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Aligning Speech to Languages to Enhance
Code-switching Speech Recognition

Hexin Liu, Xiangyu Zhang, Leibny Paola Garcia-Perera, Andy W. H. Khong, Eng Siong Chng, Shinji Watanabe

Abstract—Code-switching (CS) refers to the switching of lan-
guages within a speech signal and results in language confusion
for automatic speech recognition (ASR). To address language
confusion, we propose the language alignment loss that per-
forms frame-level language identification using pseudo language
labels learned from the ASR decoder. This eliminates the need
for frame-level language annotations. To further tackle the
complex token alternatives for language modeling in bilingual
scenarios, we propose to employ large language models via
a generative error correction method. A linguistic hint that
incorporates language information (derived from the proposed
language alignment loss and decoded hypotheses) is introduced
to guide the prompting of large language models. The proposed
methods are evaluated on the SEAME dataset and data from the
ASRU 2019 Mandarin-English code-switching speech recognition
challenge. The incorporation of the proposed language alignment
loss demonstrates a higher CS-ASR performance with only a
negligible increase in the number of parameters on both datasets
compared to the baseline model. This work also highlights
the efficacy of language alignment loss in balancing primary-
language-dominant bilingual data during training, with an 8.6 %
relative improvement on the ASRU dataset compared to the
baseline model. Performance evaluation using large language
models reveals the advantage of the linguistic hint by achieving
14.1% and 5.5% relative improvement on test sets of the ASRU
and SEAME datasets, respectively.

Index Terms—code-switching, speech recognition, alignment,
language, large language model

I. INTRODUCTION

ODE-Switch (CS) refers to the switching of languages
within a spontaneous multilingual recording. Intra-
sentence code-switching occurs when the language changes
within a single sentence, while inter-sentence code-switching
involves the switching of languages at the sentence boundaries.
Unlike monolingual speech, code-switched speech presents a
greater challenge for automatic speech recognition (ASR) due
to language confusion and the lack of annotated data.
Although a CS-ASR system can operate similarly to mono-
lingual ASR by combining language-specific vocabularies [1]],
[2]], recent works address challenges associated with language
confusion by incorporating language information. One direct
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approach is to optimize the ASR and language identifica-
tion (LID) or diarization (LD) tasks jointly [3]-[7]. Here, LID
and LD determine the language identity of speech samples
during training to enrich the model with language informa-
tion [|6], [8]], while only the ASR output is computed during
inference. Apart from joint optimization, approaches based on
the bi-encoder and the mixture-of-experts method have been
proposed [9], [[10]. These approaches have been derived from
the Transformer architecture [11f], [[12], where the models
incorporate two encoders pre-trained on monolingual data
independently to capture language-specific information. Pre-
trained language-specific encoders have also been adopted
in other architectures due to their effectiveness in distin-
guishing languages [[13]], [14]. In contrast to language-specific
encoder modules, the language-aware decoder module has
been explored to reduce multilingual contextual information
via a language-specific self-attention mechanism within the
Transformer decoders [15]]. In addition, a conditional fac-
torization method factorizes CS-ASR into two monolingual
recognition processes before integrating multiple recognized
monolingual segments into a single bilingual sequence [16].
As an extension, a conditionally factorized connectionist tem-
poral classification (CTC) module that allows for a zero-shot
setting has been proposed [17], [18]. A factored language
model integrating syntactic and semantic features in a code-
switched language model has also been explored to enhance
CS-ASR [19].

Although existing works achieve reasonable CS-ASR per-
formance, constraints that impede model performance persist.
In particular, code-switching timestamps are often excluded
in code-switching corpora since the annotation process is re-
source intensive and requires expertise in bilingualism. Such a
limitation renders the application of supervised language iden-
tification for joint optimization impractical [5]. Furthermore,
learning discriminative language information successfully dur-
ing training relies on language-specific encoders or decoders,
resulting in a significant increase in model parameters. For
bilingual code-switching speech, the accent of the primary
language may also introduce bias to the secondary language,
resulting in the two languages being similar auditorially [20],
[21]. Achieving language identification on accented speech,
therefore, remains a key challenge [22].

We propose a language alignment loss (LAL) to enrich the
CS-ASR model with language information. This is achieved
by capturing frame-level language information without the
need for additional language annotations. While existing mul-
tilingual ASR benefits from utterance-level one-hot language
vector (since only one language is present in each utter-
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ance [23], [24]), a code-switching speech signal may contain
two languages. Therefore, detecting language change points at
high granularity (in particular at frame level) is preferable as
opposed to the use of a one-hot vector for each utterance [/7]].
Furthermore, incorporating the LAL requires a single linear
layer resulting in only a negligible increase in model param-
eters compared to existing approaches that require additional
encoders or decoders. Lastly, as the by-product of LAL, frame-
level language predictions can be summarized as an utterance-
level hint. This hint aims to facilitate the incorporation of
an external large-scale language model (LLM) in ASR via
a generative error correction method [25]—[27].

The remainder of this paper is organized as follows: Sec-
tion introduces the hybrid CTC/attention model, which
serves as a baseline model on which we apply the proposed
method. The proposed LAL and the incorporation of the code-
switching hint in external language modeling are presented in
Sections [[I] and respectively. Information pertaining to
the datasets, model configurations, and experiment setup are
provided in Section We present results and analysis in
Section [V] before highlighting the advantages and limitations
of our proposed methods in Section Finally, we conclude
our work in Section [VIIl

II. PRELIMINARY
A. Conformer-based hybrid CTC/attention ASR model

We employ a Conformer-based hybrid CTC/attention ASR
model as the baseline in this paper. The hybrid CTC/attention
model comprises an encoder, a decoder, and a CTC module,
where the decoder and CTC modules share the encoder
outputs [28]. The encoder and decoder modules comprise
Conformer encoder and Transformer decoder layers [11], [29],
respectively [2].

Given a speech signal, we define its acoustic features as
X = (x; € RF|t = 1,...,T) and paired token sequence as
W = (w, € VIn=1,...,N), where V is the vocabulary, T
and NV are the lengths of feature and token sequences, respec-
tively, and F' is the dimension of acoustic feature. The encoder
generates hidden outputs H = (h; ¢ RP|t =1,...,T") from
X, which are subsequently used as inputs into the decoder
and CTC modules. Here, T” is the length of the hidden output
sequence, where 77 < T due to the subsampling, and D is
the dimension of the hidden output. With H, the CTC module
computes the token sequences in accordance with the Bayesian
decision theory by factorizing pet. (W|X) as [18]

pete (WIX) = p(W|Z,X) p(Z|X)
zZ

~> p(W|Z)p(

where Z = (zx € VU {<blank >}t = 1,...,T") is a
framewise token sequence conditioned on X. The variable

HP Zt|Z17"'7

is the acoustic model of CTC, where the probabilistic chain
rule and the conditional independence assumption have been
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Consequently, the term p (W
hence (1)) can be rewritten as

Pete (WX) = ZHP (zt|ze—1, W

Z t=1

p(zX). 4

We note that tokens W are embedded into W = (w,, €
RP|n =1,...,N) before being fed into the decoder module
along with H. The decoder then predicts the next token w,,
based on historical tokens w;i.,—1 and H via

p (wn|w1:n—17 X) = Decoder (Wl:n—lv H) ) (5)

where p(wy, |w1.n—1, X) is the posterior of w,, given acoustic
features and historical tokens, and Decoder(-) denotes the
Transformer decoder. The encoder-decoder module computes
the token sequences by factorizing patt (W|X) as

N

)~ [ p (walwiin—11X). ©)

n=1

Patt (W|X

The model is optimized via a multi-task objective function

Lasr = aLlcge + (1 - 04) Latt, (N

where L. denotes the CTC loss, L, denotes the cross-
entropy loss with label smoothing for the encoder-decoder
branch [30], and « is a parameter associated with multi-task
learning. The decoding process aims to maximize the linear
combination of the logarithmic CTC and attention objectives
such that the decoded token sequence is given by

W= argvrglax {alogpcto (W|X) + (1 — @) logpate (W|X) } ®)
Here, W is also referred to as a single hypothesis, and the final
hypothesis of the given speech signal is chosen as the one with
the highest likelihood among multiple hypotheses generated
during the beam search. While the hybrid CTC/attention model
has shown to be effective for the CS-ASR task, it performs
CS-ASR similarly to monolingual ASR without exploiting any
code-switching information, which, as a consequence, limits
the CS-ASR performance.

B. Improving ASR via LLM and efficient fine-tuning

Due to the scarcity of code-switching data, general code-
switching language models moderately improve the perfor-
mance of a CS-ASR system when being incorporated through
shallow fusion [4], [7]]. Although developing an external
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Fig. 1. The in-context learning-based generative error correction method for
improving ASR with an external LLM proposed in [27]. Variable r is the low
intrinsic rank, and matrices A and B are initialized by a random Gaussian
distribution and zero, respectively. The red and black tokens within the N-best
hypotheses denote the wrongly and correctly predicted tokens, respectively.

language model on monolingual data or synthesized code-
switching data has shown to be effective [31]-[33], the per-
formance is limited by the domain mismatch. Since large
language models have achieved success in natural language
processing and have been extended for computer vision and
speech signal processing applications [25], [34], [35], we
propose to adopt open-source LLMs, which is robust against
diverse domains due to the large-scale training data, to improve
CS-ASR by addressing the complex token alternatives in
bilingual scenarios.

Recent works have also attempted to improve speech recog-
nition through the use of LLMs. A direct method involves
prompting an LLM using paired discrete speech and text em-
beddings [36]]. An in-context learning-based generative error
correction method has also been applied to LLMs [27] as
presented in Fig. [T} where the final prediction is generated by
summarizing and correcting the N-best ASR hypotheses [37]].
This approach has shown to be effective in monolingual ASR.
However, code-switching leads to more token alternatives that
are of similar auditory or syntactic characteristics compared
to a monolingual application—direct transference of the gen-
erative error correction to CS-ASR may not be desirable.

In addition, to fine-tune an LLM efficiently, low-rank
adaptation (LoRA) [38] has been proposed. As shown in
Fig. [I] computational complexity is reduced by freezing the
pre-trained LLM and injecting trainable rank decomposition
matrices A and B into its Transformer-based layers. The
forward pass is then defined as the linear combination of the
pre-trained model M and the trained decomposed matrices
A and B such that

(Mo + AM)X = (M + AB) X, 9)

where AM is the model parameters of the model update.
Matrices A and B are initialized as by random Gaussian and

zero values, respectively, so that AM = AB = 0 at the
beginning of training.

III. LANGUAGE ALIGNMENT LOSS

Since multilingual ASR benefits from the supplementary
language information offered by utterance-level one-hot lan-
guage vectors, we propose to enhance CS-ASR performance
by incorporating frame-level language information, enabling
the detection of code-switching at a high granularity. In this
work, we introduce the LAL that is incorporated to the
encoder-decoder framework to capture language information
as shown in Fig. [

A. Frame-level language identification

To capture frame-level language information, we employ a
linear layer as a built-in language classifier. This layer takes
the hidden output unit of the encoder module as its input and
aims to generate a language decision for each hidden output
unit.

Due to the lack of frame-level language ground truth,
existing works usually perform language identification in an
unsupervised manner [7]], [9]. Nevertheless, this unsupervised
frame-level classification extends beyond language identities
and includes elements such as phonemic or domain informa-
tion. Therefore, incorporating language information becomes
important in guiding the unsupervised language identification
process.

Although frame-level language annotations are unavailable,
token-level language information can readily be inferred from
text, particularly in cases where there is a notable contrast in
character structure or morphology between the two languages.
Past research has investigated the conversion of byte-pair
encoding (BPE) tokens into their respective language labels to
facilitate language identification or diarization [4], [39], [40].
Here, we employ a similar conversion strategy, where BPE to-
kens are first transformed into token-level labels corresponding
to their respective languages. The pseudo-frame-level language
annotations are subsequently extracted by aligning frames to
these token-level language labels.

B. Aligning frames with token-level language labels

The encoder-decoder model achieves ASR by mapping
speech features to tokens. The alignment between speech
frames (i.e., encoder hidden outputs) and text (i.e., tokens)
is inherently learned through the cross-attention process il-
lustrated on the left of Fig. [3] Given multiple attention
heads within the last Transformer decoder layers, their cross-
attention matrices are averaged to generate the weight matrix
Atten € RT" %N of the speech-to-text alignment shown in the
top matrix of Fig. [3] The alignment between hidden outputs
and languages can then be derived from the frame-to-token
weight matrix illustrated by the transition from the top to
bottom matrices in Fig [3] Specifically, the averaged cross-
attention weight matrix can be decomposed into vectors along
T, being Atten = (atten, € RN|t = 1,...,T'). Each
element in atten; denotes the attention weight corresponding
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Fig. 2. The hybrid CTC/attention model (in blue) with language alignment
process.

to a BPE token within the input token sequence. Each frame
can then be assigned a pseudo language label which is the
language of the BPE token corresponding to the highest
weight. This is achieved via

yi = T2L( argmax (atten;) ), (10)
where y; is the pseudo-frame-level language label and T2L(-)
represents the conversion from the n-th BPE token which has
the highest attention weight in atten, to its language label.

The pseudo language labels are concatenated to form a
sequence Y = (y; € RYt = 1,...,7"). Here, T' is
the number of hidden output units and C' is the number of
languages, where all special tokens are considered as a single
language. Each hidden output unit is subsequently projected
to a language decision y; by a language classifier comprising
one linear layer

¥+ = Linear (h), (11)

where Linear (-) denotes computations within a linear layer.
Defining exp(-) as the exponential operation, the language
alignment loss for each speech sample is computed via a cross-
entropy function

[ exp (V1.0)

- t,c

Lia = =7 > loch—Ay
t=1 c=1

(12)
i=1 SXP (Yt,i)

t,co

where ¥, ; denotes the value at the ith dimension of the
language prediction vector for the ¢th hidden output vector.
Similarly, y; . denotes the value at the cth dimension of the
one-hot pseudo language label vector for the ¢th hidden output
vector such that y; . = 1 for the target language with the
remaining elements being zero.

The performance of the CS-ASR model improves during
model training as the language information is incorporated,
reaching its peak upon being optimized completely. The
heightened ASR performance contributes to increasingly ac-
curate language labels. This improvement, in turn, leads to
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Fig. 3. The pseudo frame-to-language label conversion process. On the right
side, the upper matrix represents the cross-attention weight matrix averaged
over all attention heads within the last decoder layer. The middle matrix
represents the converted frame-to-language weight matrix and the pseudo
language labels are illustrated at the bottom. In this illustrative example, red
and green cells denote the English and Mandarin tokens, respectively.

higher language identification performance. Therefore, extract-
ing pseudo language labels and language identification has
become integral to the iterative optimization process during
training.

C. Balancing training via toke-level language weights

The grammatical structure of code-switching data defines
the matrix language as the main language and the embed-
ded language as the secondary language [41]. While code-
switching corpora such as SEAME do not exhibit a dom-
inant language [19], [20], the matrix language may prevail
in some code-switching corpora, resulting in an imbalanced
distribution of tokens and speech frames between the two
languages [21]. Therefore, a CS-ASR model trained on such
imbalanced data may overfit the matrix language and underfit
the embedded language.

While computing the number of speech frames for each
language is challenging, the token distribution within a code-
switching corpus can be assessed before training. Therefore,
we propose to address the imbalance issue by incorporating
language weights in (12), being a weighted cross-entropy
function as

1 T C
Lia1 = T Z Z wlcanglog

t=1 c=1

exp (Yt,c)

= Yte (13
> i1 €XP (Yt.i)

where w8 denotes the normalized language weight of lan-
guage ¢ and can be made inversely proportional to its token
count in the training data. However, the token ratio may not
align precisely with speech frames due to variations in speech
rates across languages. We therefore propose to tune them
initially based on the token ratio and accounting for speech
rate variations when applying language weights to the LAL.
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The relationship between the initial language weights can be
illustrated by

lang

Wk,  Count(tokensyiay ) (14)
jane " Count(tokensgng) ’

where Count(-) denotes the number of BPE tokens belonging
to the language. In particular, fewer tokens in the training data
and a higher speech rate result in a higher language weight.

With the above, the CS-ASR model is optimized via an
objective function being the sum of CTC loss, encode-decoder
loss, and the proposed LAL such that

L:asr - a»cctc + (]- - OZ) »Catt + ﬂ'clalv (15)

where [ denotes the weight of the language alignment loss
during training. The decoding process is similar to (8).

D. Linguistic hint for prompting LLM

With reference to Fig. [I] we propose to adopt the LLM-
based generative error correction method to improve CS-
ASR [27]. To fine-tune the LLM efficiently, LoRA is employed
while the LLM is kept frozen during training as illustrated
in Section The prompt originally designed in [27] is
used as shown in Fig. f(a), where the N-best hypotheses are
extracted from the ASR output before being inserted in the
prompt. The LLM is then optimized to deduce the correct
transcript, which is the ground-truth transcription shown in
Fig. @] during training, by leveraging the information provided
in these hypotheses. However, code-switching gives rise to
more intricate token alternatives with similar auditory or syn-
tactic characteristics compared to a monolingual application.
This complexity persists when performing generative error
correction for ASR hypotheses. Inspired by the use of chain-
of-thought as additional supervision when fine-tuning LLM
for downstream tasks [26], [42], we propose to employ an
additional linguistic hint during prompting to address the
aforementioned challenge in CS-ASR.

To this end, various methods for linguistic hint extraction
can be used. An acoustic-biased linguistic hint can be derived
from the by-product of the proposed LAL. As shown in Fig.[2]
frame-level language predictions are first normalized using the
softmax function before generating an utterance-level language
decision. In the context of this work, this decision can either
be monolingual or multilingual, with the former providing a
single language code. In addition, the linguistic hint can be
obtained from the decoded hypotheses (i.e., text information),
allowing it to be employed in conjunction with the acoustic-
biased hint through the weighted voting mechanism.

The linguistic hint is then inserted in the used prompt during
fine-tuning as shown in Fig. f{b). We propose two types
of hints—the monolingual hint, where only <language id>
words are included in the transcription, and the code-switching
hint, where speech is multilingual and that <both language
ids> words are included in the transcription.

Given N-best hypotheses
transcribed by an ASR system,

(a) the original prompt

groundtruth

Given N-best hypotheses
transcribed by an ASR system,

generate a
<language id>

(b) prompt with the proposed linguistic hint

groundtruth

Fig. 4. The original (a) and proposed (b) prompts during fine-tuning LLM
and performing generative error correction, language id is selected from two
languages (“English” and “Mandarin” in this work) and “multilingual”.

IV. DATASET, EXPERIMENT, AND MODEL CONFIGURATION
A. Datasets

We conducted the experiments on data extracted from the
ASRU 2019 Mandarin-English code-switching speech recog-
nition challenge [20], [21]] and the SEAME dataset. The
ASRU 2019 Mandarin-English code-switching speech recog-
nition challenge consists of four datasets, including a 500-
hour Mandarin-only training set, a 200-hour intra-sentence
English-Mandarin code-switching training set, a 40-hour intra-
sentence English-Mandarin code-switching development set,
and a 20-hour intra-sentence English-Mandarin code-switching
test set. In the experiments, the models were trained on the
200-hour CS training set, validated on the development set,
and evaluated on the test set. The SEAME dataset, on the other
hand, is a Mandarin-English code-switching corpus containing
spontaneous conversational speech [20]. This dataset encom-
passes both intra- and inter-sentence code-switching speech.
We divided the SEAME dataset into a 96.6-hour training set,
a 4.9-hour validation set, and two test sets being denoted as
testyan and testsge following the same partitioning method
described in [3]]. Detailed information about the test sets is
provided in Table[l, while Table [[] highlights the duration ratio
of each language, where the language labels are annotated at
the utterance level.

While both datasets involve English-Mandarin code-
switching, the primary distinction between them lies in the
accent. The ASRU data was recorded in mainland China and
is characterized by a dominant Chinese accent and text. In
the training and development sets, each sentence, on average,
consists of 8.6 Chinese characters and 1.6 English words. In
contrast, the SEAME dataset comprises audio recordings from
Singapore and Malaysia, characterized by South-East Asian
accents. Additionally, code-switching occurs more frequently
within the SEAME dataset compared to the ASRU data due
to the bilingual education and language policies in Singapore
and Malaysia [43]]. This suggests that the SEAME data might
pose greater challenges for CS-ASR compared to the ASRU
data.

B. Data preprocessing

Since the SEAME dataset contains a small training set of
about 98 hrs, we augmented the training data using speed per-
turbation and SpecAugment [44], [45]. Two training strategies
were adopted, where one develops the model on data without
speed perturbation while the other trains the model on the
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TABLE I
DETAILS OF TWO DATASETS IN TERMS OF DIVISION AND DURATIONS

Corpus Subset Duration (hours)

train 193.0

ASRU dev 21.3
test 20.4

train 96.6

SEAME dev 4.9

testman 7.5

testsge 3.9

TABLE II

DURATION RATIO FOR MANDARIN, ENGLISH, AND CODE-SWITCHING
SPEECH OF TEST SETS IN ASRU AND SEAME DATA. THE LANGUAGE
ANNOTATIONS ARE AT UTTERANCE LEVEL

Duration ratio (%)
Subset - - —
Mandarin English Code-Switching
ASRU test 0 0 100
teStman 14 7 79
testsge 6 41 53

entire augmented data. The speech perturbation was applied
with factors 0.9, 1.0, and 1.1. With respect to the ASRU
dataset, only SpecAugment was applied for data augmentation.
SpecAugment adopted the default setup in ESPnet for two
datasets [2]. The time-warp mask size was set to five, and two
time and frequency masks were applied, with their lengths
uniformly selected from the range of 0 to 40 for time masks
and 0 to 30 for frequency masks. Speech samples within
both corpora were segmented into durations ranging from 0.1
to 20 s. We extracted F' = 80 dimensional log-Mel-Fbank
features for each speech segment before applying the cepstral
mean and variance normalization.

We employed BPE to tokenize the English words in the
two English-Mandarin code-switching corpora and split all
Mandarin words into individual characters. For the SEAME
dataset, this resulted in a total of V' = 5, 628 tokens, including
3,000 English BPE tokens, 2,624 Mandarin characters, and
four special tokens for <unk>, <noise>, <blank>, and
<sos/eos>. For the ASRU data, the same tokenization process
yielded a total of V' = 6,923 tokens, including 3,000 English
BPE tokens, 3,920 Mandarin characters, and three special
tokens for <unk>, <blank>, and <sos/eos>. The variable
C = 3 denotes three language classes converted from special,
English, and Mandarin tokens.

We fine-tuned the Chinese LLaMA-2 on a subset of the
SEAME training set comprising approximately 60,000 speech
segments and the development set of the ASRU data com-
prising approximately 20,000 speech segments, respectively.
N-best lists of the above speech segments were subsequently
extracted and incorporated into the prompts. In addition, we
removed the <noise> and <unk> labels from the N-best list
since the LLM can hardly address these special tokens.
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Fig. 5. The convergence of the proposed language alignment loss (y-axis for
the left figures) during training and validation on the (a) ASRU data and (c)
SEAME data, and the corresponding MER (y-axis for the right figures) on
the validation set of (b) the ASRU data and (d) SEAME data, against training
epochs (x-axis).

C. Model configuration and experiment setup

The baseline model is a Conformer-based hybrid
CTC/Attention ASR model comprising twelve Conformer
encoder layers, six Transformer decoder layers, and a CTC
module. The Conformer employs the macaron structure [29],
where its convolutional neural network (CNN) module
has a kernel size of 15. The swish activation function is
applied [46]. A CNN layer first subsamples the input features
and projects them into D = 256 dimensions before feeding
into the macaron modules. All attention layers within the
encoder and decoder modules have four attention heads
with input and output dimensions being D = 256, and the
inner layer of the position-wise feed-forward network is of
dimensionality 2048.

The bi-encoder and language posterior bias methods [4], [9]]
have also been implemented as baselines. In the bi-encoder
CS-ASR system, we replicated the encoder module of the
baseline model described in the previous paragraph to form
the bi-encoder module. The outputs of these two encoders
are fed into a linear layer, which serves as a built-in LID
module with an output dimensionality of two (corresponding
to two languages), before calculating the weighted encoder
outputs. It is useful to note that the encoder modules of the
bi-encoder method are pre-trained on English and Mandarin
corpora separately. Nevertheless, this pre-training was delib-
erately omitted to ensure a fair comparison. For the language
posterior bias-based (LPB) CS-ASR model, the model con-
figuration recommended in [4] was used. The LPB system
closely resembles the baseline hybrid CTC/attention model,
with an additional language diarization decoder. This language
diarization decoder mirrors the structure of the ASR decoder.

We trained the baseline model on the ASRU and SEAME
data for seventy and fifty epochs, respectively. The proposed
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method and reproduced works were trained for an additional
ten epochs due to their more complex objective functions or
parameters. All models were optimized by an Adam optimizer
on two RTX 3090 GPUs. The learning rate increased from
0 to 0.001 over 25,000 update steps, followed by a cosine
annealing decay. Parameter o« = 0.3 and a label smoothing
factor of 0.1 were used in (7) and (I3). The ten best models
during validation were averaged for inference. We adopted the
ten-best beam search method with o = 0.4 in (8). Evaluation
of the proposed systems was quantified via the mix error
rate (MER) comprising word error rate (WER) for English
and character error rate (CER) for Mandarin.

Experiments associated with the proposed linguistic hint uti-
lized a Chinese LLaMA2-7B model |'| The 5-best hypotheses
were first extracted from the ASR output before being used in
the prompt to fine-tune the LLM. Fine-tuning was performed
via LoRA with rank r = 4 and the AdamW optimizer for ten
epochs with a batch size of 128 on the SEAME data, where
LoRA is applied to the query and value modules within the
self-attention modules. The learning rate was increased from
0 to 0.0002 over 100 update steps, followed by a linear decay.
During inference, a temperature of 0.7 was applied to allow
for the creativity of the LLM, while other hyper-parameters
were fixed at their default settings. We evaluated all methods
by employing the MER comprising WER for English and CER
for Mandarin.

V. RESULTS AND ANALYSIS
A. Impact of 5 values

To assess the impact of 5 on the CS-ASR performance
for the proposed LAL, we first compare the performance of
the hybrid CTC/attention model optimized with LAL via (I5)
for various 3 values on the ASRU data. Results summarized
in Table highlight that with the incorporation of LAL
during training, the hybrid CTC/attention model consistently
outperforms the vanilla model. Notably, the best MER of
11.9% is observed when 3 = 1.5, achieving a relative
improvement of 7.03% compared to the vanilla model. In
addition, this performance improvement remains consistent
across various LAL parameters, particularly within the range
of 1.0 < 5 < 3.0.

We next conduct experiments on the SEAME dataset with-
out using speed perturbation during training and results are
presented in Table Similar to the ASRU dataset, the
hybrid CTC/attention model that incorporates the proposed
LAL outperforms the vanilla configuration. In addition, the
hybrid CTC/attention model with LAL exhibits consistently
high performance for 1.0 < g < 3.0. This robustness on
various datasets and [ values indicates the effectiveness of the
proposed LAL. As opposed to results achieved on the ASRU
dataset, the highest overall performance on the SEAME data
is achieved when § = 0.1,0.5, and 3.0. Due to the different
duration ratios of languages of the two test sets, the above
implies that a lower [ value leads to a higher performance on
the dataset containing predominantly monolingual data.

Ihttps://huggingface.co/hfl/chinese-llama-2-7b

TABLE III
PERFORMANCE EVALUATION OF THE PROPOSED METHOD ON THE ASRU
DATA WITH DIFFERENT 3 VALUES IN TERMS OF SUBSTITUTIONS,
DELETIONS, INSERTIONS, AND THE TOTAL MER (%)

Method [ for LAL | Sub| Del| 1Ins] | MER |
Hybrid CTC/atten 0 11.5 0.6 0.7 12.8
0.5 11.2 0.6 0.7 124
1.0 10.9 0.6 0.7 12.1
1.5 10.7 0.5 0.6 11.9
+ LAL 2.0 10.8 0.5 0.6 12.0
2.5 10.9 0.5 0.6 12.0
3.0 10.9 0.5 0.6 12.0
4.0 114 0.6 0.6 12.6
5.0 11.0 0.6 0.6 12.2
TABLE IV

PERFORMANCE EVALUATION OF THE PROPOSED METHOD TRAINED
WITHOUT SPEED PERTURBATION ON THE SEAME DATASET WITH
DIFFERENT 3 VALUES IN TERMS OF SUBSTITUTIONS, DELETIONS,

INSERTIONS, AND THE TOTAL MER (%)

Method 3 for LAL | Subset | Sub | Del | Ins | | MER |
Hybrid CTClatten 0 testman | 120 3.0 22 17.2
testsge | 17.3 4.1 3.1 24.5
o1 testman | 11.8 2.9 22 16.8
testsge | 17.0 4.0 3.0 23.9
05 testman | 11.8 29 22 16.8
+ LAL testsge | 17.0 4.0 3.0 23.9
10 testnan | 11.7 3.0 2.1 16.8
testsge | 17.1 4.0 3.1 24.1
20 testman | 11.9 3.0 2.0 16.9
testsge | 170 4.0 3.1 24.1
3.0 testman | 11.7 3.0 2.0 16.7
testsge | 170 4.0 3.0 24.0
40 testman | 11.9 3.0 2.0 16.9
testsge | 17.1 42 3.0 24.2
5.0 testman | 11.8 3.0 22 17.0
testsge | 174 4.1 3.1 24.5

B. Balancing the ASRU dataset during training

The effect of language weights employed in (I3) for balanc-
ing the Mandarin-dominant ASRU data is shown in Table
It is worth noting that, similar to the number of English
frames, the number of frames for the class “other” is also
significantly lower than that for the Mandarin frames. Since
the class “other” does not contribute to the language identities
in the CS-ASR task, this class is not balanced during training
and the weight is always set to w,ther'®® = 1 except for
the learnable language weight. In this work, w!*& = 1 for all
classes is the default setup.

Results presented show that the CS-ASR model gains mod-
erate performance improvement on both English and Mandarin
data from high English weights, where the weights of “other”
and “Mandarin” were set to 1. This is consistent with our
assumption that a high English weight can achieve balance for
the secondary language during training, which consequently
improves the model performance. Moreover, the highest per-
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TABLE V
PERFORMANCE OF THE PROPOSED METHOD WITH 3 = 1.5 AND
DIFFERENT LANGUAGE WEIGHTS TO BALANCE THE
MANDARIN-DOMINANT ASRU DATA DURING TRAINING IN TERMS OF
ENGLISH WER, MANDARIN CER, AND MER (%)

Language weights (5 = 1.5) ASRU test
Other Eng Man Eng | Man | MER |
vanilla (all 1) 35.4 9.3 11.9
1 10 1 35.2 9.3 11.8
1 50 1 353 9.3 11.8
1 100 1 35.1 9.2 11.7
1 100 100 35.8 9.5 12.1
1 1000 1 35.4 9.3 11.8
TABLE VI

RESULTS OF THE PROPOSED METHOD ON SEAME DATASET AFTER
EMPLOYING SPEED PERTURBATION WITH FACTOR 0.9, 1.0, AND 1.1
DURING TRAINING IN TERMS OF SUBSTITUTIONS, DELETIONS,
INSERTIONS, AND THE TOTAL MER (%)

Method 3 for LAL | Subset | Sub | Del | Ins | | MER |
Hybrid CTC/atten 0 testman | 11.5 3.0 2.0 16.6
testsge | 164 2.9 3.0 23.3
05 testnan | 11.6 3.0 2.1 16.7
testsge | 164 41 3.0 23.5
+ LAL 10 testman | 11.6 2.9 22 16.7
testsge | 164 4.0 3.1 23.6
20 testman | 11.5 3.0 2.0 16.5
testsge | 16.5 4.1 3.0 23.5
10 testman | 11.3 3.0 2.1 16.4
testsge | 162 40 29 233
40 testman | 11.7 3.1 2.1 16.8
testsge | 16.6 3.9 3.0 23.6
50 testyan | 11.6 3.0 2.1 16.7
testsge | 16.6 4.0 3.1 23.6

formance is achieved when the weight of English is set to
100. It is also worth noting that the ratio between English to
Mandarin weights is higher than the token ratio due to the
difference between their speech rates.

C. Impact of speed perturbation

As discussed in Section the frame-level language
identification can be affected by speech rate. We, therefore,
investigate the impact of the speed perturbation on the CS-
ASR performance when LAL is incorporated. The experiments
were conducted on the SEAME dataset and in contrast to the
experiments shown in Table we utilize speed perturbation
to augment the training data with results being summarized in
Table

Results presented show that the hybrid CTC/attention model
achieves higher performance after employing speed pertur-
bation as data augmentation. However, due to speech rate
variations, one token can be aligned with a different number of
acoustic frames when speed perturbation is applied. Therefore,
further incorporation of the proposed LAL may lead to lower
performance. In addition, the hybrid CTC/attention model with

TABLE VII
PERFORMANCE EVALUATION OF THE PROPOSED METHOD AND
STATE-OF-THE-ART APPROACHES ON DATA FROM THE ASRU 2019
CHALLENGE IN TERMS OF ENGLISH WER, MANDARIN CER, AND MER

(%)
Method Num. of Error Rate (%)
Params. Eng| Man|  Mixed]
Hybrid CTC/atten 4827 M 37.1 10.2 12.8
+ LAL (ours) 4827 M 35.1 9.2 11.7
Bi-encoder [9] 79.90 M 36.0 9.8 12.4
LPB [4] 59.58 M 35.3 9.2 11.8
TABLE VIII

PERFORMANCE EVALUATION OF THE PROPOSED METHOD AND
STATE-OF-THE-ART APPROACHES ON THE SEAME DATASET IN TERMS OF
ENGLISH WER, MANDARIN CER, AND MER (%)

Num. of testman testsge
Method
Params. |Eng | Man | Mixed ||Eng | Man | Mixed |
Hybrid CTC/atten|48.27 M| 29.2 15.0 16.6 | 282 220 23.3
+ LAL (ours) 48.27 M| 29.1 14.8 164 | 283 21.7 232
Bi-encoder [9] 79.90 M| 29.2 15.0 16.5 | 282 21.7 23.2
LPB [4] 59.58 M| - - 16.3 - - 229

LAL being incorporated achieves the highest performance
with 8 = 3. This is consistent with the performance of its
counterpart on the SEAME dataset without speed perturbation.
It is useful to note that the proposed method achieves the
highest performance on the ASRU dataset when 5 = 1.5.
Since a higher (§ value is required for the SEAME data
to achieve the highest performance, this also underpins that
the SEAME dataset presents greater challenges in language
discrimination than the ASRU dataset.

D. Comparison with state-of-the-art methods

We compared the performance of our proposed method
with state-of-the-art approaches. These methods are evaluated
on both model parameters and the CS-ASR performance are
outlined in Tables and For the ASRU dataset, the
hybrid CTC/attention model incorporating LAL with language
weights achieves the best MER of 11.7% among all ap-
proaches under consideration. While the bi-encoder and LPB
methods exhibit higher performance compared to the baseline
model, these approaches require an additional Conformer
encoder and a Transformer decoder, respectively, resulting in
a notable increase in model parameters.

On the SEAME dataset, the hybrid CTC/attention model
with the proposed LAL demonstrates a modest performance
improvement compared to the vanilla model. Although the
LPB method outperforms the proposed method, it requires a
higher number of model parameters. In light of the ASRU
dataset results, the above findings suggest that integrating the
proposed LAL is a lightweight and efficient approach to attain
high performance compared to other approaches.



IEEE TRANSACTION ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

TABLE IX
PERFORMANCE COMPARISON OF DIFFERENT TYPES OF LINGUISTIC HINT
USED FOR PROMPTING LLM VIA GENERATIVE ERROR CORRECTION BY
EMPLOYING MER (%) AND UTTERANCE-LEVEL LANGUAGE
IDENTIFICATION ACCURACY (ACC %) FOR ENGLISH, MANDARIN, AND
CODE-SWITCHING. THE N-BEST LIST IS DECODED FROM THE HYBRID
CTC/ATTENTION MODEL WITH LAL

Ling. hint type testman testsge ASRU test
MER | Acc. T|MER | Acc. 7|MER | Acc. 1
no hint 16.4 - 23.3 - 11.0 -
LID output (LAL) 170 803 | 244 843 11.0 952
Ist hypo. 16.5 933 | 23.1 92.5 1.0 99.7
hypos. vote 166 932 | 23.0 93.0 1.0 998
LAL & hypos. vote| 16.6 929 23.1 92.5 11.0 999
groundtruth 15.7 - 22.0 - 11.0 -
TABLE X

PERFORMANCE EVALUATION OF PROMPTING LLM WITH GENERATIVE
ERROR CORRECTION AFTER INCORPORATING THE LINGUISTIC HINT BY
EMPLOYING MER (%). “ft” DENOTES FINE-TUNING, “gt” DENOTES THE
LINGUISTIC HINT USING GROUND-TRUTH UTTERANCE-LEVEL LANGUAGE
LABEL, AND “pred” DENOTES THE PREDICTED LINGUISTIC HINT

Method SEAME ASRU

testman  testsge test
Hybrid CTC/atten 16.6 233 12.8
+ LM late fusion 16.4 23.0 12.6
Hybrid CTC/atten w/ LAL 16.4 23.2 11.7
+ LM late fusion 16.4 23.1 11.9
+ LLM LoRA ft 16.4 233 11.0
+ LLM LoRA ft + ling. hint (pred) 16.5 23.1 11.0
+ LLM LoRA ft + ling. hint (gt) 15.7 22.0 11.0

E. Incorporating LLM with linguistic hint

To further enhance the CS-ASR performance, we integrate
the LLM through prompting to perform generative error cor-
rection on the decoded N-best list. We compare the perfor-
mance of the prompt in terms of MER and utterance-level LID
accuracy before and after incorporating our proposed linguistic
hints. The results on SEAME test,.,, testy.n, and the ASRU
test set are presented in Table Here, the LID accuracy
for the hypothesis within the N-best list is determined by
summarizing the languages of tokens and that “LID output”
denotes the by-product of the proposed LAL.

Similar to existing works [8]], [47]], it is not surprising that
the LID accuracy achieved with the incorporation of textual
information is higher than the by-product of the proposed
LAL. This can be attributed to the fact that an ASR system
models both acoustic and language characteristics, whereas
an LID system generally focuses solely on acoustic informa-
tion. Furthermore, a decrease in LID accuracy often results
in a corresponding degradation in CS-ASR performance of
the generated linguistic hints. The prompt incorporating the
linguistic hint, which serves as the ground-truth language
label, therefore exhibits significantly higher performance on
the SEAME and ASRU datasets compared to other prompts.

Notwithstanding the above, prompts with other linguistic
hints achieve comparable performance to the prompt without

TABLE XI
PERFORMANCE COMPARISON OF PROMPTING LLM WITH THE PROPOSED
LINGUISTIC HINT ON TESTyay SET WITH (THE ORIGINAL DATA) AND
WITHOUT (REMOVING OR NORMALIZING) INTERJECTIONS OF THE
SEAME DATASET BY EMPLOYING MER (%) AND UTTERANCE-LEVEL
LANGUAGE IDENTIFICATION ACCURACY (ACC %). THE N-BEST LIST IS
DECODED FROM THE HYBRID CTC/ATTENTION MODEL WITH LAL

Ling. hint type testman w/o interjections
MER | Acc. 1|MER | Acc. 1
Hybrid CTC/atten w/ LAL| 16.4 - 13.6 -
no hint 16.4 - 13.7 -
LID output (LAL) 170  80.3 14.5 81.1
Ist hypo. 16.5 933 13.6 95.4
hypos. vote 16.8 932 13.7 95.3
LAL & hypos. vote 16.8 929 13.7 95.3
groundtruth 15.7 - 134 -

the hint, albeit with a moderately lower overall performance
in terms of MER. This observation suggests that linguistic
hints may introduce a substantial bias into the generative error
correction process. In particular, the utilization of a correct
linguistic hint in a prompt enhances CS-ASR performance.
Conversely, the misclassification of a linguistic hint results
in an increased error rate. This implies that the proposed
linguistic hint can potentially improve CS-ASR performance,
particularly when an accurate language label is available.
The performance of CS-ASR systems with external lan-
guage modeling are summarized in Table [X] We observe that
incorporating an LM via shallow fusion improves the CS-ASR
performance. The use of LLM does not lead to performance
improvement on the SEAME dataset unless accompanied by
the ground-truth linguistic hint. In contrast, the LLM can
improve the performance on the ASRU dataset, achieving an
MER of 11.0% for all types of prompts. We analyzed the
performance by considering the data distribution as shown in
Table [l Since all utterances in the ASRU test set are code-
switched, these predicted linguistic hints all exhibit high LID
accuracy, and thus show comparable CS-ASR performance.

F. Impact of interjections

As described in Section the SEAME dataset was
collected from Singapore and Malaysia, where code-switching
is more frequent than the ASRU dataset—interjections such
as “lah”, “lor”, and *“ya” that often occur in the former
dataset. Annotating interjections is a challenging task even for
individuals with bilingual expertise. Hence, interjections can
introduce confusion during language modeling, leading to a
degradation in the CS-ASR performance for LLMs that have
not been trained on them. We therefore removed interjections
from utterances in the SEAME training and test,,, without
changing their semantic information. The CS-ASR perfor-
mance and the LID accuracy of the linguistic hint prediction
before and after removing interjections when incorporating
LLM are shown in Table [XI] In addition, the first row shows
the MER of the hybrid CTC/attention model with LAL. This is
computed by comparing the decoded hypotheses and ground-
truth transcriptions after removing interjections within them.



IEEE TRANSACTION ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

TABLE XII
COMPARISON OF THE ORIGINAL ASR WITH LAL OUTPUTS, THE LM LATE
FUSION OUTPUTS, THE LLM-GENERATED OUTPUTS, AND THE
GROUND-TRUTH TRANSCRIPTS FOR THE SEAME DATASET, ERRORS AND
CORRECTED WORDS ARE MARKED IN RED AND BLUE, RESPECTIVELY.

Method Output
7
ASR w/ LAL ah yeah close already

the yeah what happen to him ah
but I} 55 A& — 4 5E W

7

ah yah close already

the yeah what happen to him ah
but R S5 B — F S i

ah yah

ah you are close already

the yeah what happened to him ah
but /R I A B — F S

ah yeah

ah yeah close with me

the yeah what happened to him hah
but R 5 A& — 4 5E W

+ LM late fusion

+ LLM LoRA ft + ling. hint (gt)

Groundtruth

The results indicate that removing interjections improves
the CS-ASR performance significantly due to the reduction
of language confusion. However, incorporating the LLM does
not benefit the CS-ASR performance except for further use
of the linguistic hint with ground-truth language labels. This
is consistent with results presented in Tables |LX] and X} sug-
gesting that a correct linguistic hint can lead to performance
improvement.

VI. DISCUSSION
A. Frame-to-token alignment from ASR decoder but not CTC

In the hybrid CTC/attention ASR model, the frame-to-token
alignment can be computed from both CTC and the cross-
attention process within the ASR decoder. However, it is
worth noting that CTC predictions contain <blank> token that
results in peaky behaviour [48], [49]. Since the <blank> token
lacks a language attribute and is unable to be converted into a
language label, this peaky behaviour leads to fewer language
labels in the pseudo label sequences compared to those derived
through the ASR decoder. Therefore, we use the frame-to-
token alignment computed from the cross-attention attention
weight matrix within the ASR decoder but not the CTC to
generate pseudo language labels.

B. Where the errors happen

The errors have been analyzed to gain insights into factors
affecting the ASR performance. Compared to deletion and
insertion rates, a significantly higher substitution rate is ob-
served from the aforementioned results. The high substitution
rate impose a challenge in language modeling due to a
larger vocabulary and language confusion arising from a code-
switching scenario. Given that code-switched text may be
more readily achieved than speech, developing a robust code-
switching language model is desirable to address language
confusion effectively.

In addition to the model performance in CS-ASR, the
performance in terms of token-level language identification is

worth highlighting. Compared to the CS-ASR model trained
on the SEAME dataset, the model trained on the ASRU dataset
can generally identify the token-level language change points.
This underpins that the SEAME dataset is more challenging
than the ASRU dataset since the two languages are less
discriminative in the SEAME dataset.

To gain further insights into the CS-ASR performance on
the SEAME dataset, we compared the decoded outputs of the
ASR model incorporating LAL, and its counterparts enhanced
by LM and LLM respectively. The results are juxtaposed with
the ground-truth transcription in Table Here, errors are
marked in red and the tokens corrected by LM and LLM
are marked in blue. One factor that contributes to the errors
in the CS-ASR task is language confusion. For instance,
the expression “ah yeah” shares both the pronunciation and
semantic characteristics with its Chinese equivalent “I& Pf”.
Another notable factor that contributes to errors is the liaison,
where two Mandarin characters or English words can erro-
neously be classified as a single entity. The liaison effect can
be particularly pronounced in a spontaneous code-switching
speech signal.

The LLM fine-tuned on the SEAME training set demon-
strated effectiveness in correcting grammatical errors. Words
such as “happened” are consequently adjusted to the correct
tense. However, the model is less adept at accommodating
colloquial expressions. Therefore, the third and fourth cases
illustrated in Table have been modified to a more formal
expression, leading to a higher mixed error rate.

VII. CONCLUSION

We proposed a language alignment loss to enhance CS-ASR
with language information. This is achieved by performing
frame-level language identification using pseudo labels derived
from the ASR decoder. The hybrid CTC/attention model with
the language alignment loss exhibits higher performance on
the SEAME and ASRU datasets than the vanilla configuration,
with only a negligible increase in model parameters during
training. In addition, after incorporating language weights in
LAL to achieve balance for the secondary language during
training, the proposed method obtained further performance
improvement and outperforms other approaches on the ASRU
data. We then employ an external LLM to improve the CS-
ASR performance via generative error correction. Here, a
linguistic hint, which can be computed from the LAL output
and decoded hypotheses, is subsequently proposed to guide the
prompting. Experiments conducted suggest that an accurate
linguistic hint can significantly improve the CS-ASR perfor-
mance in scenarios involving both monolingual and code-
switching utterances. Finally, the errors within the hypotheses
are analyzed. The LLM fine-tuned on the SEAME data has
shown to be effective in correcting grammatical errors, which,
in contrast, leads to a lower ASR performance for spontaneous
and colloquial speech.
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