̄0 corresponds to the basis of the 4-dimensional Lie subalgebra n− ⊗ t0 isomorphic
to the nilpotent subalgebra n− of the Lie algebra of type C2, while the remaining triangles
BCl

(θ) ⊗ ti, i < 0, possess catheti consisting of two 1-arrows and one 2-arrow, which
represent the action of f1 and f2, respectively. Finally, the triangles are connected by the
action of f0 which is indicated by the dashed 0-arrows. The same array B−

C
(1)
2

without

specified basis elements bi = b⊗ ti is given in Figure 16.

5.2. The array of negative root vectors for D
(2)
l+1. Since the crystal BBl

(λ) parametrizes
a weight basis of g(Bl)-module LBl

(λ), from (2.2) we get (a parametrization of) a weight

basis of g(D
(2)
l+1):

{c, d} ∪ B
D

(2)
l+1

, where B
D

(2)
l+1

=
⋃
j∈Z

BBl
(θ)⊗ t2j ∪

⋃
j∈Z

BBl
(ω1)⊗ t2j+1. (5.2)
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2̄2̄0
1
$$

1̄1̄0
0
$$

11−2
1
$$

22−2
2
$$

2̄2̄−2
1
$$

1̄1̄−2· · ·

1̄2̄0

1 ::

0
$$

1̄1−1
1
$$

0 ::

21−2

1 ::

2
$$

2̄2−2

2 ::

1̄2̄−2

1 ::

0
$$

1̄20

2 ::

0
$$

2̄1−1

1 ::

1̄2−1
2
$$

0 ::

2̄1−2
1
$$

1̄2−2

2 ::

0
$$

2̄1−3· · ·

21−1

2 ::

1
$$

2̄2−1
2
$$

1̄2̄−1
1
$$

0 ::

1̄1−2

1 ::

0
$$

21−3
1
$$

2 ::

11−1

1 ::

22−1

2 ::

2̄2̄−1

1 ::

1̄1̄−1

0 ::

11−3

1 ::

22−3· · ·

Figure 15. The arrangement of negative root vectors with elements bi for C
(1)
2

f2
1

��

◦
0

��

◦
1

��

◦
2

��

◦
1

��

◦ · · ·

◦

1
@@

0

��

•
1

��

0
@@

◦

1
@@

2

��

◦

2
@@

◦

1
@@

0

��
f1

2
??

0

��

•

1
@@

•
2

��

0
@@

◦
1

��

◦

2
@@

0

��

• · · ·

•

2
@@

1

��

•
2

��

•
1

��

0
@@

◦

1
@@

0

��

•
1

��

2
@@

f0

1
??

•

2
@@

•

1
@@

•

0
@@

•

1
@@

• · · ·

Figure 16. The arrangement of negative root vectors for C
(1)
2

For i ∈ Z, set b2i = b⊗ t2i for b ∈ BBl
(θ) and b2i+1 = b⊗ t2i+1 for b ∈ BBl

(ω1). Note that

these are weight vectors in the affine Lie algebra g(D
(2)
l+1) of weight

wt(b⊗ tj) = wth(b) + jδ.

We can glue the catheti of the triangles BBl
(θ)⊗ t2i to the lines BBl

(ω1)⊗ t2i±1 in B
D

(2)
l+1

along the congruent arrows; for l = 2, this is shown in Figure 17, and, in general, in
Figure 18. The dashed 0-arrows represent the action of the Chevalley generator f0 on the
array of negative root vectors B

D
(2)
l+1

, which changes weights of the corresponding vectors

by
−α0 = ω1 − δ = ϵ1 − δ.

We shall write the array of negative root vectors B−
D

(2)
l+1

rotated by π/4, starting with

f0 = 1⊗ t−1, f1 = 21̄⊗ t0, . . . , fl = 0l̄ ⊗ t0.

Proposition 5.5. The array of negative root vectors for D
(2)
l+1, denoted by B−

D
(2)
l+1

, is

a colored directed graph. Its nodes, which represent the basis vectors of g(D
(2)
l+1)

−, are
organized into 2l + 1 rows and two sequences of diagonals with 2l + 1 (or fewer) nodes.
Its arrows indicate the action of the Chevalley generators f0, f1, . . . , fl on the negative
root subspaces and they are colored by 0, 1, . . . , l, respectively. Removing the arrows of
color 0, which correspond to the action of f0 = 1 ⊗ t−1, the graph decomposes into an
infinite union of connected subgraphs. We shall refer to these subgraphs as triangles and
diagonals. The first triangle, positioned in the upper left corner, corresponds to the root
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122j

2
��

102j
1 //

2
��

202j

2

��
12̄2j

1
��

002j
2 // 02̄2j

1
��

22̄2j
1 //

0

��

21̄2j
2 //

0

��

01̄2j
2 //

0

��

2̄1̄2j

0
��

12j−1
1 // 22j−1

2 //

0

��

02j−1
2 //

0

��

2̄2j−1
1 //

0
��

1̄2j−1

0
��

122j−2
2 // 102j−2

2 //

1

��

12̄2j−2
1 // 22̄2j−2

1
��

202j−2
2 // 002j−2

2
��

21̄2j−2

2
��

02̄2j−2
1 // 01̄2j−2

2
��

2̄1̄2j−2

Figure 17. Gluing triangles to lines in B
D

(2)
3

22̄2j
1 //

0
��

21̄2j
2 //

0
��

· · · l−1 // l1̄2j
l //

0
��

01̄2j
l //

0
��

l̄1̄2j
l−1 //

0��

· · · 2 // 2̄1̄2j
0��

12j−1
1 // 22j−1

2 //

0
��

· · · l−1// l2j−1
l //

0
��

02j−1
l //

0
��

l̄2j−1
l−1 //

0��

· · · 2 // 2̄2j−1
1 //

0��

1̄2j−1

0��
122j−2

2 // · · · l−1// 1l2j−2
l // 102j−2

l // 1l̄2j−2
l−1 // · · · 2 // 12̄2j−2

1 // 22̄2j−2

Figure 18. Gluing catheti of triangles to lines in B
D

(2)
l+1

vector basis of the l2-dimensional Lie subalgebra n− of the simple Lie algebra g(Bl) of
type Bl. The remaining triangles are crystal graphs BBl

(θ) of the adjoint representation
of g(Bl) given over LBl

(θ) ⊗ t2i with i < 0. Finally, the diagonals, which consist of
2l + 1 nodes, are crystal graphs BBl

(ω1) of the vector representation LBl
(ω1) given over

C2l+1 ⊗ t2i+1 with i < 0. The weights of nodes in B−
D

(2)
l+1

are periodic with period 2δ. We

place the Chevalley generator f0 in the bottom row.
The main property of B−

D
(2)
l+1

is that the weights of the corresponding nodes on two

adjacent diagonals differ by −αi if there is an i-arrow between these two diagonals. The
sequence of arrows between diagonals is determined by the sequence of arrows in BBl

(ω1).
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02̄0 1""
2̄1̄0 0

%%
1̄−1 0%%

1−3 1
%%

12−4 2
%%

20−4 2
%%

02̄−4 1%%
· · ·

01̄0 0
$$

2 ::

2̄−1 0%%

1 99

22̄−2 1%%

0 99

2−3

0 99

2
%%

10−4 2%%

1 99

00−4

2 99

01̄−4

21̄0 0
""

2 <<

0−1 0
%%

2 99

12̄−2

1 99

21̄−2

0 99

2%%
0−3

0 99

2
%%

12̄−4 1%%
21̄−4 0

%%

2 99

· · ·

2−1 0
$$

2 ::

10−2

2 99

1
%%

00−2 2%%
01̄−2

0 99

2%%
2̄−3

0 99

1
%%

22̄−4

1 99

0
%%

2−5

1−1

1 <<

12−2

2 99

20−2

2 99

02̄−2

1 99

2̄1̄−2

0 99

1̄−3

0 99

1−5

1 99

· · ·

Figure 19. Arrangement of negative root vectors with elements bi for D
(2)
3

f2
1

��

◦
0

��

•
0

��

•
1

��

◦
2

��

◦
2

��

◦
1

��

◦
0

��

• · · ·

◦
0

��

2
@@

•
0

��

1
@@

◦
1

��

0
@@

•
0
@@

2

��

◦
2

��

1
@@

◦
2
@@

◦
0

��

2
@@

•
0

��

1
@@

f1
0

��

2
??

•
0

��

2
@@

◦
1
@@

◦
0
@@

2

��

•
0
@@

2

��

◦
1

��

◦
0

��

2
@@

•
0

��

2
@@

◦ · · ·

•
0

��

2
@@

◦
2
@@

1

��

◦
2

��

◦
0
@@

2

��

•
0
@@

1

��

◦
1
@@

0

��

•
0

��

2
@@

◦
2
@@

1

��
f0

1
??

◦
2
@@

◦
2
@@

◦
1
@@

◦
0
@@

•
0
@@

•
1
@@

◦
2
@@

◦ · · ·

Figure 20. Arrangement of negative root vectors for D
(2)
3

Example 5.6. The array B−
D

(2)
3

is given by Figure 19. The triangle with vertices 02̄0,

21̄0, 2̄1̄0 corresponds to the basis of the 4-dimensional Lie subalgebra n− of the simple Lie
algebra of type B2. The remaining triangles BB2(θ)⊗ t2i, i < 0, possess catheti consisting
of two 2-arrows and one 1-arrow, which represent the action of f2 and f1, respectively.
Finally, the diagonals BB2(ω1) ⊗ t2i+1, i < 0, consist of two 1-arrows, at the beginning
and at the end, and two 2-arrows in the middle. The triangles and the diagonals are
connected by the action of f0 which is indicated by the dashed 0-arrows.

As noted before, for our purposes it is not necessary to precisely specify the elements
bi ∈ B−

D
(2)
l+1

; all the information needed is encoded in arrows and “positions of triangles

B(θ)⊗ t2j and lines B(ω1)⊗ t2j+1” like in Figure 20.

5.3. The array of negative root vectors for A
(2)
2l . Since the crystal BBl

(λ) parametrizes
a weight basis of g(Bl)-module LBl

(λ), from (2.3) we get (a parametrization of) a weight

basis of g(A
(2)
2l ):

{c, d} ∪ B
A

(2)
2l
, where B

A
(2)
2l

=
⋃
j∈Z

BBl
(θ)⊗ t2j ∪

⋃
j∈Z

BBl
(2ω1)⊗ t2j+1. (5.3)

For i ∈ Z, set b2i = b ⊗ t2i for b ∈ BBl
(θ) and b2i+1 = b ⊗ t2i+1 for b ∈ BBl

(2ω1). Note

that these are weight vectors in the affine Lie algebra g(A
(2)
2l ) of weight

wt(b⊗ tj) = wth(b) + jδ.

We can glue the catheti of the small triangles BBl
(θ)⊗ t2i to the catheti of big triangles

BBl
(2ω1) ⊗ t2i±1 in B

A
(2)
2l

along the congruent arrows (see the small and big triangles in

Figures 8 and 10 for l = 2 and l = 3); for l = 2, this is shown in Figure 21, and, in general,
in Figure 22. The dashed 0-arrows represent the action of the Chevalley generator f0 on



LEPOWSKY’S AND WAKIMOTO’S PRODUCT FORMULAS FOR C
(1)
l 17

the array of negative root vectors B
A

(2)
2l
, which changes weights of the corresponding

vectors by
−α0 = 2ω1 − δ = 2ϵ1 − δ.

We shall usually write the array of negative root vectors B−
A

(2)
2l

rotated by π/4, starting

with f0 = 0l̄ ⊗ t0, f1 = ll − 1⊗ t0, . . . , fl−1 = 21̄⊗ t0 and fl = 11⊗ t−1.

122j
2��

102j
1 //

2��

202j
2��

12̄2j
1��

002j
2 // 02̄2j

1��
22̄2j

1 //

0
��

21̄2j
2 //

0
��

01̄2j
2 //

0
��

2̄1̄2j
0��

112j−1
1 // 212j−1

1
��

2 // 012j−1
2 //

1
��

2̄12j−1
1 // 1̄12j−1

1��
222j−1

2 // 022j−1
2 // 2̄22j−1

2��

1̄22j−1

2��

0 // 122j−2

2
��

2̄02j−1
1 //

2��

1̄02j−1

2��

0 // 102j−2
1 //

2��

202j−2

2
��

2̄2̄2j−1
1 // 1̄2̄2j−1

1��

0 // 12̄2j−2

1��

002j−2
2 // 02̄2j−2

1��
1̄1̄2j−1

0 // 22̄2j−2
1 // 21̄2j−2

2 // 01̄2j−2
2 // 2̄1̄2j−2

Figure 21. Gluing small and big triangles in B
A

(2)
4

22̄2j
1 //

0
��

21̄2j
2 //

0
��

· · · l−1 // l1̄2j
l //

0��

01̄2j
l //

0
��

l̄1̄2j
l−1 //

0��

· · · 2 // 2̄1̄2j
0��

112j−1
1 // 212j−1

2 // · · · l−1// l12j−1
l // 012j−1

l // l̄12j
l−1 // · · · 2 // 2̄12j

1 // 1̄12j

1̄12j−1
1 // 1̄22j−1

2 //

0
��

· · · l−1// 1̄l2j−1
l //

0��

1̄02j−1
l //

0
��

1̄l̄2j
l−1 //

0��

· · · 2 // 1̄2̄2j
1 //

0��

1̄1̄2j
0��

122j−2
2 // · · · l−1// 1l2j−2

l // 102j−2
l // 1l̄2j−2

l−1 // · · · 2 // 12̄2j−2
1 // 22̄2j−2

Figure 22. Gluing catheti of small and big triangles in B
A

(2)
2l

Proposition 5.7. The array of negative root vectors for A
(2)
2l , denoted by B−

A
(2)
2l

is a colored

directed graph. Its nodes, which represent the basis vectors of g(A
(2)
2l )

−, are organized into
2l+1 rows and two sequences of diagonals with 2l+1 (or fewer) nodes. Its arrows indicate
the action of the Chevalley generators f0, f1, . . . , fl on the negative root subspaces and they
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are colored by 0, 1, . . . , l, respectively. Removing the arrows of color l, which correspond
to the action of fl = 11 ⊗ t−1, the graph decomposes into an infinite union of connected
subgraphs which we refer to as triangles. The first triangle, positioned in the upper left
corner, corresponds to the root vector basis of the l2-dimensional Lie subalgebra n− of
the simple Lie algebra g(Bl) of type Bl. The remaining triangles alternate between the
crystals BBl

(2ω1) of g(Bl) of the representation given over LB1(2ω1) ⊗ t2i+1 with i < 0,
and the crystals BBl

(θ) of the adjoint representation given over LB1(θ) ⊗ t2i with i < 0.
We shall refer to these subgraphs as big triangles and small triangles. The hypotenuses
of the big triangles miss the midpoints. The weights of nodes in B−

A
(2)
2l

are periodic with

period 2δ. We place the hypotenuses of the big triangles on the bottom row; hence the
Chevalley generator f0 is in the top row.
The main property of B−

A
(2)
2l

is that the weights of the corresponding nodes on two ad-

jacent diagonals differ by −αi if there is an i-arrow between these two diagonals. The
sequence of arrows between diagonals is determined by the sequence of arrows in BBl

(ω1).

Example 5.8. The array B−
A

(2)
4

is given by Figure 23, and by Figure 24 without specifying

vectors bi.

02̄0 1
$$

2̄1̄0 2$$
1̄1−1 1$$

12−2 0
$$

20−2 0
$$

02̄−2 1$$
2̄1̄−2· · ·

01̄0 2
$$

0 ::

2̄1−1

1 ::

1̄2−1 0$$

2 ::

10−2 0$$

1 ::

00−2

0 ::

01̄−2

0 ::

2
$$

21̄0 2
$$

0 ::

01−1

0 ::

1
$$

2̄2−1 0$$
1̄0−1

2 ::

0$$
12̄−2 1$$

21̄−2 2
$$

0 ::

01−3· · ·

21−1

0 ::

1
$$

02−1

0 ::

2̄0−1 0$$

1 ::

1̄2̄−1

2 ::

1$$
22̄−2

1 ::

2
$$

21−3

0 ::

1
$$

11−1

1 ::

22−1

0 ::

2̄2̄−1

1 ::

1̄1̄−1

2 ::

11−3

1 ::

22−3· · ·

Figure 23. Arrangement of negative root vectors with elements bi for A
(2)
4

f0
1

��

◦
2

��

•
1

��

◦
0

��

◦
0

��

◦
1

��

◦ · · ·

◦
2

��

0
@@

•

1
@@

•
0

��

2
@@

◦
0

��

1
@@

◦

0
@@

◦

0
@@

2

��
f1

2

��

0
??

•

0
@@

1

��

•
0

��

•

2
@@

0

��

◦
1

��

◦
2

��

0
@@

• · · ·

•

0
@@

1

��

•

0
@@

•
0

��

1
@@

•

2
@@

1

��

◦

1
@@

2

��

•

0
@@

1

��
f2

1
??

•

0
@@

•

1
@@

•

2
@@

•

1
@@

• · · ·

Figure 24. Arrangement of negative root vectors for A
(2)
4

6. Specialized arrays of negative root vectors

6.1. Specialized arrays of negative root vectors for C
(1)
l . Let s0, s1, . . . , sl ∈ N be

fixed. By assigning degrees

deg f0 = s0, deg f1 = s1, . . . , deg fl = sl
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to the arrows in the array B−
C

(1)
l

we obtain an array N (s0,s1,...,sl)

C
(1)
l

of positive integers, which

we call the (s0, s1, . . . , sl)-specialized weighted array for C
(1)
l . The array N (s0,s1,...,sl)

C
(1)
l

is

periodic with period s0 + 2
∑l−1

i=1 si + sl.
For s = (1, . . . , 1) we have the so called principal specialization. In the principally

specialized array of negative root vectors the labels of nodes increase by one when we
move one place to the upper right or lower right. Hence we have the following lemma:

Lemma 6.1. For l ≥ 1, the array N (1,...,1)

C
(1)
l

consists of l copies of positive integers and

one copy of odd positive integers. Equivalently,

Q(1, . . . , 1;C
(1)
l ) =

∏
i∈N

(1− qi)l
∏
j∈N

(1− q2j−1).

Example 6.2. Figure 25 represents the array N (1,1,1,1,1)

C
(1)
4

. Note that the labels correspond-

ing to the different adjoint triangles are written in italic and bold, so that they can be
immediately detected in the image.

1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16

1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16

1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16

1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16

1 3 5 7 9 11 13 15

. . .

Figure 25. Array N (1,1,1,1,1)

C
(1)
4

Example 6.3. The array N (2,1,1,1,2)

C
(1)
4

consists of three copies of positive integers, one copy

of even positive integers and one copy of positive integers congruent to 5 modulo 10. We
shall now demonstrate how such a conclusion can be easily obtained examining the array

in the case l = 4. First, note that the array N (2,1,1,1,2)

C
(1)
4

is periodic with period 10, so it is

enough to consider the first two triangles corresponding to n−⊗t0 and n+⊗t−1 (see Figure

26). Then, as in Figure 25, we divide the array N (2,1,1,1,2)

C
(1)
4

into triangles; see Figure 26.

Next, suppose that all triangles with italic labels slide one place down the catheti of the
adjacent triangles with bold labels; see Figure 27. Finally, in Figure 27, we notice three
copies of the positive integers (we indicate their positions in Figure 28 by the symbols
1○, 2○, 3○), one copy of the even positive integers (indicated by E○ in Figure 28) and one
copy of the positive integers congruent to 5 modulo 10 (indicated by 5○ in Figure 28).

The previous argument can be generalized to the case of arbitrary l ≥ 3:

Lemma 6.4. The array N (2,1,...,1,2)

C
(1)
l

consists of l − 1 copies of the positive integers, one

copy of the even positive integers and one copy of the positive integers congruent to l+ 1
modulo 2(l + 1). Equivalently,

Q(2, 1, . . . , 1, 2;C
(1)
l ) =

∏
i∈N

(1− qi)l−1
∏
j∈N

(1− q2j)
∏

r≡(l+1) mod 2(l+1)

(1− qr).
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2 4 6 8
3 5 7 10

1 4 6 9
2 5 8 10

1 3 7 9
2 5 8 10

1 4 6 9
3 5 7 10

2 4 6 8

. . .

Figure 26. Array N (2,1,1,1,2)

C
(1)
4

2 4 6 8 10
3 5 7 9

1 4 6 8 10
2 5 7 9

1 3 5 8 10
2 4 6 9

1 3 5 7 10
2 4 6 8

. . .

Figure 27. Translated tri-
angles in the arrayN (2,1,1,1,2)

C
(1)
4

E○ E○ E○ E○ E○
3○ 2○ 1○ 3○

1○ 3○ 2○ 1○ 3○
1○ 3○ 2○ 1○

2○ 1○ 5○ 2○ 1○
2○ 1○ 3○ 2○

3○ 2○ 1○ 3○ 2○
3○ 2○ 1○ 3○

. . .

Figure 28. Three copies of the positive integers ( 1○, 2○, 3○), one copy
of the even positive integers ( E○) and one copy of the positive integers

congruent to 5 modulo 10 ( 5○) in the array N (2,1,1,1,2)

C
(1)
4

Lemma 6.5. The array N (2,1,...,1)

C
(1)
l

consists of l copies of the positive integers. Equiva-

lently,

Q(2, 1, . . . , 1;C
(1)
l ) =

∏
i∈N

(1− qi)l.

Proof. In each triangle the labels of nodes increase by one when we move one place to
the upper right or lower right. Moreover, when we move one place from one triangle to
another one, the labels increase by two. Figure 29 shows three adjacent triangles in the
case l = 4. Now we can argue as before by sliding the upper triangles one place down
the catheti of the adjacent lower triangles. □

Remark 6.6. It is worth noting that the array N (1,1,...,1,2)

C
(1)
l

is the transpose of the array

N (2,1,...,1,1)

C
(1)
l

; see Figure 30 for l = 4.

Example 6.7. The labels of nodes in the specialized array N (4,3,2,3,4)

C
(1)
4

are the positive

integers congruent to

0, 0, 0, 0,±2,±3,±3,±4,±4,±5,±5,±7,±7,±8,±9,±9,±10,±10,±12,±12

modulo 24; see Figure 31.
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1 3 5 7 11 13 15 17
2 4 6 9 12 14 16 18

1 3 5 8 10 13 15 17
2 4 7 9 11 14 16 18

1 3 6 8 10 12 15 17
2 5 7 9 11 13 16 18

1 4 6 8 10 12 14 17
3 5 7 9 11 13 15 18

2 4 6 8 10 12 14 16

. . .

Figure 29. Array N (2,1,1,1,1)

C
(1)
4

2 4 6 8 10 12 14 16
3 5 7 9 11 13 15 18

1 4 6 8 10 12 14 17
2 5 7 9 11 13 16 18

1 3 6 8 10 12 15 17
2 4 7 9 11 14 16 18

1 3 5 8 10 13 15 17
2 4 6 9 12 14 16 18

1 3 5 7 11 13 15 17

. . .

Figure 30. Array N (1,1,1,1,2)

C
(1)
4

4 10 14 20 28 34 38 44
7 12 17 24 31 36 41 48

3 9 15 21 27 33 39 45
5 12 19 24 29 36 43 48

2 8 16 22 26 32 40 46
5 12 19 24 29 36 43 48

3 9 15 21 27 33 39 45
7 12 17 24 31 36 41 48

4 10 14 20 28 34 38 44

. . .

Figure 31. Array N (4,3,2,3,4)

C
(1)
4

6.2. Specialized arrays of negative roots for D
(2)
l+1. As in the previous case, fix

s0, s1, . . . , sl ∈ N and then assign the degrees

deg f0 = s0, deg f1 = s1, . . . , deg fl = sl

to arrows in the array B−
D

(2)
l+1

. Thus, we obtain an array N (s0,s1,...,sl)

D
(2)
l+1

of positive integers,

which we call the (s0, s1, . . . , sl)-specialized weighted array for D
(2)
l+1. The arrayN (s0,s1,...,sl)

D
(2)
l+1

is periodic with period 2(s0 + s1 + . . .+ sl).
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In the principally specialized array of negative root vectors the labels of nodes increase
by one when we move one place to the upper right or lower right. Hence we have the
following:

Lemma 6.8. The array N (1,...,1)

D
(2)
l+1

consists of l copies of the positive integers and one copy

of the odd positive integers. Equivalently,

Q(1, . . . , 1;D
(2)
l+1) =

∏
i∈N

(1− qi)l
∏
j∈N

(1− q2j−1).

Example 6.9. In Figure 32 we have the array N (1,1,1,1,1)

D
(2)
5

. Its triangles (resp. diagonals)

are indicated by labels in italic (resp. bold).

1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20

1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20

1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20

1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20

1 3 5 7 9 11 13 15 17 19

. . .

Figure 32. Array N (1,1,1,1,1)

D
(2)
5

6.3. Specialized arrays of negative root vectors for A
(2)
2l . As before, for fixed inte-

gers s0, s1, . . . , sl ∈ N we assign the degrees

deg f0 = s0, deg f1 = s1, . . . , deg fl = sl

to the arrows in the array B−
A

(2)
2l

, thus getting the array N (s0,s1,...,sl)

A
(2)
2l

of positive integers,

which we call the (s0, s1, . . . , sl)-specialized weighted array for A
(2)
2l . It is periodic with

period 2(sl +2
∑l−1

i=0 si). By using the orientation-reversing automorphism of the Dynkin

diagram of type A
(2)
2l that sends the node i to l − i, we obtain a weighted crystal graph

of type B−
A

(2)
2l

T and (s0, s1, . . . , sl)-specialized weighted crystal of negative roots for A
(2)
2l

T
.

Lemma 6.10. For l ≥ 1, the array N (1,...,1)

A
(2)
2l

consists of l copies of the positive integers and

one copy of the odd positive integers which are not congruent to 2l+ 1 modulo 2(2l+ 1).
Equivalently,

Q(1, . . . , 1;A
(2)
2l ) =

∏
i∈N

(1− qi)l
∏

j ̸≡l+1 mod (2l+1)

(1− q2j−1).

Example 6.11. In Figure 33, we have the array N (1,1,1,1,1)

A
(2)
8

. Its triangles are again

indicated by italic and bold labels.
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1 3 5 7 9 11 13 15 17
2 4 6 8 10 12 14 16 18

1 3 5 7 9 11 13 15 17
2 4 6 8 10 12 14 16 18

1 3 5 7 9 11 13 15 17
2 4 6 8 10 12 14 16 18

1 3 5 7 9 11 13 15 17
2 4 6 8 10 12 14 16 18

1 3 5 7 11 13 15 17

. . .

Figure 33. Array N (1,1,1,1,1)

A
(2)
8

Example 6.12. The labels of nodes in the specialized array N (3,2,2,3,4)

A
(2)
8

are the positive

integers congruent to

0, 0, 0, 0,±2,±2,±3,±3,±4,±5,±5,±7,±7,±7,±8,±9,±10,±10,±11,±12

modulo 24 and the positive integers congruent to ±4,±10,±14,±18 modulo 48; see Figure
34.

3 8 12 17 24 31 36 40 45
5 10 15 21 27 33 38 43 48

2 7 13 19 24 29 35 41 46
4 10 17 22 26 31 38 44 48

2 7 14 20 24 28 34 41 46
5 11 17 22 26 31 37 43 48

3 9 14 19 24 29 34 39 45
7 12 16 21 27 32 36 41 48

4 10 14 18 30 34 38 44

. . .

Figure 34. Array N (3,2,2,3,4)

A
(2)
8

Example 6.13. The labels of nodes in the specialized array N (6,2,2,3,2)

A
(2)
8

T are the positive

integers congruent to

0, 0, 0, 0,±2,±2,±2,±3,±4,±5,±5,±7,±7,±7,±8,±9,±9,±10,±11,±12

modulo 24 and the positive integers congruent to ±6,±10,±14,±20 modulo 48; see Figure
35.

7. Explicit versions of Lepowsky’s and Wakimoto’s product formulas
for C

(1)
l

7.1. Lepowsky’s formula of type (1, 1, . . . , 1, 1; C
(1)
l ). Let l be a nonnegative integer,

and let (s0, s1, . . . , sl) be (l + 1)-tuple of positive integers. To write Lepowsky’s product

formula for C
(1)
l in terms of generating function of (s0, s1, . . . , sl)-admissible partitions,

the authors in [CMPP] introduced the congruence triangle as the multiset

∆(s1, . . . , sl;D
(2)
l+1) = D(s1, . . . , sl;D

(2)
l+1) ∪D(s2, . . . , sl;D

(2)
l+1) ∪ · · · ∪D(sl;D

(2)
l+1),
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2 7 12 16 24 32 36 41 46
5 9 14 22 26 34 39 43 48

3 7 11 20 24 28 37 41 45
5 9 17 22 26 31 39 43 48

2 7 15 19 24 29 33 41 46
4 13 17 21 27 31 35 44 48

2 10 15 19 24 29 33 38 46
8 12 17 22 26 31 36 40 48

6 10 14 20 28 34 38 42

. . .

Figure 35. Array N (6,2,2,3,2)

A
(2)
8

T

where for 0 ≤ i ≤ l, D(si, si+1, . . . , sl;D
(2)
l+1) denotes the set of the 2(l − i) + 1 integers

si, si + si+1, . . . , si + si+1 + . . .+ sl−2 + sl−1,

si + si+1 + . . .+ sl−1 + sl, si + si+1 + . . .+ sl−1 + 2sl,

si + si+1 + . . .+ 2sl−1 + 2sl, . . . , si + 2si+1 + . . .+ 2sl−1 + 2sl.

The elements of the multiset ∆(s1, . . . , sl;D
(2)
l+1) correspond to the elements of the upper

left right-angled triangle with vertices s1, sl and s1 + 2
∑l

i=2 si in the (s0, s1, . . . , sl)-

specialized array N (s0,s1,...,sl)

D
(2)
l+1

.

Example 7.1. In Figure 36, the elements of the sets D(si, . . . , s4;D
(2)
5 ) are denoted by

1○, 2○, 3○, 4○ for i = 1, 2, 3, 4, respectively. Hence, for example, the symbol 2○ represents
the elements

s2, s2 + s3, s2 + s3 + s4, s2 + s3 + 2s4, s2 + 2s3 + 2s4. (7.1)

The remaining elements of the array which belong to a diagonal (resp. a triangle) are
denoted by the symbol • (resp. ◦).

s4 4○ 3○ 2○ 1○ • • ◦ ◦ ◦ ◦
3○ 2○ 1○ • ◦ • ◦ ◦ ◦ ◦

s3 3○ 2○ 1○ • ◦ ◦ • ◦ ◦ ◦
2○ 1○ • ◦ ◦ ◦ • ◦ ◦ ◦

s2 2○ 1○ • ◦ ◦ ◦ ◦ • ◦ ◦
1○ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

s1 1○ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦

s0 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

. . .

Figure 36. Congruence triangle ∆(s1, s2, s3, s4;D
(2)
5 )

In general, as we demonstrated in Subsection 6.2, the elements of the arrayN (s0,...,sl)

D
(2)
l+1

can

be organized into a disjoint union of triangles and diagonals. Suppose that all triangles,

with an exception of the grey triangle ∆(s1, . . . , sl;D
(2)
l+1), are divided into two right-

angled triangles; see Figure 37. Let us consider Figure 38, where the common catheti
of these right-angled triangles are denoted by IJ . Then the grey triangles ABC are the
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...

Figure 37. Array N (s0,s1,...,sl)

D
(2)
l+1

specialization of n− ⊗ t2j ⊂ B−
D

(2)
l+1

, j ≤ 0, the black triangles DEF are the specialization

of n+ ⊗ t2j, j < 0, and common catheti IJ are the specialization of h ⊗ t2j, j < 0;
where n− + h+ n+ is the triangular decomposition of g(Bl). On the other side, the lines
HG are the specialization of BBl

(ω1) ⊗ t2j−1, j ≤ 0. By closely examining the weights

of B−
D

(2)
l+1

, one observes that the elements of the congruence triangle ∆(s1, . . . , sl;D
(2)
l+1)

are congruent modulo π = 2
∑l

i=0 si to the corresponding elements of other grey right-
angled triangles ABC. The same observation holds true for the corresponding elements
of the black triangles DEF , lines IJ and the diagonals GH, as indicated by the labels of
their vertices. In particular, the elements of the common catheti IJ are multiples of 2π.
Furthermore, the black triangles DEF consist of modular additive inverses modulo π of
the corresponding elements of the grey triangles ABC.

...
A

C B

D E

F
I

J

A

C B

D E

F
I

J

A

C B

D E

F
I

J

A

C B

D E

F
I

J

G

H G

H G

H G

H

Figure 38. Positions of congruent elements in the array N (s0,s1,...,sl)

D
(2)
l+1

Remark 7.2. By a reasoning similar to above we can write formulas for Q(s0, s1, . . . .sl;C
(1)
l )

and Q(s0, s1, . . . .sl;A
(2)
2l ) needed for Theorems 7.7 and 7.11 below. Positions of congruent

elements in the array N (s0,s1,...,sl)

C
(1)
l

look like Figure 38 without lines GH.

On the other side, the array B−
A

(2)
2l

consists of n− ⊗ t0, small triangles LBl
(θ)⊗ t2j and

big triangles LBl
(2θ)⊗ t2j+1, j < 0. After specialization n−⊗ t0 becomes the gray triangle

in the upper left corner of N (s0,s1,...,s1)

A
(1)
2l

, and the small triangle becomes the union of the

black triangle DEF , the vertical line IJ and the gray triangle ABC with the hypotenuse
in the top row. Finally, after specialization the big triangle has its hypotenuse in the
bottom row, and the remaining part is the union of the black triangle DEF , the vertical
line IJ and the gray triangle ABC. For l = 2 the last statement is obvious if we put the
(rectified) small triangle in the lower left corner of Figure 8 and the big triangle without
hypotenuse in the upper left corner: one is the transpose of the other.

Example 7.3. We return to the setting of Example 7.1 to illustrate the preceding dis-

cussion. Consider Figure 39. It shows the array N (s0,s1,s2,s3,s4)

D
(2)
5

modulo π = 2
∑4

i=0 si,

where its triangle (resp. diagonal) elements are labeled by the upper case letters, lower
case letters and zeros 0 (resp. bullets •i for i = 1, . . . , 9). Note that we use the upper
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case letters for the elements of the congruence triangle ∆(s1, s2, s3, s4;D
(2)
5 ) and that the

common catheti IJ from Figure 38 consists of zeros 0,0,0,0.
The triangle in Figure 39 with the vertices 0, d, D (which are underlined in the figure)

and hypotenuse dD in the bottom row is the “(s0, s1, s2, s3, s4) mod π”-specialization of
the triangle LBl

(θ)⊗ t2 ⊂ B−
D

(2)
5

. From Figures 8 and 10 we see that the positions of root

vectors for roots α and −α are symmetric with respect to the “line corresponding to h”
(i.e. IJ from Figure 38). Hence A+ a = B + b = · · · = P + p = 0.

A B C D •9 •1 d c b a
E F G •8 0 •2 g f e 0

H I J •7 p P •3 j i h
K L •6 o 0 O •4 l k 0

M N •5 n m M N •5 n m
O •4 l k 0 K L •6 o 0

P •3 j i h H I J •7 p
•2 g f e 0 E F G •8 0

•1 d c b a A B C D •9

. . .

Figure 39. Congruent elements in the array N (s0,s1,s2,s3,s4)

D
(2)
5

By using the above analysis of the array N (s0,s1,...,sl)

D
(2)
l+1

, one obtains Lepowsky’s product

formulas for the principally specialized character of a standard C
(1)
l -modules:

Theorem 7.4. Lepowsky’s product formula for the principally specialized character of

the standard C
(1)
l -module L

C
(1)
l
(Λ) of highest weight Λ =

∑l
i=0 kiΛi can be written as

ch(1,...,1; C
(1)
l )L(k0, k1, . . . , kl−1, kl)

=

∏
i≡a,±b mod 2(k+l+1), a∈{0}l∪D(k0+1,k1+1,...,kl+1;D

(2)
l+1), b∈∆(k1+1,k2+1,...,kl−1+1,kl+1;D

(2)
l+1)

(1− qi)∏
j∈N(1− qj)l

∏
j∈N(1− q2j−1)

,

(7.2)

where {0}l denotes the multiset consisting of l copies of 0.

Proof. The principal specialization of the character of L(Λ) is given by

ch(1,...,1; C
(1)
l )L(k0, k1, . . . , kl−1, kl) =

Q(k0 + 1, k1 + 1, . . . , kl + 1;D
(2)
l+1)

Q(1, . . . , 1;C
(1)
l )

. (7.3)

Lemma 6.1 implies that the denominator Q(1, . . . , 1;C
(1)
l ) of (7.3) is equal to∏

j∈N

(1− qj)l
∏
j∈N

(1− q2j−1).

The elements in the array N (k0+1,k1+1,...,kl+1)

D
(2)
l+1

are congruent modulo 2(k + l + 1). By

using the direct calculations on the elements of the array N (k0+1,k1+1,...,kl+1)

D
(2)
l+1

, follows that

the numerator Q(k0 + 1, k1 + 1, . . . , kl + 1;D
(2)
l+1) of (7.3) can be written as∏

i≡a,±b mod 2(k+l+1), a∈{0}l∪D(k0+1,k1+1,...,kl+1;D
(2)
l+1), b∈∆(k1+1,k2+1,...,kl−1+1,kl+1;D

(2)
l+1)

(1− qi). □
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Remark 7.5. Lepowsky’s product formula is written in this way in [CMPP]. In the

same vein we define three types of sets D(si, si+1, . . . , sl;X
(r)
l ) and corresponding types of

congruence triangles, where X
(r)
l = C

(1)
l , A

(2)
2l or A

(2)
2l

T
.

7.2. Wakimoto’s formulas of type (2, 1, . . . , 1, 2; C
(1)
l ). For 1 ≤ i ≤ l, we define the

set D(si, si+1, . . . , sl;C
(1)
l ) of cardinality 2(l − i) + 1 which consists of the integers

si, si + si+1, . . . , si + si+1 + . . .+ sl−2 + sl−1, si + si+1 + . . .+ sl−1 + sl,

si + si+1 + . . .+ 2sl−1 + sl, . . . , 2si + 2si+1 + . . .+ 2sl−1 + sl.

Moreover, we introduce the congruence triangle ∆(s1, . . . , sl;C
(1)
l ) as

∆(s1, . . . , sl;C
(1)
l ) = D(s1, . . . , sl;C

(1)
l ) ∪D(s2, . . . , sl;C

(1)
l ) ∪ · · · ∪D(sl;C

(1)
l ).

The elements of the multiset ∆(s1, . . . , sl;C
(1)
l ) correspond to the elements of the upper

left right-angled triangle with vertices s1, sl and sl + 2
∑l−1

i=1 si in the (s0, s1, . . . , sl)–

specialized array of negative roots N (s0,s1,...,sl)

C
(1)
l

; see Figure 41. In Figure 40, the elements

of D(si, . . . , s4;C
(1)
4 ) are denoted by 1○, 2○, 3○, 4○, for i = 1, 2, 3, 4, respectively, e.g., the

symbol 2○ represents the elements

s2, s2 + s3, s2 + s3 + s4, s2 + 2s3 + s4, 2s2 + 2s3 + s4.

The remaining elements of the array are denoted by the symbol ◦.

s4 4○ 3○ 2○ 1○ ◦ ◦ ◦ ◦
3○ 2○ 1○ ◦ ◦ ◦ ◦ ◦

s3 3○ 2○ 1○ ◦ ◦ ◦ ◦ ◦
2○ 1○ ◦ ◦ ◦ ◦ ◦ ◦

s2 2○ 1○ ◦ ◦ ◦ ◦ ◦ ◦
1○ ◦ ◦ ◦ ◦ ◦ ◦ ◦

s1 1○ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

s0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

. . .

Figure 40. Congruence triangle ∆(s1, s2, s3, s4;C
(1)
4 )
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Figure 41. Positions of congruent elements in the array N (s0,s1,...,sl)

C
(1)
l
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Example 7.6. For s = (4, 3, 2, 3, 4), we have

D(3, 2, 3, 4;C
(1)
4 ) = {3, 5, 8, 12, 15, 17, 20},

D(2, 3, 4;C
(1)
4 ) = {2, 5, 9, 12, 14},

D(3, 4;C
(1)
4 ) = {3, 7, 10},

D(4;C
(1)
4 ) = {4}.

The elements of these sets correspond to the italic nodes in the upper left triangle of the

array N (4,3,2,3,4)

C
(1)
4

on Figure 31.

Theorem 7.7. Wakimoto’s product formula for the (2, 1, . . . , 1, 2)-specialized character

of the standard module L
C

(1)
l
(Λ) of highest weight Λ =

∑l
i=0 kiΛi (3.4) can be written as

ch(2,1,...,1,2; C
(1)
l )L(k0, k1, . . . , kl−1, kl)

=

∏
i≡a,±b mod 2(k+l+1), a∈{0}l, b∈∆(k1+1,k2+1,...,kl−1+1,2(kl+1);C

(1)
l )

(1− qi)∏
i∈N(1− qi)l−1

∏
j∈N(1− q2j)

∏
r≡(l+1) mod 2(l+1)(1− qr)

. (7.4)

Remark 7.8. We note that the congruence triangle does not depend on s0 = 2(k0 + 1),
but the product formula depends on k0 via the modulus in the congruence condition
mod 2(k + l + 1).

Example 7.9. From Examples 7.6 and 6.3 follows the specialized character formula

ch(2,1,1,1,2; C
(1)
4 )L(1, 2, 1, 2, 1) =

∏
j≡±1,±1,±2,±6,±6,±8,±11,±11 mod 24

(1− qj)−1

×
∏
i∈N

i ̸≡0,12 mod 24

(1− qi)−1
∏
s∈2N

s ̸≡0,12 mod 24

(1− qs)−1

×
∏

r≡5 mod 10

(1− qr)−1.

7.3. Wakimoto’s formulas of types (1, . . . , 1, 2; C
(1)
l ) and (2, 1, . . . , 1; C

(1)
l ). For

0 ≤ i ≤ l−1, we define the set D(si, si−1, . . . , s0;A
(2)
2l ) of cardinality 2i+1 which consists

of the integers

si, si + si−1, . . . , si + si−1 + . . .+ s1 + s0,

si + si−1 + . . .+ s1 + 2s0, si + si−1 + . . .+ 2s1 + 2s0,

. . . , si + 2si−1 + . . .+ 2s1 + 2s0.

Moreover, we introduce the congruence triangle

∆(sl−1, . . . , s0;A
(2)
2l ) = D(sl−1, . . . , s0;A

(2)
2l ) ∪D(sl−2, . . . , s0;A

(2)
2l ) ∪ · · · ∪D(s0;A

(2)
2l ).

Its elements belong to the upper left right-angled triangle with vertices sl−1, s0 and sl−1+

2
∑l−2

i=0 si of the (s0, s1, . . . , sl)-specialized array of negative roots N (s0,s1,...,sl)

A
(2)
2l

. In Figure

42, the elements of D(s3, s2, s1, s0;A
(2)
8 ) are denoted by 3○, 2○, 1○, 0○, for i = 3, 2, 1, 0,

respectively. For example, the symbol 2○ represents the elements

s2, s2 + s1, s2 + s1 + s0, s2 + s1 + 2s0, s2 + 2s1 + 2s0.

The remaining elements of the array are denoted by the symbols ◦ and •.
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s0 0○ 1○ 2○ 3○ ◦ ◦ ◦ ◦ ◦
1○ 2○ 3○ ◦ ◦ ◦ ◦ ◦ ◦

s1 1○ 2○ 3○ ◦ ◦ ◦ ◦ ◦ ◦
2○ 3○ ◦ ◦ ◦ ◦ ◦ ◦ ◦

s2 2○ 3○ ◦ ◦ ◦ ◦ ◦ ◦ ◦
3○ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

s3 3○ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

s4 • • • • ◦ ◦ ◦ ◦

. . .

Figure 42. Congruence triangle ∆(s3, s2, s1, s0;A
(2)
8 )

To write Wakimoto’s formulas for the specialized character of type (1, 1, . . . , 1, 2) (see
(3.3) ), we introduce the set

S(sl, sl−1, . . . , s1;A
(2)
2l ) = {sl, sl + 2sl−1, . . . , sl + 2sl−1 + · · ·+ 2s1}

of cardinality l. In Figure 42, the elements of S(s4, s3, s2, s1;A
(2)
8 ), which are

s4, s4 + 2s3, s4 + 2s3 + 2s2, s4 + 2s3 + 2s2 + 2s1,

are indicated by the symbol •.

Example 7.10. For s = (3, 2, 2, 3, 4), we have

D(3, 2, 2, 3;A
(2)
8 ) = {3, 5, 7, 10, 13, 15, 17},

D(2, 2, 3;A
(2)
8 ) = {2, 4, 7, 10, 12},

D(2, 3;A
(2)
8 ) = {2, 5, 8},

D(3;A
(2)
8 ) = {3},

S(4, 3, 2, 2;A
(2)
8 ) = {4, 10, 14, 18}.

Theorem 7.11. The Wakimoto product formula for the (1, 1, . . . , 1, 2)-specialized char-

acter of the standard module L
C

(1)
l
(Λ) of highest weight Λ =

∑l
i=0 kiΛi can be written

as

ch(1,1,...,1,2; C
(1)
l )L(k0, k1, . . . , kl−1, kl)

=
∏
i∈N

(1− qi)−l
∏

i≡±a,b mod 2(k+l+1), a∈∆(kl−1+1,...,k0+1;A
(2)
2l ),b∈{0}l

(1− qi)

×
∏

j≡±c mod 4(k+l+1), c∈S(2(kl+1),kl−1+1,...,k1+1;A
(2)
2l )

(1− qj). (7.5)

Example 7.12. From Example 7.10 follows the specialized character formula

ch(1,1,1,1,2; C
(1)
4 )L(2, 1, 1, 2, 1) =

∏
i∈N

i ̸≡0 mod 24

(1− qi)−1
∏

k≡±6,±20 mod 48

(1− qk)−1

×
∏

j≡±1,±1,±1,±2,±3,±4,±5,±6,±6,±8,±8,±9,±9,±11,±11,12 mod 24

(1− qj)−1.
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For 1 ≤ i ≤ l, define the congruence triangles as multisets

∆(s1, . . . , sl;A
(2)
2l

T
) = D(s1, . . . , sl;A

(2)
2l

T
) ∪D(s2, . . . , sl;A

(2)
2l

T
) ∪ · · · ∪D(sl;A

(2)
2l

T
),

where the sets D(si, si+1, . . . , sl;A
(2)
2l

T
) consist of integers

si, si + si+1, . . . , si + . . .+ sl−1 + sl,

si + si+1 + . . .+ sl−1 + 2sl, . . . , si + 2si+1 + . . .+ 2sl−1 + 2sl.

Furthermore, let

S(s0, . . . , sl−1;A
(2)
2l

T
) = {s0, s0 + 2s1, . . . , s0 + 2s1 + · · ·+ 2sl−1} .

Example 7.13. For s = (2, 3, 2, 2, 6), we have

D(2, 2, 3, 2;A
(2)
8

T
) = {2, 4, 7, 9, 11, 14, 16},

D(2, 3, 2;A
(2)
8

T
) = {2, 5, 7, 9, 12},

D(3, 2;A
(2)
8

T
) = {3, 5, 7},

D(2;A
(2)
8

T
) = {2},

S(6, 2, 2, 3;A
(2)
8

T
) = {6, 10, 14, 20}.

Theorem 7.14. The Wakimoto formula for the specialized character of type (2, 1, . . . , 1, 1)

of the standard module of highest weight Λ =
∑l

i=0 kiΛi can be written as

ch(2,1,...,1,1; C
(1)
l )L(k0, k1, . . . , kl−1, kl) =

∏
i∈N

(1− qi)−l
∏

i≡±a,b mod 2(k+l+1),

a∈∆(k1+1,...,kl+1;A
(2)
2l

T
), b∈{0}l

(1− qi)

×
∏

j≡±c mod 4(k+l+1),

c∈S(2(k0+1),k1+1...,kl−1+1;A
(2)
2l

T
)

(1− qj). (7.6)

Example 7.15. Using Example 7.13 we obtain the specialized character formula

ch(2,1,1,1,1; C
(1)
4 )L(2, 1, 1, 2, 1) =

∏
i∈N

i ̸≡0 mod 24

(1− qi)−1
∏

k≡±4,±18 mod 48

(1− qk)−1

×
∏

j≡±1,±1,±1,±3,±3,±4,±5,±6,±6,±8,±8,±9,±10,±11,±11,12 mod 24

(1− qj)−1.

Example 7.16. The specialized characters

ch(2,1,1,1,1; C
(1)
4 )L(1, 2, 1, 2, 1) and ch(1,1,1,1,2; C

(1)
4 )L(1, 2, 1, 2, 1)

coincide and they are equal to∏
i∈N

i ̸≡0,12 mod 24

(1− qi)−1
∏

j≡±1,±1,±1,±2,±3,±4,±4,±6,±6,±6,±8,±8,±9,±10,±11,±11,±11 mod 24

(1− qj)−1.
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7.4. Wakimoto’s formulas of type (s0, s1, . . . , sl; C
(1)
l ). From (3.5)–(3.7), we have the

following three sets of Wakimoto’s formulas of type (s0, s1, . . . , sl; C
(1)
l ). Using notation

from previous subsections we will write these formulas and give some examples.

Theorem 7.17. The first set of Wakimoto’s formulas of type (s0, s1, . . . , sl; C
(1)
l ) is

ch(s0,s1,...,sl; C
(1)
l )L(2n− 1, 2n− 1, . . . , 2n− 1, n− 1) (7.7)

=

∏
i≡±a,b mod n(2

∑l
j=0 sj+2

∑l−1
j=1 sj), a∈∆(2ns1,,...,2nsl−1,nsl;A

(2)
2l

T
), b∈{0}l

(1− qi)∏
i≡±a,b mod (

∑l
j=0 sj+

∑l−1
j=1 sj), a∈∆(s1,s2,...,sl;C

(1)
l ), b∈{0}l(1− qi)

×
∏

j≡±c mod 2n(2
∑l

m=0 sm+2
∑l−1

m=1 sm), c∈S(2ns0,2ns1,...,2nsl−1;A
(2)
2l

T
)

(1− qj).

Example 7.18. For l = 2, s = (3, 1, 1) and n = 1, we have

ch(3,1,1; C
(1)
2 )L(1, 1, 0) =

∏
i≡±5 mod 12(1 + qi)∏

j∈N(1− q2j−1)
∏

r≡±6 mod 24(1− qr)
.

For l = 2, s = (3, 1, 1) and n = 2, we have

ch(3,1,1; C
(1)
2 )L(3, 3, 1) =

∏
i≡±10 mod 24(1 + qi)∏

j∈N(1− q2j−1)2
∏

r≡±6,12 mod 24(1− qr)
.

For l = 2, s = (3, 1, 1) and n = 3, we have

ch(3,1,1; C
(1)
2 )L(5, 5, 2) =

∏
i∈N,i ̸≡0,±30,36 mod 72

(1− qi)−1

×
∏

r≡±1,±5,±7,±11,±13,±15,±17 mod 36

(1− qr)−1.

Theorem 7.19. The second set of Wakimoto’s formulas of type (s0, s1, . . . , sl; C
(1)
l ) is

ch(s0,s1,...,sl; C
(1)
l )L(n− 1, 2n− 1, . . . , 2n− 1, 2n− 1) (7.8)

=

∏
i≡±a,b mod n(2

∑l
j=0 sj+2

∑l−1
j=1 sj), a∈∆(2nsl−1,,...,2ns1,ns0;A

(2)
2l ), b∈{0}l(1− qi)∏

i≡±a,b mod (
∑l

j=0 sj+
∑l−1

j=1 sj), a∈∆(s1,s2,...,sl;C
(1)
l ), b∈{0}l(1− qi)

×
∏

j≡±c mod 2n(2
∑l

m=0 sm+2
∑l−1

m=1 sm), c∈S(2nsl,2nsl−1,...,2ns1;A
(2)
2l )

(1− qj).

Example 7.20. For l = 2, s = (1, 3, 1) and n = 1, we have

ch(1,3,1; C
(1)
2 )L(0, 1, 1) =

∏
i∈N(1 + q2i−1)∏

j≡±4 mod 16(1− qj)2
.

For l = 2, s = (1, 3, 1) and n = 2, we have

ch(1,3,1; C
(1)
2 )L(1, 3, 3) =

∏
i≡±1,±7,±9,±15 mod 32(1 + qi)∏

j∈N(1− q2j−1)
∏

r≡±4,±8,±8,±12 mod 32(1− qr)
.
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Theorem 7.21. The third set of Wakimoto’s formulas of type (s0, s1, . . . , sl; C
(1)
l ) is

ch(s0,s1,...,sl; C
(1)
l )L(n− 1, 2n− 1, . . . , 2n− 1, n− 1) = (7.9)

=
∏

i≡±a,b mod (
∑l

j=0 sj+
∑l−1

j=1 sj), a∈∆(s1,s2,...,sl;C
(1)
l ), b∈{0}l

(1− qi)−1

×
∏

i≡a,±b mod 2n(
∑l

j=0 sj+
∑l−1

j=1 sj),

a∈∆(ns0,2ns1,...,2nsl−1,nsl;D
(2)
l+1)∪{0}

l, b∈∆(2ns1,...,2nsl−1,nsl;D
(2)
l+1)

(1− qi).

Example 7.22. For l = 2, s = (3, 1, 1) and n = 1, we have

ch(3,1,1; C
(1)
2 )L(0, 1, 0) =

∏
i≡±1 mod 6

(1− qi)−1
∏

j≡6 mod 12

(1− qj)−1.

For l = 2, s = (3, 1, 1) and n = 2, we have

ch(3,1,1; C
(1)
2 )L(1, 3, 1) =

∏
i∈N

(1− q2i−1)−2
∏

j≡12 mod 24

(1− qj)−1.

For l = 2, s = (3, 1, 1) and n = 3, we have

ch(3,1,1; C
(1)
2 )L(2, 5, 2) =

∏
i∈N

i ̸≡0,±9,±27,36 mod 72

(1− qi)−1
∏

j≡±1 mod 6

(1− qj)−1.

8. Borcea’s correspondence for C
(1)
l and A

(2)
2l

Let k ∈ N be fixed. The number of level k =
∑l

i=0 ki standard C
(1)
l -modules of highest

weight Λ =
∑l

i=0 kiΛi is
(
k+l
l

)
. This number is the same as the number of level 2k + 1

standard A
(2)
2l -modules of highest weight (2k0 + 1)Λ0 +

∑l
i=1 kiΛi.

It follows directly from the Lepowsky–Wakimoto product formula for the special-

ized characters of the Weyl–Kac character formulas of types (2, 1, . . . , 1, 1;C
(1)
l ) and

(1, 1, . . . , 1;A
(2)
2l ) (see [W1, Theorem 1] and [W2, Corollary 2.2.8]) and Lemmas 6.5 and

6.10 that

Theorem 8.1. Let ch(1,1,...,1;A
(2)
2l )L(2k0 + 1, k1, . . . , kl) denote the principally specialized

character of level 2k+ 1 standard module L(Λ) of the affine Lie algebra of type A
(2)
2l with

highest weight Λ = (2k0 + 1)Λ0 +
∑l

i=1 kiΛi. We have

ch(2,1,...,1;C
(1)
l )L(k0, k1 . . . , kl) = F (q) · ch(1,1,...,1;A

(2)
2l )L(2k0 + 1, k1, . . . , kl), (8.1)

where
F (q) =

∏
i≡±1,±3,...,±(2l−1) mod 2(2l+1)

(1− qi).

Proof. From [W1, Theorem 1] (see also [W2]) we have

ch(2,1,...,1;C
(1)
l )L(k0, k1 . . . , kl) =

Q(kl + 1, . . . , k1 + 1, 2(k0 + 1);A
(2)
2l )

Q(2, 1, . . . , 1;C
(1)
l )

,

and

ch(1,1,...,1;A
(2)
2l )L(2k0 + 1, k1, . . . , kl) =

Q(kl + 1, . . . , k1 + 1, 2(k0 + 1);A
(2)
2l )

Q(1, 1, . . . , 1;A
(2)
2l )

.

The theorem now follows from Lemmas 6.5 and 6.10. □
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In this work we are interested in affine Lie algebras of type C
(1)
l , l ≥ 2, but most of

our considerations hold as well for l = 1 when C
(1)
1

∼= A
(1)
1 . From that point of view

the identity in (8.1) is a generalization of the identity obtained in [Bor] in the case when
l = 1. In the case of l = 1 and k = 1, we have two identities (8.1)

ch(2,1;A
(1)
1 )L(1, 0) =

∏
i≡±1 mod 6

(1− qi) · ch(1,1;A
(2)
2 )L(3, 0)

=
1∏

i≡±2,±3 mod 12(1− qi)
,

and

ch(2,1;A
(1)
1 )L(0, 1) =

∏
i≡±1 mod 6

(1− qi) · ch(1,1;A
(2)
2 )L(1, 1)

=

∏
i≡±2 mod 12(1− qi)∏

i∈N(1− q2i−1)
,

and the corresponding products appear in [MP] as product sides of two combinatorial

identities for level 1 standard A
(1)
1 -modules and, on the other side, the same products

appear in [C] as product sides of Capparelli’s identities for level 3 standard A
(2)
2 -modules.

Moreover, by some sort of coincidence, the difference conditions for partitions coincide in
both cases.

9. Combinatorial identities

Let l ≥ 2. A downward path Z in the array B
C

(1)
l

is a sequence (or a subset) with an

element in the top row followed by an adjacent element in the second row, and so on all
the way to an element in the bottom row. The vertices denoted by •’s in Figure 43 gives
an example of a downward path.

A monomial

π =
∏

b(j)∈B−

C
(1)
l

b(j)mb(j) ∈ S(g(C
(1)
l )) (9.1)

can be interpreted as a colored partition π: for mb(j) > 0 we say that b(j) is a part of
degree |b(j)| = j and color b ∈ BCl

(θ) which appears in the partition mb(j) times. We
define the degree, weight and length of a colored partition π as

|π| =
∑

b(j)∈B̄<0
ℓ

j ·mb(j), wth(π) =
∑

b(j)∈B̄<0
ℓ

wth(b) ·mb(j), ℓ(π) =
∑

b(j)∈B̄<0
ℓ

mb(j). (9.2)

We interpret 1 as an empty partition ∅ with no parts of degree 0 and length 0. A colored
partition π can be also interpreted as a function

π : B−
C

(1)
l

→ Z≥0, b(n) 7→ mb(n)

with finite support.
Let k be a positive integer. We say that a colored partition π satisfies the level k-

difference conditions if∑
b(j)∈Z

mb(j) ≤ k for all downward paths Z ⊂ B−
C

(1)
l

. (9.3)
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To formulate the initial conditions for π we need to extend B−
C

(1)
l

with Chevalley generators

associated to simple roots and simple coroots in h, i.e.

B−
C

(1)
l

⊂ B−e

C
(1)
l

= {e0, e1, . . . , el} ∪ {h1, . . . , hl} ∪ B−
C

(1)
l

⊂ B
C

(1)
l
.

For example, for l = 2 we have the extended array of root vectors on Figure 43 (with
omitted arrows—compare with Figure 16). For nonnegative integers k0, k1, . . . , kl, k0 +

e2 f2 ◦ • ◦ ◦ · · ·

h2 ◦ • ◦ ◦

e1 f1 ◦ • ◦ ◦ · · ·

h1 ◦ ◦ • ◦

e0 f0 ◦ • ◦ ◦ · · ·

Figure 43. The extended arrangement of negative root vectors for C
(1)
2

and a downward path

k1 + · · · + kl = k and dominant integral Λ = k0Λ0 + k1Λ1 + · · · + klΛl we say that π is
Λ-admissible if the monomial

ek00 ek11 . . . ekll h
0
1 . . . h

0
l · π

satisfies the level k difference conditions on the extended array B−e

C
(1)
l

. The generating

function for Λ-admissible colored partitions is∑
π is Λ-admissible

e|π|δewth(π) (9.4)

In [CMPP] it was (implicitly) conjectured:

Conjecture 9.1. The generating function for Λ-admissible colored partitions is ch e−ΛL
C

(1)
l
(Λ)

for l, k ≥ 2.

Remark 9.2. For l = 1 the statement above is proved in [MP, FKLMM] for all Λ and
in [F] for Λ = kΛ0, k ≥ 1. For l ≥ 2 and k = 1 the statement above is proved in [DK, R]
for all Λ and in [PŠ1] for Λ = Λ0.

The (s0, s1, . . . , sl)-specialization defines a map

B−
C

(1)
l

→ N (s0,s1,...,sl)

C
(1)
l

, b(j) 7→ ab(j) = ∥b(j)∥,

which extends to a map

π =
∏

b(j)∈B−

C
(1)
l

b(j)mb(j) 7→ ∥π∥ =
∑

ab(j)∈N
(s0,s1,...,sl)

C
(1)
l

ab(j) ·mb(j).

In other words, the (s0, s1, . . . , sl)-specialization of a colored partition π gives a partition

∥π∥ defined on the array N (s0,s1,...,sl)

C
(1)
l

, and Conjecture 9.1 implies that the generating

function ∑
π is Λ-admissible

q−∥π∥
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for Λ-admissible colored partitions ∥π∥ is the specialized character ch(s0,s1,...,sl;C
(1)
l ) L(Λ).

If the specialized character can be written as an infinite periodic product, the conjecture
gives a Rogers–Ramanujan-type combinatorial identity. By using Lepowsky’s product for-
mula for the principal specialization (1, 1, . . . , 1), the conjectured identities are formulated
in [CMPP]. By using Wakimoto’s product formulas we get other Rogers–Ramanujan-type
combinatorial identities.

Example 9.3. For l = 2 and (2, 1, 1)-specialization we have the array N (2,1,1)

C
(1)
2

. For

Λ = kΛ0, k ≥ 2, we can apply Theorem 7.14 and get the conjectured identity:
The generating function for partitions on the array

7 9 11
5 8 10 12

4 6 9 11
3 5 7 10 13

2 4 6 8 12

satisfying level k difference conditions is∏
i∈N

(1− qi)−2
∏

i≡±a,b mod 2(k+3),
a∈{1,1,2,3}, b∈{0}2

(1− qi)
∏

j≡±c mod 4(k+3),
c∈{2(k+1),2(k+2)}

(1− qj).

For k = 1 this is a theorem due to results in [PŠ1, DK, R], and k > 1 due to [PT].

Remark 9.4. The product formula in Example 7.9 is the conjectured generating function
for (1, 2, 1, 2, 1)-admissible partitions

n =
∑
a∈N

ma · a

on the array N = N (2,1,1,1,2)

C
(1)
4

that consists of 3 copies of the positive integers, one copy of

the even positive integers and one copy of the positive integers congruent to 5 modulo 10.
The product formulas in Examples 7.12 and 7.15 are the conjectured generating func-

tions for (2, 1, 1, 2, 1)-admissible partitions on two different arrays (see Figures 29 and
30) that consist of 4 copies of the positive integers. The product formula in Example 7.16
is another conjectured generating function for admissible partitions, also satisfying level
7 difference conditions.

For specializations (2, 1, . . . , 1, 2), (2, 1, . . . , 1, 1) and (1, 1, . . . , 1, 2), it seems that we
have the conjectured Rogers–Ramanujan-type partition identity for all Λ-admissible par-
titions. On the other side, Theorems 7.17, 7.19 and 7.21 correspond to Wakimoto’s
unspecialized product formulas, but only for specific highest weights Λ. The product for-
mulas in Examples 7.18, 7.20 and 7.22 have combinatorial interpretations, and Con-
jecture 9.1 gives the corresponding Rogers–Ramanujan-type partition identities; it is the
theorem in level 1 case due to [DK], and the conjectures in all the other cases. It seems
that unspecialized Wakimoto’s product formulas should provide many new (conjectured)
Rogers–Ramanujan-type partition identities for different specializations.
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