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Abstract. The exponential trapezoidal rule is proposed and analyzed for the nu-
merical integration of semilinear integro-differential equations. Although the method
is implicit, the numerical solution is easily obtained by standard fixed-point itera-
tion, making its implementation straightforward. Second-order convergence in time
is shown in an abstract Hilbert space framework under reasonable assumptions on
the problem. Numerical experiments illustrate the proven order of convergence.

1. Introduction

In this paper we consider the full discretization of an abstract semilinear integro-
differential equation of the form

u′(t) +

∫ t

0

K(t− s)Au(s) ds = f(u), t ∈ [0, T ], u(0) = u0, (1.1)

where −A is an elliptic differential operator and K is a real-valued positive definite
kernel, i.e., for any T > 0, the kernel K belongs to L1(0, T ) and satisfies∫ T

0

φ(t)

∫ t

0

K(t− s)φ(s) ds dt ⩾ 0 for all φ ∈ C[0, T ].

Equations of the above type and their linear versions are often used to model vis-
coelastic phenomena and heat conduction in materials with memory. We refer to the
monograph [21] and references therein.

There is an extensive literature on the theoretical and numerical analysis of integro-
differential equations [2, 5, 13, 14, 15, 20]. The proposed schemes use finite differences
or finite element approximations in space, combined with standard time discretization
schemes such as the backward Euler method, the Crank–Nicolson scheme, and other
implicit Runge–Kutta or linear multistep methods. The integral term is discretized
either by a standard quadrature rule or, in particular for the Riesz kernel, by a convo-
lution quadrature formula [3, 4, 12].

For certain classes of ordinary and partial differential equations, exponential in-
tegrators have recently proven to be very efficient. For a survey of these integrators,
see [7, 8, 9, 10]. Exponential integrators directly discretize the variation-of-constants
formula, which for problem (1.1) has the form

u(t) = S(t)u0 +

∫ t

0

S(t− σ)f(u(σ)) dσ, (1.2)
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2 A. OSTERMANN AND N. VAISI

where S(t) is the solution operator of the linear problem with f = 0. Exponential
integrators can be used to solve this mild form of integro-differential equations. For
example, the exponential Euler method applied to (1.2) is given as

Um = S(tm)u0 +
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)f(Uj) dσ, 1 ≤ m ≤ M, (1.3)

where Um is an approximation with step size τ to u(t) at t = tm = mτ . Note that (1.3)
is an explicit scheme that relies on computing the actions of certain operator functions.
The method is efficient if the latter can be done efficiently.

In our previous work [16], we proposed explicit exponential Runge–Kutta methods
for the time discretization of integro-differential equations. In the linear case, where
f is considered only as a function of time, we derived the order conditions for the
general order p. The resulting exponential quadrature methods were shown to be also
convergent of order p. In the semilinear case, however, we considered only orders 1
and 2. While the first-order exponential Euler method was simple, the order conditions
for the second-order schemes already became involved due to the additional stage
required. In this paper, we will consider the exponential trapezoidal integrator as
an alternative second-order method for semilinear problems. The method does not
require any stages and is easy to implement. Note that, unlike the methods in [16],
it is implicit. However, since the stiffness of the operator −A is no longer present in
the variation-of-constants formula (1.2), the resulting system of nonlinear equations
can be easily solved by standard methods without any time step restriction due to the
stiffness induced by the operator −A in (1.1).

The remainder of this paper is organized as follows. In section 2, we present the
abstract framework and some preliminaries. In section 3, we introduce a second-order
exponential time integrator for semilinear integro-differential equations along with a
spectral Galerkin method for spatial discretization. The error analysis of the proposed
integrator is presented in Theorem 3.2, which is the main result of the paper. Finally
in section 4, we carry out some numerical experiments and illustrate the theoretical
results obtained in the previous sections.

2. Setting and preliminaries

Let H be a real, separable Hilbert space with inner product ( · , · )H and norm

∥v∥H =
√

(v, v)H . The standard example is H = L2(D) for a bounded domain D ⊂ Rd,
where

(v, w)H =

∫
D
v(x)w(x) dx, ∥v∥H =

(∫
D
v(x)2 dx

) 1
2
, v, w ∈ H.

Furthermore, we denote by L(H) the space of all bounded linear operators on H with
the usual operator norm ∥ · ∥L(H). The following assumption will be used.

Assumption 2.1. Let A be a densely defined, linear, self-adjoint, positive definite
operator on H with compact inverse, and let the kernel K be positive definite.

A sufficient condition for K to hold is k-monotonicity for some k ≥ 2. For more
details, we refer the reader to [21], Def. 3.4 and Prop. 3.3. Our prototypical example
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will be the Riesz kernel

K(t) =
tβ−1

Γ(β)
, t > 0, 0 < β < 1. (2.1)

However, the framework also includes kernels with less regularity. As an example, we
mention a kernel with finite memory, as described in [1, p. 539].

An important example of A is the negative Laplacian A = −∆ on a bounded
domain D ⊂ Rd, subject to homogeneous Dirichlet boundary conditions. It is well
known that the above assumptions on A imply the existence of a sequence of non-
decreasing positive real numbers {λj}∞j=1 and an orthonormal basis {ej}∞j=1 of H such
that

Aej = λjej, lim
j→∞

λj = ∞. (2.2)

For ν ∈ R, we consider the domain of Aν , which is a Hilbert space

V = D(Aν) with norm ∥v∥V = ∥Aνv∥H .
Our main assumptions on the nonlinearity f are those of [6, 17].

Assumption 2.2. For some 0 ≤ ν < 1 and V = D(Aν), the nonlinearity f : V → H
is locally Lipschitz continuous in a neighborhood of the exact solution, i.e. there exist
constants R > 0 and L = L(R) such that

∥f(v)− f(w)∥H ⩽ L∥v − w∥V (2.3)

for all 0 ≤ t ≤ T and all v, w ∈ V satisfying ∥v − u(t)∥V , ∥w − u(t)∥V ⩽ R.

2.1. Solution operator. A family {S(t)}t≥0 of bounded linear operators on H is
called a resolvent family for (1.1) whenever the solution operator S(t) is strongly con-
tinuous on R+ and the resolvent equation holds

S(t)u0 +

∫ t

0

∫ t

s

K(ξ − s) dξ AS(s)u0 ds = u0, for all u0 ∈ H, t ⩾ 0.

If t → u(t) = S(t)u0 is differentiable for t > 0, then u is the unique solution of

u′(t) +

∫ t

0

K(t− s)Au(s) ds = 0, t > 0, u(0) = u0.

We refer to the monograph [21] for a comprehensive theory of resolvent families for
Volterra equations. Note that the operator family {S(t)}t≥0 does not possess the
semigroup property because of the presence of the memory term in (1.1). Nevertheless,
it can be written explicitly using the spectral decomposition (2.2) of A as

S(t)v =
∞∑
k=1

sk(t) (v, ek)H ek, (2.4)

where the functions sk(t), k = 1, 2, . . . are the solutions of the scalar problems

s′k(t) + λk

∫ t

0

K(t− σ)sk(σ) dσ = 0, sk(0) = 1, t > 0. (2.5)

Our convergence analysis below will make use of certain smoothing properties of
the solution operators.
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Assumption 2.3. There exist constants C and 1 ≤ ρ ≤ 2 such that for any 0 ⩽ α ⩽ 1
ρ

the solution operator satisfies the bound

∥AαS(t)∥L(H) ≤ Ct−αρ, t > 0. (2.6)

For the Riesz kernel (2.1), the smoothing property with ρ = β+1 is verified in [14,
Thm 5.5]. For 3-monotone kernels, estimate (2.6) is verified in [11, Prop. 2.2] for

ρ = 1 +
2

π
sup

{∣∣arg K̂(z)
∣∣ ; Re z > 0

}
∈ (1, 2),

where K̂ denotes the Laplace transform ofK; see also [1, Lem. A.4] and [21, Prop. 3.10].

3. Numerical scheme and main result

3.1. The numerical method. We are now in a position to construct a fully discrete
scheme for the numerical solution of problem (1.1). For the spatial discretization we
will use a spectral Galerkin method and for the temporal discretization the exponential
trapezoidal rule.

For M ∈ N we consider the uniform mesh 0 = t0 < t1 < · · · < tM = T on the time
interval [0, T ] with time step h = tm+1 − tm, m = 0, 1, . . . ,M − 1. Then, by using the
variation-of-constants formula, we consider the mild formulation of (1.1), viz.

u(tm) = S(tm)u0 +

∫ tm

0

S(tm − σ)f(u(σ)) dσ. (3.1)

Obviously, this can also be written as

u(tm) = S(tm)u0 +
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)f(u(σ)) dσ. (3.2)

Here, the operator S(t) denotes the solution operator of the linear problem (i.e. for the
case f = 0). We recall that the operator S(t) does not enjoy the semigroup property
due to the non-locality of the kernel in (1.1).

For the time discretization of (3.2), we employ the exponential trapezoidal rule,
i.e.

Um = S(tm)U0 +
1

2

m−1∑
j=0

∫ tj+1

tj

S(tm − σ) dσ{f(Uj) + f(Uj+1)}, (3.3)

where Um (1 ≤ m ≤ M) denotes the numerical approximation to the exact solution
u(t) at time t = tm; for notational convenience we set U0 = u0.

For the spatial discretization, we choose N ∈ N and consider the finite dimensional
subspace HN ⊆ H, given by HN ≡ span{e1, e2, · · · , eN}, where {ek}∞k=1 are the eigen-
functions of A, i.e., Aek = λkek, k ∈ N. Further we use the projectors PN : H → HN

given by

PNv =
N∑
k=1

(v, ek)ek

for v ∈ H and the projected operator AN : HN → HN , AN = APN which generates a
family of resolvent operators {SN(t)}t⩾0 in HN . It is clear that

SN(t)PN = S(t)PN , (3.4)
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and also

∥A−ν(I − PN)∥L(H) = sup
k⩾N+1

λ−ν
k = λ−ν

N+1, ν ⩾ 0. (3.5)

A representation of SN is given by

SN(t)v =
N∑
k=1

sk(t)(v, ek)ek. (3.6)

This motivates us to consider the following fully discrete scheme

UN
m = SN(tm)PNu0 +

1

2

m−1∑
j=0

∫ tj+1

tj

SN(tm − σ) dσPN

{
f(UN

j ) + f(UN
j+1)

}
, (3.7)

which we propose for the numerical solution of (3.1).
In order to get a solution in V , we assume that the initial data satisfies u0 ∈ V .

More regularity, however, improves the spatial convergence result. To elaborate this,
we make the following regularity assumption.

Assumption 3.1. Let g : [0, T ] → H : t 7→ g(t) = f(u(t)) be twice differentiable, let
ν be given by Assumption 2.2 and assume that the following conditions hold:

(a) νρ < 1 for ρ given by Assumption 2.3;

(b) u0 = u(0) ∈ D(Aν+β) for some β ≥ 0;

(c) Aγg ∈ L∞(0, T ;H) for some γ ≥ 0;

(d) Aηg′ ∈ L∞(0, T ;H) for some 0 ≤ η ≤ ν;

(e) A−δg′′ ∈ L∞(0, T ;H) for some 0 ≤ δ ≤ 1
ρ
− ν.

Note that the properties (b)–(e) can also be seen as the definition of the four non-
negative parameters β, γ, δ, and η.

Under this assumption, we have the following convergence result.

Theorem 3.2. For the solution of (1.1) in the mild form (3.1), consider the exponen-
tial integrator (3.7). If the Assumptions 2.1, 2.2, 2.3, and 3.1 hold, then there exist
constants h0 > 0 and C > 0 such that for all step sizes 0 < h ≤ h0 and all N ∈ N, the
global error satisfies for 0 < tm = mh ≤ T and 0 ≤ α < 1

ρ
the bound

∥u(tm)− UN
m ∥V ⩽ C

(
t−αρ
m λ−α−β

N+1 + ht−νρ
m λ−β

N+1 + λν−α−γ
N+1

+ h2−(ν−η)ρ sup
0⩽t⩽T

∥Aηg′(t)∥H + h2 sup
0⩽t⩽T

∥A−δg′′(t)∥H
)
,

where the constant C depends on T , but it is independent of N , m, and h.

In particular, if g′ is uniformly bounded in V , we can choose η = ν and the scheme
turns out to be second-order convergent in time.



6 A. OSTERMANN AND N. VAISI

4. Proof of Theorem 3.2

First recall that g(t) = f(u(t)) and that the operators A, S, and PN commute.
By subtracting the numerical solution (3.7) from the exact solution (3.2) we have

u(tm)− UN
m = S(tm)u0 − SN(tm)PNu0 +

m−1∑
j=0

∫ tj+1

tj

{
S(tm − σ)f(u(σ))

− SN(tm − σ)PN

(1
2

(
f(UN

j ) + f(UN
j+1)

))}
dσ,

which, by (3.4), can be written as

u(tm)− UN
m = S(tm)(I − PN)u0

+

∫ tm

0

S(tm − σ)
(
g(σ)− PNg(σ)

)
dσ

+
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PN

{
g(σ)− 1

2

(
f(UN

j ) + f(UN
j+1)

)}
dσ.

Now taking the norm in V , we obtain

∥u(tm)− UN
m ∥V ⩽

∥∥S(tm)(I − PN)u0

∥∥
V

+

∫ tm

0

∥∥∥S(tm − σ)
(
g(σ)− PNg(σ)

)∥∥∥
V
dσ

+
m−1∑
j=0

∫ tj+1

tj

∥∥∥S(tm − σ)PN

{
g(σ)− 1

2

(
f(UN

j ) + f(UN
j+1)

)}∥∥∥
V
dσ

= I1 + I2 + I3,

where I1, I2 and I3 correspond to the spatial and temporal discretization errors respec-
tively.

First, using (2.6) and the fact (3.5) enable us to bound I1 as follows

I1 = ∥AαS(tm)A
−α−β(I − PN)A

βu0∥V
⩽ ∥AαS(tm)∥L(H)∥A−α−β(I − PN)A

ν+βu0∥H
⩽ Ct−αρ

m λ−α−β
N+1 ∥Aν+βu0∥H

⩽ Ct−αρ
m λ−α−β

N+1 .

To estimate I2, we again employ (2.6) and (3.5) to obtain

I2 =

∫ tm

0

∥AαS(tm − σ)Aν−α−γ(I − PN)A
γg(σ)∥H dσ

⩽ C

∫ tm

0

(tm − σ)−αρ∥Aν−α−γ(I − PN)∥L(H) ∥Aγg(σ)∥H dσ

⩽ Cλν−α−γ
N+1 .



7

It remains to estimate the term

I3 =
m−1∑
j=0

∫ tj+1

tj

∥∥∥S(tm − σ)PN

{
g(σ)− 1

2

(
f(UN

j ) + f(UN
j+1)

)}∥∥∥
V
dσ. (4.1)

We put

g(σ) =
1

2

(
g(tj) + g(tj+1)

)
+ g(σ)− 1

2

(
g(tj) + g(tj+1)

)
,

on the right-hand side of (4.1) to get

I3 ⩽
1

2

m−1∑
j=0

∫ tj+1

tj

∥∥S(tm − σ)PN

(
g(tj)− f(UN

j )
)∥∥

V
dσ

+
1

2

m−1∑
j=0

∫ tj+1

tj

∥∥S(tm − σ)PN

(
g(tj+1)− f(UN

j+1)
)∥∥

V
dσ

+

∫ tm

tm−1

∥∥∥S(tm − σ)PN

[
g(σ)− 1

2

(
g(tm−1) + g(tm)

)]∥∥∥
V
dσ

+
m−2∑
j=0

∫ tj+1

tj

∥∥∥S(tm − σ)PN

[
g(σ)− 1

2

(
g(tj) + g(tj+1)

)]∥∥∥
V
dσ

= I3,1 + I3,2 + I3,3 + I3,4.

Next we handle these four terms separately. We first note that∫ tj+1

tj

(tm − σ)−νρdσ =

{
Ch(tm − tj)

−νρ, j ≤ m− 1,

h(tm − tj+1)
−νρ, j < m− 1.

Using the local Lipschitz continuity of f and (2.6), we infer that

I3,1 =
1

2

m−1∑
j=0

∫ tj+1

tj

∥∥∥AνS(tm − σ)PN

(
f(u(tj))− f(UN

j )
)∥∥∥

H
dσ

⩽ C

m−1∑
j=0

∫ tj+1

tj

∥AνS(tm − σ)∥L(H) ∥u(tj)− UN
j ∥V dσ

⩽ Ch
m−1∑
j=1

(tm − tj)
−νρ∥u(tj)− UN

j ∥V + Cht−νρ
m λ−β

N+1.

In the same way, we get

I3,2 ⩽ Ch
m−2∑
j=0

(tm − tj+1)
−νρ∥u(tj+1))− UN

j+1∥V + Ch(tm − tm−1)
−νρ∥u(tm))− UN

m ∥V .

In order to bound the term

I3,3 =

∫ tm

tm−1

∥∥∥S(tm − σ)PN

[
g(σ)− 1

2

(
g(tm−1) + g(tm)

)]∥∥∥
V
dσ,
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we need to expand g in a Taylor series with integral remainder as follows

g(σ) =
1

2

(
g(tm−1) + g(tm)

)
+

1

2

(
g′(tm−1)(σ − tm−1) + g′(tm)(σ − tm)

)
+

1

2

∫ σ

tm−1

(σ − ξ1)g
′′(ξ1) dξ1 −

1

2

∫ tm

σ

(σ − ξ2)g
′′(ξ2) dξ2.

Using this in I3,3 we arrive at

I3,3 ⩽
1

2

∫ tm

tm−1

(σ − tm−1)
∥∥Aν−ηS(tm − σ)PNA

ηg′(tm−1)
∥∥
H
dσ

+
1

2

∫ tm

tm−1

(tm − σ)
∥∥Aν−ηS(tm − σ)PNA

ηg′(tm)
∥∥
H
dσ

+
1

2

∫ tm

tm−1

∥∥∥Aν+δS(tm − σ)PN

∫ σ

tm−1

(σ − ξ1)A
−δg′′(ξ1) dξ1 dσ

∥∥∥
H

+
1

2

∫ tm

tm−1

∥∥∥Aν+δS(tm − σ)PN

∫ tm

σ

(σ − ξ2)A
−δg′′(ξ2) dξ2 dσ

∥∥∥
H
,

which then yields

I3,3 ≤ Ch2−(ν−η)ρ sup
0⩽t⩽T

∥Aηg′(t)∥H + Ch2 sup
0⩽t⩽T

∥A−δg′′(t)∥H .

Finally, for estimating

I3,4 =
m−2∑
j=0

∫ tj+1

tj

∥∥∥AνS(tm − σ)PN

[
g(σ)− 1

2

(
g(tj) + g(tj+1)

)]∥∥∥
H
dσ

≤
m−2∑
j=0

(tm − tj+1)
−(ν+δ)ρ

∥∥∥∫ tj+1

tj

A−δ
[
g(σ)− 1

2

(
g(tj) + g(tj+1)

)]∥∥∥
H
dσ,

we use the following formula (Peano kernel of the trapezoidal rule):∫ tj+1

tj

[
g(σ)− 1

2

(
g(tj) + g(tj+1)

)]
dσ

=

∫ tj+1

tj

g(σ) dσ − h

2

(
g(tj) + g(tj+1)

)
=

1

2

∫ tj+1

tj

(ξ − tj)(ξ − tj+1)g
′′(ξ) dξ.

This immediately leads us to

I3,4 ≤
1

2

m−2∑
j=0

(tm − tj+1)
−(ν+δ)ρ

∫ tj+1

tj

(ξ − tj)(tj+1 − ξ)
∥∥A−δg′′(ξ)

∥∥
H
dξ

⩽ Ch2 sup
0⩽t⩽T

∥A−δg′′(t)∥H h
m−2∑
j=0

(tm − tj+1)
−(ν+δ)ρ
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⩽ Ch2 sup
0⩽t⩽T

∥A−δg′′(t)∥H .

Putting the above estimates together implies (for h sufficiently small)

∥u(tm)− UN
m ∥V ≤ C

(
h

m−1∑
j=1

(tm − tj)
−νρ∥u(tj)− UN

j ∥V + t−αρ
m λ−α−β

N+1 + λν−α−γ
N+1

+ ht−νρ
m λ−β

N+1 + h2−(ν−η)ρ sup
0⩽t⩽T

∥Aηg′(t)∥H + h2 sup
0⩽t⩽T

∥A−δg′′(t)∥H
)
.

Applying a discrete Gronwall lemma finally shows the desired bound.

5. Implementation and numerical experiments

In this section we present some numerical experiments to illustrate the error
bounds obtained in Theorem 3.2. We carry out the experiments in one space dimen-
sion, choosing D = (0, 1) and A = − d2

dx2 , subject to homogeneous Dirichlet boundary
conditions. Thus, the eigenvalues and (normalised) eigenfunctions of A are

λk = k2π2 and ek(x) =
√
2 sin(kπx), k ⩾ 1.

5.1. Explicit representation of the solution. We recall form section 2.1 that

(SN(t)(v))(x) =
N∑
k=1

2sk(t) sin(kπx)

∫ 1

0

sin(kπξ)v(ξ) dξ,

for x ∈ (0, 1). The functions sk are the solutions of (2.5). We consider the following
two problems.

Problem 5.1. Consider the Riesz kernel K(t) = tρ−2/Γ(ρ− 1) with 1 < ρ < 2. Using
the Laplace transform in (2.5), we get

sk(t) = Eρ(−λkt
ρ),

where Ea(z) is the one-parameter Mittag–Leffler function, defined as Ea(z) = Ea,1(z),
where

Ea,b(z) =
∞∑
k=0

zk

Γ(ak + b)
, z ∈ C, a, b > 0.

The numerical approximation UN
m at time tm = mτ can be written as

UN
m =

N∑
k=1

(
Eρ(−λkt

ρ)(u0, ek)H ek

+
1

2

m−1∑
j=0

∫ tj+1

tj

Eρ(−λk(tm − σ)ρ) dσ
{
(f(UN

j ), ek)H + (f(UN
j+1), ek)H

}
ek

)
.

Fixed-point iteration is used to solve this nonlinear problem. Note that the integrals
of the Mittag–Leffler function can be computed by a simple quadrature such as the
trapezoidal rule. However, the integrals can also be computed exactly as∫ tj+1

tj

Eρ(−λk(tm − σ)ρ) dσ =

∫ tm−j

tm−j−1

Eρ(−λkσ
ρ) dσ
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= tm−jEρ,2(−λkt
ρ
m−j)− tm−j−1Eρ,2(−λkt

ρ
m−j−1),

which is proved in [19, Eq. (1.100)]. For evaluating the Mittag–Leffler function we use
the routine from [18].

Problem 5.2. Let K be the smooth kernel

K(t) = e−at with 0 < a ⩽ 2 for t ⩾ 0.

Since K ′ = −aK, it is easy to see that the ordinary integro-differential equation (2.5)
is equivalent to

s′′k + as′k + λksk = 0, sk(0) = 1, s′k(0) = 0.

It has the solution

sk(t) = e−
a
2
t
{
cos

√
4λk − a2

4
t+

a√
4λk − a2

sin

√
4λk − a2

4
t
}
.

The integrals of sk can be computed exactly.

5.2. Numerical experiments. In all experiments, we chose the nonlinearity f(u) =
sinu, the initial data u0 = 4x(1 − x), x ∈ [0, 1] and N = 100 frequencies. The
problems were integrated with various time step sizes h up to time T = Mh = 1
and the errors were calculated in a discrete L2-norm using the difference between the
numerical solution UN

M and a reference solution UN
ref at time T = 1:

error =

(
∆x

N∑
j=1

(
UN
M(xj)− UN

ref(xj)
)2)1/2

, xj = j∆x, ∆x = 1
N+1

.

The reference solution was computed with the second-order explicit exponential inte-
grator from [16] using sufficiently small time steps.

In the experiments, we considered two different values of ρ for the Riesz kernel and
the value a = 2 for the exponential kernel. Figure 1 presents a double logarithmic plot
of the errors as a function of the time step. The figure confirms the proven theoretical
results.
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Figure 1. Temporal rate of convergence of the exponential trapezoidal
method for three different problems (see text).
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