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VOICULESCU’S THEOREM IN PROPERLY INFINITE FACTORS

DON HADWIN, MINGHUI MA, AND JUNHAO SHEN

Abstract. This paper investigates Voiculescu’s theorem on approximate equivalence
in separable properly infinite factors. We establish the norm-denseness of the set of
all reducible operators and prove Voiculescu’s bicommutant theorem. Additionally,
we extend these results to the multiplier algebras within separable type III factors.

1. Introduction

A question regarding the norm-denseness of the set of all reducible operators on a
separable complex Hilbert space was raised by P.R. Halmos [9, Problem 8]. In order to
affirmatively answer this question, D. Voiculescu proved the noncommutative Weyl-von
Neumann theorem in his groundbreaking paper [14]. Another significant consequence
of Voiculescu’s theorem is the relative bicommutant theorem in the Calkin algebra. In
[3], W. Arveson provided an alternative proof of Voiculescu’s theorem using quasicentral
approximate units. Additionally, Arveson derived a distant formula for separable norm-
closed algebras in the Calkin algebra. Numerous applications of Voiculescu’s theorem
can be found in Arveson’s work [3].

Throughout this paper, M represents a separable properly infinite factor, and KM

represents the norm-closed ideal generated by finite projections in M. Our main focus
is on Voiculescu’s theorem in M. In the paper, we will present a proof of the following
theorem.

THEOREM 4.3. Let M be a separable properly infinite factor, A a separable unital
C∗-subalgebra of M, and B a type I∞ unital subfactor of M. If ϕ : A → B is a unital
*-homomorphism with ϕ|A∩KM

= 0, then there exists a sequence {Vk}k∈N of isometries
in M⊗M2(C) such that

lim
k→∞

‖(A⊕ ϕ(A)) − V ∗
k (A⊕ 0)Vk‖ = 0 for every A ∈ A,

and V ∗
k Vk = I ⊕ I, VkV

∗
k = I ⊕ 0 for every k ∈ N. Furthermore, if M is semifinite, we

can choose {Vk}k∈N such that

(A⊕ ϕ(A)) − V ∗
k (A⊕ 0)Vk ∈ KM ⊗M2(C) for every k ∈ N and A ∈ A.

Recall that an operator T is reducible in a separable properly infinite factor M if
there exists a nontrivial projection P in M that commutes with T . A striking appli-
cation of Voiculescu’s noncommutative Weyl-von Neumann theorem shows that the set
of reducible operators is norm-dense in a separable type I∞ factor. In the paper, we
obtain an extension of Voiculescu’s result.

THEOREM 5.1. Let M be a separable properly infinite factor. Then the set of all
reducible operators is norm-dense in M.

In [13], G.K. Pedersen posed the question of whether Voiculescu’s bicommutant
theorem can be extended to general corona algebras. In [6], T. Giordano and P.W. Ng
provided an affirmative answer to Pedersen’s question for the corona algebras of σ-unital
stable simple and purely infinite C∗-algebras. Since M/KM serves as the corona algebra
of KM when M is semifinite, we affirmatively answer this question specifically for the
case of M/KM as an application of Theorem 4.3.
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THEOREM 5.3. Let M be a separable properly infinite semifinite factor. Then every
separable unital C∗-subalgebra of M/KM equals its relative bicommutant.

Let M be a separable properly infinite semifinite factor. In [10], S. Popa and F.
Rădulescu proved that all derivations of a von Neumann subalgebra of M into KM

are inner. When M is of type I∞, J. Phillips and I. Raeburn [11] showed that for a
separable infinite-dimensional C∗-subalgebra A of M, not all derivations from A into
KM are inner. Let H1(A,KM) be the first cohomology group of A into KM. As an
application of Theorem 5.3, we obtained the following result.

THEOREM 5.6. Let M be a separable properly infinite semifinite factor, and A a
separable unital C∗-subalgebra of M. If π(A′′) is infinite-dimensional, then H1(A,KM) 6=
{0}.

This paper is structured as follows. In the next section, we present the fundamental
definitions and results. The main theorems are provided in Section 3, and we establish
the proof of Voiculescu’s theorem in Section 4. Next, we discuss some applications in
Section 5. Section 6 focuses on proving analogous results for the multiplier algebras
within separable type III factors. Finally, in the last section, we introduce the concept
of the nuclear length of C∗-algebras.

Acknowledgment. After our paper was typed up, we learned from our private commu-
nication with P. W. Ng that Giordano, Kaftal and Ng also obtained similar results with
different proofs, including (i) noncommutative Weyl-von Neumann theorem, (ii) Dou-
ble commutant theorem for type II∞ factors, and (iii) Asymptotic double commutant
theorem for type III factors.

2. Preliminaries

2.1. Separable Properly Infinite Factors. Let H be an infinite-dimensional complex
Hilbert space, B(H) the algebra consisting of all bounded operators on H. A selfadjoint
unital subalgebra of B(H) is said to be a von Neumann algebra if it is closed in the
strong-operator topology. A factor is a von Neumann algebra whose center consisting
of scalar multiples of the identity. A von Neumann algebra is considered separable if it
has a separable predual space (see [12, Theorem 7.4.2]).

Factors are classified into finite factors and properly infinite factors determined
by a relative dimension function of projections. Properly infinite factors can be further
classified into properly infinite semifinite factors, namely type I∞, II∞ factors, and purely
infinite factors, namely type III factors. For further details, please refer to [12].

Throughout, let M ⊆ B(H) be a separable properly infinite factor. We denote the
identity of M as IM, or simply I. Two projections P,Q ∈ M are said to be Murray-
von Neumann equivalent, denoted by P ∼ Q, if V ∗V = P and V V ∗ = Q for some
partial isometry V ∈ M. A projection P in M is said to be infinite if it is Murray-von
Neumann equivalent to a proper subprojection in M. Otherwise, P is said to be finite.

Let KM be the norm-closed ideal generated by finite projections in M. Note
that KM = {0} if M is of type III, and KM is strong-operator dense in M if M is
semifinite. Note that, if M is of type I∞, then M is *-isomorphic to B(H0), where H0

is a separable infinite-dimensional complex Hilbert space. In this case, KM is the set of
compact operators in M and M/KM is *-isomorphic the Calkin algebra.

2.2. Factorable Maps with Respect to KM. Let A be a unital C∗-subalgebra con-
tained in M. Typically, a completely positive map ψ : A → M is called factorable if
ψ = η ◦ σ for some completely positive maps σ : A → Mn(C) and η : Mn(C) → M.
Furthermore, ϕ is said to be nuclear if it can be approximated in the pointwise-norm
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topology by factorable maps.

Mn(C)

A M

σ
;;

ψ
//

η

##

Definition 2.1. Let ψ : A → M be a completely positive map with ψ|A∩KM
= 0. If

ψ = η ◦ σ for some completely positive maps σ : A → Mn(C) and η : Mn(C) → M with
σ|A∩KM

= 0, then we say that ψ is factorable with respect to KM.
Let F = F(A,M,KM) denote the set of all factorable maps with respect to KM

from A into M.

By definition, the set F(A,M,KM) is a cone. Specifically, let ψj = ηj ◦ σj , j = 1, 2
for some completely positive maps

σj : A →Mnj
(C), ηj : Mnj

(C) → M,

with σj |A∩KM
= 0. We can define completely positive maps as follows:

σ : A →Mn1+n2
(C), A 7→ σ1(A)⊕ σ2(A),

and

η : Mn1+n2
(C) → M,

(
X11 X12

X21 X22

)
7→ η1(X11) + η2(X22).

Therefore, ψ1 + ψ2 = η ◦ σ ∈ F(A,M,KM).

Definition 2.2. Let F̂ = F̂(A,M,KM) denote the closure of F in the pointwise-norm

topology. In other words, a map ϕ : A → M lies in F̂ if for any finite subset F of A
and any ε > 0, there exists a map ψ ∈ F such that ‖ϕ(A)−ψ(A)‖ < ε for every A ∈ F .

It is clear that every map in F̂ is completely positive and vanishes on A ∩ KM.

Maps in F̂ are said to be nuclear with respect to KM.

Example 2.3. Let ϕ : A → M be a unital *-homomorphism with ϕ|A∩KM
= 0. If the

inclusion idϕ(A) : ϕ(A) → M is a nuclear map, then the composition ϕ = idϕ(A) ◦ ϕ is
a nuclear map with respect to KM. There are two examples.

(1) Let A be a nuclear C∗-algebra. Since ϕ(A) is a nuclear C∗-algebra, the inclusion
map idϕ(A) : ϕ(A) → M is automatically nuclear.

(2) Let M be an injective factor, and A an exact C∗-algebra. Since ϕ(A) is an
exact C∗-algebra, there exists an nuclear embedding π : ϕ(A) → B(H0) for some
complex Hilbert space H0. By the injectivity of M, idϕ(A) ◦ π

−1 : π(ϕ(A)) → M
extends to a completely positive map ψ : B(H0) → M. Therefore, idϕ(A) = ψ ◦π
is nuclear.

Lemma 2.4. Let {ψn}n∈N be a sequence of completely positive maps from A into M.
If the series

∑
n∈N ψn(I) converges in the strong-operator topology, then

∑
n∈N ψn(A)

converges in the strong-operator topology for every A ∈ A.

Proof. Recall that M acts on a complex Hilbert space H. Let x1, x2, . . . , xk be vectors
in H, A ∈ A, and ε > 0. Since

∑
n∈N ψn(I) converges in the strong-operator topology,

‖
∑

n∈N ψn(I)‖ < ∞ by the uniform boundedness principle. Moreover, there exists a
natural number N such that for any integer s > r > N , we have

‖A‖2
∥∥∥
∑

n∈N

ψn(I)
∥∥∥
〈 s∑

n=r

ψn(I)xj , xj

〉
< ε2 for 1 6 j 6 k. (2.1)

According to Stinespring’s dilation theorem, for any completely positive map ψ : A →
M, we have

‖ψ(A)xj‖
2
6 ‖A‖2‖ψ(I)‖〈ψ(I)xj , xj〉. (2.2)
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Since the map
∑s

n=r ψn is completely positive, from (2.1) and (2.2), we obtain that

∥∥∥
s∑

n=r

ψn(A)xj

∥∥∥ < ε for 1 6 j 6 k.

This completes the proof. �

By Lemma 2.4, we are able to define the infinite sum of a sequence of completely
positive maps.

Definition 2.5. Let SF = SF(A,M,KM) denote the set of all maps of the form∑
n∈N ψn, where ψn ∈ F(A,M,KM) for every n ∈ N, and the series

∑
n∈N ψn(I) con-

verges in the strong-operator topology.

Let ŜF = ŜF(A,M,KM) denote the closure of SF in the pointwise-norm topology.

The definition of ŜF is similar to F̂, see Definition 2.2. The following lemma shows

that ŜF is closed under countable addition.

Lemma 2.6. If {ψn}n∈N is a sequence in ŜF such that
∑

n∈N ψn(I) converges in the

strong-operator topology, then
∑

n∈N ψn ∈ ŜF.

Proof. Let F be a finite subset of A containing I, and ε > 0. For each n ∈ N, there is a
sequence {ψn,m}m∈N in F(A,M,KM) such that

∥∥∥ψn(A)−
∑

m

ψn,m(A)
∥∥∥ < 2−n−1ε for every A ∈ F .

It follows that ∥∥∥
∑

n

ψn(A)−
∑

n,m

ψn,m(A)
∥∥∥ < ε for every A ∈ F .

In particular, we have ‖
∑

n ψn(I) −
∑

n,m ψn,m(I)‖ < ε since I ∈ F . Thus the series∑
n,m ψn,m(I) converges in the strong-operator topology since

∑
n ψn(I) converges in

the strong-operator topology. Therefore,
∑

n,m ψn,m ∈ SF and then
∑

n ψn ∈ ŜF. �

The following lemma is derived from [4, Lemma 3.4].

Lemma 2.7. Let M be a separable properly infinite factor, A a unital C∗-subalgebra
of M, and P ∈ KM a finite projection. Then every map ψ ∈ F(A,M,KM) can be
approximated in the pointwise-norm topology by maps of the form

A 7→ V ∗AV,

where V ∈ M and PV = 0. In particular, V can be selected as a partial isometry such
that V ∗V = ψ(I) when ψ(I) is a projection.

2.3. Cutting down Projections. In order to facilitate our discussion in subsequent
sections, it is necessary to present a set of technical lemmas to cut down infinite projec-
tions.

Lemma 2.8. Let P,Q be infinite projections in M. Let δ1, . . . , δn be positive numbers,
and ρ1, ρ2, . . . , ρn normal states on M such that ρj(Q) > δj > 0 for 1 6 j 6 n. Then
for any A ∈ M, there exist infinite projections P ′ 6 P and Q′ 6 Q in M such that
P ′AQ′ = 0 and ρj(Q

′) > δj for 1 6 j 6 n.

Proof. Consider the polar decomposition PAQ = V H, in which V is a partial isometry
and H is a positive operator in M. Let P0 = V V ∗ 6 P and Q0 = V ∗V 6 Q. If P0 is
finite, then P − P0 is infinite. In this case, we set P ′ = P − P0 and Q′ = Q.

Now assume Q0(∼ P0) is infinite. LetA be a maximal abelian selfadjoint subalgebra
of M that includes Q0 and H. Then there exists a sequence {Q′

m}m∈N of projections
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in A such that Q0 =
∑

mQ
′
m and Q′

m ∼ Q0 for every m. Since ρj is normal, we have
ρj(Q

′
m) < ρj(Q)− δj for 1 6 j 6 n when m is sufficiently large. We set

P ′ = V Q′
mV

∗
6 P, Q′ = Q−Q′

m 6 Q.

Since H = HQ = QH and HQ′
m = Q′

mH, we obtain

P ′AQ′ = V Q′
mV

∗V H(Q−Q′
m) = V Q′

mQ0(Q−Q′
m)H = 0.

It is evident that ρj(Q
′) > δj for 1 6 j 6 n. Furthermore, P ′ and Q′ are infinite

projections because P ′ ∼ Q′
m ∼ Q0 and Q′ > Q′

m+1 ∼ Q0. �

Lemma 2.9. Let P,Q be infinite projections in M. Let δ1, . . . , δn be positive numbers,
and ρ1, ρ2, . . . , ρn normal states on M such that ρj(Q) > δj > 0 for 1 6 j 6 n. Then
for any finite subset F of M, there exist infinite projections P ′ 6 P and Q′ 6 Q in M
such that P ′AQ′ = 0 for any A ∈ F and ρj(Q

′) > δj for 1 6 j 6 n.

Proof. Let F = {A1, A2, . . . , Am}. By Lemma 2.8, there exist infinite projections P1 6

P and Q1 6 Q such that P1A1Q1 = 0 and ρj(Q1) > δj for 1 6 j 6 n. Inductively, we
can find infinite projections

Pm 6 Pm−1 6 · · · 6 P1 6 P, Qm 6 Qm−1 6 · · · 6 Q1 6 Q

such that PkAkQk = 0 and ρj(Qk) > δj for 1 6 j 6 n and 1 6 k 6 n. We set P ′ = Pm
and Q′ = Qm. �

Lemma 2.10. Let {Pn}n∈N be a sequence of infinite projections in M, and {Fn}n∈N
a sequence of finite subsets of M. Then there exists a sequence {Qn}n∈N of infinite
projections in M such that Qn 6 Pn for n > 0, and QnAQ0 = 0 for any A in Fn and
any n > 1.

Proof. Case 1. Suppose M is semifinite with a normal faithful tracial weight τ . We also
assume that τ(E) = 1 for every minimal projection E if M is of type I∞. Let E1 6 P0 be
a projection with τ(E1) = 2. By Lemma 2.9, there exist infinite projections P ′

0 6 P0 and
Q1 6 P1 such that Q1F1P

′
0 = {0} and τ(P ′

0E1) > 1. Let E2 6 P ′
0 be a projection with

τ(E2) = 3. Applying Lemma 2.9 once again, there exist infinite projections P ′′
0 6 P ′

0

and Q2 6 P2 such that Q2F2P
′′
0 = {0} and τ(P ′′

0 E1) > 1, τ(P ′′
0 E2) > 2. Continuing

this process, let En 6 P
(n−1)
0 be a projection with τ(En) = n + 1. There are infinite

projections P
(n)
0 6 P

(n−1)
0 and Qn 6 Pn such that QnFnP

(n)
0 = {0} and τ(P

(n)
0 Ek) > k

for 1 6 k 6 n. Now we set Q0 =
∧
P

(n)
0 . Since τ(Q0) > τ(Q0Ek) > k for every k > 1,

we conclude that Q0 is infinite.
Case 2. Suppose M is of type III with a normal faithful state ρ such that ρ(P0) >

δ > 0. By Lemma 2.9, there exist infinite projections P ′
0 6 P0 and Q1 6 P1 such that

Q1F1P
′
0 = {0} and ρ(P ′

0) > δ. Similarly, there exist infinite projections P ′′
0 6 P ′

0 and
Q2 6 P2 such that Q2F2P

′′
0 = {0} and ρ(P ′′

0 ) > δ. Inductively, we can find infinite

projections P
(n)
0 6 P

(n−1)
0 and Qn 6 Pn such that QnFnP

(n)
0 = {0} and ρ(P

(n)
0 ) > δ.

Let Q0 =
∧
P

(n)
0 . Since ρ(Q0) > δ > 0, we conclude that Q0 6= 0. Therefore, Q0 is an

infinite projection. �

Lemma 2.11. Let {Pn}n∈N be a sequence of infinite projections in M, and {Fm,n}m,n∈N
a family of finite subsets of M. Then there exists a sequence {Qn}n∈N of infinite pro-
jections in M such that Qn 6 Pn for n > 0, and QmAQn = {0} for all A ∈ Fm,n when
m 6= n.

Proof. We can assume that F∗
n,m = Fm,n by replacing Fm,n with Fm,n ∪ F∗

n,m. By

Lemma 2.10, there exist infinite projectionsQ0 6 P0 and P
′
m 6 Pm such that P ′

mFm,0Q0 =
{0} for m > 1. There exist infinite projections Q1 6 P ′

1 and P ′′
m 6 P ′

m such that

P ′′
mFm,1Q1 = {0} for m > 2. Inductively, there exist infinite projections Qn 6 P

(n)
n

and P
(n+1)
m 6 P

(n)
m such that P

(n+1)
m Fm,nQn = {0} for m > n + 1. It is obvious
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that QmFm,nQn = {0} when m > n. Furthermore, since F∗
n,m = Fm,n, we have

QmFm,nQn = {0} when m 6= n. �

3. Main Theorems

The following result relies on the concept of quasicentral approximate units (see
[3]), which states that a significant number of completely positive maps from A into M

lie in the set ŜF = ŜF(A,M,KM) as defined in Definition 2.5.

Proposition 3.1. Let M be a separable properly infinite factor, A a unital C∗-subalgebra

of M, and B a type I∞ unital subfactor of M. Then ψ ∈ ŜF for every completely posi-
tive map ψ : A → B with ψ|A∩KM

= 0.

Proof. Let F be a finite subset of A containing I, and ε > 0. According to [3, Theorem
2], there exists a sequence {En}n∈N of finite rank operators in B such that

∑
n E

2
n = I

and ∥∥∥ψ(A) −
∑

n

Enψ(A)En

∥∥∥ < ε for every A ∈ F .

For n ∈ N, let Pn denote the finite rank projection R(En) in B. Since PnBPn is a matrix
algebra, we can construct a map ψ ∈ F(A,M,KM) by

ψn : A → PnBPn, A 7→ Enψ(A)En.

It is clear that ‖ψ(I) −
∑

n ψn(I)‖ < ε since I ∈ F . Consequently, the series
∑

n ψn(I)
converges in the strong-operator topology. Therefore,

∑
n ψn ∈ SF and it follows that

ψ ∈ ŜF. �

In [7], U. Haagerup proved that every completely positive map from a finite-
dimensional unital subfactor of M into M can be expressed in the form B 7→ T ∗BT .
Utilizing Haagerup’s result, we are now able to demonstrate our main theorem.

Theorem 3.2. Let M be a separable properly infinite factor, A a unital C∗-subalgebra

of M, and P ∈ KM a finite projection. Then any ψ ∈ ŜF can be approximated in the
pointwise-norm topology by maps of the form

A 7→ V ∗AV,

where V ∈ M and PV = 0. In particular, V can be selected as a partial isometry such
that V ∗V = ψ(I) when ψ(I) is a projection.

Proof. Let F be a finite subset of A containing I, and ε > 0. Then there exists a
sequence {ψn}n∈N in F(A,M,KM) such that∥∥∥ψ(A)−

∑

n

ψn(A)
∥∥∥ < ε

2
for every A ∈ F .

Suppose ψn = ηn ◦σn for some completely positive maps σn : A → Bn and ηn : Bn → M
with σn|A∩KM

= 0, where Bn is a type Ir(n) unital subfactor of M with a system of

matrix units {E
(n)
st }16s,t6r(n).

According to [7, Proposition 2.1], there exists an operator Tn ∈ M such that
ηn(B) = T ∗

nBTn for every B ∈ Bn. By Lemma 2.7, there is an operator Vn ∈ M such
that

r(n)2‖Tn‖
2‖σn(A)− V ∗

nAVn‖ < 2−n−2ε for every A ∈ F , (3.1)

and PVn = 0. For m,n > 0, we define a finite subset of M by

Fm,n = {E
(m)
1s V ∗

mAVnE
(n)
t1 : 1 6 s 6 r(m), 1 6 t 6 r(n), A ∈ F}.

Based on Lemma 2.11, we can find a sequence {Qn}n∈N of infinite projections in M

such that Qn 6 E
(n)
11 for n > 0, and QmFm,nQn = {0} when m 6= n. Since Qn and E

(n)
11

are infinite projections, there is a partial isometry Wn in M such that

W ∗
nWn = E

(n)
11 , WnW

∗
n = Qn.
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Since E
(n)
1s σn(A)E

(n)
t1 ∈ CE

(n)
11 and Qn 6 E

(n)
11 , it is straightforward to deduce

E
(n)
s1 W

∗
nQnE

(n)
1s σn(A)E

(n)
t1 QnWnE

(n)
1t = E

(n)
s1 E

(n)
1s σn(A)E

(n)
t1 E

(n)
1t = E(n)

ss σn(A)E
(n)
tt .

Consequently, σn(A) =
∑

s,tE
(n)
s1 W

∗
nQnE

(n)
1s σn(A)E

(n)
t1 QnWnE

(n)
1t and then

∑

n

ψn(A) =
∑

n,s,t

T ∗
nE

(n)
s1 W

∗
nQnE

(n)
1s σn(A)E

(n)
t1 QnWnE

(n)
1t Tn. (3.2)

Since E
(m)
1s V ∗

mAVnE
(n)
t1 ∈ Fm,n for every A ∈ F , we have QmE

(m)
1s V ∗

mAVnE
(n)
t1 Qn = 0

when m 6= n. Specifically, the operators {
∑

t VnE
(n)
t1 QnWnE

(n)
1t Tn}n∈N have orthogo-

nal ranges when considering A = I. Based on this, we can define an operator V =∑
n,t VnE

(n)
t1 QnWnE

(n)
1t Tn, and then

V ∗AV =
∑

n,s,t

T ∗
nE

(n)
s1 W

∗
nQnE

(n)
1s V

∗
nAVnE

(n)
t1 QnWnE

(n)
1t Tn for every A ∈ F , (3.3)

and PV = 0. From (3.1), (3.2) and (3.3), it follows that
∥∥∥
∑

n

ψn(A)− V ∗AV
∥∥∥ < ε

2
for every A ∈ F .

Consequently, ‖ψ(A) − V ∗AV ‖ < ε for every A ∈ F . In particular, V ∗V is a bounded
operator if we take A = I. We can conclude that V belongs to M. Furthermore, due to
‖ψ(I) − V ∗V ‖ < ε, we can choose V as a partial isometry such that V ∗V = ψ(I) when
ψ(I) is a projection. �

We now establish an enhanced version of our main theorem for separable C∗-
subalgebras in semifinite factors.

Theorem 3.3. Let M be a separable properly infinite semifinite factor, A a separable

unital C∗-subalgebra of M, and P ∈ KM a finite projection. Then for any ψ ∈ ŜF,
there is a sequence {Vk}k∈N in M such that

(1) PVk = 0 for every k ∈ N.
(2) limk→∞‖ψ(A) − V ∗

k AVk‖ = 0 for every A ∈ A.
(3) ψ(A) − V ∗

k AVk ∈ KM for every k ∈ N and A ∈ A.

In particular, Vk can be selected as a partial isometry such that V ∗
k Vk = ψ(I) when ψ(I)

is a projection.

Proof. Let {Qn}n∈N be a sequence of finite projections in KM with
∨
n∈NQn = I, and

A the separable unital C∗-subalgebra of M generated by ψ(A) ∪ {Qn}n∈N. It is clear
that

I = {B ∈ A : R(B) ∈ KM}

is a non-degenerate ideal of A . Additionally, let {Aj}j∈N be a norm-dense sequence in
As.a. with A0 = I, where As.a. is defined as {A ∈ A : A∗ = A}.

Fix k ∈ N. According to [3, Theorem 2], there exists a sequence {En}n∈N of positive
operators in I such that

∑
nE

2
n = I, ψ(A)−

∑
nEnψ(A)En ∈ KM for every A ∈ A ⊆ A ,

and ∥∥∥ψ(Aj)−
∑

n

Enψ(Aj)En

∥∥∥ < 2−k−1 for 0 6 j 6 k.

We will define Un inductively. Let P0 = P and

Pn =
∨

{P,R(AjUmEm) : 0 6 j 6 n+ k, 0 6 m 6 n− 1} for n > 1.

Since P and R(Em) are finite, Pn is also finite. By Theorem 3.2, there exists an operator
Un in M such that

‖ψ(Aj)− U∗
nAjUn‖ < 2−n−k−2 for 0 6 j 6 n+ k, (3.4)
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and PnUn = 0. For 0 6 j 6 n+ k and 0 6 m 6 n− 1, we have PnAjUmEm = AjUmEm
and then EmU

∗
mAjUnEn = EmU

∗
mAjPnUnEn = 0. It follows that

EmU
∗
mAjUnEn = 0 when 0 6 j 6 max{m,n}+ k,m 6= n. (3.5)

Specifically, the operators {UnEn}n∈N have orthogonal ranges when considering A0 = I.
Based on this, we can define an operator V =

∑
n UnEn, and then

∑

n

Enψ(Aj)En − V ∗AjV =
∑

n

En
(
ψ(Aj)− U∗

nAjUn
)
En −

∑

m6=n

EmU
∗
mAjUnEn

for every j > 0, and PV = 0. The first sum is norm-convergent by (3.4) and the second
sum is a finite sum by (3.5). It follows that

∑
nEnψ(Aj)En − V ∗AjV ∈ KM for j > 0

since each summand lies in KM. We also have the estimation
∥∥∥
∑

n

Enψ(Aj)En − V ∗AjV
∥∥∥ < 2−k−1 for 0 6 j 6 k.

Therefore, ψ(Aj)−V
∗AjV ∈ KM for j > 0, and ‖ψ(Aj)−V

∗AjV ‖ < 2−k for 0 6 j 6 k.
In particular, V ∗V is a bounded operator if we consider A0 = I. We can conclude that
V belongs to M. Now we set Vk = V . �

4. Voiculescu’s Theorem

In this section, we focus on unital *-homomorphisms in ŜF = ŜF(A,M,KM) as
defined in Definition 2.5.

Lemma 4.1. Let M be a separable properly infinite factor, and A a separable unital

C∗-subalgebra of M. If ϕ ∈ ŜF is a unital *-homomorphism, then there is a sequence
{Vk}k∈N of isometries in M such that

lim
k→∞

‖Vkϕ(A) −AVk‖ = 0 for every A ∈ A.

Furthermore, if M is semifinite, we can choose {Vk}k∈N such that

Vkϕ(A)−AVk ∈ KM for every k ∈ N and A ∈ A.

Proof. By Theorem 3.2, there exists a sequence {Vk}k∈N of isometries in M such that

lim
k→∞

‖ϕ(A) − V ∗
k AVk‖ = 0 for every A ∈ A.

Since ϕ is a unital *-homomorphism, we have
(
Vkϕ(A) −AVk

)∗(
Vkϕ(A) −AVk

)

= ϕ(A∗)
(
ϕ(A) − V ∗

k AVk
)
+

(
ϕ(A∗)− V ∗

k A
∗Vk

)
ϕ(A) −

(
ϕ(A∗A)− VkA

∗AVk
)
.

(4.1)

It follows that limk→∞‖Vkϕ(A) − AVk‖ = 0 for every A ∈ A. Furthermore, if M is
semifinite, then we can assume that ϕ(A)−V ∗

k AVk ∈ KM by Theorem 3.3. As a result,
we can deduce Vkϕ(A) −AVk ∈ KM from (4.1). �

The following theorem is known as Voiculescu’s theorem [14]. We will employ the
notation P⊥ = I − P for a projection P ∈ M.

Theorem 4.2. Let M be a separable properly infinite factor, and A a separable unital

C∗-subalgebra of M. If ϕ ∈ ŜF is a unital *-homomorphism, then there is a sequence
{Vk}k∈N of isometries in M⊗M2(C) such that

lim
k→∞

‖(A⊕ ϕ(A)) − V ∗
k (A⊕ 0)Vk‖ = 0 for every A ∈ A,

and V ∗
k Vk = I ⊕ I, VkV

∗
k = I ⊕ 0 for every k ∈ N. Furthermore, if M is semifinite, we

can choose {Vk}k∈N such that

(A⊕ ϕ(A)) − V ∗
k (A⊕ 0)Vk ∈ KM ⊗M2(C) for every k ∈ N and A ∈ A.
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Proof. Let {Emn}m,n∈N be a system of matrix units in M such that
∑

nEnn = I and
E00 ∼ I. Let T be an isometry in M with TT ∗ = E00, and let S denote the isometry∑

nEn+1,n ∈ M. We define a map

ψ : A → M, A 7→
∑

n

En0Tϕ(A)T
∗E0n.

Clearly, ψ is a unital *-homomorphism and lies in ŜF by Lemma 2.6. By Lemma 4.1,
we can find a sequence {Uk}k∈N of isometries in M such that

lim
k→∞

‖Ukψ(A) −AUk‖ = 0 for every A ∈ A. (4.2)

Furthermore, if M is semifinite, then we can assume that

Ukϕ(A)−AUk ∈ KM for every k ∈ N and A ∈ A.

Let Pk = UkU
∗
k be a projection in M, let Wk be an isometry in M with WkW

∗
k =

I − TP⊥
k T

∗, and let Fk = P⊥
k T

∗ + UkW
∗
k be a unitary operator in M. Then

F ∗
kAFk = TP⊥

k AP
⊥
k T

∗ + TP⊥
k AUkW

∗
k +WkU

∗
kAP

⊥
k T

∗ +WkU
∗
kAUkW

∗
k .

Since P⊥
k AUk =

(
AUk − Ukψ(A)

)
+ Uk

(
ψ(A)U∗

k − U∗
kA

)
Uk, we deduce from (4.2) that

lim
k→∞

‖P⊥
k AUk‖ = 0 for every A ∈ A.

It follows that

lim
k→∞

‖F ∗
kAFk − (TP⊥

k AP
⊥
k T

∗ +Wkψ(A)W
∗
k )‖ = 0 for every A ∈ A. (4.3)

Let Xk =

(
TP⊥

k T
∗ +WkSW

∗
k WkT

0 0

)
be an isometry in M⊗M2(C). One computes

that XkX
∗
k = I ⊕ 0. Since S∗ψ(A)S = ψ(A) and T ∗ψ(A)T = ϕ(A), we have

X∗
k

(
TP⊥

k AP
⊥
k T

∗ +Wkψ(A)W
∗
k 0

0 0

)
Xk =

(
TP⊥

k AP
⊥
k T

∗ +Wkψ(A)W
∗
k 0

0 ϕ(A)

)
.

Then (4.3) implies that

lim
n→∞

‖X∗
k(F

∗
kAFk ⊕ 0)Xk − (F ∗

kAFk ⊕ ϕ(A))‖ = 0 for every A ∈ A.

Now we set Vk = (Fk ⊕ I)Xk(F
∗
k ⊕ I). �

According to Proposition 3.1, Theorem 4.3 is a special case of Theorem 4.2.

Theorem 4.3. Let M be a separable properly infinite factor, A a separable unital C∗-
subalgebra of M, and B a type I∞ unital subfactor of M. If ϕ : A → B is a unital
*-homomorphism with ϕ|A∩KM

= 0, then there exists a sequence {Vk}k∈N of isometries
in M⊗M2(C) such that

lim
k→∞

‖(A⊕ ϕ(A)) − V ∗
k (A⊕ 0)Vk‖ = 0 for every A ∈ A,

and V ∗
k Vk = I ⊕ I, VkV

∗
k = I ⊕ 0 for every k ∈ N. Furthermore, if M is semifinite, we

can choose {Vk}k∈N such that

(A⊕ ϕ(A)) − V ∗
k (A⊕ 0)Vk ∈ KM ⊗M2(C) for every k ∈ N and A ∈ A.

5. Applications

We provide two applications of Voiculescu’s theorem in this section.
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5.1. Reducible Operators. Let M be a separable properly infinite factor, and T an
operator in M. We say that T is reducible in M if there is a projection P ∈ M such
that PT = TP and P 6= 0, I.

Theorem 5.1. Let M be a separable properly infinite factor. Then the set of all re-
ducible operators is norm-dense in M.

Proof. Let B be a type I∞ unital subfactor of M, and T ∈ M. Let A be the separable
unital C∗-algebra generated by T , and I = A∩ KM.

Let ψ : A/I → B be a unital *-homomorphism, π : A → A/I the quotient map, and
ϕ = ψ ◦ π : A → B. By Proposition 3.1 and Theorem 4.2, there is a sequence {Vk}k∈N
of isometries in M⊗M2(C) such that

lim
k→∞

‖(A ⊕ ϕ(A)) − V ∗
k (A⊕ 0)Vk‖ = 0 for every A ∈ A,

and VkV
∗
k = I ⊕ 0 for every k ∈ N. We can write

Vk(T ⊕ ϕ(T ))V ∗
k = Tk ⊕ 0, Vk(I ⊕ 0)V ∗

k = Pk ⊕ 0.

It is clear that PkTk = TkPk and Pk 6= 0, I. Therefore, Tk is reducible in M. Moreover,
we have limk→∞‖Tk − T‖ = 0. This completes the proof. �

5.2. Voiculescu’s Bicommutant Theorem. Let M be a separable properly infinite
semifinite factor, and A a separable unital subalgebra of M/KM. As defined in [3, Page
334], the essential lattice Late(A ) of A is the set of all projections p ∈ M/KM such
that p⊥ap = 0 for every a ∈ A . If t ∈ M/KM, then ‖p⊥tp‖ = ‖p⊥(t − a)p‖ 6 ‖t − a‖
for every a ∈ A . It follows that

sup
p
‖p⊥tp‖ 6 d(t,A ).

The subsequent result is commonly referred to as Arveson’s distance formula.

Lemma 5.2. Let M be a separable properly infinite semifinite factor, and A a separable
unital subalgebra of M/KM. Then for any t ∈ M/KM, there is a projection q in
Late(A ) such that

‖q⊥tq‖ = d(t,A ).

Proof. Let π : M → M/KM be the quotient map, At the separable unital C∗-algebra
generated by t and A , and B a separable type I∞ unital subfactor of M. By GNS con-
struction, there is a unital *-homomorphism σ : At → B and a σ(A )-invariant projection
P ∈ B such that

‖P⊥σ(t)P‖e > d(t,A ),

where ‖A‖e = ‖π(A)‖ for A ∈ M.
Let At be a separable unital C∗-subalgebra of M such that π(At) = At, and let

ϕ = σ ◦ π : At → B be a unital *-homomorphism with ϕ|At∩KM
= 0. By Theorem 4.2,

there is an isometry V ∈ M×M2(C) such that

(A⊕ ϕ(A))− V ∗(A⊕ 0)V ∈ KM ⊗M2(C) for every A ∈ At,

and V V ∗ = I ⊕ 0.
Let A = {A ∈ At : π(A) ∈ A }, and Q ⊕ 0 = V (0 ⊕ P )V ∗. Since π(A) = A and

ϕ(A) = σ(A ), P is ϕ(A)-invariant. We conclude that Q⊥AQ ∈ KM for every A ∈ A.
This implies that q = π(Q) belongs to Late(A ). Choose T ∈ At such that π(T ) = t.
Then

(Q⊥TQ⊕ 0)− V (0⊕ P⊥ϕ(T )P )V ∗ ∈ KM ⊗M2(C).

It follows that ‖q⊥tq‖ = ‖Q⊥TQ‖e = ‖P⊥ϕ(T )P‖e = ‖P⊥σ(t)P‖e > d(t,A ). �

Lemma 5.2 implies that every separable norm-closed unital subalgebra of M/KM

is reflexive. In particular, Voiculescu’s relative bicommutant theorem holds.
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Theorem 5.3. Let M be a separable properly infinite semifinite factor. Then every
separable unital C∗-subalgebra of M/KM equals its relative bicommutant.

It is worth noting that KM = {0} if M is a separable type III factor. From this
fact and Theorem 4.2, we can obtain the following approximate result.

Lemma 5.4. Let M be a separable type III factor, and A a separable unital subalgebra
of M. Then for any T ∈ M, there is a sequence {Qk}k∈N of projections in M such that

lim
k→∞

‖Q⊥
k AQk‖ = 0 for every A ∈ A ,

and

lim
k→∞

‖Q⊥
k TQk‖ = d(T,A ).

In [8], D. Hadwin proved that every separable unital C∗-subalgebra of B(H) equals
its approximate bicommutant, where H is a separable infinite-dimensional complex
Hilbert space. If M is a separable type III factor, then Lemma 5.4 implies that ev-
ery separable unital C∗-subalgebra of M is equal to its approximate bicommutant.

5.3. The First Cohomology Group. Let M be a separable properly infinite semifi-
nite factor, and A a unital C∗-subalgebra of M.

Definition 5.5. A linear map δ : A → KM is said to be a derivation if it satisfies
the Leibniz rule δ(AB) = δ(A)B + Aδ(B). The set of all derivations of A into KM is
denoted by Der(A,KM).

For any K ∈ KM, the inner derivation δK : A → KM is given by δK(A) = KA −
AK. The set of all inner derivations of A into KM is denoted by Inn(A,KM).

The quotient space H1(A,KM) = Der(A,KM)/Inn(A,KM) is called the first coho-
mology group of A with coefficients in KM.

We introduce some notation. If A is a unital C∗-subalgebra of B(H), then the
commutant A′ is the set of all bounded operators on H commuting with all operators
in A. The von Neumann bicommutant theorem asserts that the bicommutant A′′ is the
von Neumann algebra generated by A.

If A is a unital C∗-subalgebra of M, then the relative commutant of A in M is
denoted by

Ac = {T ∈ M : TA = AT for all A ∈ A}.

Since Ac = A′ ∩ M ⊆ A′, we have Acc = (Ac)′ ∩ M ⊇ (A′)′ ∩ M = A′′ ⊇ A. Hence
the relative bicommutant Acc contains A. Similarly, the relative commutant of a unital
C∗-subalgebra A of M/KM is denoted by

A
c = {t ∈ M/KM : ta = at for all a ∈ A }.

Let π : M → M/KM be the quotient map. It is clear that π(A)c ⊇ π(Ac).
The following theorem is similar to [11, Theorem 2.2], which states that not all

derivations of A with coefficients in KM are inner under certain conditions.

Theorem 5.6. Let M be a separable properly infinite semifinite factor, and A a separa-
ble unital C∗-subalgebra of M. If π(A′′) is infinite-dimensional, then H1(A,KM) 6= {0}.

Proof. Let π : M → M/KM be the quotient map. If π(T ) ∈ π(A)c, then TA−AT ∈ KM

for every A ∈ A, which gives a derivation δT ∈ Der(A,KM). If π(T ) = π(S), then
T − S ∈ KM. It follows that δT − δS = δT−S ∈ Inn(A,KM). Thus, we have a well-
defined homomorphism

ϕ : π(A)c → H1(A,KM), π(T ) 7→ δT + Inn(A,KM).

If π(T ) ∈ kerϕ, then there is an operator K ∈ KM such that δT = δK . It follows that
T −K ∈ Ac, and then π(T ) ∈ π(Ac). Therefore, the induced map

ϕ̃ : π(A)c/π(Ac) → H1(A,KM)
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is injective. It suffices to show that π(A)c 6= π(Ac).
Suppose on the contrary, that π(A)c = π(Ac). Since π(A) is a separable unital

C∗-subalgebra of M/KM, we have π(A) = π(A)cc by Theorem 5.3. It follows that

π(Acc) ⊇ π(A′′) ⊇ π(A) = π(A)cc = π(Ac)c ⊇ π(Acc).

Therefore, π(Acc) = π(A′′) = π(A), which is an infinite-dimensional separable C∗-
algebra. This contradicts the next result, Proposition 5.8. �

Example 5.7. We give two examples.

(1) Let M be a separable I∞ factor, and A = CI +KM. Then H1(A,KM) 6= {0}.
(2) Let M be the II∞ factor N ⊗ B(L2(T, µ)), where N is a separable II1-factor,

and µ is the Lebesgue measure on the unit circle T. Suppose that C(T) acts on
L2(T, µ) by left multiplication. If A = IN ⊗ C(T), then H1(A,KM) 6= {0}.

The following proposition is well-known to experts.

Proposition 5.8. Let M be a separable properly infinite semifinite factor, π : M →
M/KM the quotient map, and N a unital von Neumann subalgebra of M. Then the
C∗-algebra π(N ) is either finite-dimensional or non-separable.

Proof. Suppose that π(N ) is an infinite-dimensional C∗-algebra. According to [12, Ex-
ercise 4.6.13], there is a positive element A ∈ N such that π(A) has infinite spectrum.
We can find a sequence {[an, bn]}n∈N of disjoint intervals such that each interval contains
a spectral point of π(A). Let fn be a continuous function on R, which is positive within
the interval (an, bn), and zero elsewhere. Then fn(π(A)) 6= 0.

Let χn be the characteristic function of the interval [an, bn], and Pn the spectral
projection χn(A). Let N1 be the von Neumann algebra generated by {Pn}n∈N. For any
nonzero bounded complex sequence {cn}n∈N, say cm 6= 0, we have

π

(∑

n∈N

cnPn

)
π(fm(A)) = π(cmfm(A)) = cmfm(π(A)) 6= 0.

It follows that π|N1
is injective. Therefore, π(N1) is non-separable in the norm topology.

This completes the proof. �

6. Multiplier Algebras

In this section, let M be a separable type III factor. Note that KM = {0}.

6.1. Multiplier Algebras. Let B be a type I∞ unital subfactor of M, KB the ideal of
compact operators in B, and N = B′ ∩M the relative commutant of B in M. Then M
is generated by N ∪ B as a von Neumann algebra, and

M ∼= N ⊗ B.

Let J be the C∗-subalgebra of M generated by NKB = {NK : N ∈ N ,K ∈ KB}, then
we have

J ∼= N ⊗KB.

The multiplier algebra of J is defined as

M(J ) = {T ∈ M : TJ ⊆ J ,J T ⊆ J}.

For more details about multiplier algebras, please refer to [15, Chapter 2].

Lemma 6.1. J = JMJ .

Proof. Since J is a C∗-algebra and I ∈ M, it is evident that J ⊆ JMJ .
Let {Emn}m,n∈N be a system of matrix units in B such that E00 is a minimal

projection in B and
∑

nEnn = I. For A ∈ M, we set

Aij =
∑

n

EniAEjn, i, j ∈ N.
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Then Aij ∈ B′ ∩M = N because EmnAij = EmiAEjn = AijEmn for all m,n ∈ N. It is
clear that Eij ∈ KB, and therefore, EiiAEjj = AijEij ∈ J . Consequently,

EiiMEjj ⊆ J , i, j ∈ N.

Let Pn = E00 + E11 + · · · + Enn. For any A ∈ M and J1, J2 ∈ J , we have

PnJ1AJ2Pn ∈ PnMPn ⊆ J .

Since J1 = limn→∞ PnJ1 and J2 = limn→∞ J2Pn, we conclude that

J1AJ2 = lim
n→∞

PnJ1AJ2Pn ∈ J .

Thus, we have shown that JMJ ⊆ J . �

The following result suggests that it is reasonable to consider C∗-subalgebras within
M(J ).

Proposition 6.2. Let M be a separable type III factor, and A a separable unital C∗-
subalgebra of M. Then there is a unitary operator U ∈ M such that U∗AU ⊆ M(J ).

Proof. Let {Aj}j∈N be a norm-dense sequence in A, {Xj}j∈N a strong-operator dense
sequence in M, {Yj}j∈N the set of all noncommutative *-monomials generated by
{Aj}j∈N ∪ {Xj}j∈N, and Fn = {Y0, Y1, . . . , Yn} for n ∈ N. By Lemma 2.10, there
exists a sequence {Qn}n∈N of infinite projections in M such that QnFnQ0 = {0} for
every n > 1. Let

Pn =
∨

{R(Y Q0) : Y ∈ Fn} 6 I −Qn, n ∈ N. (6.1)

Then
∨
n∈N Pn = I since the sequence {Xj}j∈N generates M as a von Neumann algebra.

Let E0 = P0, and En = Pn−Pn−1 for n > 1. Since Pn 6= I, we may assume that En 6= 0
for every n ∈ N if we consider a subsequence of {Pn}n∈N.

Let B1 be a type I∞ unital subfactor ofM with a system of matrix units {Emn}m,n∈N
such that Enn = En for n ∈ N. Let KB1

be the ideal of compact operators in B1,
N1 = B′

1 ∩ M the relative commutant of B1 in M, and J1 the C∗-subalgebra of M
generated by N1KB1

. For any j, n ∈ N, (6.1) shows that

R(YjPn) 6
∨

{R(YjY Q0) : Y ∈ Fn} 6
∨

{R(Y Q0) : Y ∈ Fm} = Pm

for all sufficiently large m ∈ N. Then YjPn = PmYjPn ∈ J1 by Lemma 6.1. It follows
that Yj ∈ M(J1) since {Pn}n∈N is an approximate unit of J1. In particular, Aj ∈ M(J1)
for j ∈ N, and therefore, A ⊆ M(J1). Let U be a unitary operator in M such that
U∗B1U = B. Then U∗AU ⊆ M(J ). �

6.2. Main Results in M(J ). The result presented below can be derived from the
proof of [7, Proposition 2.1]. We will use it to prove a comparable version of Lemma 2.7
in the context of M(J ).

Proposition 6.3. Let B0 be a finite-dimensional unital subfactor of M(J ), and η : B0 →
M(J ) a completely positive map. Then there exists a single operator T ∈ M(J ) such
that η(B) = T ∗BT for every B ∈ B0.

Lemma 6.4. Let M be a separable type III factor, A a unital C∗-subalgebra of M(J ),
and P ∈ J a projection. Suppose ψ : A → J is a completely positive map, and there
exist completely positive maps σ : A →Mn(C) and η : Mn(C) → J such that

(1) ψ = η ◦ σ.
(2) σ|A∩J = ψ|A∩J = 0.

Then ψ can be approximated in the pointwise-norm topology by maps of the form

A 7→ V ∗AV,

where V ∈ J and PV = 0. In particular, V can be selected as a partial isometry such
that V ∗V = ψ(I) when ψ(I) is a projection.
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Proof. Let B0 be a finite-dimensional unital subfactor of B with a system of matrix units
{Eij}16i,j6n. We can assume that σ : A → B0 and η : B0 → J . By Proposition 6.3, there
is an operator T ∈ M(J ) such that

η(B) = T ∗BT for every B ∈ B0.

Let T = U |T | be the polar decomposition. Then |T | ∈ J since η(I) = T ∗T ∈ J .
Let F be a finite subset of A containing I, and ε > 0. We may assume that P ∈ A

and P ∈ F . According to [2, Lemma 4.4], there are pure states ρ1, ρ2, . . . , ρk on A with
ρt|A∩J = 0 for 1 6 t 6 k, and operators At,j, 1 6 t 6 k, 1 6 j 6 n in A, such that

‖T‖2
∥∥∥σ(A)−

∑

t,i,j

ρt(A∗
t,iAAt,j)Eij

∥∥∥ < ε

2
for every A ∈ F .

It follows that ∥∥∥ψ(A)−
∑

t,i,j

ρt(A∗
t,iAAt,j)T

∗EijT
∥∥∥ < ε

2
for every A ∈ F .

According to [1, Proposition 2.2], let Ct be a positive operator in A with ‖Ct‖ = 1 and
ρt(Ct) = 1 such that

‖T‖2‖Ct(X − ρt(X))Ct‖ <
ε

4kn2
(6.2)

for every X ∈ {A∗
t,iAAt,j : 1 6 t 6 k, 1 6 i, j 6 n,A ∈ F}. Since KB is non-degenerate,

there exists a projection Q ∈ KB such that ‖QC2
tQ‖ > 1

2 for 1 6 t 6 k. Then there

exists a nonzero spectral projection Pt 6 Q of QC2
tQ such that

Pt > PtC
2
t Pt >

1

2
Pt for 1 6 t 6 k. (6.3)

Let G = {CtA
∗
t,iAAt,jCt : 1 6 t 6 k, 1 6 i, j 6 n,A ∈ F}. By Lemma 2.10, there exist

infinite projections {Qt}16t6k such that Qt 6 Pt for 1 6 t 6 k, and QsGQt = {0} when
s 6= t. Let Ut be a partial isometry in M such that

U∗
t Ut = E11, UtU

∗
t = Qt.

Since (6.3) implies that

E11 > U∗
t QtC

2
tQtUt >

1

2
U∗
t QtUt =

1

2
E11,

there exists a positive operator Xt ∈ E11M(J )E11 ⊆ J with ‖Xt‖
2 6 2 such that

X2
t (U

∗
t QtC

2
tQtUt) = (U∗

t QtC
2
tQtUt)X

2
t = E11 for 1 6 t 6 k.

Consequently, ρt(A∗
t,iAAt,j)Eij = Ei1XtU

∗
t QtCtρ

t(A∗
t,iAAt,j)CtQtUtXtE1j , and then

∑

t,i,j

ρt(A∗
t,iAAt,j)T

∗EijT =
∑

t,i,j

T ∗Ei1XtU
∗
t QtCtρ

t(A∗
t,iAAt,j)CtQtUtXtE1jT. (6.4)

Moreover, QtUtXtE1jT = QQtUtXtE1jU |T | ∈ J by Lemma 6.1 because Q, |T | ∈ J .
Let Y =

∑
t,j At,jCtQtUtXtE1jT ∈ J . Since QsFQt = {0} when s 6= t, we have

Y ∗AY =
∑

t,i,j

T ∗Ei1XtU
∗
t QtCtA

∗
t,iAAt,jCtQtUtXtE1jT. (6.5)

From (6.2), (6.4) and (6.5), it follows that
∥∥∥
∑

t,i,j

ρt(A∗
t,iAAt,j)T

∗EijT − Y ∗AY
∥∥∥ < ε

2
for every A ∈ F .

Consequently, ‖ψ(A)−Y ∗AY ‖ < ε for every A ∈ F . In particular, ‖Y ∗PY ‖ < ε by the
assumption P ∈ F , and then we can replace Y with V = (1− P )Y ∈ J . Furthermore,
since ‖ψ(I) − V ∗V ‖ < ε, we can choose V as a partial isometry such that V ∗V = ψ(I)
when ψ(I) is a projection. �
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Now, we present the main theorem for this section. Similar conclusion can be found
in [5, Lemma 11].

Theorem 6.5. Let M be a separable type III factor, A a separable unital C∗-subalgebra
of M(J ), and P ∈ J a projection. For any completely positive map ψ : A → B with
ψ|A∩J = 0, there is a sequence {Vk}k∈N in M(J ) such that

(1) PVk = 0 for every k ∈ N.
(2) limk→∞‖ψ(A) − V ∗

k AVk‖ = 0 for every A ∈ A.
(3) ψ(A) − V ∗

k AVk ∈ J for every k ∈ N and A ∈ A.

In particular, Vk can be selected as a partial isometry such that V ∗
k Vk = ψ(I) when ψ(I)

is a projection.

Proof. Let {Qn}n∈N be a sequence of finite projections in KM with
∨
n∈NQn = I, and

{Aj}j∈N a norm-dense sequence in As.a. with A0 = I.
Fix k ∈ N. According to [3, Theorem 2], there exists a sequence {En}n∈N of finite

rank operators in KB such that

(1)
∑

nE
2
n = I and ‖EnQm‖ < 2−n for 0 6 m 6 n− 1.

(2) ‖ψ(Aj)−
∑

nEnψ(Aj)En‖ < 2−k−1 for 0 6 j 6 k.
(3) ψ(A) −

∑
nEnψ(A)En ∈ KB for every A ∈ A.

Let Pn denote the finite rank projection R(En) in KB. We define a completely positive
map

ψn : A → J , A 7→ Pnψ(A)Pn.

By Lemma 6.4, we can choose a sequence {Un}n∈N in J inductively such that

(1) PUn = 0 for n > 0, and ‖QmUn‖ < 2−n for 0 6 m 6 n− 1.
(2) ‖U∗

mAjUn‖ < 2−2n−k−4 for 0 6 j 6 n+ k and 0 6 m 6 n− 1.

(3) ‖ψn(Aj)− U∗
nAjUn‖ < 2−n−k−3 for 0 6 j 6 n+ k.

Then ‖U∗
mAjUn‖ < 2−2max{m,n}−k−4 when 0 6 j 6 max{m,n} + k and m 6= n. Let

V =
∑

n UnEn. Then∑

n

Enψ(Aj)En − V ∗AjV =
∑

n

En
(
ψ(Aj)− U∗

nAjUn
)
En −

∑

m6=n

EmU
∗
mAjUnEn

for every j > 0, and PV = 0. The above sums are norm-convergent and each summand
lies in J . It follows that

∑
nEnψ(Aj)En − V ∗AjV ∈ J for j > 0. We also have the

estimation ∥∥∥
∑

n

Enψ(Aj)En − V ∗AjV
∥∥∥ < 2−k−1 for 0 6 j 6 k.

Therefore, ψ(Aj)− V ∗AjV ∈ J for j > 0, and ‖ψ(Aj)− V ∗AjV ‖ < 2−k for 0 6 j 6 k.
In particular, V ∗V is a bounded operator if we consider A0 = I. We can conclude that
V belongs to M. Furthermore, since ‖EnQm‖ < 2−n and ‖QmUn‖ < 2−n for n > m,
we have

V Qm =
∑

n

UnEnQm ∈ J , QmV =
∑

n

QmUnEn ∈ J ,

for every m > 0. It follows that V ∈ M(J ). Now we set Vk = V . �

6.3. Voiculescu’s Theorem in M(J ). We now prove Voiculescu’s theorem forM(J ),
whose proof is similar to the proof of Theorem 4.2.

Theorem 6.6. Let M be a separable type III factor, and A a separable unital C∗-
subalgebra of M(J ). If ϕ : A → B is a unital *-homomorphism with ϕ|A∩J = 0, then
there is a sequence {Vk}k∈N of isometries in M(J )⊗M2(C) such that

(1) V ∗
k Vk = I ⊕ I, VkV

∗
k = I ⊕ 0 for every k ∈ N.

(2) limk→∞‖(A⊕ ϕ(A)) − V ∗
k (A⊕ 0)Vk‖ = 0 for every A ∈ A.

(3) (A⊕ ϕ(A))− V ∗
k (A⊕ 0)Vk ∈ J ⊗M2(C) for every k ∈ N and A ∈ A.
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Proof. Let {Emn}m,n∈N be a system of matrix units in B such that
∑

nEnn = I and
E00 ∼ I in B. Let T be an isometry in B with TT ∗ = E00, and let S denote the isometry∑

nEn+1,n ∈ B. We define

ψ : A → B, A 7→
∑

n

En0Tϕ(A)T
∗E0n.

By Theorem 6.5, there is a sequence {Uk}k∈N of isometries in M(J ) such that

lim
k→∞

‖Ukψ(A) −AUk‖ = 0 for every A ∈ A,

and Ukψ(A)−AUk ∈ J for every k ∈ N and A ∈ A. Let Pk = UkU
∗
k ∈ M(J ). There is

a partial isometry Yk ∈ J such that

Y ∗
k Yk = E00 + E11, YkY

∗
k = (E00 + E11)− TP⊥

k T
∗.

Let Wk = Yk+ I− (E00+E11) be an isometry in M(J ) with WkW
∗
k = I−TP⊥

k T
∗, and

Fk = P⊥
k T

∗ + UkW
∗
k a unitary operator in M(J ). The rest of the proof is the same as

Theorem 4.2. �

6.4. Applications in M(J ). Let T ∈ M(J ). We say that T is reducible in M(J )
if there is a projection P ∈ M(J ) such that PT = TP and P 6= 0, I. Similar to
Theorem 5.1, Theorem 6.6 implies the following denseness result.

Theorem 6.7. Let M be a separable type III factor. Then the set of all reducible
operators is norm-dense in M(J ).

If A a separable unital subalgebra of M(J )/J , then the essential lattice Late(A )
of A is the set of all projections p ∈ M(J )/J such that p⊥ap = 0 for every a ∈ A .
Similar to Lemma 5.2, Theorem 6.6 implies the following distance formula.

Lemma 6.8. Let M be a separable type III factor, and A a separable unital subalgebra
of M(J )/J . Then for any t ∈ M(J )/J , there is a projection q in Late(A ) such that

‖q⊥tq‖ = d(t,A ).

Note that every separable norm-closed unital subalgebra of M(J )/J is reflexive
by Lemma 6.8. In particular, Voiculescu’s relative bicommutant theorem holds.

Theorem 6.9. Let M be a separable type III factor. Then every separable unital C∗-
subalgebra of M(J )/J equals its relative bicommutant.

7. Nuclear Length

7.1. Nuclear Length. Let M be a separable properly infinite factor, and B a C∗-
subalgebra of M. Inspired by quasicentral approximate units, we introduce the nuclear
length of B in M.

Definition 7.1. We set Lnuc(B,M) = 0 if B is nuclear. Inductively, we set

Lnuc(B,M) = m,

if Lnuc(B,M) 6= k for 0 6 k 6 m− 1, and for any finite subset F of B and any ε > 0,
there exists a sequence {En}n∈N of positive operators in M and a sequence {Bn}n∈N of
C∗-subalgebras of M such that

(1)
∑

nE
2
n = I, and Lnuc(Bn,M) 6 m− 1 for every n ∈ N.

(2) EnBEn ⊆ Bn for every n ∈ N.
(3) ‖B −

∑
nEnBEn‖ < ε for every B ∈ F .

It is evident from the above definition that Lnuc(U
∗BU,M) = Lnuc(B,M) for every

unitary operator U in M. Consequently, the nuclear length is unitarily invariant.
Let PB =

∨
B∈B R(B), where R(B) is the range projection of B. The multiplier

algebra of B is then defined as

M(B) = {T ∈ PBMPB : TB ⊆ B,BT ⊆ B}.
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Note that B is an ideal of M(B) and PB is the identity of M(B).

Lemma 7.2. If Lnuc(B,M) <∞, then Lnuc(M(B),M) 6 1 + Lnuc(B,M).

Proof. Let F be a finite subset of M(B), and ε > 0. According to [3, Theorem 2], there
is a sequence {En}

∞
n=1 in B such that

∑∞
n=1E

2
n = PB and

∥∥∥B −
∞∑

n=1

EnBEn

∥∥∥ < ε for every B ∈ F .

We set E0 = I − PB, and Bn = B for every n ∈ N. �

Let B be a type I∞ subfactor of M, and KB the ideal generated by finite rank
projections in B. It is well-known that KB is nuclear while B is not. Since B is the
multiplier algebra of KB, we have Lnuc(B,M) = 1 by Lemma 7.2.

Example 7.3. If B is a von Neumann algebra of type I, then Lnuc(B,M) 6 1.

Proof. There is a sequence {An}n∈N of abelian von Neumann algebras such that

B =
(
A0 ⊗ B(l2)

)⊕ ∞∏⊕

n=1

An ⊗Mn(C).

Let

B0 =
(
A0 ⊗K(l2)

)⊕ ∞∑⊕

n=1

An ⊗Mn(C).

Since B0 is nuclear and B = M(B0), we get Lnuc(B,M) 6 1 by Lemma 7.2. �

The following theorem is a generalization of Proposition 3.1.

Theorem 7.4. Let M be a separable properly infinite factor, A a unital C∗-subalgebra
of M, and B a C∗-subalgebra of M with Lnuc(B,M) < ∞. Assume that ψ : A → B

is a ∗-homomorphism such that ψ|A∩KM
= 0. Then ψ ∈ ŜF and there is a sequence

{Vk}k∈N of isometries in M such that

lim
k→∞

‖Vkϕ(A) −AVk‖ = 0 for every A ∈ A.

Furthermore, if M is semifinite, we can choose {Vk}k∈N such that

Vkϕ(A)−AVk ∈ KM for every k ∈ N and A ∈ A.

Proof. Induction on Lnuc(B,M) = m is performed. If B is nuclear, then the inclusion
map idB : B → M is nuclear. Therefore, the composition ψ = idB ◦ ψ is a nuclear map

with respect to KM, and thus ψ ∈ F̂ ⊆ ŜF.
Assume m > 1. Let F be a finite subset of A containing I, and ε > 0. We can find

{En}n∈N and {Bn}n∈N such that

(1)
∑

nE
2
n = I, and Lnuc(Bn,M) 6 m− 1 for every n ∈ N.

(2) EnBEn ⊆ Bn for every n ∈ N.
(3) ‖ψ(A) −

∑
nEnψ(A)En‖ < ε for every A ∈ F .

By induction, the completely positive map ψn : A → Bn defined by A 7→ Enψ(A)En lies

in ŜF, and ∥∥∥ψ(A) −
∑

n

ψn(A)
∥∥∥ < ε for every A ∈ F .

Then
∑

n ψn(I) converges in the strong-operator topology since I ∈ F . Hence ψ ∈ ŜF

by Lemma 2.6. Now the result follows from Lemma 4.1. �
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7.2. Approximate Nuclear Length. At last, we introduce the approximate nuclear
length. Let M be a separable properly infinite factor, and B a C∗-subalgebra of M.

Definition 7.5. We set ALnuc(B,M) = 0 if the inclusion map idB : B → M is nuclear.
Inductively, we set

ALnuc(B,M) = m,

if ALnuc(B,M) 6= k for 0 6 k 6 m− 1, and for any finite subset F of B and any ε > 0,
there is a sequence {Bn}n∈N of C∗-subalgebras of M, and a sequence {ψn : B → Bn}n∈N
of completely positive maps such that

(1) ALnuc(Bn,M) 6 m− 1 for every n ∈ N.
(2) ‖B −

∑
n ψn(B)‖ < ε for every B ∈ F .

It is clear that ALnuc(B,M) 6 Lnuc(B,M) and the approximate nuclear length is
unitarily invariant. Let π1, π2 : B → M be *-homomorphisms. We say that π1 and π2
are approximately unitarily equivalent (denoted by π1 ∼a π2) if for any finite subset F
of B and any ε > 0, there is a unitary operator U in M such that

‖π1(A)− U∗π2(A)U‖ < ε for every A ∈ F .

Obviously, π1 ∼a π2 implies that kerπ1 = ker π2. The following result shows that the
approximate nuclear length is approximately unitarily invariant.

Lemma 7.6. Let M be a separable properly infinite factor, and B a C∗-subalgebra of
M. If π : B → M is a *-homomorphism with π ∼a idB, then

ALnuc(π(B),M) = ALnuc(B,M).

Proof. Note that π is faithful since idB is. Let F be a finite subset of B, and ε > 0.
There is a unitary operator U in M such that

‖π(B)− U∗BU‖ <
ε

2
for every B ∈ F .

If the inclusion map idB : B → M is nuclear, then there is a factorable map ψ : B →
M such that ‖B − ψ(B)‖ < ε

2 for every B ∈ F . It follows that

‖π(B)− U∗ψ(B)U‖ < ε for every B ∈ F .

Let ϕ : π(B) → M, π(B) 7→ U∗ψ(B)U be a factorable map. Then

‖π(B)− ϕ(π(B))‖ < ε for every B ∈ F .

Hence idπ(B) is nuclear.
If ALnuc(B) = m > 1, then we can find {Bn}n∈N and {ψn : B → Bn}n∈M such that

(1) ALnuc(Bn,M) 6 m− 1 for every n ∈ N.
(2) ‖B −

∑
n ψn(B)‖ < ε

2 for every B ∈ F .

Let An = U∗BnU , and ϕn : π(B) → An, π(B) 7→ U∗ψn(B)U . Then

(1) ALnuc(An,M) 6 m− 1 for every n ∈ N.
(2) ‖π(B)−

∑
n ϕn(π(B))‖ < ε for every B ∈ F .

Hence ALnuc(π(B),M) 6 ALnuc(B,M). Conversely, ALnuc(B,M) 6 ALnuc(π(B),M)
since π−1 ∼a idπ(B). This completes the proof. �

Similar to Theorem 7.4, we have the following result.

Theorem 7.7. Let M be a separable properly infinite factor, A a unital C∗-subalgebra
of M, and B a C∗-subalgebra of M with ALnuc(B,M) < ∞. Assume that ψ : A → B

is a ∗-homomorphism such that ψ|A∩KM
= 0. Then ψ ∈ ŜF and there is a sequence

{Vk}k∈N of isometries in M such that

lim
k→∞

‖Vkϕ(A) −AVk‖ = 0 for every A ∈ A.

Furthermore, if M is semifinite, we can choose {Vk}k∈N such that

Vkϕ(A)−AVk ∈ KM for every k ∈ N and A ∈ A.
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