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Abstract

This paper studies the Möbius function and related questions about the finiteness of the poset

of submodules of semisimple and general modules. We show how to calculate the Möbius function

for semisimple modules based on endomorphism rings of simple submodules. We discuss the Möbius

function for representations of bounded path algebras in detail.
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1 Introduction

The Möbius function and the Möbius inversion formula are classical tools in number theory. It was
later realised that the Möbius function can be defined for arbitrary locally finite posets, seeing the number-
theoretic Möbius function as a particular case for the poset of natural numbers. This combinatorial view
of Möbius’s function is usually associated with G.C. Rota and his article [6], ca. 1964. However, it first
appeared in the mid-1930s in independent works of P. Hall and L. Weisner, motivated by the study
of p-groups. Starting from the late 1970s, several generalisations of the Möbius function for categories
appeared, each assuming some finitness condition on the category; see [5] for a bibliography on the subject
and detailed discussion of several versions of the Möbius function for categories.

The category of modules, even when restricted to a full subcategory of modules with finitely many
submodules, is too large for categorical techniques of Möbius inversion to work. Instead, for a module, we
consider a poset of its submodules, partially ordered by inclusion, using Rota’s definition of the Möbius
function; see Section 4. This is inspired by the work of Honold and Nechaev, who used Möbius inversion
in algebraic coding theory. In their article, [4], the Möbius function of a finite module over a finite ring
is studied. This result was later used in [3] to give a combinatorial characterisation of finite Frobenius
rings.

For a module with finitely many submodules, we show how to calculate its Möbius function in Section
4.2. We use the same combinatorial techniques as in [4], formulated in Subsection 4.1, and their results
can be seen as a special case of the results. However, their proofs strongly depend on the fact that they
work over finite and hence semilocal rings.

For this reason, we present a series of module-theoretic observations that might be of independent
interest in Section 3. In particular, Subsection 3.1 studies when the poset of submodules of a direct
product of two modules is a product of their respective lattices. Subsection 3.2 then studies finite direct
powers of simple modules based on the endomorphism ring of the said simple module. The Subsection
3.3 then discusses when a modular lattice with chain conditions is finite.

∗This work is a part of project SVV-2023-260721
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Section 5 discusses a particular case of bounded path algebras. We show how to calculate the Möbius
function directly from the dimension vector. Using results from Section 3.3, it is shown that a represen-
tation of a bound quiver algebra over an infinite field has finitely many subrepresentations if and only if
it is a thin representation.

2 Prelimanaries and notation

This section recalls some properties of modules, posets and representations that will be used through-
out the text.

By a ring, we always mean an associative ring with unity, and R always denotes a ring. All modules
are assumed to be left modules; all ideals are assumed to be left ideals - the right version is analogous.

For an element a ∈ M we write Ann(a) = {r ∈ R | ra = 0} viewed as a left ideal. For a module
M and a ∈ M and an R-homorphsism φ : M → N there si an inclusion Ann(a) ⊆ Ann(φ(a)). If the
morphism φ is an isomorphism, then Ann(a) = Ann(φ(a)).

In several places, we will implicitly use Shur’s lemma in several forms. For a simple R-module S, a
nonzero homomorphism whose domain (codomain) is S is a monomorphism (epimorphism). Consequently,
the ring of endomorphisms, EndR(S), is a division ring, as all nonzero endomorphisms are isomorphisms.

2.1 Poset of submodules

Let P be a poset and x,y ∈ P . The interval [x,y] is a subposet of elements z such as x ≤ z ≤ y. A
poset P is locally finite if all intervals in P are finite. A locally finite bounded poset is finite. It is exactly
locally finite posets for which the Möbius function, in the sense of [6], is definable; see Section 4.

For an R-module M , its poset of submodules is denoted by L(M). It is a complete modular lattice.
In particular, L(M) is a bounded lattice; hence, it is locally finite if and only if it is finite. In that case,
module M has a finite composition length, i.e., the lattice L(M) satisfies both ascending and descending
chain conditions. In particular, if such a module is nonzero, it has nonzero socle, Soc M , and maximal
submodules. Minimal (maximal) submodules correspond to atoms (coatoms) in L(M).

By the Correspondance theorem, for a module M and its submodule N ≤ M , there is a canonical
lattice isomorphism between the interval [N,M ] in L(M) and the lattice L(M/N). Its restriction to
maximal modules containing N is a bijection.

Recall that an R-module is semisimple iff M is generated by simple submodules, iff it is a direct sum
of simple modules, iff all its submodules are direct summands.

2.2 Representations of bound quivers

This subsection formulates terminology and some properties of representations of bound quivers. We
refer to [ASS] for missing terminology. Throughout this text, K always denotes a field.

A quiver Q is a quadruple (Q0, Q1,s,t) where Q0 is a nonempty finite set of vertices, Q1 a finite set
of arrows and s and t are two maps Q1 → Q0 mapping an arrow to its source and target, respectively.
Vertex a is called a sink if there is no arrow with source in a. Quiver is called acyclic if it contains no
oriented cycles. A full subquiver of Q is a quadruple (Q′

0, Q
′
1, s

′, t′) such that Q′
0 ⊆ Q0 and Q′

1 consists
of all arrows in Q1 such that their target and source lie in Q′

0. Maps s′ and t′ are restrictions of s and t
respectively.

For a field K, a quiver Q, and I an admissible ideal in the path algebra KQ, we consider category
repK(Q, I) of finite-dimensionalK-linear representations of Q bounded by relations in I. A representation
M ∈ repK(Q,I) consists of a collection of finite-dimensional vector spaces Ma for each a ∈ Q0 and K-
linear structural maps Mα for each α ∈ Q1. A morphism Φ between two representations N and M is
given by a collection of K-linear maps φa : Na → Ma for each a ∈ Q0 commuting with structural maps.
For a bounded path algebra KQ/I, the category mod-KQ/I is equivalent with repK(Q, I).

We will use the convention that vertices in Q0 are labelled by natural numbers 1, . . . , |Q0|. Dimension
vector of a K-representation M is then dim(M) = [dimK(M1), . . . , dimK(M|Q0|)]. A representation M
is called thin if dimK(Ma) ≤ 1 for all a ∈ Q0.
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There is a bijection between the isomorphism classes of simple modules and Q0. We denote S(a) the
simple representation such that S(a)a = K and S(a)b = 0 for a 6= b ∈ Q0.

Let a ∈ Q0 and consider ǫa the primitive idempotent in KQ/I corresponding to a stationary path a.
For any k ∈ K, the element kea induces an endomorphism of S(a). Thus we get

|EndKQ/I(S)| = |K|

for any simple representation S ∈ repK(Q,I).
Throughout the text, we will use the following lemma

Lemma 1 (1, Lemma III.2.2). Let Q be a quiver, I an admissible ideal in KQ and let M ∈ repK(Q,I)
then

(a) M is semisimple iff Mα = 0 for all arrows α ∈ Q1.
(b) Soc M is a subrepresentation of M such that Soc Ma =Ma if a is a sink and

Soc Ma =
⋂

α∈Q0

s(α)=a

Ker(α),

otherwise. Structural maps in Soc M are restriction of structural maps in M .

3 Poset of submodules

This section gathers the module-theoretic properties used in the sequel. Results from Subsection 3.1
will allow us to reduce the calculation of the Möbius function to the case of finite direct powers of simple
modules. These modules are then discussed in Subsection 3.2. The final subsection 3.3 then provides a
criterion for deciding whether a module has finitely many submodules that will be used in Section 5.

Bounded representations of quivers are used as examples to illustrate the results of this section. For
the used notation, we refer the reader to section 2.2 or the monography [1] for more detailed exposition.

3.1 Orthocyclic modules

This section investigates when the poset of submodules of a direct product of modules can be viewed
as a product of their respective posets. We show that there is no nonzero homomorphism between such
modules or their submodules. Proposition 7 then shows that for semisimple modules, the opposite impli-
cation is also true.

Definition 2. Let (P, ≤1) and (Q, ≤2) be posets. Then the product poset is (P ×Q,≤) where

(a,b) ≤ (c,d) ⇔ a ≤1 c and b ≤2 d

Let M,N be R-modules. Then there is a canonical poset monomorphism

ν : L(M)× L(N) →֒ L(M ⊕N)

given by
(N ′, M ′) 7→ N ′ ⊕M ′ for N ′ ≤ N, M ′ ≤M

We say that M and N are poset-orthogonal if ν is a poset isomorphism.

Note that two modulesM,N are poset-orthogonal if and only if for any L ⊆M⊕N there are modules
M ′ ≤M and N ′ ≤ N such that L =M ′ ⊕N ′.

Example 3. Let K be any field and let A be a path K-algebra given by the quiver

1
α
←− 2

β
−→ 3

3



and consider representations

L : (K
id
←− K

0
−→ 0)

M : (0
0
←− K

id
−→ K)

N : (K
id
←− K

id
−→ K)

then L and M are poset-orthogonal, whereas M ⊕N contains (0
0
←− 0

0
−→ K2) as a submodule.

Definition 4. Let M,N be two R-modules.
We say that M and N are orthocyclic if for all submodules M ′ ≤ M and N ′ ≤ N we have

HomR(M
′, N) = 0 = HomR(N

′,M).

The name orthocyclic is motivated by the observation that the above condition can be restricted only
to cyclic modules. For M ′ ≤M , any nonzero homomorphism φ : M ′ → N can be restricted to a nonzero
map Ra→ Rφ(a) for some a ∈M ′ not contained in the kernel of φ.

Example 5. Let K be any field and let A be a path K-algebra given by the quiver

1
α
←− 2

β
−→ 3

and consider representations

M ′ →֒M : (0
0
←− 0

0
−→ K) →֒ (0

0
←− K

id
−→ K)

N : (K
id
←− K

id
−→ K)

Then HomA(N,M) ∼= K whereas HomA(M,N) = 0. Although HomA(M,N) is trivial, there is a nonzero
homomorphism from a subrepresentation of M ′ to N and Hom(M ′, N) ∼= K.

Proposition 6. Let M,N be R-modules.
If they are poset-orthogonal, then they are also orthocyclic.

Proof. We use proof by contraposition. WLOG assume that there is a cyclic submodule Ra ≤M and a
nonzero homomorphism φ : Ra → N and consider a submodule of M ⊕ N generated by (a,φ(a)). Then
Ann(a) ⊆ Ann(φ(a)) hence for any r ∈ R if rφ(a) = 0 then r(a,φ(a)) = 0. Therefore, no nonzero
submodule of R(a,φ(a)) is strictly contained in N . In particular, N does not contain a nonzero direct
summand of R(a,φ(a)).

For semisimple modules, the opposite implication is also true.

Proposition 7. Let M be a semisimple module, S be a simple module and t ≥ 1 a natural number.
TFAE

(1) M and St are orthocyclic.
(2) M and St are poset-orthogonal.
(3) None of the simple direct summands of M is isomorphic to S.

Proof. By the previous proposition, (2) implies (1). To show that (1) implies (3), assume that there is a
simple direct summand T ≤⊕ M isomorphic to S. Composing the isomorphism T ∼= S with an inclusion
S →֒ St gives a nonzero homomorphism in HomR(T, S

t) 6= 0, so M is not orthocyclic.
It remains to show that (3) implies (2). Because all submodules ofM⊕St are semisimple, it is enough

to prove that for any simple submodule T ≤ M ⊕ St, it is either contained in M or St. Let (a,b) be a
generator of T and assume a 6= 0 6= b. If Ann(a) = Ann(b) then we have a series of isomorphisms:

Ra ∼= R/Ann(a) = R/Ann(b) ∼= Rb

but Ra ⊆M and Rb ⊆ St, hence the isomorphism Ra ∼= Rb contradictis (3).
For the case, Ann(a) 6= Ann(b), first assume that there exists r ∈ Ann(a) \ Ann(b). Then r(a,b) =

(0,rb). Because T = R(a,b) is simple, and rb 6= 0 we get Rrb = T hence T ⊆ St. If there is r ∈
Ann(b) \Ann(a), we get T ⊆M .
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3.2 Finite direct powers of simple modules

This section characterises when a semisimple module has only finitely many submodules. Following
Proposition 7, it is enough to discuss the case where the module is of type St for some simple module S
and t ∈ N. If S is finite, then the module St has only finitely many modules. For bound quiver algebras,
modules of form St have finitely many submodules iff S is finite, i.e., the base field of the algebra is finite.

In general, the number of submodules of a module of type St follows from the cardinality of the
division ring EndR(S) as shown in Lemma 9 and Corollary 11. The following example shows that an
infinite simple module may have a finite ring of endomorphisms.

Example 8. Let F be a finite field and κ an infinite cardinal, n ∈ N.
(1) Module S := F (κ) is an infinite simple EndF (S)-module with a finite ring of endomorphisms.
(2) Module T := Fn is a simple EndF (F

n)-module and its endomorphisms are in bijection with
elements of F .

Proof. We only prove (1). Let R := EndF (S) and consider φ ∈ EndR(S), i.e., an R-linear map F (κ) →
F (κ) commuting with any endomorphism of F (κ). Then, in particular, it commutes with any restrictions
of an endomorphism of F (κ) to a finite-dimensional subspace. Thus, φ must be a map that multiplies an
element by some scalar f ∈ F .

On the other hand, any such map is an endomorphism, as elements from R commute with multipli-
cation by scalars. Thus EndR(S) ∼= F .

Lemma 9. Let S be a simple R-module such that EndR(S) is infinite.
Then L(S2) is infinite.

Proof. We fix some nonzero element a ∈ S, and for each nonzero φ ∈ EndR(S), we consider a cyclic
module R(a,φ(a)). This module is simple: consider a map

R→ R(a,φ(a)) r 7→ (ra,rφ(a))

its kernel is Ann(a) ∩ Ann(φ(a)). Because φ is an isomorphism we get Ann(a) = Ann(φ(a)) hence
R/Ann(a) ∼= R(a,φ(a)) is a simple module.

Let φ, ψ ∈ EndR(S) be two isomoprhisms. If R(a,φ(a)) = R(a,ψ(a)) then in particular R(a,φ(a)) also
contains (a,ψ(a)), hence (0,φ(a)− ψ(a)) ∈ R(a,φ(a)). Then we get the following inclusions of modules

0 ⊆ R(0,φ(a)− ψ(a)) ( R(a,φ(a)).

Because R(a,φ(a)) is a simple module we get R(a,φ(a)− ψ(a)) = 0, so in particular φ(a) = ψ(a). But a
generates simple module S, hence φ = ψ.

We can easily calculate the number of submodules of any fixed length for a simple module with a
finite endomorphism ring. We start by counting simple submodules.

Lemma 10. Let S be a simple R-module t,q ∈ N such that |EndR(S)| = q.
Then St contains 1 + q + q2 + · · ·+ qt−1 simple submodules.

Proof. Consider the semisimple ring Q := EndR(S
t) isomorphic to a ring of t× t-matrices over division

ring EndR(S). Then, we can view HomR(S, S
t) as a simple Q-module where the action of an element of

EndR(S
t) is given by post-composition. Hence HomR(S,S

t) is isomorphic (as a Q-module) to a 1 × t-
matrix module over the division ring EndR(S

t). Thus, if EndR(S) is a finite field with q elements, there
is qt R-homomorphisms from S to St. In particular, qt − 1 monomorphism S →֒ St.

Any simple submodule T of St is isomorphic with S, so there are q − 1 morphisms in HomR(S,S
t)

with image T corresponding to non-zero elements in EndR(S). Thus there is

qt − 1

q − 1
= 1 + q + q2 + · · ·+ qt−1

distinct, simple submodules of St.

There is a bijection between the simple and maximal submodules.
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Corollary 11. Let S be a simple R-module l,t,q ∈ N such that |EndR(S)| = q.
Then St contains

st−l+1 + · · ·+ st
s1 + · · ·+ sl

submodules of length l, where st = qt−1 + qt−2 + · · ·+ q + 1

An analogous statement is well known for abelian p-groups (here, we use q instead of p); see [2, 48-
49]. Once we know the number of simple submodules, the proof is similar. The set of simple submodules

T1, . . . , Tk of S
t is independent iff l(

∑k
i=1 Ti) = k, or equivalently, iff no Ti is in the submodule generated by

the remaining modules. Then, we can calculate the number of submodules of fixed length l by calculating
the number of independent sets of size l contained in St and Sl.

Corollary 12. LetM be a semisimple module. Then L(M) is finite if and only if for any simple submodule
S ≤M such that EndR(S) is infinite, no submodule of M is isomorphic to S2.

Any square-free semisimple module, e.g. a socle of a commutative Frobenius ring, has finitely many
submodules.

Example 13. Let K be an infinite field, Q a quiver, and M be a K-linear representation of Q. Then
L(Soc M) is finite if and only if Soc M is a thin representation.

3.3 Modules with finitely many submodules

For an R-module M , if L(M) is finite, then M is a finite length module. If R is finite, the opposite
implication is also true. As seen in the previous subsection, over a general ring, for example, an infinite
field, even a finite-length semisimple module can have infinitely many submodules.

This section shows that a module M has an infinite poset of submodules if and only if there is a
factor module M/N such that its socle has infinitely many submodules. This characterisation will be
used in Section 5. As a corollary, we obtain a characterisation of rings whose all finite-length modules
have finitely many submodules.

Proposition 14. Let M be a finite-length R-module such that L(M) is infinite.
Then, there exists a simple R-module S and a submodule K ≤M such thatM/K contains a submodule

isomorphic to S2 and EndR(S) is infinite.

Proof. Consider set
M := {M ′ ≤M | L(M ′) is infinite}

partially ordered by inclusion. Module M is artinian, soM has a minimal module N . By the minimality
of N , no maximal submodule of N contains infinitely many submodules. Because N has a finite length,
this implies that N has infinitely many maximal submodules.

Let N0 be a maximal submodule of N . By the minimality of N inM the poset L(N0) is finite, and
so is the set

{N0 ∩N
′ | N ′ maximal in N} ⊆ L(N).

But N has infinitely many maximal submodules, so there exists a submodule K ≤ N ′ such that the set

N := {N ′ maximal in N | N ′ ∩N0 = K}

is infinite. Note that K is maximal in N0 and in any module from N .
The canonical projection π : M →M/K then induces a lattice isomorphism between interval [K,M ]

in L(M) and L(M/K). Modules from N all contain K as a maximal submodule, so their images are
distinct, simple modules in M/K.

It seems natural to ask whether it is enough only to investigate socles of some factors - such as socles
in the socle series. We will show a module with infinitely many submodules whose all socles in the socle
series have only finitely many submodules in Example 26.
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Corollary 15. Let R be a ring.
All finite-length R-modules have finitely many submodules if and only if all simple R-modules have a

finite ring of R-endomorphisms.

To ensure that all finitely generated R-modules have finitely many submodules, we need that the
regular module R is finite length. This implies that R is left artinian and the factor R/rad R is finite.
Hence the ring R is finite.

4 Möbius function

This section defines the Möbius function and completely determines the Möbius function for a module
with finitely many submodules. We will use [6] as a reference.

For a locally finite poset P and a field R, we consider an incidence algebra RP consisting of all
real-valued functions with domain P 2. For two elements α,β ∈ RP the multiplication ∗ is then defined

(α ∗ β)(x,y) =
∑

x≤z≤y

α(x,z)β(z,y),

if x ≤ y and zero otherwise. Kronecker delta is then the multiplicative unit in RP .
The zeta function ζP (x,y) is defined as 1 if x ≤ y and 0 otherwise. By [Rota, Prop. 1.], the zeta

function has a two-sided inverse, called the Möbius function, denoted by µP .
For a ring R and an R-module M with finitely many submodules, we define the Möbius function of

M , denoted by µR(M), as the value of the Möbius function µL(M) on (0,M) in the incidence algebra
RL(M). This allows us to define the Möbius function recursively using the fact that the Möbius function
is a left inverse of the zeta function in RL(M).

Definition 16. Let M be an R-module such that L(M) is finite.
We define the Möbius function of M , denoted by µR(M), recursively by setting µR(0) := 1 and if

M 6= 0 then µR(M) is the unique integer such that

∑

N∈L(M)

µR(N) = 0

Example 17. If S is a simple module, then µR(S) = −1. Let M be a module of length 2 with L(M)
finite. If M has a simple socle then µR(M) = 0. If M is semisimple with n simple submodules then
µR(M) = n− 1.

Remark 1. Let N ≤M be two R-modules such that L(M) (and thus also L(N)) is finite , then

µR(N) = µL(N)(0,N) = µL(M)(0,N).

Using the correspondence theorem, for two modules N ≤M , we have

µL(M)(N,M) = µR(M/N).

4.1 Combinatorial properties of Möbius function

The following three lemmas are a module-theoretic reformulation of well-known properties of the
Möbius function. The reference for this subsection is [6] but Lemma 18 is usually attributed to P. Hall
and Lemma 21 to L. Weisner.

Lemma 18 (6, Prop. 3.2). Let M be a nonzero R-module.
If M is not semisimple then µR(M) = 0.

In the following subsection, we will see that the opposite implication is also true. In a general finite
lattice L, there might be an element x that is a join of atoms, yet µL(0,x) = 0.

7



Example 19. Consider a 6-element lattice L with the upper and lower bounds 0 and 1 three atoms a,b,c
and two more elements a ∨ b and b ∨ c with µL(0,a ∨ b) = µL(0,b ∨ c) = 1.

In this lattice, 1 = a ∨ b ∨ c = a ∨ c and µ(0,1) = 0.

Lemma 20 (6, Prop. 3.5). Let M,N be two poset-orthogonal modules such that L(M) and L(N) are
finite posets.

Then for any L ≤M ⊕N we have

µR(L) = µR(M
′) · µR(N

′)

where M ′ ≤M and N ′ ≤ N such that L =M ′ ⊕N ′.

Lemma 21 (6, Prop. 5.4). Let M be an R-module such that L(M) is finite, and let T be a simple
submodule. Then

µR(M) =
∑

T�N≤M
N maximal

µR(N)

4.2 Calculation of the Möbius function

We assume that all modules in this subsection have only finitely many submodules. By Lemma 18,
the Möbius function of a nonzero module that is not semisimple is zero.

Let M be a semisimple module with decomposition

M = St1
1 ⊕ . . . S

tn
n (1)

where S1, . . . , Sn are non-isomorphic simple modules and ti natural numbers.
Becuase we asssume that L(M) is finite, for any i ≤ m the inequality ti > 1 implies that EndR(Si)

is finite by Corollary 12
By Proposition 7 we have

L(M) ∼= L(St1
1 )× · · · × L(Stn

t ),

so by repeatedly apllying Lemma 20 we get

µR(M) =
∏

1≤i≤n

µR(S
ti
i ).

The following lemma then completes the calculation of the Möbius function.

Lemma 22. Let S be a simple R-module, t and q natural numbers such that |EndR(S)| = q. Then

µR(S
t) = (−1)tq

t(t−1)
2 .

Proof. We apply Lemma 21. By Corollary 11 we get that St contains 1+q+· · ·+qt−1 maximal submodules.
Let T be some simple submodule of St. There is a bijection between maximal submodules of St

containing T and maximal submodules of St/T . From an R-module isomorphism St/T ∼= ST−1 then
follows, using again Corollary 11, that 1 + q + · · ·+ qt−2 maximal submodules of St contain fixed simple
submodule T . Thus, qt−1 maximal submodules do not contain T . By Lemma 21 we see that

µR(S
t) = −qt−1µR(S

t−1).

The conclusion then follows by induction.

Using the structure of the above calculation, we prove that Morita equivalence preserves the Möbius
function.

Lemma 23. Let R and R′ be two Morita equivalent rings, and let G :Mod-R→Mod-S be an equivalence
of categories. Let M ∈Mod-R be a semisimple module with finitely many submodules.

Then G(M) has finitely many submodules and µR′(G(M)) = µR(M).
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Proof. Let S be a simple R-module and t a natural number. We first prove the statement for modules of
form St. Because equivalence preserves direct limits, we get that G(St) ∼= G(S)t. By Shur’s lemma, G(S)
is a simple R′-module if and only if S is a simple R-module. Because equivalence is a full and faithful
functor, there is a bijection HomR(S, S)↔ HomR′(G(S), G(S)), i.e., G preserves sizes of endomorphism
rings. The statement then follows from Lemma 22.

Now let M ∼= St1
1 ⊕ . . . S

tn
n where Si are simple pairwise non-isomorphic modules, then we get

G(M) ∼= G(S1)
t1 ⊕ · · · ⊕G(Sn)

tn ,

where G(Si) are pairwise non-isomorphic simple modules. Thus, G(M) is a semisimple module with
finitely many submodules, and the statement then follows from Lemma 20 and Proposition 7.

4.3 Möbius inversion formula

This brief section discusses the Möbius inversion formula. The following is a reformulation of a poset
version of the Möbius inversion formula [6, Prop. 2] for modules.

Proposition 24. Let M be a module with finitely many submodules. Let f,g be real-valued functions on
L(M) such the value g(M) equals the sum of values of f on all submodules of M . Then

f(M) =
∑

N≤M

g(N)µR(M/N).

Recall that the radical of a finite-length module is zero if and only if such a module is semisimple.
Thus, for a submodule N ≤M , we get M/N is semisimple if and only if rad M ≤ N . Using Lemma 18,
we get the following reformulation of the Möbius inversion formula:

f(M) =
∑

rad M≤N≤M

g(N)µR(M/N).

5 Möbius function for finite-dimensional algebras

This section studies the Möbius function for K-linear representations of bound quiver algebras for
acyclic quivers, in the sense defined in [1]. If the field K is infinite, a representation has only finitely
many subrepresentations if it is thin. Example 27 shows this is untrue for quivers with oriented cycles,
even if the resulting bound quiver algebra is finite-dimensional. The section ends with calculating the
Möbius function of semisimple representation directly from its dimension vectors.

We need some preliminary observations. For a quiver Q, we say that a full subquiver Q′ is a sinking
subquiver if any arrow from Q1 with source in Q′

0 has also target in Q′
0.

For a representation M ∈ repK(Q,I) and a sinking subquiver Q′, we define a subrepresentation
RM (Q′) ∈ repK(Q,I) as follows: for a ∈ Q0 we set RM (Q′)a = Ma if a ∈ Q′

0 and RM (Q′)a = 0
otherwise. Similarly for α ∈ Q1 we define RM (Q′)α = Mα if α ∈ Q′

1 and RM (Q′)α = 0 otherwise. The
representation RM (Q′) is a subrepresentation of M as witnessed by a homomorphism φ : RM (Q′) →֒ M
such that φa = idMa

if a ∈ Q′
0 and φa = 0 otherwise. Because Q′ is a sinking quiver, φ is monomorphism:

let α ∈ Q1, then either s(α) ∈ Q′
0 and because Q′ is a sinking subquiver of Q then t(α) ∈ Q′

0 and
both maps φs(α) and φt(α) are isomorphisms. Otherwise, Ms(α) = 0, so the corresponding maps commute
trivially.

Proposition 25. Let Q be an acyclic quiver, K an infinite field, I an admissible ideal in KQ and let
M ∈ repK(Q,I).

Then L(M) is finite if and only if M is thin.

Proof. Using Lemma 1 and Corollary 12, a semisimple representation has finitely many subrepresentations
if and only if it is a thin representation. Any factor of a thin representation is thin and thus has a thin
socle.
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Now assume M is not thin, i.e., there is a vertex a ∈ Q0 such that dimK(Ma) = t > 1. If a is
a sink, then by Lemma 1, Soc M contains an isomorphic copy of S(a)t; thus, it has infinitely many
subrepresentations.

Assume a is not a sink and let b1, . . . , bk be the set of all vertices that are targets of arrows with the
source a. To each bi, we assign the minimal sinking subquiver containing the vertex bi. We denote it by
Qi. Because Q is acylic, the minimality of Qi implies that it does not contain vertex a.

For a sinking quiver Q′ = ∪ki=1Q
i consider a subrepresentation RM (Q′). We claim that factor repre-

sentation M/RM (Q′) has a socle with infinitely many subrepresentations. Consider an arrow α ∈ Q1, if
its source is a, then the map (M/RM (Q′))α is a zero map because its codomain,(M/RM (Q′))t(α), is the
zero K-vector space. So, using again Lemma 1, the socle of M/RM (Q′) contains an isomorphic copy of
S(a)t.

Example 26. Let K be an infinite field and 2
γ

��❀
❀❀
❀

Q : 1

β ��❀
❀❀
❀

α
AA✄✄✄✄

4

3
δ

AA✄✄✄✄

a quiver with representation K2
(1 0)

!!❉
❉❉

❉

M : K2

id
""❊

❊❊
❊

id
<<②②②②

K.

K2 (0 1)

==③③③③

By Lemma 1 dimension vector of M/Soc M is [2,1,1,0]. So the socle of M/Soc M is necessarily thin
and has only finitely many submodules. So it follows that all socles in the socle series have only finitely
many submodules.

We now directly show that representation M has infinitely many submodules. There are two arrows
with source in 1, namely α and β. Each of them corresponds to one sinking subquiver. Namely, Q2 is a
full subquiver given by vertices 2 and 4 and Q3 given by vertices 3 and 4. Their union Q′ is a sinking
subquiver given by vertices 2,3,4. Vertex 4 also gives one trivial sinking subquiver.

As in the proof we have K2

(1 0)

!!❈
❈❈

❈

RM (Q′) : 0

0
��❄

❄❄
❄

0
??⑧⑧⑧⑧⑧

K.

K2 (0 1)

==④④④④

Thus the factor M/RM (Q′) is isomorphic to S(1)2 a semisimple representation given by dimension
vector [2,0,0,0]. It has infinitely many submodules, and so does M .

The following example shows that for quivers with oriented cycles, the above proposition does not
hold, even when the given bounded path algebra is finite-dimensional.

Example 27. For infinite filed K and a quiver 1
α ''

2
β

gg consider the Frobenius algebra A := KQ/I where

I is an admissible ideal I = (αβ = 0 = βα).

Representation K

(1 0)
++
K2

(0 1)

ii ∈ repK(Q, I) is not thin, but it has only finitely many submodules by

Corollary 14. Indeed, there is no subpresentation with dimension vector [1,0], so all non-trivial factors
are thin.

5.1 Calculation of the Möbius function

Let Q be a finite acyclic quiver, K a field, I an admissible ideal in KQ and let M ∈ repk(Q, I) be a
nonzero representation with finitely many submodules.
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Following Lemma 1, µ(M) = 0 if and only if M contains a nonzero structural map.
Now assume thatM is semisimple, i.e., all structural maps are zero, and let dimK(M) = [a1, . . . , an].

By Lemma 22

µ(M) =
∏

1≤i≤n

(−1)aiq
ai(ai−1)

2 ,

where q = |K| if K is finite and q = 1 otherwise.
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