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VOICULESCU’S THEOREM IN PROPERLY INFINITE FACTORS

DON HADWIN, MINGHUI MA, AND JUNHAO SHEN

ABSTRACT. This paper investigates Voiculescu’s theorem on approximate equivalence
in separable properly infinite factors. We establish the norm-denseness of the set of
all reducible operators and prove Voiculescu’s bicommutant theorem. Additionally,
we extend these results to the multiplier algebras within separable type I1II factors.

1. INTRODUCTION

A question regarding the norm-denseness of the set of all reducible operators on a
separable complex Hilbert space was raised by P.R. Halmos [9, Problem 8|. In order to
affirmatively answer this question, D. Voiculescu proved the noncommutative Weyl-von
Neumann theorem in his groundbreaking paper [14]. Another significant consequence
of Voiculescu’s theorem is the relative bicommutant theorem in the Calkin algebra. In
[3], W. Arveson provided an alternative proof of Voiculescu’s theorem using quasicentral
approximate units. Additionally, Arveson derived a distant formula for separable norm-
closed algebras in the Calkin algebra. Numerous applications of Voiculescu’s theorem
can be found in Arveson’s work [3].

Throughout this paper, M represents a separable properly infinite factor, and K 4
represents the norm-closed ideal generated by finite projections in M. Our main focus
is on Voiculescu’s theorem in M. In the paper, we will present a proof of the following
theorem.

THEOREM 4.3. Let M be a separable properly infinite factor, A a separable unital
C*-subalgebra of M, and B a type 1o unital subfactor of M. If p: A — B is a unital
*-homomorphism with @|ank,, = 0, then there exists a sequence {Vj}ren of isometries
in M ® My(C) such that

klim [(A® (A)) = Vi (A®0)Vi| =0 for every A € A,
—00

and ViV, =1®1,V;,V: =1®0 for every k € N. Furthermore, if M is semifinite, we
can choose { Vi }ren such that

(Adp(A) —VE(A®0)Vy € Kp @ Ma(C) for every k € N and A € A.

Recall that an operator T is reducible in a separable properly infinite factor M if
there exists a nontrivial projection P in M that commutes with 7. A striking appli-
cation of Voiculescu’s noncommutative Weyl-von Neumann theorem shows that the set
of reducible operators is norm-dense in a separable type I, factor. In the paper, we
obtain an extension of Voiculescu’s result.

THEOREM 5.1.  Let M be a separable properly infinite factor. Then the set of all
reducible operators is norm-dense in M.

In [13], G.K. Pedersen posed the question of whether Voiculescu’s bicommutant
theorem can be extended to general corona algebras. In [6], T. Giordano and P.W. Ng
provided an affirmative answer to Pedersen’s question for the corona algebras of o-unital
stable simple and purely infinite C*-algebras. Since M /K A serves as the corona algebra
of o when M is semifinite, we affirmatively answer this question specifically for the
case of M /K as an application of Theorem 4.3.

1


http://arxiv.org/abs/2403.05799v1

VOICULESCU’S THEOREM IN PROPERLY INFINITE FACTORS 2

THEOREM 5.3.  Let M be a separable properly infinite semifinite factor. Then every
separable unital C*-subalgebra of M /K equals its relative bicommutant.

Let M be a separable properly infinite semifinite factor. In [10], S. Popa and F.
Radulescu proved that all derivations of a von Neumann subalgebra of M into K g
are inner. When M is of type I, J. Phillips and I. Raeburn [11] showed that for a
separable infinite-dimensional C*-subalgebra A of M, not all derivations from A into
K are inner. Let H'(A, K ) be the first cohomology group of A into u. As an
application of Theorem 5.3, we obtained the following result.

THEOREM 5.6.  Let M be a separable properly infinite semifinite factor, and A a
separable unital C*-subalgebra of M. If w(A") is infinite-dimensional, then H (A, Krq) #
{0}.

This paper is structured as follows. In the next section, we present the fundamental
definitions and results. The main theorems are provided in Section 3, and we establish
the proof of Voiculescu’s theorem in Section 4. Next, we discuss some applications in
Section 5. Section 6 focuses on proving analogous results for the multiplier algebras
within separable type III factors. Finally, in the last section, we introduce the concept
of the nuclear length of C*-algebras.

Acknowledgment. After our paper was typed up, we learned from our private commu-
nication with P. W. Ng that Giordano, Kaftal and Ng also obtained similar results with
different proofs, including (i) noncommutative Weyl-von Neumann theorem, (ii) Dou-
ble commutant theorem for type Il factors, and (iii) Asymptotic double commutant
theorem for type III factors.

2. PRELIMINARIES

2.1. Separable Properly Infinite Factors. Let H be an infinite-dimensional complex
Hilbert space, B(H) the algebra consisting of all bounded operators on H. A selfadjoint
unital subalgebra of B(H) is said to be a von Neumann algebra if it is closed in the
strong-operator topology. A factor is a von Neumann algebra whose center consisting
of scalar multiples of the identity. A von Neumann algebra is considered separable if it
has a separable predual space (see [12, Theorem 7.4.2]).

Factors are classified into finite factors and properly infinite factors determined
by a relative dimension function of projections. Properly infinite factors can be further
classified into properly infinite semifinite factors, namely type I, 15 factors, and purely
infinite factors, namely type III factors. For further details, please refer to [12].

Throughout, let M C B(H) be a separable properly infinite factor. We denote the
identity of M as Ixq, or simply I. T'wo projections P,Q) € M are said to be Murray-
von Neumann equivalent, denoted by P ~ @, if V*V = P and VV* = @ for some
partial isometry V € M. A projection P in M is said to be infinite if it is Murray-von
Neumann equivalent to a proper subprojection in M. Otherwise, P is said to be finite.

Let K¢ be the norm-closed ideal generated by finite projections in M. Note
that Ky = {0} if M is of type III, and Kpq is strong-operator dense in M if M is
semifinite. Note that, if M is of type I, then M is *-isomorphic to B(Hy), where Hg
is a separable infinite-dimensional complex Hilbert space. In this case, K4 is the set of
compact operators in M and M /Ky is *-isomorphic the Calkin algebra.

2.2. Factorable Maps with Respect to K. Let A be a unital C*-subalgebra con-
tained in M. Typically, a completely positive map ¥: A — M is called factorable if
1 = n oo for some completely positive maps o: A — M, (C) and n: M,(C) — M.
Furthermore, ¢ is said to be nuclear if it can be approximated in the pointwise-norm
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topology by factorable maps.

A
A > M

Definition 2.1. Let ¢: A — M be a completely positive map with VY| anic,, = 0. If
Y =mnoo for some completely positive maps o: A — M, (C) and n: M,(C) — M with
olank . =0, then we say that ¢ is factorable with respect to K.

Let § = §(A, M, Knrq) denote the set of all factorable maps with respect to K
from A into M.

By definition, the set F(A, M, ) is a cone. Specifically, let ¢; =n;004,j =1,2
for some completely positive maps

oj: A— My, (C), mn;: My, (C) = M,
with 0|4k, = 0. We can define completely positive maps as follows:
o: A= My, 4n,(C), A 01(A) @ oa(A),

and
) X1 X9
n: Mn1+n2 ((C) — M7 <X21 X22> = 771(X11) + 772(X22)-

Therefore, ¥ + 19 =noo € F(A, M, Kr).

Definition 2.2. Let § = §(.A,.M,ICM) denote the closure of § in the pointwise-norm

topology. In other words, a map ¢: A — M lies in § if for any finite subset F of A
and any € > 0, there exists a map 1 € § such that ||p(A) —(A)|| < e for every A € F.

It is clear that every map in § is completely positive and vanishes on A N K .
Maps in § are said to be nuclear with respect to Kaq.

Example 2.3. Let ¢: A — M be a unital *~homomorphism with ¢|anx,, = 0. If the
inclusion idg(4y: ¢(A) — M is a nuclear map, then the composition ¢ = id,(4) o ¢ is
a nuclear map with respect to KCaq. There are two examples.

(1) Let A be a nuclear C*-algebra. Since p(A) is a nuclear C*-algebra, the inclusion
map id,(a): 9(A) — M is automatically nuclear.

(2) Let M be an injective factor, and A an exact C*-algebra. Since p(A) is an
exact C*-algebra, there exists an nuclear embedding 7: p(A) — B(Ho) for some
complex Hilbert space Ho. By the injectivity of M, idyayom 1: w(p(A)) = M
extends to a completely positive map : B(Ho) — M. Therefore, id,4) = tpom
is nuclear.

Lemma 2.4. Let {{}nen be a sequence of completely positive maps from A into M.
If the series ) .y ¥n(I) converges in the strong-operator topology, then Y . n(A)
converges in the strong-operator topology for every A € A.

Proof. Recall that M acts on a complex Hilbert space H. Let x1,xo,. ..,z be vectors
inH, Ac A, and € > 0. Since ) ¥, ([) converges in the strong-operator topology,
1> nen¥n(d)|| < oo by the uniform boundedness principle. Moreover, there exists a
natural number N such that for any integer s > r > N, we have

HAH?H Z%(I)H<§:¢n(1)mj,mj> <elfor 1<) <k (2.1)
neN n=r

According to Stinespring’s dilation theorem, for any completely positive map : A —
M, we have

I (A)a;|1* < NAIP I DI, 25). (2:2)
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Since the map Y5 _ 1, is completely positive, from (2.1) and (2.2), we obtain that
S
H Zﬂ)n(z‘l)xj” <efor1<j<k.
n=r

This completes the proof. ]

By Lemma 2.4, we are able to define the infinite sum of a sequence of completely
positive maps.

Definition 2.5. Let 6F = GF(A, M, () denote the set of all maps of the form
Y onen Un, where i, € F(A,M,Kp) for every n € N, and the series Y, .y Un(I) con-

verges in the strong-operator topology.
Let 6F = 6§ (A, M, K ) denote the closure of &F in the pointwise-norm topology.

The definition of 6/5:75 is similar to §, see Definition 2.2. The following lemma shows
that &% is closed under countable addition.

Lemma 2.6. If {¢, }nen is a sequence in &3 such that Y nen Un(l) converges in the
strong-operator topology, then ) v, € GF.

Proof. Let F be a finite subset of A containing I, and ¢ > 0. For each n € N, there is a
sequence {¢pn m tmen in F(A, M, ) such that

‘ Pn(A) — anm(A)H < 27" e for every A € F.

m

It follows that
H Z¢n(A) — Zﬂ)n,m(A)H < ¢ for every A € F.

In particular, we have ||>°, ¢¥n(I) = >, .., Ynm(I)|| < € since I € F. Thus the series
Y nm Ynm(I) converges in the strong-operator topology since ). 1, () converges in

the strong-operator topology. Therefore, > . ., € 6F and then ) 1, € é\%' O

The following lemma is derived from [4, Lemma 3.4].

Lemma 2.7. Let M be a separable properly infinite factor, A a unital C*-subalgebra
of M, and P € K a finite projection. Then every map v € F(A, M,Kxrq) can be
approximated in the pointwise-norm topology by maps of the form

A VAV,

where V€ M and PV = 0. In particular, V can be selected as a partial isometry such
that V*V = (I) when (1) is a projection.

2.3. Cutting down Projections. In order to facilitate our discussion in subsequent
sections, it is necessary to present a set of technical lemmas to cut down infinite projec-
tions.

Lemma 2.8. Let P,Q be infinite projections in M. Let 1,...,8, be positive numbers,
and pi,p2,...,pn normal states on M such that p;j(Q) > §; > 0 for 1 < j < n. Then
for any A € M, there exist infinite projections P’ < P and Q' < Q in M such that
P'AQ" =0 and pj(Q") > 6; for 1 < j < n.

Proof. Consider the polar decomposition PAQ = V H, in which V is a partial isometry
and H is a positive operator in M. Let Py = VV* < Pand Qo = V*V < Q. If Py is
finite, then P — Py is infinite. In this case, we set P/ = P — Py and Q' = Q.

Now assume Qo(~ Pp) is infinite. Let A be a maximal abelian selfadjoint subalgebra
of M that includes Qo and H. Then there exists a sequence {Q),}men of projections



VOICULESCU’S THEOREM IN PROPERLY INFINITE FACTORS 5

in A such that Qo = >_,, @), and @), ~ Qo for every m. Since p; is normal, we have
pi (@) < pi(Q) — ¢&; for 1 < j < n when m is sufficiently large. We set

P'=VQ,V'<P, Q=Q-Q,<Q.
Since H = HQ = QH and HQ), = Q! H, we obtain
PAQ' =V@Q,V'VH(Q - Q;,) = VQ,Q0(Q — @, )H = 0.

It is evident that p;(Q') > d; for 1 < j < n. Furthermore, P’ and @’ are infinite
projections because P’ ~ Q;, ~ Qo and Q' > @, ~ Qo. O

Lemma 2.9. Let P,Q be infinite projections in M. Let 1,...,0, be positive numbers,
and p1,p2,. .., pn normal states on M such that p;(Q) > 0; > 0 for 1 < j < n. Then
for any finite subset F of M, there exist infinite projections P' < P and Q' < Q in M
such that P'AQ" =0 for any A € F and p;(Q") > 0 for 1 < j < n.

Proof. Let F = {A1, Ag, ..., Ap}. By Lemma 2.8, there exist infinite projections P; <
P and Q1 < @ such that PiA;Q1 = 0 and p;(Q1) > §; for 1 < j < n. Inductively, we
can find infinite projections

ngpm—1<<P1<P7 ngQm—lg"'nggQ
<

such that P, ArQr = 0 and p;(Qr) > d; for 1 <j<nand1<k<n Weset P=P,
and Q' = Q.. O

Lemma 2.10. Let {P,}nen be a sequence of infinite projections in M, and {F, }nen
a sequence of finite subsets of M. Then there exists a sequence {Qn}nen of infinite
projections in M such that Q, < P, forn >0, and Q,AQo = 0 for any A in F,, and
anyn = 1.

Proof. Case 1. Suppose M is semifinite with a normal faithful tracial weight 7. We also
assume that 7(E) = 1 for every minimal projection F if M is of type Io. Let E1 < Py be
a projection with 7(E;) = 2. By Lemma 2.9, there exist infinite projections P} < Py and
Q1 < Py such that Q1 F, P} = {0} and 7(PJEy) > 1. Let Ey < P} be a projection with
7(E3) = 3. Applying Lemma 2.9 once again, there exist infinite projections P} < P}
and Q2 < P such that QaFoP) = {0} and 7(PJEy) > 1, 7(P{E>) > 2. Continuing
this process, let E,, < Pén_l) be a projection with 7(E,) = n + 1. There are infinite
projections Pén) < Po(n_l) and @, < P, such that Qn}"nPén) = {0} and T(Pé") Ey) >k
for 1 < k <n. Now we set Qg = /\Pén). Since 7(Qo) = 7(QoEy) > k for every k > 1,
we conclude that Q) is infinite.

Case 2. Suppose M is of type III with a normal faithful state p such that p(FPp) >
d > 0. By Lemma 2.9, there exist infinite projections Pj < Py and @1 < P; such that
1 F1Py = {0} and p(P}) > 6. Similarly, there exist infinite projections P} < P} and
Q2 < P such that Q2 F2P] = {0} and p(Py) > 4. Inductively, we can find infinite
projections Po(n) < Pén_l) and @, < P, such that Qn}"nPén) = {0} and p(Pén)) > 0.

Let Qp = /\Pén). Since p(Qp) = 6 > 0, we conclude that @y # 0. Therefore, Qp is an
infinite projection. O

Lemma 2.11. Let {P, }nen be a sequence of infinite projections in M, and {Fp, n tm.nen
a family of finite subsets of M. Then there exists a sequence {Qn}tnen of infinite pro-
jections in M such that Q, < P, forn >0, and QnAQ, = {0} for all A € F, ,, when

Proof. We can assume that f;m = Fmn by replacing F,,, with Fp, , U ]—";m. By

Lemma 2.10, there exist infinite projections Qo < Py and P}, < P, such that P}, F,,, 0Qo =
{0} for m > 1. There exist infinite projections @1 < P; and P < P), such that

P Fn1Q1 = {0} for m > 2. Inductively, there exist infinite projections @, < Pﬁ”)
and PTSILH) < P,%") such that P,%nﬂ)]-"m,nQn = {0} for m > n+ 1. It is obvious
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that QuFmn@n = {0} when m > n. Furthermore, since F,,, = Fn,, we have
QmFmnQn = {0} when m # n. 0

3. MAIN THEOREMS

The following result relies on the concept of quasicentral approzimate units (see
[3]), which states that a significant number of completely positive maps from A into M

lie in the set 6F = (‘:3\8’(./4, M, K ) as defined in Definition 2.5.

Proposition 3.1. Let M be a separable properly infinite factor, A a unital C*-subalgebra
of M, and B a type 1« unital subfactor of M. Then ) € GF for every completely posi-
tive map : A — B with | anx,, = 0.

Proof. Let F be a finite subset of A containing I, and £ > 0. According to [3, Theorem
2], there exists a sequence {Ey, }nen of finite rank operators in B such that > E2 =T
and

"¢(A) N ZEnw(A)En < ¢ for every A € F.

For n € N, let P, denote the finite rank projection R(FE,) in B. Since P,BP, is a matrix
algebra, we can construct a map ¥ € §(A, M, K ) by
Y A— P,BP,, A— EW(AE,.

It is clear that ||¢¥(1) — >, ¥n(I)| < € since I € F. Consequently, the series . 1y, (1)
converges in the strong-operator topology. Therefore, ) 1, € &F and it follows that
Y € 6F. O

In [7], U. Haagerup proved that every completely positive map from a finite-
dimensional unital subfactor of M into M can be expressed in the form B — T*BT.
Utilizing Haagerup’s result, we are now able to demonstrate our main theorem.
Theorem 3.2. Let M be a separable properly infinite factor, A a unital C*-subalgebra
of M, and P € Kxq a finite projection. Then any ¢ € &F can be approximated in the
pointwise-norm topology by maps of the form

A VAV,

where V€ M and PV = 0. In particular, V can be selected as a partial isometry such
that V*V = (I) when (1) is a projection.

Proof. Let F be a finite subset of A containing I, and € > 0. Then there exists a
sequence {¢, }nen in F(A, M, Kpq) such that

Hib(A) - an(A)H < % for every A € F.

Suppose Y, = n, o g, for some completely positive maps o,: A — B, and n,,: B,, > M
with on|ank,, = 0, where B, is a type I,(n) unital subfactor of M with a system of
matrix units {Eﬁ?hgs,t@(n)-

According to [7, Proposition 2.1], there exists an operator 7,, € M such that
nn(B) = T, BT, for every B € B,,. By Lemma 2.7, there is an operator V,, € M such
that

r(n)?| Tul?lon(A) — Vi AV, || < 27" %¢ for every A € F, (3.1)
and PV, = 0. For m,n > 0, we define a finite subset of M by
Fom = {EVEAV,E™ 1 < s <r(m),1 <t<r(n),Ae F}.
Based on Lemma 2.11, we can find a sequence {Q }nen of infinite projections in M

such that @, < EYf) for n > 0, and Q. Frn n@n = {0} when m # n. Since @,, and E%)
are infinite projections, there is a partial isometry W, in M such that

WiW, =B, W, W' = Q,.
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Since Eg)an(A)Egl ) ¢ (CE(1 and @, < %1), it is straightforward to deduce
Eé?)W;QnEg)Un(A)Eﬂ QanEu) = Eé?)Eg)Jn(A)ES)Eg) = Eg?)an(A)ng)-
Consequently, o,(4) = 3_,, Eg’f) W;QnEg)an(A)Et(?)QanEg) and then

> vn(A) = Y TESWQuEL 0n (A E QuWa B T, (3.2)
n n,s,t

Since E§T)V;LAVnEgl) € Fmn for every A € F, we have QmE§T)VJLAVnE§?)Qn =0

when m # n. Specifically, the operators {)_, VnEf?)QanEi?)Tn}neN have orthogo-

nal ranges when considering A = I. Based on this, we can define an operator V =

Dot VnEf?)QanEﬁ)Tn, and then

VAV = 3 TiEDWiQu B VAV B QuW, BT, for every A€ F,  (3.3)

n,s,t

and PV = 0. From (3.1), (3.2) and (3.3), it follows that
H Z¢n(A) - V*AVH < % for every A € F.

Consequently, [|[¢(A) — V*AV|| < e for every A € F. In particular, V*V is a bounded
operator if we take A = I. We can conclude that V' belongs to M. Furthermore, due to
(1) — V*V|| < e, we can choose V as a partial isometry such that V*V = 4(I) when
(1) is a projection. O

We now establish an enhanced version of our main theorem for separable C*-
subalgebras in semifinite factors.

Theorem 3.3. Let M be a separable properly infinite semifinite factor, A a separable
unital C*-subalgebra of M, and P € Ky a finite projection. Then for any ¢ € GF,
there is a sequence {Vi}ren in M such that

(1) PVy, =0 for every k € N.

(2) limpo0l|tp(A) = VIFAVL]| =0 for every A € A.

(3) Y(A) = VXAV, € K for every k € N and A € A.
In particular, Vi, can be selected as a partial isometry such that V;*Vi, = (1) when (1)
18 a projection.

Proof. Let {Qn}nen be a sequence of finite projections in K¢ with \/, oy @Qn = I, and
</ the separable unital C*-subalgebra of M generated by 1(A) U {Qp}nen. It is clear
that

I={Bed:R(B)eKm}
is a non-degenerate ideal of </. Additionally, let {A4;};en be a norm-dense sequence in
A% with Ag = I, where A%* is defined as {A € A: A* = A}

Fix k € N. According to [3, Theorem 2], there exists a sequence { E,, }nen of positive
operators in Z such that Y, E2 = I, (A)—=>", E,tp(A)E, € K forevery A€ AC o,
and

|0(45) = 3 Bnu(4y)E
We will define U, inductively. Let Py = P and
Py = \/{P, R(A;UnEn): 0<j<n+k0<m<n—1}forn> 1

< 97kl for 0 < j < k.

Since P and R(E,,) are finite, P, is also finite. By Theorem 3.2, there exists an operator
U, in M such that

|(Aj) = Ui A;U,|| < 27" "2 for 0 < j <n+k, (3.4)



VOICULESCU’S THEOREM IN PROPERLY INFINITE FACTORS 8

and P,U, =0. For 0 < j<n+kand 0 <m < n—1, we have P, AU, B, = AjUp Ey,
and then E,,U; A;U,E, = E,, U A;jP,U,E, = 0. It follows that
E, U, AUy E, =0 when 0 < j < max{m,n}+k,m #n. (3.5)

Specifically, the operators {U,, E, }»en have orthogonal ranges when considering Ag = 1.
Based on this, we can define an operator V' =) U, E,, and then

Y Enp(A)E, = VAV =) En(W(A) = U AjUn) En — Y EnlUs AjUnE,
n n m#n

for every j > 0, and PV = 0. The first sum is norm-convergent by (3.4) and the second
sum is a finite sum by (3.5). It follows that > FE,(A;)E, — V*A;V € Ky for j >0
since each summand lies in . We also have the estimation

H S En(A;)Ey — V*Ajv( <27 1 for 0 < j < k.

Therefore, 1(A;) — V*A;V € Kpq for j > 0, and [[90(A4;) = V*A; V| < 27F for 0 < j < k.
In particular, V*V is a bounded operator if we consider Ag = I. We can conclude that
V belongs to M. Now we set V, = V. U

4. VOICULESCU’S THEOREM

In this section, we focus on unital *-~homomorphisms in é\%' = é\%'(.A,M,IC M) as
defined in Definition 2.5.

Lemma 4.1. Let M be a separable properly infinite factor, and A a separable unital

C*-subalgebra of M. If ¢ € &F is a unital *~homomorphism, then there is a sequence
{Vik}ken of isometries in M such that

klim IVikp(A) — AVi|| = 0 for every A € A.
—00

Furthermore, if M is semifinite, we can choose {Vj}ren such that
Vip(A) — AV, € Kaq for every k € N and A € A.
Proof. By Theorem 3.2, there exists a sequence {Vj }ren of isometries in M such that
khﬁrgoHcp(A) — Vi AVy|| = 0 for every A € A.

Since ¢ is a unital *-homomorphism, we have
(Vip(A) — AVi)" (Vip(A) — AV) (1)
— P (9(A) = ViAW) + (0(A47) = VEAVR)p(A) — (9(A*A) — ViA"ATR).

It follows that limy_oo||Vip(A) — AV%|| = 0 for every A € A. Furthermore, if M is
semifinite, then we can assume that ¢(A) — V;*AVj € Ky by Theorem 3.3. As a result,
we can deduce Vyp(A) — AV) € K from (4.1). O

The following theorem is known as Voiculescu’s theorem [14]. We will employ the
notation P+ = I — P for a projection P € M.

Theorem 4.2. Let M be a separable properly infinite factor, and A a separable unital

C*-subalgebra of M. If ¢ € &F is a unital *~homomorphism, then there is a sequence
{Vi}ren of isometries in M @ Ms(C) such that

klim |(A® p(A) —Vi(A®0)Vi|| =0 for every A € A,
— 00

and V'V, = 1@ 1, Vi,V =1®0 for every k € N. Furthermore, if M is semifinite, we
can choose {Vj}ren such that

(A@ p(A) =V (A 0)V, € Kpm @ Mo(C) for every k € N and A € A.
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Proof. Let {Epmn}mnen be a system of matrix units in M such that ) F,, = I and
FEyy ~ I. Let T be an isometry in M with TT* = Eyg, and let S denote the isometry
Y on Eniin € M. We define a map

v: A M, Ae Z EnoT(A)T* Eq,.

Clearly, v is a unital *-homomorphism and lies in 6/5?3’ by Lemma 2.6. By Lemma 4.1,
we can find a sequence {Uy }ren of isometries in M such that

klim Uk (A) — AUg|| = 0 for every A € A. (4.2)
—00
Furthermore, if M is semifinite, then we can assume that

Urp(A) — AUy, € Kpq for every k € Nand A € A.

Let B, = U,U}; be a projection in M, let W), be an isometry in M with W, W} =
I— TPle*, and let F}, = PkLT* + U W}, be a unitary operator in M. Then

F}{AF, = TPEAPET* + TPHAUGW + WU APET™ + WUy AULWY.
Since Pi- AU = (AU, — Upp(A)) + Ux (Y (A) U} — Ui A) Uy, we deduce from (4.2) that
Jim_ | Pi- AU || = 0 for every A € A.
It follows that
Jim || FAF; — (TPEAPET* + Wiy (A)W)|| = 0 for every A € A. (4.3)

l * *
Let x, — (TEeT EWkSWk WST

that X, X} =TI ®0. Since S*(A)S = 1p(A) and T*(A)T = p(A), we have

o (TPFAPET  + Wip(A)Wy 0 . (TPrAPST* + Wip(A)W; 0
k 0 0) *k~ 0 ©(A) )"

) be an isometry in M ® M3(C). One computes

Then (4.3) implies that
,}LHOIOHX;(F;AF’“ ®0) Xy — (FpAF, @ p(A))|| = 0 for every A € A.
Now we set Vi, = (F, ® 1) Xy (F} @ I). O
According to Proposition 3.1, Theorem 4.3 is a special case of Theorem 4.2.

Theorem 4.3. Let M be a separable properly infinite factor, A a separable unital C*-
subalgebra of M, and B a type 1o unital subfactor of M. If ¢: A — B is a unital
*-homomorphism with @|ank ., = 0, then there exists a sequence {Vj}ren of isometries

in M ® My(C) such that
klim [(A® (A)) = V(A 0)Vi| =0 for every A € A,
— 00

and V'V, = 1@ 1, Vi,V =1 ®0 for every k € N. Furthermore, if M is semifinite, we
can choose {Vj.}ren such that

(A p(A) =V (A 0)V, € Kpm @ Mo(C) for every k € N and A € A.

5. APPLICATIONS

We provide two applications of Voiculescu’s theorem in this section.
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5.1. Reducible Operators. Let M be a separable properly infinite factor, and 7" an
operator in M. We say that T is reducible in M if there is a projection P € M such
that PI'=TP and P #0, 1.

Theorem 5.1. Let M be a separable properly infinite factor. Then the set of all re-
ducible operators is norm-dense in M.

Proof. Let B be a type I unital subfactor of M, and 7" € M. Let A be the separable
unital C*-algebra generated by T, and Z = AN K.

Let ¢: A/Z — B be a unital *~homomorphism, 7: A — A/Z the quotient map, and
¢ =1vom: A— B. By Proposition 3.1 and Theorem 4.2, there is a sequence {Vj}ren
of isometries in M ® M3(C) such that

klim |(A® p(A) —ViI(A®0)Vi| =0 for every A € A,
—00

and V,V* = I ® 0 for every k € N. We can write

It is clear that P.Ty = TP, and Py # 0, 1. Therefore, T}, is reducible in M. Moreover,
we have limy_, || Tk — T|| = 0. This completes the proof. O

5.2. Voiculescu’s Bicommutant Theorem. Let M be a separable properly infinite
semifinite factor, and &/ a separable unital subalgebra of M /ICx. As defined in [3, Page
334], the essential lattice Late(<?) of <7 is the set of all projections p € M /K such
that ptap = 0 for every a € «7. If t € M/Kn, then |[p*tp|| = |lpt(t — a)p| < ||t — al
for every a € /. It follows that

sup|[p™tpl| < d(t, o).
p

The subsequent result is commonly referred to as Arveson’s distance formula.

Lemma 5.2. Let M be a separable properly infinite semifinite factor, and <7 a separable
unital subalgebra of M/Kar. Then for any t € M/Knz, there is a projection q in
Lat. (<) such that

g™ tql| = d(t, ).

Proof. Let m: M — M /K be the quotient map, 7 the separable unital C*-algebra
generated by t and &7, and B a separable type I, unital subfactor of M. By GNS con-
struction, there is a unital *-homomorphism o: % — B and a o(<)-invariant projection
P € B such that
|Po(t)Plle > d(t, <),

where [|A|. = [|7(A)| for A € M.

Let A; be a separable unital C*-subalgebra of M such that 7(A4;) = %, and let
¢ =ocom: Ay — B be a unital *-homomorphism with ¢|4,nx,, = 0. By Theorem 4.2,
there is an isometry V' € M x My(C) such that

(A p(A) -V (A 0)V € Kpm® My(C) for every A € Ay,

and VV* =1@0.

Let A={A € Ay: 7(A) € &/}, and Q&0 = V(0 P)V*. Since n(A) = &/ and
©0(A) = (&), P is p(A)-invariant. We conclude that Q+AQ € Ko for every A € A.
This implies that ¢ = 7(Q) belongs to Lat.(</). Choose T' € A; such that 7(T) = t.
Then

(Q*TQ®0) — V(0@ Pro(T)P)V* € Ky @ My(C).
It follows that [l¢*tql| = [Q Q). = [P (TP = IPYo(t)P|. > d(t, ). O

Lemma 5.2 implies that every separable norm-closed unital subalgebra of M /K
is reflexive. In particular, Voiculescu’s relative bicommutant theorem holds.



VOICULESCU’S THEOREM IN PROPERLY INFINITE FACTORS 11

Theorem 5.3. Let M be a separable properly infinite semifinite factor. Then every
separable unital C*-subalgebra of M /K equals its relative bicommutant.

It is worth noting that Ky = {0} if M is a separable type III factor. From this
fact and Theorem 4.2, we can obtain the following approximate result.

Lemma 5.4. Let M be a separable type 111 factor, and </ a separable unital subalgebra
of M. Then for any T € M, there is a sequence {Q}ren of projections in M such that

klim ||Q,$AQ;€H =0 for every A € o,
— 00

and
lim Qi TQx|| = d(T, 7).

In [8], D. Hadwin proved that every separable unital C*-subalgebra of B(H) equals
its approximate bicommutant, where H is a separable infinite-dimensional complex
Hilbert space. If M is a separable type III factor, then Lemma 5.4 implies that ev-
ery separable unital C*-subalgebra of M is equal to its approximate bicommutant.

5.3. The First Cohomology Group. Let M be a separable properly infinite semifi-
nite factor, and A a unital C*-subalgebra of M.

Definition 5.5. A linear map 6: A — Knq is said to be a derivation if it satisfies
the Leibniz rule 6(AB) = 0(A)B + Ad(B). The set of all derivations of A into Kq is
denoted by Der(A, ).

For any K € K, the inner derivation dx: A — K is given by 6x(A) = KA —
AK. The set of all inner derivations of A into Kaq is denoted by Inn(A, Kaq).

The quotient space H*(A, Krq) = Der(A, Kaq)/Inn(A, Kaq) is called the first coho-
mology group of A with coefficients in KCpq.

We introduce some notation. If A is a unital C*-subalgebra of B(#), then the
commutant A’ is the set of all bounded operators on H commuting with all operators
in A. The von Neumann bicommutant theorem asserts that the bicommutant A" is the
von Neumann algebra generated by A.

If A is a unital C*-subalgebra of M, then the relative commutant of A in M is
denoted by

A°={T e M: TA = AT for all A € A}.
Since A° = A NM C A, we have A° = (A°) "M D (A)YNM=A"D A Hence
the relative bicommutant A contains A. Similarly, the relative commutant of a unital

C*-subalgebra <7 of M /K is denoted by
A ={te M/Kp: ta=at for all a € o/}

Let m: M — M /K be the quotient map. It is clear that w(A)¢ D 7(A°).
The following theorem is similar to [11, Theorem 2.2], which states that not all
derivations of A with coefficients in K4 are inner under certain conditions.

Theorem 5.6. Let M be a separable properly infinite semifinite factor, and A a separa-
ble unital C*-subalgebra of M. If w(A") is infinite-dimensional, then H' (A, Kn) # {0}.

Proof. Let m: M — M /K be the quotient map. If 7(T') € 7(A)¢, then TA—AT € K
for every A € A, which gives a derivation dr € Der(A,Knq). If n(T) = =w(S), then
T — S € Kpm. It follows that dp — g = dp—g € Inn(A, ). Thus, we have a well-
defined homomorphism

@: (A = HY (A, Krg), 7(T)— op +Inn(A, K.

If 7(T') € ker ¢, then there is an operator K € K such that d7 = dx. It follows that
T — K € A° and then (T € w(.A°). Therefore, the induced map

@: m(A)°/m(A°) = HY (A, Krm)
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is injective. It suffices to show that 7(A)¢ # 7(A°
Suppose on the contrary, that 7(A)¢ = m( ) Since 7(A) is a separable unital

C*-subalgebra of M /K, we have 7(A) = w(.A)° by Theorem 5.3. It follows that
m(A%) 2 m(A") 2 7(A) = m(A)* = w(A7)° 2 m(A).

Therefore, 7(A°) = w(A”) = 7©(A), which is an infinite-dimensional separable C*-
algebra. This contradicts the next result, Proposition 5.8. U

Example 5.7. We give two examples.

(1) Let M be a separable 1, factor, and A = CI + K. Then H' (A, Kprq) # {0}.
(2) Let M be the 11, factor N @ B(L?*(T,u)), where N is a separable 11;-factor,
and v is the Lebesgue measure on the unit circle T. Suppose that C(T) acts on

L2(T, 1) by left multiplication. If A = I @ C(T), then H' (A, Kn) # {0}.
The following proposition is well-known to experts.

Proposition 5.8. Let M be a separable properly infinite semifinite factor, m: M —
M/Kam the quotient map, and N a unital von Neumann subalgebra of M. Then the
C*-algebra w(N) is either finite-dimensional or non-separable.

Proof. Suppose that 7(N) is an infinite-dimensional C*-algebra. According to [12, Ex-
ercise 4.6.13], there is a positive element A € A/ such that w(A) has infinite spectrum.
We can find a sequence {[ay, by }nen of disjoint intervals such that each interval contains
a spectral point of 7(A). Let f, be a continuous function on R, which is positive within
the interval (a,,by), and zero elsewhere. Then f,,(7(A)) # 0.

Let x5 be the characteristic function of the interval [a,,b,]|, and P, the spectral
projection x,(A). Let N7 be the von Neumann algebra generated by { P, },en. For any
nonzero bounded complex sequence {¢;, }nen, say ¢, # 0, we have

7 X ena )l ) = 7l fn(4)) = () 2.
neN

It follows that |y, is injective. Therefore, (A7) is non-separable in the norm topology.
This completes the proof. O

6. MULTIPLIER ALGEBRAS
In this section, let M be a separable type III factor. Note that K¢ = {0}.

6.1. Multiplier Algebras. Let B be a type I unital subfactor of M, Kz the ideal of
compact operators in B, and N = B’ N M the relative commutant of B in M. Then M
is generated by N'U B as a von Neumann algebra, and

M=N® B.
Let J be the C*-subalgebra of M generated by NKg={NK: N € N, K € Kz}, then

we have
TEN® Kg.
The multiplier algebra of J is defined as
MI)={TeM:TTCJ,JT T}
For more details about multiplier algebras, please refer to [15, Chapter 2].

Lemma 6.1. 7 = JMJT.

Proof. Since J is a C*-algebra and I € M, it is evident that 7 C JMJ.
Let {Emn}tmnen be a system of matrix units in B such that Eyy is a minimal
projection in B and ) E,, =I. For A € M, we set

Aij = ZE,%AEJ”, 1,5 € N.
n
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Then A;; € BN M =N because EnpAij = EniAEj, = AjjEp, for all m,n € N. It is
clear that I;; € Kp, and therefore, E;; AE;; = A;;E;; € J. Consequently,
E;ME;; € J, 1,5 €N,
Let P, = Ego + E41 + -+ + E,,. For any A € M and Jy, Jo € J, we have
P,J1AJyP, € P,MP, C J.
Since Jp = lim, o P,J1 and Jo = lim,, o Jo P, we conclude that

J1AJy = li_)m P,J1ALP, € J.
Thus, we have shown that JMJ C J. O

The following result suggests that it is reasonable to consider C*-subalgebras within

M(T).

Proposition 6.2. Let M be a separable type 111 factor, and A a separable unital C*-
subalgebra of M. Then there is a unitary operator U € M such that U* AU C M(J).

Proof. Let {A;}jen be a norm-dense sequence in A, {X;};jen a strong-operator dense
sequence in M, {Y;}jen the set of all noncommutative *-monomials generated by
{Aj}jen U {X,}jen, and F, = {Yo,Y1,...,Y,} for n € N. By Lemma 2.10, there
exists a sequence {Q }nen of infinite projections in M such that Q,F,Qo = {0} for
every n > 1. Let

P=\/{R(YQ): Y €F} <I-Qn neN (6.1)

Then \/, ey P = I since the sequence {X; }jen generates M as a von Neumann algebra.
Let Fy = Py, and E, = P, — P,,_1 for n > 1. Since P,, # I, we may assume that E, # 0
for every n € N if we consider a subsequence of { P, }eN.

Let B; be a type I unital subfactor of M with a system of matrix units { Eps, }rmnen
such that E,, = E, for n € N. Let Kpg, be the ideal of compact operators in By,
N1 = B} N M the relative commutant of By in M, and J; the C*-subalgebra of M
generated by N1Kp,. For any j,n € N, (6.1) shows that

R(Y;P,) < \[{R(V;YQu): YV € Fu} < \/{R(YQ0): Y € Fn} = P,

for all sufficiently large m € N. Then Y; P, = P, Y;P, € J1 by Lemma 6.1. It follows
that Y; € M(J1) since { P, }nen is an approximate unit of 7. In particular, A; € M(J1)
for j € N, and therefore, A C M(J1). Let U be a unitary operator in M such that
U*BU = B. Then U* AU C M(J). O

6.2. Main Results in M(J). The result presented below can be derived from the
proof of [7, Proposition 2.1]. We will use it to prove a comparable version of Lemma 2.7

in the context of M(J).

Proposition 6.3. Let By be a finite-dimensional unital subfactor of M(J), andn: By —
M(T) a completely positive map. Then there exists a single operator T € M(J) such
that n(B) = T*BT for every B € By.

Lemma 6.4. Let M be a separable type 111 factor, A a unital C*-subalgebra of M(TJ),
and P € J a projection. Suppose ¥: A — J is a completely positive map, and there
exist completely positive maps o: A — M, (C) and n: M, (C) — J such that

(1) ¢ =noa.
(2) olang = ¥|ang =0.
Then 1 can be approximated in the pointwise-norm topology by maps of the form
A VAV,

where V- € J and PV = 0. In particular, V can be selected as a partial isometry such
that V*V =4 (I) when (1) is a projection.
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Proof. Let By be a finite-dimensional unital subfactor of B with a system of matrix units
{Eij}1<i,j<n. We can assume that o: A — By and n: By — J. By Proposition 6.3, there
is an operator T" € M(J) such that

n(B) = T*BT for every B € By.

Let T'= U|T| be the polar decomposition. Then |T'| € J since n(I) =T*T € J.

Let F be a finite subset of A containing I, and € > 0. We may assume that P € A
and P € F. According to [2, Lemma 4.4], there are pure states p', p?, ..., p* on A with
p'lany =0 for 1 <t < k, and operators 4, ;,1 <t < k,1<j <nin A, such that

ITI||o () = > p'(A5; 44,5 By

t7i7j

< % for every A € F.

It follows that
Hzp(A) = pt(A;iAAm)T*EijTH < g for every A € F.
t,i,7

According to [1, Proposition 2.2], let C; be a positive operator in A with ||C}|| = 1 and

pt(Cy) = 1 such that
£
ITIPICAX ~ F O < (6.2

for every X € {Af,z‘AAtJ: 1<t<k1<1i,7<n,A€F}. Since Kp is non-degenerate,
there exists a projection @ € Kg such that [|QC?Q| > 3 for 1 < t < k. Then there
exists a nonzero spectral projection P; < Q of QCZQ such that

1
P, > PC?P, > §Pt for 1 <t <k. (6.3)

Let G = {CiA};AA; ;jC: 1 <t < k1 <4, <n, A€ F}. By Lemma 2.10, there exist
infinite projections {Q:}1<i<k such that Q; < P, for 1 <t < k, and Q;GQ¢ = {0} when
s # t. Let Uy be a partial isometry in M such that

UfU = En, UU; = Q.
Since (6.3) implies that

1 1
Ey > UFQiC2QuU > §Ut*QtUt = §E11,

there exists a positive operator X; € E;yuM(J)E1; € J with || X;]|? < 2 such that
X2 (U QiC2QuUy) = (U QiC2QuU)X? = Eyy for 1 <t < k.
Consequently, pt(A;Z-AAt,j)EZ-j = EilXtUt*QtCt,ot(A;‘7Z~AAt7j)CtQtUtXtE1j, and then

<
<

> AL AL T BT =) - T*Eq XoU; QiCip' (A7 AA ) CrQuULXL BT, (6.4)
t,i,j 23]
Moreover, QUi X En;T = QQ:Us X E1;U|T| € J by Lemma 6.1 because Q,|T| € J.
Let Y = Zt,j A ;CQUXLET € J. Since Qs F Q¢ = {0} when s # ¢, we have

YRAY =Y T Eq XoU; QiCrA7 AA jCiQuU X BT (6.5)
t,4,5
From (6.2), (6.4) and (6.5), it follows that

H S (A} AA T EyT — Y*AYH < % for every A € F.
tyi,j
Consequently, |[(A) —Y*AY || < e for every A € F. In particular, ||[Y*PY|| < e by the
assumption P € F, and then we can replace Y with V = (1 — P)Y € J. Furthermore,
since ||[¢¥(I) — V*V|| < &, we can choose V as a partial isometry such that V*V = (1)
when () is a projection. O



VOICULESCU’S THEOREM IN PROPERLY INFINITE FACTORS 15

Now, we present the main theorem for this section. Similar conclusion can be found
in [5, Lemma 11].

Theorem 6.5. Let M be a separable type 111 factor, A a separable unital C*-subalgebra
of M(J), and P € J a projection. For any completely positive map ¥: A — B with
Y| ang = 0, there is a sequence {Vi}ren in M(J) such that

(1) PVj =0 for every k € N.

(2) limpool|0(A) = VFAVL|| =0 for every A € A.

(3) Y(A) = VAV, € T for every k € N and A € A.
In particular, Vi, can be selected as a partial isometry such that V;*Vi, = (1) when (1)
1S a projection.

Proof. Let {Qn}nen be a sequence of finite projections in K¢ with \/, .y @Qn = I, and
{A;}jen a norm-dense sequence in A%* with Ay = I.

Fix k € N. According to [3, Theorem 2|, there exists a sequence {E), nen of finite
rank operators in Kp such that

(1) S, E2=1and |[E,Qn| <2 " for 0<m < n—1.

(2) 9(Ag) = 32, Bntb(Aj) Bl < 2771 for 0 < j < k.

(3) w(A) =", Enp(A)E, € Kp for every A € A.
Let P, denote the finite rank projection R(F,) in Kz. We define a completely positive
map

UV A= J, A P(A)PR,.

By Lemma 6.4, we can choose a sequence {U), }nen in J inductively such that

(1) PU, =0forn >0, and [|QnUy|| <27 " for 0 < m <n—1.

(2) ||U: AU, || <27 k2 for 0 < j<n+kand 0<m <n— 1.

(3) lvn(A4)) = UrA;U,|| <27 F 3 for 0< j <n+k.
Then ||U}s,A;U,|| < 272maxd{mnt=k=4 when 0 < j < max{m,n} +k and m # n. Let
V=3, UyE,. Then

ZEnw(Aj)En - V*Ajv = ZEn (w(A]) - U;AjUn)En - Z EmU:;LAjUnEn
n n m¥#n
for every j > 0, and PV = 0. The above sums are norm-convergent and each summand
lies in 7. It follows that ) E,(A;)E, — V*A;V € J for j > 0. We also have the

estimation

H > Enp(4)E, — V*AjVH <2751 for 0 < j < k.

Therefore, ¥(A;) — V*A;V € J for j >0, and |1(A;) — V*A; V|| <27 for 0 < j < k.
In particular, V*V is a bounded operator if we consider Ag = I. We can conclude that
V belongs to M. Furthermore, since ||E,Q.n,| < 27" and ||QnUy,|| < 27" for n > m,
we have

for every m > 0. It follows that V € M(J). Now we set V;, = V. O

6.3. Voiculescu’s Theorem in M(J). We now prove Voiculescu’s theorem for M (7 ),
whose proof is similar to the proof of Theorem 4.2.

Theorem 6.6. Let M be a separable type 111 factor, and A a separable unital C*-
subalgebra of M(T). If o1 A — B is a unital *-homomorphism with ¢|asng = 0, then
there is a sequence {Vi}ren of isometries in M(J) @ Ma(C) such that

1) ViV =TI I, Vi,V =1®0 for every k € N.

(2) limpool[(A® @(A)) = VE(A®0) V|| =0 for every A € A.

B) (Adp(A) =V (A®0)V, € T @ My(C) for every k € N and A € A.
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Proof. Let {Emntmnen be a system of matrix units in B such that ) FE,, = I and
FEyy ~ I'in B. Let T be an isometry in B with TT™* = Eyy, and let S denote the isometry
> n Enti1n € B. We define

i A= B, A~ EnTo(A)T*Eop.

By Theorem 6.5, there is a sequence {Uy }ren of isometries in M(J) such that
klim |Uxp(A) — AUg|| = 0 for every A € A,
—00

and Upy(A) — AUy, € J for every k € Nand A € A. Let P, = UpUf € M(J). There is
a partial isometry Y3 € J such that
YV, = Eoo + Fui, YY) = (Eoo + Ey) — TPHT™.

Let Wy, = Yy, + I — (Ego + E11) be an isometry in M(J) with WW; = I —TP}IT*, and
F. = PkLT* + U, W} a unitary operator in M(J). The rest of the proof is the same as
Theorem 4.2. ]

6.4. Applications in M(J). Let T € M(J). We say that T is reducible in M(J)
if there is a projection P € M(J) such that PT' = TP and P # 0,I. Similar to
Theorem 5.1, Theorem 6.6 implies the following denseness result.

Theorem 6.7. Let M be a separable type 111 factor. Then the set of all reducible
operators is norm-dense in M(J).

If o a separable unital subalgebra of M(J)/J, then the essential lattice Lat(<)
of @ is the set of all projections p € M(J)/J such that prap = 0 for every a € <.
Similar to Lemma 5.2, Theorem 6.6 implies the following distance formula.

Lemma 6.8. Let M be a separable type 111 factor, and <7 a separable unital subalgebra
of M(TJ)/J. Then for anyt € M(J)/J, there is a projection q in Lat.(</) such that

gt tq| = d(t, o).

Note that every separable norm-closed unital subalgebra of M(J)/J is reflexive
by Lemma 6.8. In particular, Voiculescu’s relative bicommutant theorem holds.

Theorem 6.9. Let M be a separable type 111 factor. Then every separable unital C*-
subalgebra of M(J)/J equals its relative bicommutant.

7. NUCLEAR LENGTH

7.1. Nuclear Length. Let M be a separable properly infinite factor, and B a C*-
subalgebra of M. Inspired by quasicentral approximate units, we introduce the nuclear

length of B in M.
Definition 7.1. We set Lyy(B, M) =0 if B is nuclear. Inductively, we set
LnuC(B7M) =1m,

if Lyue(B,M) # k for 0 < k <m —1, and for any finite subset F of B and any £ > 0,
there exists a sequence {Ey }nen of positive operators in M and a sequence {By, }nen of
C*-subalgebras of M such that

(1) 3, E2 =1, and Lyyc(Bn, M) <m —1 for every n € N.

(2) E,BE, C B, for every n € N.

(3) |B—=>_,, EnBE,|| < ¢ for every B € F.

It is evident from the above definition that Ly, (U*BU, M) = Ly (B, M) for every
unitary operator U in M. Consequently, the nuclear length is unitarily invariant.

Let Pg = \/geg R(B), where R(B) is the range projection of B. The multiplier
algebra of B is then defined as

M(B) = {T € PsMPs: TB C B,BT C B}.
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Note that B is an ideal of M(B) and Pz is the identity of M(B).

Lemma 7.2. If Ly (B,M) < 00, then Lyyc(M(B), M) <1+ Lyu(B,M).

Proof. Let F be a finite subset of M(B), and € > 0. According to [3, Theorem 2], there
is a sequence {E,}°, in B such that > o0 | E2 = Pg and

|5-

< ¢ for every B € F.

We set Fyg =1 — Py, and B,, = B for every n € N. O

Let B be a type I subfactor of M, and Kp the ideal generated by finite rank
projections in B. It is well-known that s is nuclear while B is not. Since B is the
multiplier algebra of Kp, we have Ly,.(B, M) =1 by Lemma 7.2.

Example 7.3. If B is a von Neumann algebra of type 1, then Lyy.(B, M) <1

Proof. There is a sequence {A,, }nen of abelian von Neumann algebras such that

= (Ao ® B(I? EBHA@M (C).

Let
= D
Bo= (A K1) D~ Ay M,(C).
n=1
Since By is nuclear and B = M(By), we get Lpy.(B, M) < 1 by Lemma 7.2. O

The following theorem is a generalization of Proposition 3.1.

Theorem 7.4. Let M be a separable properly infinite factor, A a unital C*-subalgebra
of M, and B a C*-subalgebra of M with Ly,.(B, M) < oo. Assume that ¥: A — B

is a x-homomorphism such that ¥|anx,, = 0. Then @) € é:%’ and there is a sequence
{Vik}ken of isometries in M such that

klim IVikp(A) — AVi|| = 0 for every A € A.
— 00

Furthermore, if M is semifinite, we can choose {Vj}ren such that
Viep(A) — AVj, € Kaq for every k € N and A € A.

Proof. Induction on Lyy.(B, M) = m is performed. If B is nuclear, then the inclusion
map idg: B — M is nuclear. Therefore the composition ¢ = idg o ¢ is a nuclear map
with respect to Ky, and thus ¢ € 3 C 63

Assume m > 1. Let F be a finite subset of A containing I, and £ > 0. We can find
{En}nen and {B, }rnen such that

(1) 3, E2 =1, and Lyye(Bp, M) < m — 1 for every n € N.

(2) E,BE, C B, for every n € N.

(3) |[v(A) = >, Ent(A)E,|| < € for every A € F.
By induction, the completely positive map v, : A — B, defined by A — E,(A)E, lies
in é\%', and

H¢(A) o an(A)H < ¢ for every A € F.

Then ), 1, (I) converges in the strong-operator topology since I € F. Hence ¢ € 6/5:75
by Lemma 2.6. Now the result follows from Lemma 4.1. O
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7.2. Approximate Nuclear Length. At last, we introduce the approzimate nuclear
length. Let M be a separable properly infinite factor, and B a C*-subalgebra of M.

Definition 7.5. We set ALpy(B, M) = 0 if the inclusion map idg: B — M is nuclear.
Inductively, we set

ALnuC(B7 M) =m,
if ALyue(B, M) # k for 0 <k <m—1, and for any finite subset F of B and any € > 0,
there is a sequence {By, }nen of C*-subalgebras of M, and a sequence {ty: B — By }nen
of completely positive maps such that

(1) ALpuc(Bp, M) < m —1 for every n € N.
(2) |B—=>_,¢n(B)|| <€ for every B € F.

It is clear that ALpye(B, M) < Lyye(B, M) and the approximate nuclear length is
unitarily invariant. Let 7y, mo: B — M be *-homomorphisms. We say that m; and 7o
are approximately unitarily equivalent (denoted by my ~, 7o) if for any finite subset F
of B and any ¢ > 0, there is a unitary operator U in M such that

|71 (A) = U'ma(A)U|| < € for every A € F.
Obviously, m ~, mo implies that ker m; = ker my. The following result shows that the
approximate nuclear length is approximately unitarily invariant.

Lemma 7.6. Let M be a separable properly infinite factor, and B a C*-subalgebra of
M. If m: B— M is a *~homomorphism with m ~, idg, then
ALpye(m(B), M) = ALy (B, M).

Proof. Note that m is faithful since idg is. Let F be a finite subset of B, and ¢ > 0.
There is a unitary operator U in M such that

|lm(B) —U*BU|| < g for every B € F.
If the inclusion map idg: B — M is nuclear, then there is a factorable map ¢: B —
M such that |B —(B)|| < § for every B € F. It follows that
|m(B) — U*(B)U|| < € for every B € F.
Let p: 7(B) = M,m(B) — U*(B)U be a factorable map. Then
|m(B) — (n(B))|| < ¢ for every B € F.

Hence id,(s) is nuclear.
If ALyue(B) =m > 1, then we can find {B,, }nen and {¢,,: B — B, }nea such that

(1) ALpyue(Bp, M) < m —1 for every n € N.
(2) [|B=3,¢n(B)|| < 5 for every B € F.
Let A, = U*B,U, and ¢,,: 7(B) — A, n(B) — U*,(B)U. Then
(1) ALyye(Ap, M) <m —1 for every n € N.
(2) ||7(B) = >, ¢n(m(B))|| < € for every B € F.
Hence ALpye(m(B), M) < ALpue(B, M). Conversely, ALyuc(B,M) < ALpyc(m(B), M)
since 71 ~, idy(p). This completes the proof. ]
Similar to Theorem 7.4, we have the following result.

Theorem 7.7. Let M be a separable properly infinite factor, A a unital C*-subalgebra
of M, and B a C*-subalgebra of M with ALyu(B, M) < co. Assume that p: A — B

is a *-homomorphism such that Y| anx,, = 0. Then ¢ € &F and there is a sequence
{Vik}ken of isometries in M such that

klim IVip(A) — AVl = 0 for every A € A.
— 00

Furthermore, if M is semifinite, we can choose {Vi}ren such that
Vip(A) — AVj, € Kaq for every k € N and A € A.
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