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Abstract

We establish a correspondence between automorphisms and deriva-
tions on certain algebras of generalised power series. In particular, we
describe a Lie algebra of derivations on a field k((G)) of generalised power
series, exploiting our knowledge of its group of valuation preserving auto-
morphisms. The correspondence is given by the formal Taylor expansion
of the exponential. In order to define the exponential map, we develop
an appropriate notion of summability of infinite families in algebras. We
show that there is a large class of algebras in which the exponential induces
the above correspondence.

Introduction

Let k be a field of characteristic 0. The automorphism group of the valued
field k((t)) of Laurent series was studied in Schilling’s classical paper [22]. A
derivation on k((t)) is a k-linear map ∂ : k((t)) −! k((t)) satisfying the Leibniz
product rule. The k-vector space of derivations on k((t)) becomes a Lie algebra
once endowed with the Lie bracket [∂1, ∂2] := ∂1 ◦ ∂2 − ∂2 ◦ ∂1. Let σ and ∂
denote respectively an automorphism and a derivation. Via the Taylor series of
the logarithm and of the exponential,

log(σ) =
∑
n>1

(−1)n+1

n
(Id−σ)[n] and exp(∂) =

∑
n>0

1

n!
∂[n] (1)

(where ϕ[n] denotes the nth iterate of a map ϕ), one obtains the fundamental
relation between the group of automorphisms and the Lie algebra of derivations
of k((t)) (cf. [21, Chapter 3]).
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Fields of generalized power series k((G)) with coefficients in k and exponents
in an arbitrary ordered abelian group G are instrumental to the valuation and
model theory of fields (for example, when G = Z, then k((G)) is just the Laurent
series field). In [18], the authors described the group of valuation preserving
automorphisms of k((G)), as a semidirect product of four distinct factors.

Our initial motivation for the present work was to describe the Lie algebra
of derivations on k((G)), exploiting our knowledge of its group of valuation pre-
serving automorphisms. To this end, we cast the problem into the following
more general setting. Given a k-algebra A (not necessarily commutative), we
study the interplay between the Lie algebra of its derivations and the group of
its automorphisms. Here, the essential issue is to give appropriate conditions
under which the infinite sums in (1) are indeed well-defined. To deal with this
issue, we explore a general notion of summability in algebras, and of strongly
linear maps (that is, linear maps that commute with infinite sums). We show
that there is a large class of algebras in which the exponential and logarithm
induce the desired correspondence for strongly linear ∂ and σ.

In Section 1 we introduce the axiomatic notion of vector spaces and algebras
with a structure of formal summability, called summability spaces and sum-
mability algebras (see Definitions 1.1 and 1.27). A related notion has been
presented independently in a categorical framework by Freni [6]. We show that
the algebra of strongly linear maps on a summability space inherits a natural
structure of summability algebra (Proposition 1.30). In Section 1.4, we first
recall the construction of the algebra k〈〈J〉〉 of formal series with coefficients in
k and non-commuting variables Xj , j ∈ J . We show in Proposition 1.34 that
this algebra has a natural structure of summability algebra.

In Section 2, we introduce the notion of summability algebras with evalu-
ations (see Definition 2.3). This allows any power series in k〈〈J〉〉 to be evaluated
in A for each set J (see Remark 2.4). More precisely, such an algebra A is local
(Proposition 2.8), and each summable family a = (aj)j∈J ranging in its max-
imal ideal m defines a unique strongly linear algebra morphism eva : k〈〈J〉〉 −! A
that maps each variable Xj to aj .

In this paper, we will apply evaluation morphisms for the univariate and
bivariate cases only. In the univariate case (when J is a singleton), we can
identify k〈〈J〉〉 with k[[X]] (the algebra of formal power series in the variable X).
In particular, the formal power series

log(1 +X) :=
∑
n>1

(−1)n+1

n
Xn and exp(X) :=

∑
n>0

1

n!
Xn

can be evaluated at each ε ∈ m. Furthermore, the relations

exp(log(1 + ε)) = 1 + ε and log(exp(ε)) = ε

follow (see Corollary 2.10) from evaluating the corresponding identities [24, Sec-
tion 1.7, Theorem 7.2] in k[[X]] at ε. In the bivariate case, we likewise obtain (see
Corollary 2.12) the Baker–Campbell–Hausdorff formula (see [8, Section 1.3.2]
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or [24, Section 1.4.7])

log(exp(ε) · exp(δ)) = ε+ δ +
1

2
[ε, δ] +

1

12
([ε, [ε, δ]]− [δ, [ε, δ]]) + · · ·

for ε, δ ∈ m. Our first main result is a correspondence between automorphisms
and derivations (Theorem 2.14) for all summability subalgebras (of strongly
linear maps) with evaluations.

The purpose of Section 3 is to provide a large class of algebras to which The-
orem 2.14 applies. To this end, we introduce algebras of Noetherian series in Sec-
tion 3.3. Those include algebras of polynomials, algebras of formal series in com-
muting or non-commuting variables, and fields of generalised power series k((G)).
Given an algebra A of Noetherian series, we consider the algebra k IdA +m where
m is the closed ideal of contracting strongly linear maps (see Definition 3.12). We
show (Theorem 3.16) that this is an algebra with evaluations. Our second main
result Theorem 3.17 is that the exponential is a bijection between the subset of
m consisting of derivations and the subset of IdA +m consisting of automorph-
isms of A. In the case when A = k((G)) is a field of Hahn series, this group is
one of the three factors in the decomposition [18] of strongly linear valuation
preserving automorphisms of k((G)). It follows in particular (Corollary 3.20)
that this group is divisible and torsion-free. We derive from Theorem 3.17 our
third and final main result Theorem 3.19, which moreover takes into account the
Lie structure on the corresponding algebras. More precisely, we prove a formal
analog of the Lie homomorphism theorem (cf. [8, Theorem 3.7]) for contracting
strongly linear derivations and strongly linear automorphisms.

In Section 4, we focus on the case where k is an ordered exponential field
[14], and we discuss the possibility of extending our correspondence to the other
two factors in the semidirect decomposition of the group of valuation preserving
automorphisms of k((G)).

Conventions and notations

We denote by N the set of natural numbers with 0 and by N>0 without 0. The
power set of a set X is denoted by P(X) and its subset consisting of all finite
subsets of X is denoted by Pfin(X).

Given sets A,B, a function f : A −! B is a subset of A × B with the
functional property. We often also identify the function f with the corresponding
family (f(a))a∈A. The set of functions from A to B is denoted by BA. If B ⊆ C,
then BA ⊆ CA. Note also that A∅ = {∅}.

Recall that an ordering on a set Ω is a binary relation < on Ω such that
for all p, q, r ∈ Ω, we have

p ≮ p and [(p < q ∧ q < r) =⇒ p < r].

We then say that (Ω, <) is an ordered set and for p, q ∈ Ω, we write p 6 q if p = q
or p < q. If u : N −! Ω is a sequence, then we say that u is increasing (resp.
strictly increasing) if for all m,n ∈ N with m < n, we have u(m) 6 u(n)
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(resp. u(m) < u(n)). A subsequence of u is a sequence v = u ◦ ϕ : N −! Ω
where ϕ : N −! N is strictly increasing.

If I is a set and (M,+, 0) is a monoid (i.e. an associative, unital magma),
then the support of an f ∈M I is the subset

supp f := {i ∈ I : f(i) 6= 0}

of I. This object will be ubiquitous in the paper.
Throughout the paper, we fix a field k. All vector spaces and

algebras considered below are over k. All considered algebras are
associative, but not be necessarily unital, nor commutative. We will sometimes
assume that k has characteristic 0. Given a vector space V and a set I, the
set V I of maps v : I −! V is equipped with its natural vector space structure
(pointwise operations). Note that the subset V (I) of maps with finite support
is a subspace of V I . Given vector spaces V1, V2, we write Lin(V1, V2) for the
vector space of linear maps V1 −! V2, and we set Lin(V1) := Lin(V1, V1). A
unital algebra A is called local if one of the following equivalent assertions is
satisfied [19, Theorem 19.1]:

• A has a unique maximal left ideal;

• A has a unique maximal right ideal;

• the set A \ U(A) of non-units in A is an ideal of A.

Then the maximal left and right ideals are equal to A \U(A). Given an algebra
(A,+, ·) and a, b ∈ A, we write

[a, b] := a · b− b · a ∈ A,

and we recall that (A,+, [·, ·]) is a Lie algebra.

1 Formal summability in algebras

1.1 Summability spaces

Freni [6] introduced a category Σ Vect whose objects are vector spaces equipped
with a notion of formal sums. We propose an axiomatic description of such
spaces, in the vein of [10, Section 6.2], that is more tailored to our purposes. It
was shown by Freni to be equivalent to his [6, Proposition 3.27].

Let V be a vector space. We generalise the notion of finite summation
operators

Σn : V n −! V, (v0, . . . , vn−1) 7! v0 + · · ·+ vn−1

to abstract sums ΣIv ∈ V of families v : I −! V indexed by possibly infinite
sets I. Not all families v in the space V I can be summed in a consistent way:
if I is infinite and there is a v ∈ V \ {0}, then the constant family (v)i∈I cannot
be summed. So we are to introduce axioms specifying the intended properties
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of sets dom ΣI ⊆ V I of summable families in conjunction with properties of
operators ΣI . It is very convenient for application to be able to do this for
arbitrary sets I. This leads us to the following notion of summability spaces.

For a set I, let ΣI be a k-linear function

ΣI : dom ΣI −! V

whose domain dom ΣI is a subspace of the vector space V I . Given sets I, J ,
consider the following axioms:

SS1 V (I) ⊆ dom ΣI and ΣIv =
∑
i∈suppv v(i) for all v ∈ V (I).

SS2 if ϕ : I −! J is bijective and v ∈ dom ΣJ , then v ◦ ϕ ∈ dom ΣI , and
ΣI(v ◦ ϕ) = ΣJv.

SS3 if I =
⊔
j∈J Ij and v ∈ dom ΣI , then writing vj := v�Ij for each j ∈ J , we

have

SS3a vj ∈ dom ΣIj for all j ∈ J ,

SS3b (ΣIjvj)j∈J ∈ dom ΣJ , and

SS3c ΣIv = ΣJ
(
(ΣIjvj)j∈J

)
.

SS4 if I = I1 t I2 and (v,w) ∈ dom ΣI1 × dom ΣI2 , then the function (v t
w) : I −! V given by (vtw)(i1) := v(i1) and (vtw)(i2) = w(i2) for all
i1 ∈ I1 and i2 ∈ I2 lies in dom ΣI .

UF For all v ∈ dom ΣI and all families f = (fi)i∈I of k-valued functions
fi : Xi −! k with finite domainsXi, writing If := {(i, x) : i ∈ I∧x ∈ Xi},
the family fv := (fi(x)v(i))(i,x)∈If lies in dom ΣIf .

The reader can see that these axioms generalise various properties of finite
summation operators Σn for n ∈ N, including associativity and commutativity
(or invariance under reindexing) of the sum.

Definition 1.1. We say that Σ = (ΣI)I (where I ranges in the class of all sets)
is a summability structure on V , or that (V,Σ) is a summability space,
if (V,Σ) satisfies the axioms SS1 to SS4 above for all sets I, J . If, moreover,
axiom UF is satisfied for all I, then the summability space (V,Σ) is called
ultrafinite.

Remark 1.2. In the ultrafinite case, one can bound the cardinality of supports
of summable families by that of the underlying vector space. Thus we could
consider families Σ indexed by I in the powerset of V . Our choice of indexing
by all sets is for practical purposes.

Throughout the rest of the section (V,Σ) denotes a summability
space.

Definition 1.3. For any set I, any element of dom ΣI is called a summable
family.
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In the following, we establish some basic properties of summability spaces.

Notation 1.4. We shall write
∑
i∈I v(i) for ΣIv.

Lemma 1.5. Let (V,Σ) be a summability space, let I, I1, I2 be sets and let
f = (fi)i∈I is a family of k-valued functions with finite domains Xi := dom fi.
Then the following hold:

(i) If I is finite and of the form I = {i1, . . . , in} for some n ∈ N, then
dom ΣI = V I = V (I) and for any v ∈ V I we have ΣI =

∑
i∈I v(i) =∑n

j=1 v(ij).

(ii) If I = I1tI2, then for any (v,w) ∈ dom ΣI1×dom ΣI2 we have ΣI(vtw) =
ΣI1v + ΣI2w.

(iii) If (V,Σ) is ultrafinite, then for any v ∈ ΣI also
(
(
∑
x∈Xi fi(x))v(i)

)
i∈I ∈

ΣI and

ΣIf (fv) =
∑
i∈I

(∑
x∈Xi

fi(x)

)
v(i).

Proof.

(i) This follows immediately from SS1.

(ii) Let u = (v tw). Then u1 = v and u2 = w. By (i), SS3 and SS4,

ΣIu = Σ{1,2}(ΣIjuj)j∈{1,2} = ΣI1u1 + ΣI2u2 = ΣI1v + ΣI2w.

(iii) For any i ∈ I, let Ij = {i} ×Xi. Then If =
⊔
i∈I Ii. Applying SS3, UF

and (i), we obtain

ΣIf (fv) = ΣI
(
(ΣIi(fi(x)v(i))(i,x)∈{i}×Xi)i∈I

)
=
∑
i∈I

(∑
x∈Xi

fi(x)v(i)

)

=
∑
i∈I

(∑
x∈Xi

fi(x)

)
v(i).

2

We now show that any summability space satisfies a version of Dirichlet’s
rearrangement theorem.

Proposition 1.6. Let (V,Σ) be a summability space. Let I, J be sets and let
v ∈ dom ΣI×J . Then for each i0 ∈ I and for each j0 ∈ J , we have v(i0, ·) ∈
dom ΣJ and v(·, j0) ∈ dom ΣI . Moreover,

(∑
j∈J v(i, j)

)
i∈I
∈ dom ΣI and(∑

i∈I v(i, j))
j∈J ∈ dom ΣJ , with

∑
i∈I

∑
j∈J

v(i, j)


j∈J

=
∑

(i,j)∈I×J
v(i, j) =

∑
j∈J

(∑
i∈I

v(i, j)

)
i∈I

.

6



Proof. Apply SS3 for I × J both with (I × J)j := I × {j} for each j ∈ J and
with (I × J)i := {i} × J for each i ∈ I. 2

Let W ⊆ V be a subspace. Let Σ′ = (Σ′I)I is a set be a family of partial
functions Σ′I: W

I −⇀ W . We say that Σ′ is a restriction of Σ if for each I,
the partial function ΣI extends Σ′I (that is dom Σ′I ⊆ dom ΣI and ΣI restricts
to Σ′I on dom Σ′I).

Definition 1.7. Let W ⊆ V be a subspace.

(i) We say that W is a closed subspace if for any set I and any w ∈
dom ΣI ∩W I , we have ΣIw ∈W .

(ii) If W is a closed subspace of V , then Σ naturally restricts to a summability
structure ΣW on W by setting dom ΣWI := dom ΣI ∩W I and ΣWI w :=
ΣIw for any set I and w ∈ dom ΣWI .

We leave it to the reader to check that (W,ΣW ) in Definition 1.7 is indeed
a summability space, and that (W,ΣW ) is ultrafinite if (V,Σ) is ultrafinite. We
next give some simple examples of summability spaces.

Example 1.8. Any vector space V has a summability structure called the
minimal summability structure, where for each set I, we have

dom ΣI = V (I) and ∀v ∈ V (I),ΣIv =
∑

i∈suppv

v(i).

This structure is ultrafinite.

Example 1.9. Let (Γ, <) be a non-empty linearly ordered set. Let Hγ∈Γk
denote the Hahn product of the constant family (k)γ∈Γ, i.e. the vector space
of functions Γ ! k with well-ordered support, under pointwise sum and scalar
product. A natural summability structure Σ on V := Hγ∈Γk is obtained as
follows. Given a set I, a function v : I ! V is formally summable if the
subset Sv :=

⋃
i∈I

supp v(i) of Γ is well-ordered, and for each γ ∈ Γ, the set

Iv,γ := {i ∈ I : γ ∈ supp v(i)} is finite. Define dom ΣI := {v : I −! V :
v is formally summable } as the set of formally summable families I −! V . For
v ∈ dom ΣI , we define ΣIv to be the function

Γ −! k, γ 7!
∑
i∈Iv,γ

v(i),

whose support is indeed well-ordered, as it is contained in Sv. This summability
space is ultrafinite.

Example 1.10. Assume that k = R or k = C. Let (V, | |) be a Banach space
with absolute value | | : V −! R>0. For any set I, define dom ΣI to be the set
of families f : I −! V with countable or finite support, such that given a bijec-

tion i : λ −! supp f where λ 6 ω, the real-valued sequence
(∑n

p=0 |f(i(p))|
)
n∈λ
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converges. We then define
∑
I f =

∑
n∈λ f(i(n)). Note that this does not de-

pend on the choice of bijection.
This summability structure is not ultrafinite in general. Indeed if V is non-

trivial, then for any non-zero v ∈ V , the family
(
v
n!

)
n∈N is summable, whereas

(vn!)n∈N is not.

Bornological spaces

We now consider an important class of summability spaces called bornological
spaces (see also [6, Section 2.1]). We will appeal to this in Section 2 and Sec-
tion 3.

Definition 1.11. Let Ω be a set. A bornology on Ω is a set B of subsets of
Ω which contains all finite subsets of Ω and which is closed under finite unions
and subsets, i.e. such that for all A,B ⊆ Ω, we have

(A ∈ B ∧B ∈ B) =⇒ A ∪B ∈ B and (A ⊆ B ∧B ∈ B) =⇒ A ∈ B.

Given a bornology B on Ω and a vector space V , we write V [B] for the set of
functions Ω −! V whose support lies in B. Assume that (V,Σ) is a summability
space and let Ω be a non-empty set. We define a structure of summability space
on V [B] as follows. If I is a set and f : I −! V [B] is a function, then we say that
f is B-summable if

• the set
⋃
i∈I supp f(i) lies in B, and

• for all p ∈ Ω, the family (f(i)(p))i∈I is summable in (V,Σ).

If f is B-summable, then we define
∑B
I f ∈ V [B] to be the function p 7!∑

i∈I f(i)(p).

In the particular case when B = P(Ω), we have V [B] = V Ω. We say that
a family f : I −! V Ω is pointwise summable with respect to Σ if it is
P(Ω)-summable, i.e. if each family (f(i)(p))i∈I for p ∈ Ω is summable in (V,Σ).

Proposition 1.12. Let (V,Σ) be a summability space. Then (V [B],ΣB) is a
summability space. Moreover, it is ultrafinite if (V,Σ) is ultrafinite.

Proof. Throughout the proof, we fix sets I, J and a generic element p ∈ Ω.
Let f ,g : I −! V [B] be B-summable families and let c ∈ k. For all i ∈ I, we

have
supp(f(i) + cg(i)) ⊆ (supp f(i)) ∪ (supp g(i))

so
⋃
i∈I supp((f + cg)(i)) ⊆

(⋃
i∈I supp f(i)

)
∪
(⋃

i∈I supp g(i)
)
.

Since
⋃
i∈I supp f(i),

⋃
i∈I supp g(i) ∈ B and B is closed under finite unions

we deduce that
⋃
i∈I supp((f + cg)(i)). Since dom ΣI is a vector subspace of

V I , the family (f(i)(p) + cg(i)(p))i∈I is summable in (V,Σ). This shows that
f + cg is B-summable. Moreover∑

I

(f(i)(p) + cg(i)(p))i∈I =
∑
I

(f(i)(p))i∈I + c
∑
I

(g(i)(p))i∈I ,
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so
∑
i∈I(f + cg) =

∑
i∈I f + c

∑
i∈I g.

If f has finite support, then
⋃
i∈I supp f(i) is a finite union of sets in B,

whence an element of B. The family F = (f(i)(p))i∈I has finite support, so it is
summable with sum

∑
i∈suppF f(i)(p). We deduce that f is B-summable, with∑

i∈I f =
∑
i∈suppF f(i) ∈ B. So SS1 holds for B-summability.

Let ϕ : J −! I be a bijection. Then we have⋃
j∈J

supp f(ϕ(j)) =
⋃
i∈I

supp f(i)

which lies in B. The family (f(ϕ(j))(p))j∈J lies in dom ΣL by SS2 in (V,Σ),
and we have∑

j∈J
f(ϕ(j))

 (p) =
∑
j∈J

f(ϕ(j))(p) =
∑
i∈I

f(i)(p) =

(∑
i∈I

f(i)

)
(p).

So
∑
J f ◦ ϕ =

∑
I f , whence SS2 holds for B-summability.

Now assume that I =
⊔
j∈J Ij . For j ∈ J , we have

⋃
i∈Ij supp f(i) ⊆⋃

i∈I supp f(i) so
⋃
i∈Ij supp f(i) ∈ B by closedness of B under subsets. The

family (f(i)(p))i∈Ij is also summable by SS3a in (Σ, V ). So (f(i))i∈Ij is B-
summable. We set fj :=

∑
i∈Ij f(i).

We have

⋃
j∈J

supp fj ⊆
⋃
j∈J

⋃
i∈Ij

supp f(i)

 ⊆ ⋃
i∈I

supp f(i),

so
⋃
j∈J supp fl ∈ B. By SS3b and 1.1 in (V,Σ), the family (fj(p))j∈J is sum-

mable with sum
∑
i∈I f(i)(p). It follows that (fj)j∈J is B-summable with sum∑

i∈I f(i). So SS3 holds.

Let I1, I2 be sets with I = I1tI2, and let f1 : I1 −! V [B] and f2 : I2 −! V [B]

be B-summable. We have⋃
i∈I

supp(f1 t f2)(i) = (
⋃
i∈I1

supp f1(i)) ∪ (
⋃
i∈I2

supp f2(i)),

which lies in B since it is closed under unions. The family ((f1tf2)(i)(p))i∈I =
((f1(i)(p))i∈I1 t (f2(i)(p)))i∈I2 is summable in (V,Σ) by SS4 in (V,Σ), so f1 t f2
is B-summable.

Assume finally that (V,Σ) is ultrafinite. Let (hi)i∈I be a family indexed by
I of k-valued functions hi with finite domains Xi. We have⋃

i∈I

⋃
x∈Xi

supphi(x)f(i) ⊆
⋃
i∈I

supp f(i),

which lies in B. By ultrafiniteness, the family (hi(x)f(i)(p))i∈I∧x∈Xi is sum-
mable, so (hi(x)f(i))i∈I∧x∈Xi is B-summable. So UF holds. 2
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We say that (V [B],ΣB) is a bornological space. For v ∈ V and p ∈ Ω, write
1{p}v for the function Ω −! V with (1{p}v)(q) = 0 if q 6= p and (1{p}v)(p) = v.

For f ∈ V [B], the family (1{p}f(p))p∈Ω is B-summable with sum f . So any

element f of V [B] is a sum

f =
∑
p∈Ω

1{p}f(p), (2)

which can be considered as a formal series with coefficients in V and with
support in B.

Example 1.13. On the Hahn space Hn∈Nk = kN of formal power series, point-
wise summability with respect to the minimal summability structure on k coin-
cides withformal summability as described in Example 1.9.

Example 1.14. If (G,+, <) is a totally ordered Abelian group, then the no-
tion of Rayner field family gives a bornology on G contained in that of well-
ordered subsets of G. The resulting Rayner field [12] is a bornological space.
These fields were among those for which we sought to understand the derivation-
automorphism correspondence. Our results apply in particular to them.

1.2 Strongly linear functions

Let (V,Σ), (V1,Σ1) and (V2,Σ2) be summability spaces.

Definition 1.15. A function φ : V1 −! V2 is said strongly linear if it is
linear, and if, for all sets I and families v ∈ dom Σ1,I , the family φ ◦ v lies in
dom Σ2,I and

Σ2,I(φ ◦ v) = φ(Σ1,Iv).

We write Lin+(V1, V2) for the set of strongly linear functions V1 −! V2, and
Lin+(V ) := Lin+(V, V ).

Example 1.16. If Σ1 is the minimal summability structure on V1, then we
have Lin+(V1, V2) = Lin(V1, V2).

Example 1.17. Consider the Hahn space V = Hγ∈Γk of Example 1.9. For all
order-preserving maps u : Γ −! Γ, the function V −! V : f 7! f ◦u is strongly
linear.

In general, linear maps between summability spaces that are not defined
using non-constructive methods often turn out to be strongly linear. As the
next example shows, using the axiom of choice allows one to define non-strongly
linear but linear functions.

Example 1.18. Let kN = k[[X]] be the space of formal series with coefficients
in k, together with its summability structure of Example 1.9. Let W be a
complement to the subspace k[X] of k[[X]] of functions N ! k with finite sup-
port. Let µ be the unique linear map k[[X]] ! k[[X]] with µ(W ) = {0} and

10



µ(Xn) = (1 + X)n for each n ∈ N. Then µ is not strongly linear. Indeed, the
family (Xn)n∈N is summable in k[[X]] but ((1 +X)n)n∈N is not summable, since
0 lies in the support of each of its elements.

Example 1.19. If V = Hγ∈Γk is the Hahn space of Example 1.9, then given a
strongly linear map µ : V −! V and a ∈ V , we have

µ(a) = µ(
∑
γ∈Γ

a(γ)1γ) =
∑
γ∈Γ

a(γ)µ(1γ).

In particular, the function µ is determined by the family (µ(1γ))γ∈Γ.

Proposition 1.20. Lin+(V1, V2) is a subspace of Lin(V1, V2),

Proof. Let φ, ψ ∈ Lin+(V1, V2), c ∈ k, let I be a set and let v ∈ dom Σ1,I .
Since dom Σ2,I is a vector subspace of V I2 and Σ2,I is a linear map, the family
φ ◦ v + cψ ◦ v is summable with sum

Σ2,I(φ ◦ v) + cΣ2,I(ψ ◦ v) = φ(Σ1,Iv) + cψ(Σ2,Iv) = (φ+ cψ)(Σ1,Iv).

This shows that φ+ cψ ∈ Lin+(V1, V2). 2

Proposition 1.21. Lin+(V1) is a subalgebra of (Lin(V1),+, ◦).

Proof. Let φ, ψ ∈ Lin+(V1), let I be a set and let v ∈ dom Σ1,I . Then ψ ◦ v

is summable with sum
∑

2,I ψ ◦ v = ψ
(∑

1,I v
)

by strong linearity of ψ. So

(φ◦ (ψ ◦v))i∈I is summable by strong linearity of φ, with sum
∑

2,I φ◦ (ψ ◦v) =

φ
(
ψ
(∑

1,I v
))

. Since φ ◦ ψ is linear, this shows that φ ◦ ψ ∈ Lin+(V1). 2

Corollary 1.22. Lin+(V1) is a Lie subalgebra of (Lin(V1),+, [ ] , .).

We next equip Lin+(V1, V2) with a structure of summability space.

Definition 1.23. Let J be a set, and let φ : J −! Lin+(V1, V2) be a function.

(i) We say that φ is Lin-summable if for all sets I and all v ∈ dom Σ1,I , the
family φ(v) := (φ(j)(v(i)))(i,j)∈I×J lies in dom Σ2,I×J .

(ii) If φ is Lin-summable, then we define a function
∑
j∈J φ(j) : V1 −! V2 as

follows. For v ∈ V1, define∑
j∈J

φ(j)

 (v) := Σ2,J(φ(j)(v))j∈J .

Lemma 1.24. If J is a set and φ : J −! Lin+(V1, V2) is Lin-summable, then
its sum φ :=

∑
j∈J φ(j) is strongly linear.

11



Proof. Let u0, v0 ∈ V and c ∈ k. The linearity of each φ(j) for j ∈ J gives that
φ(u0+cv0) = φ(u0)+cφ(v0). Now Σ2,J is linear, so φ(u0+cv0) = φ(u0)+cφ(v0),
i.e. φ is linear.

We next prove that φ is strongly linear. Let I be a set, let v ∈ dom Σ1,I and
set

v1 := Σ1,Iv ∈ V1.

The family φ(v) is summable. By Proposition 1.6, both
(∑

j∈J φ(j)(v(i))
)
i∈I

and
(∑

i∈I φ(j)(v(i))
)
j∈J are summable with

Σ2,J(Σ2,I(φ(j) ◦ v))j∈J = Σ2,I(Σ2,Jφ(v(i)))i∈I = Σ2,I(φ ◦ v).

By strong linearity of each φ(j), we have Σ2,I(φ(j)◦v) = φ(j)(v0) for all j ∈ J ,
whence φ(v0) = Σ2,I(φ ◦ v). This shows that φ is strongly linear. 2

For each set I, we define a function ΣLin
I as follows. The domain of ΣLin

I is
the set of Lin-summable families V1 −! V2 indexed by I, and for such a family
φ, we define ΣLin

I = Σi∈Iφ(i) ∈ Lin+(V1, V2).

Proposition 1.25. The structure (Lin+(V1, V2),ΣLin) is a summability space.
Moreover, it is ultrafinite if (V2,Σ2) is ultrafinite.

Proof. Let J be a set, let (φ(j))j∈J and (ψ(j))j∈J be Lin-summable, and let
c ∈ k. We also fix once and for all a set I and a summable family v ∈ dom Σ1,I .

Note that for each set L and Lin-summable family ϕ indexed by L, the func-

tion Σl∈Lϕ(l) the pointwise sum Σ
P(V1)
L ϕ in the bornological space (V2)(P(V1)).

So the equalities in SS1, SS2 and SS3c are automatically satisfied, and we only
need to show the summability of families involved in the axioms SS1–SS4 and
UF.

The family
(φ(j)(v(i)) + cψ(j)(v(i)))(i,j)∈I×J

is summable by SS2 in (V2,Σ2) and definition of Lin-summability. So φ + cψ
is Lin-summable. The axiom SS1 follows trivially from the validity of SS1 in
(V2,Σ2), and likewise SS4 follows from the validity of SS4 in (V2,Σ2).

If J1, J2 are sets and ϕ : J1 −! J2 is a bijection, then for all Lin-summable
φ : J2 −! Lin+(V1, V2), the function

(ϕ, Id) : J1 × I −! J2 × I
(j, i) 7−! (ϕ(j), i)

is bijective, so by SS2 in (V2,Σ), the family (φ(ϕ(j))(v(i)))(j,i)∈J1×I is sum-
mable. Therefore φ ◦ ϕ is Lin-summable, i.e. SS2 holds.

Let us now show that SS3 holds. Suppose that J =
⊔
l∈L Jl for a set L. For

l ∈ L, we write φl = φ � Jl. Note that

I × J =
⊔
l∈L

I × Jl.

12



It follows that and from SS3 in (V2,Σ2) that each family φl(v) for l ∈ L is
summable in (V2,Σ2). So each φl is Lin-summable. Write σ(l) =

∑
j∈Jl φj for

each l ∈ L. We claim that σ := (σ(l))l∈L is Lin-summable. Indeed, the family

σ(v) =

∑
j∈Jl

φj(v(i))


(i,l)∈I×L

is summable by SS3 in (V2,Σ2). Therefore SS3 holds.
Let us next prove that SS4 holds. Suppose that J = J1 t J2, that φ1 :

J1 −! Lin+(V1, V2) and φ2 : J2 −! Lin+(V1, V2) are Lin-summable and write
φ1 t φ2 = ϕ. Then we have ϕ(v) = φ1(v) t φ2(v), so ϕ(v) is summable by
SS4 in (V2,Σ2).

Assume now that (V2,Σ) is ultrafinite. Let (f(j))j∈J be a family of k-
valued functions with finite domains dom fj = Xj for each j ∈ J . The family
(fj(x)φ(j)(v(i)))(i,j)∈I×J∧x∈Xj is summable by ultrafiniteness of (V2,Σ2), so
fφ is Lin-summable. Thus UF holds. 2

We now give a criterion for the summability of families of strongly linear
maps on bornological spaces.

Proposition 1.26. Assume that (V,Σ) is ultrafinite. Suppose that k is equipped
with the minimal summability structure. Let Ω be a set and let B be a bornology
on Ω. Let J be a set and let φ : J −! Lin+(k[B], V ) be a function. Then φ is
Lin-summable if and only if for all S ∈ B, the family (φ(j)(1{p}))(j,p)∈J×S is
summable in (V,Σ).

Proof. We need only prove the “if” direction of the equivalence. So let I be
a set and let f : I −! k[B] be B-summable. Write

Ip := {i ∈ I : p ∈ supp f(i)}

for each p ∈ Ω, and set

S :=
⋃
i∈I

supp f(i) ∈ B.

Since S ∈ B, the family (φ(j)(1{p}))j∈J∧p∈S is summable in (V,Σ). For
p ∈ Ω, the family (f(i)(p))i∈I is summable in k, so Ip is finite. We deduce
by ultrafiniteness that the family (φ(j)(1{p}f(i)(p)))j∈J∧p∈Ω∧i∈Ip is summable,
whence (φ(j)(1{p}f(i)(p)))j∈J∧p∈Ω∧i∈I is summable by SS4 in (V1,Σ1). It fol-

lows from Proposition 1.6 that the family
(∑

p∈S φ(j)(1{p}f(i)(p))
)
j∈J∧i∈I

is

summable. Since each φ(j) is strongly linear, we have (φ(j)(f(i)))j∈J∧i∈I =(∑
p∈S φ(j)(1{p}f(i)(p))

)
j∈J∧i∈I

. So (φ(j)(f(i)))j∈J∧i∈I is summable, i.e. φ is

Lin-summable. 2
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1.3 Summability algebras

Let (A,+, ·) be a algebra, where (A,+, ·) is a possibly non-commutative, possibly
non-unital ring. Let Σ be a summability structure on the underlying vector
space of A.

Definition 1.27. We say that (A,Σ) is a summability algebra if the following
axiom is satisfied.

SA For all sets I, J and all (f ,g) ∈ dom ΣI × dom ΣJ , the family f · g :=
(f(i) · g(j))(i,j)∈I×J lies in dom ΣI×J , and we have

∑
I×J

(f · g) =

(∑
I

f

)
·
(∑

J

g

)
.

Proposition 1.28. Let (A,Σ) be a summability algebra. Then for a ∈ A, the
left and right product functions a · : A −! A; b 7! a·b and · a : A −! A; b 7! b·a
are strongly linear.

Proof. By SA, for all summable families (bi)i∈I in A, the families (a · bi)i∈I
and (bi · a)i∈I are summable, with

∑
i∈I a · bi = a ·

(∑
i∈I bi

)
and

∑
i∈I bi · a =(∑

i∈I bi
)
· a. 2

Example 1.29. Let (Γ,+, 0, <) be a linearly ordered Abelian group, and con-
sider the summability space A := Hγ∈Γk of example 1.9. Using the group
structure on Γ, one can define an algebra operation

∀f, g ∈ A,∀γ ∈ Γ, (f · g)(γ) :=
∑

α+β=γ

f(α)g(β).

The definition is due to Hahn [7]. This algebra is a summability algebra. See
section 3 for more details.

Proposition 1.30. Let (V,Σ) be a summability space. Then (Lin+(V ),ΣLin)
is a summability algebra.

Proof. By Proposition 1.25, we need only prove that SA holds in Lin+(V ). Let
I and J be sets, let φ : I −! Lin+(V ) and ψ : J −! Lin+(V ) be Lin-summable
with respective sums φ and ψ. Let L be a set and let v : L −! V be summable
in (V,Σ).

Since ψ is Lin-summable, the family (ψ(j)(v(l)))(j,l)∈J×L is summable in
(V,Σ). Since φ is Lin-summable, the family ((φ(i) ◦ ψ(j))(v(l)))(i,j,l)∈I×J×L
is summable in (V,Σ). This shows that (φ(i) ◦ψ(j))(i,j)∈I×J is Lin-summable.
Let v0 ∈ V . As above, the family

F := ((φ(i) ◦ψ(j))(v0))(i,j,l)∈I×J
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is summable in (V,Σ). We have

(φ ◦ ψ)(v0) =

(∑
i∈I
φ(i)

)∑
j∈J

ψ(j)(v0)


=
∑
i∈I
φ(i)

∑
j∈J

ψ(j)(v0)


=
∑
i∈I

∑
j∈J

φ(i)(ψ(j)(v0)) (each φ(i) is strongly linear)

=
∑

(i,j)∈I×J
φ(i)(ψ(j)(v0)). (Proposition 1.6)

So φ ◦ ψ =
∑
I×J φ(i) ◦ψ(j). Therefore SA holds in Lin+(V ). 2

A closed ideal of a summability algebra (A,Σ) is a two-sided ideal of A
which is also a closed subspace of (A,Σ).

1.4 Algebras of formal power series

Let J be a set. Write
J? :=

⋃
n∈N

Jn

where J0 = {∅}. We see elements of J? as finite words with letters in J .
For m,n ∈ N, if β = (β1, . . . , βm), γ = (γ1, . . . , γn) ∈ J?, we define

βγ := (β1, . . . , βm, γ1, . . . , γn) ∈ Jm+n ⊆ J?,

where it is implied that ∅θ = θ∅ = θ for all θ ∈ J?. This concatenation operation
endows J? with a structure of cancellative monoid, with the important property
that given θ ∈ J?, the set

{(β, γ) ∈ J? × J? : θ = βγ} (3)

is finite (it has exactly n+ 1 elements when θ ∈ Jn).
The following construction, also considered in [21, Chapter 0, p 17], is a par-

ticular case of Bourbaki’s notion of total algebra [2, Chapter III, Section 2.10].

Proposition 1.31. The vector space kJ
?

is a unital algebra under the Cauchy
product

(P ·Q)(θ) :=
∑
θ=βγ

P (β)Q(γ), (4)

for any P,Q ∈ kJ? and any θ ∈ J?.

Notation 1.32. We write k〈〈J〉〉 := kJ
?

.
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We recall some properties of k〈〈J〉〉. For P ∈ k〈〈J〉〉 and n ∈ N, we write

suppn P := (suppP ) ∩ Jn = {θ ∈ Jn : P (θ) 6= ∅}.

Note that we have

suppn P ·Q ⊆
⋃

m+p=n

(suppm P ) (supppQ), (5)

where AB = {ab : (a, b) ∈ A× B} for all subsets A,B ⊆ J?. Concatenation of
subsets of J? is associative. An easy induction gives:

Lemma 1.33. For m,n ∈ N and P1, . . . , Pn ∈ k〈〈J〉〉, we have

suppm P1 · · ·Pn ⊆
⋃

m1+···+mn=m

(suppm1
P1) · · · (suppmn Pn).

The set

k〈〈J〉〉0 := {P ∈ k〈〈J〉〉 : ∅ 6∈ suppP} = {P − P (∅) : P ∈ k〈〈J〉〉}

is a two-sided ideal in k〈〈J〉〉.
Given θ ∈ J?, we write Xθ for the function 1{θ} : J? −! k with support {θ}

and Xθ(θ) = 1. So X∅ = 1, and writing θ = (θ1, . . . , θn), we have

Xθ = Xθ1 · · ·Xθn .

We will write k〈〈m〉〉 := k〈〈J〉〉 for m ∈ N and J = {0, . . . ,m − 1}. Note
that k〈〈0〉〉 = k and that k〈〈1〉〉 is the commutative algebra of power series in one
variable X0 and with coefficients in k.

By Proposition 1.12, pointwise summability with respect to the minimal
summability structure on k gives an ultrafinite summability structure on k〈〈J〉〉 =
kJ

?

, which we denote by Σ. Recall that a family P : I −! k〈〈J〉〉 is pointwise
summable here if and only if for all θ ∈ J?, the family (P(i)(θ))i∈I has finite
support, i.e. if and only if the set

Iθ := {i ∈ I : θ ∈ supp P(i)}

is finite. As in (2), the series representation of a P ∈ k〈〈J〉〉 is

P =
∑
θ∈J?

P (θ)Xθ.

Proposition 1.34. The structure (k〈〈J〉〉,Σ) is a summability algebra.

Proof. We need only show that SA holds. Let I and L be sets, let P : I −!
k〈〈J〉 and Q : L −! k〈〈J〉〉 be pointwise summable. Let n ∈ N and θ ∈ Jn. We
have

(I × L)θ = {(i, l) ∈ I × L : θ ∈ supp P(i) ·Q(j)}
= {(i, l) ∈ I × L : ∃γ, β ∈ J?, i ∈ Iβ ∧ l ∈ Lγ}
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where for β, γ ∈ J? the sets Iβ := {i ∈ I : β ∈ supp P(i)} and Lγ := {l ∈ L :
γ ∈ supp Q(l)} are finite. Since {(β, γ) ∈ J? × J? : β : γ = θ} is finite, we
deduce that (I × L)θ is finite. So (P(i)Q(l))(i,l)∈I×L is pointwise summable.

For n ∈ N and θ ∈ Jn, the previous arguments give ∑
(i,l)∈I×L

P(i) ·Q(l)

 (θ) =
∑
β:γ=θ

∑
(i,l)∈Iβ×Lγ

P(i)(β)Q(l)(γ)

=
∑
β:γ=θ

∑
i∈Iβ

P(i)(β)

∑
l∈Lγ

Q(l)(γ)


=

∑
β:γ=θ

(∑
i∈I

P(i)

)
(β)

(∑
l∈L

Q(l)

)
(γ)

=

((∑
i∈I

P(i)

)
·
(∑
l∈L

Q(l)

))
(θ).

This shows that
∑

(i,l)∈I×L P(i) ·Q(l) =
(∑

i∈I P(i)
)
·
(∑

l∈L Q(l)
)
, hence that

SA holds. 2

2 Derivations and endomorphisms

2.1 Strongly linear derivations

Let (A,Σ) be a summability algebra. We write End+(A) for the set of strongly
linear endomorphisms of algebra of A. Note by Proposition 1.21 that End+(A)
is closed under composition.

Definition 2.1. A strongly linear derivation on A is a strongly linear func-
tion ∂ : A −! A which satisfies the Leibniz product rule

∀a, b ∈ A, ∂(a · b) = ∂(a) · b+ a · ∂(b).

We write Der+(A) for the set of strong derivations on A.

It follows from Proposition 1.21 that
(
Der+(A),+, [ ] , .

)
is a Lie algebra.

Proposition 2.2. Der+(A) is a closed subspace of Lin+(A).

Proof. Let I be a set, let (∂i)i∈I be a family in Der+(A) which is Lin-summable,
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and write ∂ :=
∑
i∈I ∂i. Let a, b ∈ A. We have

∂(a · b) =
∑
i∈I

∂i(a · b)

=
∑
i∈I

(∂i(a) · b+ a · ∂i(b))

=
∑
i∈I

∂i(a) · b+
∑
i∈I

a · ∂i(b)

=

(∑
i∈I

∂i(a)

)
· b+ a ·

(∑
i∈I

∂i(b)

)
(SA)

= ∂(a) · b+ a · ∂(b).

So ∂ ∈ Der+(A). 2

2.2 Evaluating formal power series

Given a set J , the summability algebra k〈〈J〉〉 extends the completion k 〈J〉
of the free associative algebra on J . It is well-known [21, Chapter 0, p 17–
18] that elements of k〈J〉 can be evaluated at tuples of elements in its maximal
ideal. This allows for the development of a formal Lie correspondence for formal
power series, based on the evaluation of the Taylor series of the exponential and
logarithm.

It is very convenient to extend these results to more general summability
algebras. Then one can see k〈〈J〉〉 as a universal and free summability algebra,
acting by evaluation on summability algebras, so that universal identities (such
as exp ◦ log = id) that can be stated in summability algebras could be proved
once in k〈〈J〉〉 and then obtained in general by evaluating into summability
algebras.

Definition 2.3. Let (A,Σ) be a unital ultrafinite summability algebra. Then we
say that (A,Σ) has evaluations if A is of the form A = k+m where m is a closed
ideal, and for all sets J , all f ∈ dom Σm

J , the family (f(θ1) · · · f(θn))θ=(θ1,...,θn)∈J?
is summable in (A,Σ).

Remark 2.4. Let us justify this definition.
Given a summability algebra A and a family f : J −! A, the evaluation

evf (P ) of a formal power series P ∈ k〈〈J〉〉 at f ought to be the sum of the fam-
ily (P (j1, ..., jn)f(j1) · · · f(jn))(j1,...,jn)∈J? . Indeed, if all such families are sum-
mable, then evf will be the only strongly linear morphism of algebras between
k〈〈J〉〉 and A that sends Xj to f(j) for each j ∈ J .

For P =
∑
j∈J

Xj , this entails that f be summable. Furthermore, if f(j) ∈

k× for a certain j ∈ J , then for P =
∑
k∈N

(f(j))−kXk
j , we see that the family

(P (j1, ..., jn)f(j1) · · · f(jn))(j1,...,jn)∈J? has (1)θ∈{j}? as a subfamily, hence is not

18



summable. So if evaluations are to be defined in the case when A = k〈〈J〉〉, then
f should range in the maximal ideal k〈〈J〉〉0 of k〈〈J〉〉.

In general, writing m for the set of elements eva(P ) ∈ A where J ranges
among all sets, P ranges among all elements in k〈〈J〉〉0 and f ranges among sum-
mable families for which (P (j1, ..., jn)f(j1) · · · f(jn))(j1,...,jn)∈J? is summable,
then m is a two-sided ideal of the algebra A′ := k + m.

Imposing furthermore that m be a closed subspace of A, we might as well
take A = A′ and thus work with summability algebras of the form A = k + m
for a two-sided ideal m of A.

We will see (Proposition 2.8) that such a summaility algebra k + m is local
with maximal ideal m. Let J be set. Let us check that k〈〈J〉〉 = k+k〈〈J〉〉0 itself
has evaluations.

Proposition 2.5. The set k〈〈J〉〉0 is a closed ideal of k〈〈J〉〉, and (k〈〈J〉〉,Σ) has
evaluations.

Proof. Let Q : I −! k〈〈J〉〉0 be pointwise summable. We have
(∑

i∈I Q(i)
)

(∅) =∑
i∈∅Q(i)(∅) = 0, so

∑
i∈I Q(i) ∈ k〈〈J〉〉0, which is thus a closed ideal.

We next want to show that the family (Q(i1) · · ·Q(in))(i1,...,in)∈I? is point-
wise summable. Let m ∈ N and θ = (θ1, . . . , θm) ∈ Jm. Writing Iβ := {i ∈ I :
β ∈ supp Q(i)} for all β ∈ J?, we have

I?θ = {i ∈ In : n ∈ N ∧ θ ∈ suppm Q(i1) · · ·Q(in)}
⊆

⋃
n∈N

⋃
β1···βn=θ

Iβ1
× · · · × Iβn ,

Since each Q(i) lies in k〈〈J〉〉0, we have supp0 Q(i) = ∅ for all i ∈ I, so we have
in fact

I?θ ⊆
⋃
n6m

⋃
β1···βn=θ

Iβ1 × · · · × Iβn .

Now since each set Xn := {(β1, . . . , βn) ∈ (J?)n : β1 · · ·βn = θ} is finite and
each Iβ , β ∈ J? is finite, we deduce that I?θ is finite. Therefore the family
(Q(i1) · · ·Q(in))i=(i1,...,in)∈I? is pointwise summable. 2

If (A,m,Σ) are as in Definition 2.3, then for all sets J , all f ∈ dom Σm
J and

all P ∈ k〈〈J〉〉, we define the evaluation of P at f as

evf (P ) :=
∑

θ=(θ1,...,θn)∈J?
P (θ)f(θ1) · · · f(θn) ∈ A.

If J = {0, . . . ,m− 1} for an m ∈ N, then we simply write evf(0),...,f(m−1)(P ) :=
evf (P ).

Theorem 2.6. Assume that A = k + m has evaluations. For all sets J and all
f ∈ dom Σm

J , the evaluation map evf : k〈〈J〉〉 −! A is a strongly linear morphism
of algebras.
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Proof. That evf is a linear map is a direct consequence of the fact that
Σm
{(n,θ):n∈N∧θ∈Jn} is linear. For P,Q ∈ k〈〈J〉〉, SA gives

evf (P ) · evf (Q) =
∑

m,p∈N∧β∈Jm∧γ∈Jp
P (β)Q(γ)f(β1) · · · f(βm) · f(γ1) · · · f(γp)

=
∑

n∈N∧θ∈Jn
(P ·Q)(θ)f(θ1) · · · f(θn)

= evf (P ·Q).

So evf is a morphism of algebras.
Let P : I −! k〈〈J〉〉 be pointwise summable and set P :=

∑
i∈I P(i). Con-

sider the element
P ′ :=

∑
θ∈J?

Xθ

of k〈〈J〉〉. Since (A,Σ) has evaluations, we have a pointwise summable family
(P ′(θ)f(θ1) · · · f(θn))θ=(θ1,...,θn)∈J? . Consider the family of finite subsets of k

(C(n,θ))θ=(θ1,...,θn)∈J? = ({P(i)(θ) : P(i)(θ) 6= 0}})θ=(θ1,...,θn)∈J? .

Recall that (A,Σ) is ultrafinite, so (cP ′(θ)f(θ1) · · · f(θn))θ=(θ1,...,θn)∈J?∧c∈C(n,θ)

is summable in (A,Σ). By SS2, so is the family

g := (P(i)(θ)f(θ1) · · · f(θn))θ=(θ1,...,θn)∈J?∧i∈Iθ .

By SS4, the family

(evf (P(i)))i∈I = (P(i)(θ)f(θ1) · · · f(θn))θ=(θ1,...,θn)∈J?∧i∈I

is summable as the union of the families g and (0)θ=(θ1,...,θn)∈J?∧i∈I\Iθ . Again
by ultrafiniteness of (A,Σ), we have

∑
i∈I

evf (P(i)) =
∑

n∈N∧θ=(θ1,...,θn)

(∑
i∈Iθ

P(i)(θ)

)
f(θ1) · · · f(θn) = evf (P ).

This shows that evf is strongly linear. 2

The previous theorem allows us to derive identities in a sumability algebra
A = k+m with evaluations from universal identities in k〈〈J〉〉 which only involve
finite products and infinite sums. We apply this in the next two results.

The next proposition extends this to identities involving composition of
formal power series (i.e. evaluations of formal power series at formal power
series). We will apply this to the exponential and logarithmic series in the next
subsection.

Proposition 2.7. Let A = k+m be a summability algebra that has evaluations.
Let I, J be sets. Consider two families Q : I −! k〈〈J〉〉0 and f : J −! m which
are summable in their respective algebras. For P ∈ k〈〈I〉〉, we have

evf (evQ(P )) = ev(evf (Q(i)))i∈I (P ).
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Proof. Let i0 ∈ I. We have evQ(Xi0) = Q(i0), so

evf (evQ(Xi0)) = evf (Q(i0)) = ev(evf (Q(i)))i∈I (Xi0).

Since evf ◦ evQ and ev(evf (Q(i)))i∈I are strongly linear morphisms of algebras,
we deduce that the identity holds for all P ∈ k〈〈I〉〉. 2

Proposition 2.8. Let A = k + m have evaluations. Then A is local algebra
with maximal ideal m.

Proof. We first show that each element of 1 + m is invertible in A. Let
a = 1 + ε ∈ 1 + m. Since (A,Σ) has evaluations, writing

P := 1−X0 +X2
0 −X3

0 + · · · ∈ k〈〈1〉〉,

we may consider the evaluation evε(P ) ∈ A. We have P (1+X0) = (1+X0)P = 1
in k〈〈1〉〉, so Theorem 2.6 gives evε(P ) · (1 + ε) = (1 + ε) · evε(P ) = 1, i.e. 1 + ε
is a unit in A with inverse evε(P ).

We deduce that k×(1 + m) = k× + m is contained in U(A). Since m is a
proper ideal, it follows that A \ U(A) = m. So A \ U(A) is an ideal, whence A
is local with maximal ideal m. 2

2.3 Exponential and logarithm

In the sequel of Section 2, we assume that k has characteristic zero. It is known
[24] that given a finite set J , the algebra k〈〈J〉〉 is equipped with an exponential
exp: k〈〈J〉〉0 −! 1 + k〈〈J〉〉0 and a logarithm log : 1 + k〈〈J〉〉0 −! k〈〈J〉〉0, which
are inverses of one another, and are given by evaluating the usual formal series.
Using our previous results, we will recover a number of known identities known
in that case for all summability algebras with evaluations.

We consider two particular elements of k〈〈1〉〉 defined as follows

E0 :=
∑
n>0

1

n!
Xn

0 and L0 :=
∑
n>1

(−1)n+1

n
Xn

0 .

Given a summability algebra (A,Σ) which has evaluations, and writing m for
its maximal ideal, we have two functions

exp : m −! 1 + m

δ 7−! evδ(E0)

and

log : 1 + m −! m

δ 7−! evδ−1(L0).

Proposition 2.9. [24, Section 1.7, Theorem 7.2] We have

evL0
(E0 − 1) = evE0−1(L0) = X0.
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Corollary 2.10. Let (A,Σ) be a summability algebra with evaluations, with
maximal ideal m. Then exp : m −! 1 + m and log : 1 + m −! m are bijective,
and are functional inverses of one another.

Proof. This follows from Proposition 2.7. For instance, for ε ∈ m, we have

log(exp(ε)) = evevε(E0−1)(L0) = evε(evL0
(E0 − 1)) = evε(X0) = ε.

The other identity follows similarly. 2

Next consider the following elements of k〈〈2〉〉 for n ∈ N:

E1 := exp(X1) =
∑
n∈N

1

n!
Xn

1

Kn :=
∑

m1+p1,··· ,mi+pi>1
m1+p1+...+mi+pi=n

1

m1!p1! · · ·mn!pn!
Xm1

0 Xp1
1 · · ·Xmn

0 Xpn
1 (6)

X0 ∗X1 :=
∑
n>0

(−1)n+1

n
Kn.

We have the formal Baker–Campbell–Hausdorff Theorem:

Proposition 2.11. [24, Section 1.8] We have evE0·E1−1(L0) = X0∗X1. Moreover,
K0 = X0 +X1 and each Kn, n > 0 lies in the Lie subalgebra of (k〈〈2〉〉,+, 0, [·, ·])
generated by commutators of X0 and X1.

Let A = k + m have evaluations. For all δ1, δ2 in m, we define

δ1 ∗ δ2 := evδ1,δ2(X0 ∗X1) ∈ m. (7)

As a consequence of Proposition 2.7, we have:

Corollary 2.12. Let (A,Σ) be a summability algebra with evaluations, and let
m denote its maximal ideal. Then for all δ1, δ2 ∈ m, we have exp(δ1) · exp(δ2) =
exp(δ1 ∗ δ2).

2.4 A group isomorphism between derivations and auto-
morphisms

Let (A,Σ) be an ultrafinite, unital summability algebra. Let m ⊆ Lin+(A) be a
closed subalgebra such that k IdA + m has evaluations.

Proposition 2.13. The exponential induces a bijection between Der+(A) ∩ m
and End+(A) ∩ IdA +m.

Proof. Our proof is a slight adaptation of [20, Theorem 4] to our formal
context. Let ∂ ∈ Der+(A) ∩ m and let a, b ∈ A. For n ∈ N, an easy induction
using the Leibniz product rule shows that
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∂[n](a · b) =

n∑
i=0

(
n

i

)
∂[i](a) · ∂[n−i](b).

We have

exp(∂)(a) · exp(∂)(b) =

(∑
m∈N

1

m!
∂[m](a)

)
·

∑
p∈N

1

p!
∂[p](b)


=
∑
m,p∈N

1

m!p!
∂[m](a) · ∂[p](b) (SA)

=
∑
n∈N

∑
m+p=n

1

m!p!
∂[m](a) · ∂[p](b) (SS3)

=
∑
n∈N

n∑
i=0

1

i!(n− i)!∂
[i](a) · ∂[n−i](b)

=
∑
n∈N

∂[n](a · b)
k!

= exp(∂)(a · b).

So exp(∂) ∈ End+(A). Conversely, let σ ∈ End+(A) ∩ IdA +m and write ε :=
IdA−σ ∈ m. Let a, b ∈ A. As in the proof of [20, Theorem 4], there is a family

(ck,l,n)k,l,n∈N ∈ QN3

such that for all n > 0, we have both

ε[n](a · b) =

n∑
l=0

l∑
m=0

cn,l,mε
[m](a) · ε[l−m](b) in A, and

(z1 + z2 − z1z2)n =

n∑
l=0

l∑
m=0

cn,l,mz
m
1 z

l−m
2 in Q[[z1, z2]].

Note that given l,m ∈ N we have

∀n > l +m, cn,l,m = 0. (8)

So the sum Sl,m :=
∑+∞
n=1

1
ncn,l,m has finite support. We have

log(1− (z1 + z2 − z1z2)) = log(1− z1) + log(1− z2)

in Q[[z1, z2]]. Identifying in the left and right hand terms the coefficients of zp1z
q
2

for p 6= 0 and q 6= 0, we deduce ithat Sl,m = 0 if m 6∈ {0, l} or l = 0. Considering
the coefficients of zl1 and zl2 for l > 1, we see that Sl,0 = Sl,1 = 1

l otherwise.
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Now

log(σ)(a · b) =
∑
n>1

1

n

n∑
l=0

l∑
m=0

cn,l,mε
[m](a) · ε[l−m](b)

=
∑
n>1

n∑
m6l6n

cn,l,m
n

ε[m](a) · ε[l−m](b)

=
∑

n>1∧m6l6n

cn,l,m
n

ε[m](a) · ε[l−m](b) (Proposition 1.6)

=
∑

l>0∧m6l∧n>l∧n>1

cn,l,m
n

ε[m](a) · ε[l−m](b) (SS2)

=
∑
l>0

∑
n>1∧n>l>m

cn,l,m
n

ε[m](a) · ε[l−m](b) (Proposition 1.6)

=
∑
l>0

∑
m6l

∑
n>1∧n>l∧n6l+m

cn,l,m
n

ε[m](a) · ε[l−m](b) ((8))

=
∑
l>0

∑
m6l

Sl,mε
[m](a) · ε[l−m](b)

=
∑
l>1

1

l

∑
m∈{0,l}

ε[m](a) · ε[l−m](b)

=
∑
l>1

1

l
(a · ε[l](b) + ε[l](a) · b)

= a · log(1− ε)(b) + log(1− ε)(a) · b
= a · log(σ)(b) + log(σ)(a) · b.

Therefore log(σ) is a derivation. 2

Theorem 2.14. Consider the operation ∗ of section 2.3 on m. The structures
(Der+(A) ∩ m, ∗) and (End+(A) ∩ IdA +m, ◦) are groups, and the exponential
map of Proposition 2.13 is a group isomorphism.

Proof. By Proposition 2.8, each σ ∈ IdA +m is invertible in IdA +m, and its
inverse is obviously a morphism of algebra of A, so End+(A)∩IdA +m is a group
under composition. We conclude with Corollary 2.12 and Proposition 2.13. 2

Corollary 2.15. The group (End+(A)∩IdA +m, ◦) is divisible and torsion-free.

Proof. Let n ∈ N>0 and a ∈ Der+(A) ∩ m. Note that the n-fold iterate of a
in (Der+(A), ∗) is a ∗ a · ∗a = na. It follows since k has haracteristic zero that
(Der+(A) ∩ m, ∗) is torsion-free. Furthermore, we see that the n-fold iterate of
1
na in (Der+(A), ∗) is a, whence (Der+(A)∩m, ∗) is divisible. We conclude with
Theorem 2.14. 2
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Proposition 2.16. For all σ ∈ IdA +m, writing C(σ) = {µ ∈ End+(A) ∩
IdA +m : µ ◦ σ = σ ◦ µ}, we have a group morphism

[·] : (k,+, 0) −! (C(σ), ◦, IdA)

c 7−! σ[c] := exp(c log(σ)),

with σ[1] = σ and (σ[c])[c′] = σ[cc′] for all c, c′ ∈ k. It is injective if σ 6= IdA.

Proof. Write ∂ := log(σ) ∈ Der+
≺(A) and let c ∈ k. Recall by Proposition 2.11

that for n ∈ N>0, the terms ev(∂,c∂)(Kn) and ev(c∂,∂)(Kn), where Kn is as
in (6), lie in the Lie algebra generated by commutators in ∂ and c∂. All such
commutators are zero, so ev(∂,c∂)(Kn) = ev(c∂,∂)(Kn) = 0. It follows since
ev(∂,c∂)(K0) = ∂ + c∂ = ev(c∂,∂)(K0) that (c∂) ∗ ∂ = (c+ 1)∂ = ∂ ∗ (c∂), so c∂

commutes with ∂, whence exp(c∂) = σ[c] ∈ C(σ).
For c, c′ ∈ k, we have σ[c+c′] = exp(c∂ + c′∂) = exp((c∂) ∗ (c′∂)) as above.

So σ[c+c′] = exp(c∂) ◦ exp(c′∂) = σ[c] ◦ σ[c′]. Thus [·] is a group morphism. We
also have σ[cc′] = exp(c′ log(exp(c log(σ)))) = exp(cc′ log(σ)) = σ[cc′].

Assume that σ 6= IdA, so log(σ) 6= 0. The kernel of the morphism is

{c ∈ k : exp(c log(σ)) = IdA} = {c ∈ k : c log(σ) = 0} = {0}.

So this morphism is injective. 2

3 Application to Noetherian series

3.1 Noetherian orderings

Definition 3.1. Let (Ω, <) be a partially ordered set. A chain in (Ω, <) is a
subset of Ω which is linearly ordered by the induced ordering. A decreasing
chain in (Ω, <) is chain Y ⊆ Ω without minimal element, i.e. with

∀y ∈ Y, ∃z ∈ Y, (z < y).

An antichain in (Ω, <) is a subset Y ⊆ Ω, no two distinct elements of which
are comparable, i.e. with

∀y, z ∈ Y, (y < z ∨ y = z) =⇒ y = z.

We say that (Ω, <) is Noetherian, or that < is a Noetherian ordering on Ω, if
there are no infinite decreasing chains and no infinite antichains in (Ω, <).

Note that linear Noetherian orderings are exactly well-orderings.

Proposition 3.2. [10, Proposition A.1] An ordered set (Ω, <) is Noetherian if
and only if every sequence u : N −! Ω has an increasing subsequence.
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If (X,<X) is a partially ordered set, then a bad sequence in X is a sequence
u : N −! X such that there are no numbers i, j ∈ N with i < j and ui 6X uj .
Given a function f : X −! N, a bad sequence u in X is said minimal for f if for
all i ∈ N, there are no bad sequences v in X with (v0, . . . , vi−1) = (u0, . . . , ui−1)
and f(vi) < f(ui). If there is a bad sequence in X, then there is a minimal one
for f (see [10, p 307]).

Lemma 3.3. [9, Theorem 2.1] Let (X,<) be a partially ordered set. The fol-
lowing statements are equivalent

a) (X,<) is Noetherian.

b) There is no bad sequence in (X,<).

See [9, Theorem 2.1] for other characterizations of Noetherian orderings.

Lemma 3.4. [9, Theorem 2.3] Let (Ω1, <1) and (Ω2, <2) be Noetherian ordered
sets. Then their product Ω1 × Ω2 is Noetherian for the ordering

(p1, p2) < (q1, q2)⇐⇒ ((p1, p2) 6= (q1, q2) ∧ p1 6 p2 ∧ q1 6 q2).

Proposition 3.5. Let (Ω, <) be an ordered set. Then the set N of Noetherian
subsets of Ω is a bornology on Ω.

Proof. If X ⊆ Y are subsets of Ω, then a decreasing chain (resp. an antichain)
in X is a decreasing chain (resp. an antichain) in Y . So X is Noetherian if Y
is Noetherian. Let X1, X2 be Noetherian subsets of Ω. If C were an infinite
decreasing chain in X1∪X2, then C∩X1 or C∩X2 would be a decreasing chain
in X1 or X2 respectively, which cannot be. If A is an antichain in X1 ∪ X2,
then A ∩X1 and A ∩X2 are antichains in X1 and X2 respectively, so A must
be finite. So X1 ∪X2 is Noetherian. Thus N is a bornology on Ω. 2

We next state a weaker and simplified version of van der Hoeven’s theorem
[10, Appendix A.4]. A function ϑ sending each p ∈ Ω to a subset ϑ(p) of Ω is
called a choice operator on Ω. The choice operator ϑ is said Noetherian if
for all Noetherian subsets Y ⊆ Ω, the set

Yϑ :=
⋃
y∈Y

ϑ(y) ⊆ Ω

is Noetherian. It is said strictly extensive if for all p ∈ Ω, we have

p < ϑ(p), that is, ∀y ∈ ϑ(p), p < y.

For any non-empty word w = (w0, . . . , wm) ∈ Ω? \ {∅}, we write w• := wm ∈ Ω
for the last “letter” of w. Let Y ⊆ Ω be a subset. Let ϑ+(Y ) denote the set of
non-empty words (w0, . . . , wn) ∈ Ω? \ {∅} where w0 ∈ Y , and for each i < n, we
have wi+1 ∈ ϑ(wi). We endow ϑ+(Y ) with the ordering <ϑ defined by

w <ϑ w
′ ⇐⇒ w• < w′•.
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Proposition 3.6. Let ϑ be a Noetherian and strictly extensive choice operator
on Ω. Then for all Noetherian subsets Y of Ω, the set ϑ+(Y ) is Noetherian for
<ϑ.

Proof. This version follows from an application of [10, Theorem A.4] to a
simple case. Nonetheless, let us adapt van der Hoeven’s proof to the present
simplified setting.

Assume for contradiction that ϑ+(Y ) is not Noetherian. So there is a min-
imal bad sequence (wi)i∈N ∈ ϑ+(Y )N for the length function w 7! |w|. As-
sume that there is an infinite set I ⊆ N with |wi| = 2 for all i ∈ I. Then
Y := {wi,0 : i ∈ I} ⊆ Y is Noetherian. Since ϑ is a Noetherian choice operator,
the set

Yϑ :=
⋃
i∈I

ϑ(xi,0)

is Noetherian. But then {wi : i ∈ I} is Noetherian for <ϑ: a contradiction.
So there is an m ∈ N with |wj | > 2 for all j > m. For j > m, we write

zj := (wj,0, . . . , wj,|wj |−2) ∈ ϑ+(Y ). We claim that the set Z := {zj : j > m},
is Noetherian for <ϑ. Indeed, assume for contradiction that (zji)i∈N is a bad
sequence in Z with j0 6 j1 6 · · · . We further claim that

u := (w0, . . . , wj0−1, zj0 , zj1 , . . .)

is a bad sequence, contradicting the minimality of (wi)i∈N. Assume for contra-
diction that u is not bad. Since (zji)i∈N is bad, there must exist i < j0 and
p ∈ N with wi 6ϑ zjp . Since ϑ is strictly extensive, we have

(wjp)• ∈ ϑ((zjp)•) > (zjp)•,

so wi <ϑ wm: a contradiction. Therefore Z is Noetherian. It follows since ϑ is
Noetherian that {wi : i > m} is Noetherian: a contradiction. 2

3.2 Spaces of Noetherian series

We fix an ordered set (Ω, <) and a summability space V with the minimal
summability structure. We have an ultrafinite summability space (V [N ],ΣN )
where N is the bornology of Noetherian subsets of Ω. We say that (V [N ],ΣN )
is a space of Noetherian series.

Lemma 3.7. Let I be a set and let f : I −! V [N ] be a function. Consider the
set

Nf := {(i, p) ∈ I × Ω : p ∈ supp f(i)},
ordered by (i, p) <f (j, q) ⇐⇒ p < q. Then f is N -summable if and only if
(Nf , <f ) is Noetherian.

Proof. Consider a non-empty chain C for (Nf , <f ). Given (i, p) ∈ C, we have
p ∈ ⋃i∈I supp f(i), and (i, p) is <f minimal in C if and only if p is minimal in

27



⋃
i∈I supp f(i). So Nf as infinite decreasing chains if and only if

⋃
i∈I supp f(i)

has infinite decreasing chains.
Consider an antichain A in (Nf , <f ). For (i, p), (j, q) ∈ A, either p = q

and i 6= j or p and q are not comparable in (Ω, <). So Nf has an infinite
antichain if and only if there is an infinite antichain in

⋃
i∈I supp f(i) or there

is an p ∈ ⋃i∈I supp f(i) such that the set Ip = {i ∈ I : p ∈ supp f(i)} is infinite.
In view of the definitions of N -summability and Noetherian orderings, we

deduce that f is N -summable if and only if (Nf , <f ) is Noetherian. 2

3.3 Algebras of Noetherian series

We fix an ordered monoid (M,+, 0, <), i.e. a monoid (M,+, 0) together with
an ordering < on M with

∀f, g, h ∈M,f < g =⇒ (f + h < g + h ∧ h+ f < h+ g). (9)

Let N denote the bornology of Noetherian subsets of (M,<). We write
k((M)) := k[N ], with its pointwise summmability structure ΣN with respect to
the minimal summmability structure on k. As in [23, 18], given g ∈M , we write
tg for the function M −! k with support {g} and value 1 at g, i.e. tg = 1{g}.
Recall by (2) that for each a ∈ k((M)), the family (a(g)tg)g∈M is N -summable,
with sum

a =
∑
g∈M

a(g)tg.

The vector space k((M)) is equipped with the Cauchy product

∀g ∈M, (a · b)(g) :=
∑

f+h=g

a(g1)b(g2). (10)

Lemma 3.8. The function a · b is well-defined and lies in k((M)).

Proof. We first show that for g ∈M , the set

I := {(f, h) ∈ (supp a)× (supp b) : f + h = g}

is finite. Assume for contradiction that it is infinite. If its projection I1 on
the first variable is infinite, then we find an injective sequence f : N −! I1.
Let h : N −! supp b be a sequence with (f(n), h(n)) ∈ I for all n ∈ N. Since
I1 ⊆ supp a is Noetherian, by Proposition 3.2, there is an increasing subsequence
f ◦ ϕ of f . Likewise, there is an increasing subsequence h ◦ ϕ ◦ ψ of h ◦ ϕ.
We have g = f ◦ ϕ ◦ ψ(1) + h ◦ ϕ ◦ ψ(1) > f ◦ ϕ ◦ ψ(0) + h ◦ ϕ ◦ ψ(1) and
f ◦ ϕ ◦ ψ(0) + h ◦ ϕ ◦ ψ(1) > f ◦ ϕ ◦ ψ(0) + h ◦ ϕ ◦ ψ(0) = g by (9), so g > g: a
contradiction.

If I1 is finite, then the projection of I on the second variable must be infinite,
and we obtain a symmetric contradiction. Therefore I is finite. So a · b is well-
defined.
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We next show that the set

S := {g ∈M : ∃(g1, g2) ∈ (supp a)× (supp b), g = g1 + g2}

is Noetherian. It will then follow since supp(a · b) ⊆ S that a · b ∈ k((M)).
Let (gn)n∈N be a sequence in S and let f ∈ (supp a)N and g ∈ (supp b)N with
gn = f(n) + h(n) for all n ∈ N. By Proposition 3.2, there is an increasing
subsequence f ◦ ϕ of f , and an increasing subsequence h ◦ ϕ ◦ ψ of h ◦ ϕ. Thus
(gϕ(ψ(n)))n∈N = f ◦ ϕ ◦ ψ + h ◦ ϕ ◦ ψ is an increasing subsequence of (gn)n∈N.
We deduce with Proposition 3.2 that S is Noetherian. 2

Proposition 3.9. For the Cauchy product, the structure k((M)) is a unital
algebra with multiplicative identity 1 := t0.

Proof. Let a, b, c ∈ k((M)) and g ∈M . We have

(a · b) · c =
∑

g1+g2=g

(a · b)(g1)c(g2)

=
∑

g1+g2=g

( ∑
g3+g4=g1

a(g3)b(g4)

)
c(g2)

=
∑

g1+g3+g4=g

a(g3)b(g4)c(g2). ((M,+) is associative)

Likewise a · (b · c) =
∑
g1+g3+g4=g a(g3)b(g4)c(g2) = (a · b) · c. So the product is

associative. It is clearly bilinear. It is easy to see that

(t0 · a)(g) = (a · t0)(g) = a(g),

so 1 is the multiplicative identity in k((M)). 2

Proposition 3.10. The algebra k((M)) with its structure of bornological space
is a summability algebra.

Proof. We have to show that SA holds. This follows as in [11, Proposition 3.3],
where the commutativity of the monoid does not play a role. 2

In particular, for a, b ∈ k((M)), the family (a(g1)b(g2)tg1+g2)g1,g2∈M is N -
summable, with sum

a · b =
∑

g1,g2∈M
a(g1)b(g2)tg1+g2 .

We call k((M)) the algebra of Noetherian series (with coefficients in k and
exponents in M).
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3.4 Contracting linear maps

In this subsection and the next one, we fix an ordered set Ω, we consider again
the bornology N of Noetherian subsets of Ω, and we write V := k[N ] for the
corresponding bornological space. Given v, w ∈ V, we write

v ≺ w
if w 6= 0 and for all p ∈ supp v, there is a q ∈ suppw with p > q.

Proposition 3.11. [11, Proposition 4.6] The relation ≺ is an ordering on V.
Moreover, for u, v, w ∈ V, we have u ≺ w ∧ v ≺ w =⇒ u+ v ≺ w.

Definition 3.12. A function φ : V −! V is said contracting if for all a, b ∈ V,
we have

v 6= w =⇒ φ(w)− φ(v) ≺ w − v.
We write Lin≺(V) (resp. Lin+

≺(V)) for the sets of contracting linear (resp.
strongly linear) maps V −! V. Note that

Lin+
≺(V) = Lin≺(V) ∩ Lin+(V). (11)

Lemma 3.13. Lin≺(V) is a subalgebra of Lin(V).

Proof. If φ, ψ ∈ Lin≺(V) and c ∈ k, then for v ∈ V\{0}, we have supp cψ(v) ⊆
suppψ(v) so cψ(v) ≺ v. We deduce with Proposition 3.11 that φ(v)+cψ(v) ≺ v,
whence φ + cψ ∈ Lin≺(V). If ψ(v) = 0, then φ(ψ(v)) = 0 ≺ v. Otherwise
φ(ψ(v)) ≺ ψ(v) where ψ(v) ≺ v so φ ◦ ψ(v) ≺ v by Proposition 3.11, whence
φ ◦ ψ ∈ Lin≺(V). 2

Lemma 3.14. If φ : V −! V is strongly linear, then it is contracting if and
only if suppφ(1{p}) > p for all p ∈ Ω.

Proof. Assume that φ satisfies the condition above, and let v ∈ V be non-
zero. By strong linearity, for each p ∈ suppφ(v), there is a q ∈ supp v with p ∈
suppφ(1{q}). Thus there is an r ∈ supp1{q} with p > u. But supp1{q} = {q}
so r = q, whence p > q ∈ supp v. This shows that φ(v) ≺ v. Since φ is linear, it
follows that φ is contracting. The converse is immediate since φ(1{p}) ≺ 1{p}
is equivalent to suppφ(1{p}) > p. 2

Corollary 3.15. Lin+
≺(V) is a closed subalgebra of Lin+(V) and a closed ideal

of k IdV + Lin+
≺(V).

Proof. That Lin+
≺(V) is a subalgebra follows from Proposition 1.21, (11) and

Lemma 3.13. Let φ : J −! Lin+
≺(V) be Lin-summable and set

σ :=
∑
j∈J

φ(j) ∈ Lin+(V).

Let p ∈ Ω. We have suppσ(1{p}) ⊆
⋃
j∈J suppφ(j)(1{p}). Lemma 3.14 gives

suppφ(j)(1{p}) > p for each j ∈ J , so suppσ(1{p}) > p, so σ is contracting,
again by Lemma 3.14. 2
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Theorem 3.16. The algebra k IdV + Lin+
≺(V) has evaluations.

Proof. Let J be a set and let (φj)j∈J ⊆ (Lin+
≺(V))J be Lin-summable. Let us

show that the family
(φθ1 ◦ · · · ◦ φθn)(θ1,...,θn)∈J?

is Lin-summable. We may assume that J is non-empty, and it suffices to show
that

(φθ0 ◦ · · · ◦ φθn)(θ0,...,θn)∈J?

is Lin-summable.
Let π : Ω× J −! Ω denote the projection on the first variable. We consider

the ordering < on Ω× J given by (p, i) < (q, j)⇐⇒ p < q. Consider the choice
operator ϑ on Ω× J given by

∀p ∈ Ω, ϑ(p, i) := {(q, j) : j ∈ J ∧ q ∈ suppφj(1{p})}.

Since each φj for j ∈ J is contracting, this is a strictly extensive choice operator.
Let Y ⊆ Ω× J be Noetherian. Let us show that the set

Yϑ = {(q, j) : j ∈ J ∧ (∃p ∈ π(Y ), (q ∈ suppφj(1{p})))}

is Noetherian by showing that each sequence in Yϑ has an increasing sub-
sequence. Let (qn, jn)n∈N be a sequence in Yϑ, and pick for each n ∈ N a
(pn, j

′
n) ∈ Y with qn ∈ suppφjn(1{pn}). Since Y is Noetherian, we may assume

by Proposition 3.2 that (pn, j
′
n)n∈N is increasing.

Assume that (pn)n∈N has a constant subsequence. Without loss of gener-
ality, we may assume that it is constant itself. Assume that (jn)n∈N has no
injective subsequence. So it has a constant subsequence (jψ(n))n∈N. The se-
quence (qψ(n))n∈N in the Noetherian set suppφjψ(0)

(1{pψ(0)}) has an increasing
subsequence (qψ◦µ(n))n∈N, and (qψ◦µ(n), jψ(0))n∈N is an increasing subsequence
of (qn, jn)n∈N. Assume now that (jn)n∈N has an injective subsequence. Since
(φjn)n∈N is Lin-summable, the family (φjn(1{p0}))n∈N is N -summable. There-
fore (qn)n∈N must have a strictly increasing subsequence, whence (qn, jn)n∈N
has a strictly increasing subsequence.

Assume now that (pn)n∈N has no constant subsequence. So (pn)n∈N has a
strictly increasing subsequence (pϕ(n))n∈N. The family (φjϕ(n)

(1{pϕ(n)}))n∈N is
N -summable. In particular (qϕ(n))n∈N has a strictly increasing subsequence,
whence again (qn, jn)n∈N has a strictly increasing subsequence.

This shows that ϑ is Noetherian. Let S ⊆ Ω be a Noetherian subset and pick
an arbitrary j ∈ J . By Proposition 3.6, the set ϑ+(S × {j}) is Noetherian for
<ϑ. This means by Lemma 3.7 that the family (p•)p∈ϑ+(S×{j}) is N -summable.
Write

I := {(p, n, θ0, . . . , θn) : p ∈ S ∧ n ∈ N ∧ θ0, . . . , θn ∈ J}.
For i = (p, n, θ0, . . . , θn) ∈ I, let Wi denote the set of words

w = (w0, . . . , wn+1) ∈ ϑ+(S × {j})
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where w0 = (p, j) and wk+1 = (pk+1, φθk) for a pk+1 ∈ suppφθk(1{π(wk)}).
Note that for each i = (p, n, φ0, . . . , φn) ∈ I, there is a family c ∈ kWi such that
φn ◦ · · · ◦ φ0(p) =

∑
w∈Wi

c(w)1{π(w•)}.
The sets Wi, i ∈ I are pairwise disjoint, so by SS4, Proposition 1.6 and UF,

the family
(∑

w∈Wi
c(w)1{π(w•)}

)
i∈I = (φθ0 ◦ · · · ◦ φθn(p))p∈S∧n∈N∧θ0,...,θn∈J is

N -summable. We conclude with Proposition 1.26. 2

3.5 The Der-Aut correspondence for Noetherian series

Let V = k[N ] be a space of Noetherian series. By Theorem 3.16, the summability
algebra k IdV + Lin+

≺(V) has evaluations. As a consequence of Corollaries 2.10
and 2.12, we have a group operation

∗ : Lin+
≺(V)× Lin+

≺(V) −! Lin+
≺(V)

(φ, ψ) 7−! φ+ ψ +
1

2
(φ ◦ ψ − ψ ◦ φ) + · · · ,

and a group isomorphism

exp : (Lin+
≺(V), ∗) −! (IdV + Lin+

≺(V), ◦) (12)

φ 7−!
∑
n∈N

1

n!
φ[n].

Let A = k((M)) be an algebra of Noetherian series, where M is an ordered
monoid. Let 1-Aut+

k (A) denote the group of bijective strongly linear morphisms
of algebra σ : A −! A which preserve products, and with σ(a) − a ≺ a for all
a ∈ A \ {0}. In the case when M is a linearly ordered group, our notation
1-Aut+

k (A) is compatible with that of [18]. Applying Theorem 2.14, we obtain:

Theorem 3.17. The structures (Der+
≺(A), ∗) and

(
1- Aut+

k (A), ◦
)

are groups,
and we have an isomorphism

exp : (Der+
≺(A), ∗) −!

(
1- Aut+

k (A), ◦
)

∂ 7−!
∑
n∈N

∂[n]

k!
.

We finish with a formal analog of the Lie homomorphism theorem.

Theorem 3.18. Let W be an ordered set, let NW be its bornology of Noeth-
erian subsets and consider the space of Noetherian series W = k[NW ]. Let
Φ : Lin+

≺(V) −! Lin+
≺(W) be a strongly linear morphism of Lie algebras. Then

there exists a unique group morphism Ψ : IdV + Lin+
≺(V) −! IdW + Lin+

≺(W)
with

Ψ(exp(φ)) = exp(Φ(φ))

for all φ ∈ Lin+
≺(V).
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Proof. We have IdV + Lin+
≺(V) = exp(Lin+

≺(V)) by (12), so the function Ψ si
uniquely determined by

Ψ(σ) := exp(Φ(log(σ)))

for all σ ∈ IdV + Lin+
≺(V). Let σ1, σ2 ∈ IdV + Lin+

≺(V) and write (φ1, φ2) :=
(log(σ1), log(σ2)) ∈ Der+

≺(A). Since Φ is a morphism of Lie algebras, we have
Φ(ev(σ1,σ2)(Zn)) = ev(Φ(σ1),Φ(σ2))(Kn) for all n ∈ N, where Kn ∈ k〈〈2〉〉 is as
described in (6). Since Φ is strongly linear, we deduce that Φ(ev(φ1,φ2)(X0 ∗
X1)) = ev(Φ(φ1),Φ(φ2))(X0 ∗X1), i.e.

Φ(φ1 ∗ φ2) = Φ(φ1) ∗ Φ(φ2). (13)

It follows that

Ψ(σ1 ◦ σ2) = Ψ(exp(φ1 ∗ φ2)) (Corollary 2.12)

= exp(Φ(φ1 ∗ φ2))

= exp(Φ(φ1) ∗ Φ(φ2)) (13)

= exp(Φ(φ1)) ◦ exp(Φ(φ2)) (Corollary 2.12)

= Ψ(σ1) ◦Ψ(σ2).

Therefore Ψ is a morphism. 2

The same arguments using the identity 1-Aut+
k (A) = exp(Der+

≺(A)) give:

Theorem 3.19. Let B be an angelra of Noetherian series. Let Φ : Der+
≺(A) −!

Der+
≺(B) be a strongly linear morphism of Lie algebras. Then there exists a

unique group morphism Ψ : 1-Aut+
k (A) −! 1-Aut+

k (B) with

Ψ(exp(∂)) = exp(Φ(∂))

for all ∂ ∈ Der+
≺(A).

As a consequence of Corollary 2.15, we have:

Corollary 3.20. The group 1-Aut+
k (A) is divisible and torsion-free.

4 Toward a full correspondence

4.1 Decomposing valuation preserving automorphisms

Let k be an ordered field and let G be a linearly ordered Abelian group. There
is a natural ordering on the field K := k((G)) for which it is an ordered field [14].
The field K is a Hahn field as per [23, 18].

Let v-Aut+
k (K) denote the group of strongly linear automorphisms of the

algebra K with a � b ⇒ σ(a) � σ(b) for all a, b ∈ U(K) where a � b if and
only if a 6≺ b and b 6≺ a. By [18, Theorem 3.7.1], the group v-Aut+

k (K) is the
semi-direct product of the following three subgroups:
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a) The group 1-Aut+
k (K).

b) The group G-Exp(K) of functions

Ψx : a 7!
∑
g∈G

x(g)tg

where x ∈ Hom((G,+), (k×, ·)).
c) The group o-Aut(G) of functions

a 7!
∑
g∈G

a(g)tµ(g)

where µ ∈ Aut(G,+, <).

4.2 Prelogarithms

Write K� := {a ∈ K : supp a < 0}. The ordered group (K,+, 0) has [14,
Theorems 1.4 and 1.8] an additive lexicographic decomposition

K = K� + k +K≺,

whereas (K>0, ·, 1, <) has a multipicative decomposition

K>0 = tG · k>0 · (1 +K≺).

A prelogarithm is an embedding log : (K>0, ·, 1, <) −! (K,+, 0, <). It is
compatible with the valuation v on K if for all a > 0, we have v(log(a)) ≥
0 ⇐⇒ v(a) ≥ 0 and v(log(a)) > 0 ⇐⇒ v(a − 1) > 0. A logarithm is a
surjective prelogarithm. The existence of a compatible logarithm is equivalent
[14, Lemma 1.21] to the existence of the three following isomorphisms of ordered
groups.

a) A right logarithm, i.e. an isomorphism (1 +K≺, ·, 1, <) −! (K≺,+, 0, <).

b) A middle logarithm, i.e. an isomorphism (k>0, ·, 1, <) −! (k,+, 0, <).

c) A left logarithm, i.e. an isomorphism (tG, ·, 1, <) −! (K�,+, 0, <).

This is illustrated in the following picture

K K� k K�

K>0 tG k>0 1+K�

= + +

= � �

Exponentiation along the additive and multiplicative decompositions
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Although prelogarithms always exist, no right logarithm exsits if G is non-
trivial [17, Theorem 1]. This obstruction can be circumvented by considering
directed unions of fields of Hahn series, such as log-exp series, or fields of EL-
series [14, Chap 5, Section 2].

One can interpret the formal exp-log correspondence between each Der+
≺(K)

and 1-Aut+
k (K) as a non-commutative generalisation of the natural right logar-

ithm on K, which is the isomorphism

(1 +K≺, ·, <) −! (K≺,+, <) ; 1 + ε 7!
∑
m∈N

(−1)mεm+1

m
.

We want to investigate how this correspondence extends to the group v-
Aut+

k (K), mapping it to an appropriate Lie subalgebra of Der+(K). Let us
first extend the correspondence to the subgroup IntAut+

k (K) := G-Exp(K)n 1-
Aut+

k (K) on K.

4.3 The middle correspondence

Let G-Der(K) denote the commutative group, under pointwise sum, of (strongly
linear) derivations dα of the form

∀a ∈ K,dα(
∑
g∈G

a(g)tg) =
∑
g∈G

α(g)a(g)tg

where α ∈ Hom((G,+), (k,+)).
Note that Hom((G,+), (k,+)) and G-Der(K) are vector spaces and d· is a

k-linear isomorphism. Let e : (k,+, <) −! (k>0, ·, <) be an isomorphism of
ordered groups, i.e. the inverse of a middle logarithm on K. Writing k× as the
direct product k× ' {1,−1} × k>0, we obtain

Hom((G,+), (k×, ·)) ' Hom((G,+), ({1,−1}, ·))×Hom((G,+), (k>0, ·))
' Hom((G,+), (Z2,+))×Hom((G,+), (k,+))

We have Hom((G,+), (Z2,+)) ' Hom((G/2G,+), (Z2,+)) which is trivial if
and only if G is 2-divisile. In that case, we have an isomorphism

Hom((G,+), (k,+)) −! Hom((G,+), (k×, ·)) ; α 7! e ◦ α.
which yields a Der-Aut correspondence G-Der(T) −! G-Exp(T) ; dα 7! ψe◦α.

4.4 Toward a left correspondence

Consider the Lie algebra Der+
�(K) of strongly linear derivations ∂ : K −! K such

that v(∂(a)) ≥ v(a) for all a ∈ K. This is the semi-direct product of the Lie
algebra G-Der(K) with the Lie ideal Der+

≺(K). Combining the right and middle
Der-Aut correspondences, we obtain an isomorphism between Der+

�(K) and the

group IntAut+
k (K) of internal strongly linear v-automorphisms of K. This is

summed up in the following picture, where the upper (resp. lower) decomposi-
tion is given by semi-direct internal products of groups (resp Lie algebras).
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G-Der(k) Der�
+(K)o

=IntAutk
+(K) G-Exp(k) � 1-Autk

+(K)

Der4
+(K) =

Der-Aut correspondence along middle and left logarithms

What of the left part of the decomposition of v-Aut(K)? Under what condi-
tions on K is there a corresponding Lie algebra D of strongly linear derivations
such that Der+

�(K) is a Lie ideal of D+Der+
�(K) and that there exists a bijective

correspondence between D and o-Aut(G)?
In some cases, automorphisms of (G,+, <) have been shown [15, Proposi-

tion 4.9] to induce strongly linear derivations onK. Furthermore, the derivations
can be chosen compatible with a specific prelogarithm on K [16, Section 3].

Future work. We plan to investigate this construction method in order to
obtain further derivations coming from automorphisms on G.
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