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Abstract 

 
Accurate classification of objects in 3D point clouds is a significant problem in several 

applications, such as autonomous navigation and augmented/virtual reality scenarios, 

which has become a research hot spot. In this paper, we presented a deep learning 

strategy for 3D object classification in augmented reality. The proposed approach is a 

combination of the GRU and LSTM. LSTM networks learn longer dependencies well, 

but due to the number of gates, it takes longer to train; on the other hand, GRU networks 

have a weaker performance than LSTM, but their training speed is much higher than 

GRU, which is The speed is due to its fewer gates. The proposed approach used the 

combination of speed and accuracy of these two networks. The proposed approach 

achieved an accuracy of 0.99 in the 4,499,0641 points dataset, which includes eight 

classes (unlabeled, man-made terrain, natural terrain, high vegetation, low vegetation, 

buildings, hardscape, scanning artifacts, cars). Meanwhile, the traditional machine 

learning approaches could achieve a maximum accuracy of 0.9489 in the best case. 

Keywords: Point Cloud Classification, Virtual Reality, Hybrid Model, GRULSTM, 

GRU, LSTM 

 

 

1. Introduction 

 
In recent years, Covid-19 has been changed our lifestyle. Virtual Reality (VR),     

Augmented Reality (AR), and mixed Reality (MR) has become a part of our lives [1]. 
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We will propose the combined system, based on voice command, creating a VR en- 

     vironment using point cloud. The idea comes from the J.A.R.V.I.S. (Just A Rather 

Very Intelligent System) refers to fictitious personality, which is created by Marvel 

Cinematic Universe [3]. Jarvis helps Iron man to conduct his thoughts based on voice 

command. Our systems will create the environment by point cloud [6] and then recog- 

nize the object using a camera and add it into VR environment. Most interaction in a 

      virtual environment depends on using hands to do critical tasks, which is more practi- 

cal. Also, a hands-free interface based on voice recognition is followed by the eye and 

head gaze [4]. The role of Non-verbal and body language has been ignored in video 

communication. Although the remote assistant role is progressively increased, ”due to 

a lack of spacial information, a limited field of view, a lack of context, and a limited 

      transmission of non-verbal cues and body language, the affordances provided by video 

communication are insufficient [5].” Our combined system in this regard will concen- 

trate on the role of voice and non-verbal communication in virtual reality. It will be a 

combination of verbal and non-verbal at the same time. In most articles [4, 5], only one 

area is covered, but it seems that combining them will give the user more freedom of 

     choice. The role of the point cloud is deniable immersive virtual reality experiences in 

terms of simplicity and versatility is famous for presenting ”photorealistic volumetric 

reconstructions of dynamic real-world objects.” Also, user-centred Adaptive approach 

is a sensible way to increase the quality of bitrates [6]. 

 
2. Literature Review 

 
  In this section, we will assess the recent papers in virtual reality, including voice 

command, non-verbal command, point cloud techniques to create an immersive virtual 

environment. In the end, we will discuss some datasets tools that we would use for our 

proposed ideas. 

 

2.1. Hands Free Interaction 

           Monteiro et al. [4] investigated the literature review usability of hands-free inter- 

action techniques for VR environment for interaction tasks. They claimed that these 
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techniques are valuable for users’ interaction in grasping and directly interacting with 

objects. Most of the studies they examined used command voice and voice recognition 

techniques to do their tasks. The second popular method refers to eye tracking, inte- 

     grated into head-mounted displays (HMD) and delivers accurate eye data for selection 

purposes. Similarly, head tracking methods are practical, especially for collecting head 

rotation data. They highlighted that verbal interaction is significantly increased for sys- 

tem control and selection tasks. In terms of evaluation metrics (Satisfaction, Efficiency, 

and Efficacy), most studies collected data from customized questionnaires of user feed- 

       back. Interaction time is an important measurement to evaluate the performance, while 

accuracy and number of errors are usually used for efficacy. Other metrics such as 

sense of presence and simulator sickness have been influenced the VR experience [4]. 

Binti Azizo et al. [9] proposed the ”Virtual Reality 360 Universiti Teknologi 

Malaysia (UTM) Campus Tour with voice commands using the Head Mounted Dis- 

     play (HMD)”, which is developed by using Unity3D and IBM Watson Speech Platform 

application programming interface (API). To decrease the expenses, they used smart- 

phones. The primary function is voice command to control the virtual environment, 

which is a neutral way to communicate with a computer. They used three methods to 

evaluate their work: ”black-box testing, white-box testing, and user usability.” Also, 

       there is some limitation on their work, including limitation due to the Covid-19 pan- 

demic, weakness in internet connection, that will not allow voice recognition system 

has a good performance, being noisy environment will not allow the voice recogni- 

tion functionally to detect users’ voice, repetition in testing to get a good result. They 

suggested using the paid version of voice recognition software to overcome these lim- 

        itations. 

 

2.2. Point Clouds 

The point clouds’ advantages outweigh 3D meshes due to no lack of features, re- 

silience to noise, no expensive preprocessing. However, it needs compression to store 

and transport efficiently over limited bandwidth networks. Subramanyam et al. [6] pro- 

         posed the user-centred approach to generate the dataset based on navigation patterns 

in 6 degrees of freedom. Their evaluation system is based on user-centred, adaptive 
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streaming to be objective quality and bitrate savings the delivery of dynamic cloud se- 

quences through independently decodable tiles for real-time applications. To address 

optimization issues, adaptive utilize streaming over HTTP could be beneficial using 

      the tiling strategy. Their experience was conducted using 26 participants, which each 

participant was requested to view 10 seconds dynamic point cloud and navigate within 

the scene freely. In terms of user navigation patterns, it indicated significant variation 

across sequences based on user movements on the XY floor. They observed ”a greater 

spread of viewport locations around the object for this sequence [6] .” 

  The proposed rendering systems are based on a multi-pass rendering pipeline that 

allows users to explore the virtual environments by keeping visual quality and frame 

rates. They used 6DOF to avoid motion sickness. They used kd-tree for preprocessing 

techniques and their interaction handler is categorized into configuration and selection 

methods to apply rendering techniques, movement, distance measurements area, alter- 

     ing generated 3D point clouds. Their locomotion techniques refer to freely moving by 

the user, including: ”Real Walking,” ”joystick flying,” ”point teleport (PT),” ”dashing,” or 

”locomotion based on gamepads and keyboards [7].” 

 

2.2.1. Generative Adversarial Network for the Point Cloud Generation 

In this section, we present a complete study of various generating models, includ- 

     ing generative adversarial networks (GANs), that work on raw point clouds. GNA 

networks are very useful in this field because of their strong performance to create data 

similar to the distribution of input data. There are different models for generating point 

clouds. Among these models, deep generative learning has been used the most. Deep 

generative models seek to integrate the interpretable representations provided by 

     potential models into the scalability and flexibility of deep learning. In general, most 

machine learning models are discriminatory models [10]. Discriminatory models do 

not care how data is generated. They categorize the input data. In contrast, gener- ating 

models specify how data is generated to classify input data. In general, GAN is a 

supervised learning framework that simultaneously training two sub-models: the 

     G-Generative model, which attempts to create new instances of training data, and the 

D-discriminative model, which attempts to classify as real (from the training data field) 
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or fake (created). G and D are both trained by playing in a zero-sum game. In particu- 

lar, G tries to produce as many new samples as possible and maximizes the likelihood 

of misdiagnosis and D responsibility is to distinguish between real and fake examples. 

In the GAN network, the overall goal is to solve a two-person minimax problem. In the 

following, we will discuss some GAN studies in the field of raw point cloud production 

[11]. Three-dimensional geometric data provide excellent scope for studying produc- 

tive representation and modelling learning. In an article [12], the authors deal with 

geometric data represented as point clouds. They have introduced an in-depth AutoEn- 

coder(AE) network with advanced refurbishment quality and generalizability. Their 

proposed model consists of several main parts. In the first part, there is a GAN network 

that works directly with 3D point cloud data. This network is implemented within AE. 

Their AE network input is a 2048 dot cloud (a 2048 * 3 matrix) that represents a three- 

dimensional shape. Their encoder architecture is 1-dimensional convolutional layers 

with a core size of 1 and an increasing number of features. This approach encrypts each 

point independently. A ”symmetric” variable change function (for example, a 

maximum reservoir) is placed after the twists to create a common representation. They 

used 5 1-dimensional convolutional layers, each with a ReLU and batch normalization. 

The output of the last convolution layer is transferred to a multi-layer fully connected 

to produce an output of 2048 * 3. Their proposed GAN was applied to the input of the 

set of raw points 2048 * 3, which was obtained through AE. The discriminator archi- 

tecture is the same as AE (ie, from the kernel point of view, filter size and a number of 

neurons), the output of the last layer being completely connected to a sigmoid neuron. 

On the other hand, their GAN model generator takes a Gaussian noise vector as input 

and maps it to the output of 2048 * 3 through 5 layers of FC-ReLU. Their proposed 

approach on D-FAUST reached Performance 0.96. 

Using tree-GAN structures can also provide acceptable results for 3D point cloud 

representation and generation. In [13] to achieve advanced performance for the multi- 

class 3D point cloud generation, a tree-structured graph convolutional network (Tree- 

GCN) is introduced as a generator for Tree-GAN. Because Tree-GCN uses the convo- 

lutional network in a tree, it can use ancestral information to enhance the display power 

of features. The Tree-GAN structure proposed by them consists of two networks, dis- 
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criminator and generator. In the generator, a single point with a Gaussian distribution 

is considered as an input, and in each layer of this generator, GraphConv and Branch- 

ing are located to produce a set of points. All points created in the previous layers are 

added to a tree in the current layer in order. The tree starts with the root node of z, di- 

vides it into child nodes through the Branching operation, and changes the nodes with 

the GraphConv operation. Finally, the generator generates a set of 3D-points as output. 

The Discriminator also shows the difference between the points produced and the real 

points. The network achieved FPD 0.809 and 0.439 on Chair and Airplane, respec- 

tively. Tree-GAN structures have been used in many other studies, the most important 

of which are models PT2PC [14], HSGAN [15], TreeGCN-ED [16], and SP-GAN [17] 

were mentioned. 

In addition to their success in a point cloud, GANs have also been successful in 

Augmented Reality (AR). In AR, like Point Cloud, having methods to create data 

streams similar to model input streams can reduce expenses of data collection consumed- 

time. The following are some of the efforts made in the GAN composition for AR. 

Augmented Reality (AR) brings immersive interactive experiences in which the real 

and virtual worlds are highly interconnected. GAN networks have played a key role in 

AR. For example, studies can be provided: Providing a GAN-based model for linking 

different images of flammable and hazardous objects to assist firefighters [18], A model 

for mobile augmented reality (AR) [19], background augmentation generative adver- 

sarial networks (BAGANs) [20] with the aim of solving the problem of insufficient and 

asymmetric training data in AR object detection can be mentioned. 

 
2.3. Object Detection 

Du et al. [21] proposed the 3D object detection framework named AGO-Net using 

point cloud and LiDAR camera from the actual scene by applying conceptual mode 

via domain adaptation. The distinction between object classification and localization 

based on abstract features categorization is sufficient for extracting details from point 

clouds. The network will be able to make connections between components for objects 

adaptively if the gap between perception and conception features is lost. 
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3. Methodology 
 

3.1. Proposed Solution 

The basic idea underlying the proposed approach is explained below. We map the 

       extracted features to a distributed vector (hence the encoding phase) and it is used 

to classify point cloud classes. In this section, after a brief overview of the notation and 

conventions we used, the various components of the network we tested will be 

described in detail. The proposed model is shown in Figure 1. 
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Figure 1: The proposed model 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

We used uppercase letters like W and U to represent matrices, lowercase letters like 

b and x to represent vectors and x = [x<1>, x<2>, . . . , x<n>] to represent a vector of the 

input component. The index i represents the i-the component of this input component. 

We will indicate the set of parameters of our model with the capital Θ. 

Input layer: Each record of feature is displayed as a vector x = [x<1>, x<2>, . . . , x<n>]. 

Where the i-the index of this vector represents the i-the property of this input compo- 

nent. We normalized the input because of the varying numerical scale of the input 

components. The encoding layer: A single distributed vector must record the mean- 

ing of the input. By having an input component s containing the h attribute, the result 

   

   

 

 

 

 

 
ℎ𝑛 = 𝑒𝑛𝑐(𝑠) 
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of the encoding phase output can be expressed as enc(s) = h<k>, where h<k>Rj and the 

value of j is a hyperparameter. We used a recurrent layer to encode the input layer. In 

this layer, the amount activated in the hidden layer depends on the current input value 

and the output value in the previous step. In general, we will have: 

h<k> = g(r<k>, h<k−1>, θenc) (1) 

Where g is the recurrent cell, r<k> the current input feature, h<k−1> the output of the 

hidden layer at time k, and h<k−1> is the output of the hidden layer at time k − 1 and enc 

are the learnable parameters in the learning phase. Accordingly, the encoding phase is 

as follows: 

enc(S ) = h<k> = g(r<k>, h<k−1>, θ𝑒𝑛𝑐) (2) 

enc(S ) requires recurrent layers to produce. An overview of the proposed return layers 

is shown in Figure 2. 

 
 

Input features 

GRU layer 

 

LSTM layer 

 

 

 
Concatenator layer 

 
 

Output layer 

f1 f2 f3 fn 

 

 

 

 
Figure 2: The proposed model 

 
 

In fact, the proposed method is a four-layer structure. These four layers at a glance 

are: 

 1. Input layer: In this layer, each of the input features that are related to a classifi- 

cation are given to the GRU inputs. 

GRU1 GRU2 GRU3 GRU n 

LSTM1 LSTM2 LSTM3 LSTM n 



9 

 

 

2. GRU layer: The inputs of the GRU layer are vectors derived from the input 

layer. 

3. LSTM layer: The inputs of the LSTM layer are vectors derived from the GRU 

 layer. 

4. Output layer: The output of the LSTM network is initially flattened. 

 
Here are the details of each of these steps: 

GRU layer: After the preprocessing operation is performed on the research data 

set, the data is sent to the GRU layer in the form of a normalized window. In this step, 

the number of GRU layer blocks was equal to the number of features. Figure 4 shows 

how this process works. In Figure 3, the first layer is the input layer and features and 

 

 

 

 
ℎ1 ℎ2 ℎ3 

ℎ4 

 
 
 
 

Figure 3: An overview of GRU 

 

 

the second layer is the GRU layer. This figure shows the sending of samples to the 

GRU layer. The inputs of the GRU layer are vectors obtained through sliding windows 

GRU1 GRU2 GRU3 GRU n 
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and the output is calculated through the following equations. 

 
𝑧𝑡 = σ(𝑤𝑠 𝑥𝑡+ 𝑈𝑠h(t − 1)) + 𝑏𝑧 (3) 

rt = σ(𝑤𝑟 𝑥𝑡+ 𝑈𝑟h(t − 1) + 𝑏𝑟 

h
J 

= σ(𝑤ℎ 𝑥𝑡+Un(rt ʘ h(t − 1)) + 𝑏ℎ 

ht = (1 − z)h(t − 1) + 𝑧𝑡h
J

 

Where 𝑧𝑡   is update gate, rt is rest gate, h
J
t is candidate gate, and ℎ𝑡 is output activation. 

WZ, WR, 𝑊ℎ, UZ, UR, UN are learnable matrixes, bn, 𝑏𝑠, 𝑏𝑟 are learnable biases, σ is 

sigmoid activation function, and ʘ is an element-wise multi-plication. 

LSTM layer: The next step in the proposed method is to send the output of the 

GRU layer as input to the LSTM layer. Figure 4 shows how this process works. 

 

 

 
 

ℎ1 
ℎ2 ℎ3 ℎ4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: An overview of LSTM 

 

 

The LSTM input in step T is the vector X ∈ RE. The hidden vector sequence is in 

LSTM, is calculated by the following equations:

LSTM1 LSTM2 LSTM3 LSTM n 

GRU1 GRU2 GRU3 GRU n 

    

t 
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f <k> = σ(𝑊𝑓r<k> + Uf h<k−1> + bf ) (4) 

𝑞<𝑘>= σ(Wi r
<k> + Ui h

<k−1> + bi) 

g<k> = tanh(𝑊𝑔r<k> + Ugh<k−1> + 𝑏𝑔) 

o<k> = σ(Wor<k> + Uoh<k−1> + b0) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where i the input gate, o the output gate, f the forget gate, and g the update gate, 

[Wi, 𝑊𝑓 , 𝑊𝑔, Wo, bi, b f , 𝑏𝑔, 𝑏𝑜] is the set of parameters to be learned. q<k> is updated 

through the following relationship: 

                                                                                                                                        (5) 

𝑞<𝑘>  = 𝑓<𝑘> ʘ  𝑞<𝑘−1> + 𝑖<𝑘> ʘ 𝑔<𝑘>   

where the ʘ symbol represents the element-wise product between two vectors. 

Finally, the activation of the cell is accomplished through the following relationship: 

 

ℎ<𝑘>  = 𝑜<𝑘> ʘ  𝑡𝑎𝑛ℎ (𝑞<𝑘>) (6) 

To determine the class of each point, it is sufficient to apply a sigmoid to the en- 

coding phase output as follows: 

 
 

𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑠𝐸 + 𝑏𝑠)𝑥 

 (7) 

 
3.2. Point Cloud Data 

Finding a data set that could handle all the details and conditions for the proposed 

models was a difficult task in terms of collection. Therefore, the Point Cloud Segmen- 

tation data set was used in this work. This data set contains 44990641 points. Also, the 

initial design of this data set has been collected in 7 classes such as: Unlabeled, man- 

made terrain, natural terrain, high vegetation, low vegetation, buildings, hard scape, 

scanning artefacts, and cars. This data set contains information: x, y, z, intensity, r, g, 

b, and class; and is available through the link1. 

 
 

1https://www.kaggle.com/code/kmader/point-cloud-overview/data 

https://www.kaggle.com/code/kmader/point-cloud-overview/data
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3.3. Used Tools and Software 

The Keras2 has been used for developing the proposed GRULSTM model. The 

Keras is a high-level library written in Python. This API has the ability to run in 

seamlessly on both GPUs and CPUs environments. Keras is compatible with Python 

2.7-3.x and provides various modules such as neural layers, cost functions, optimizers, 

initialization schemes, activation functions, and regularization. This API can use any of 

TensorFlow3, CNTK4, and Theano5 backends. Using Keras is easier than it’s backends, 

but does not mean that its flexibility is diminished. 

 

3.4. Preparing Point Cloud Data 

In this step, the initial preprocessing are performed on the training and test data. 

These preprocessing are performed in the same way in all datasets (train and test), and 

include two main steps in the following order: 

• Normalization:  We normalized the input because of the varying numerical scale 

of the input components. We use Linear Scale Transformation (Max-Min)[22]. 

for this purpose. We calculate the normalized value for each index of the input 

component according to the following equation: 

(1 + 𝑥)𝑛 = 1 +
𝑛𝑥

1!
+

𝑛(𝑛−1)𝑥2

2!
+ ⋯ 

ri j =
xi j −   𝑥𝐽̇

𝑚𝑖𝑛

𝑥𝐽̇
𝑚𝑎𝑥 − 𝑥𝐽̇

𝑚𝑖𝑛  
 

j (8) 

• Sliding Window: In this step, sliding windows are formed for forecasting. Fig- 

ure 3 shows how this process works. For example, for predicting X11 time, all 

previous values from X1 to X10 are considered as input, and similarly, for predict- 

ing X12, previous values from X2 to X11 are considered as input. This operation 

 is used for all data, including training and test data. The remarkable thing about 

this model is that time can be used for hours, days and weeks. 

 
2https://keras.io/ 
3https://www.tensorflow.org/ 
4https://docs.microsoft.com/en-us/cognitive-toolkit/setup-windows-python?tabs= 

cntkpy26 
5https://pypi.org/project/Theano/ 

https://keras.io/
https://www.tensorflow.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/setup-windows-python?tabs=cntkpy26
https://docs.microsoft.com/en-us/cognitive-toolkit/setup-windows-python?tabs=cntkpy26
https://pypi.org/project/Theano/


13  

 
 
 
 
 
 
 

 
 

Time 

 
 
 

Figure 5: Sliding window process. 

 

 

4. Result and discussion 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

4.1. Baseline models 

1. Gradient Boosting Classifier: This method is used to develop classification and 

regression models to optimize the model learning process, which is primarily 

non-linear and is more commonly known as decision or regression trees. Re- 

gression and classification trees, individually, are poor models, but when con- 

sidered as a set, their accuracy is greatly improved. Therefore, the sets are built 

gradually and incrementally so that each set corrects the error of the previous set 

mathematically in the form of the following equation[23]: 

 

fk(𝑥) = ∑ γk hm  (𝑥)
𝑘

𝑚=1
                           (9) 

 

2. Support Vector Machine(SVM):The purpose of this classifier is to make a hy- 

pothesis or train a model that predicts the class labels of unknown data or valida- 

tion data samples that consist only of features. This model tries to find the largest 

margin between the data by creating a hyperplane. SVM kernels are generally 

 used to map non-linear separable data into a higher-dimensional feature space 

 

 

 

 

 

 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, 𝑋12, 𝑋13, 𝑋14, 𝑋15 

𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, 𝑋12, 𝑋13, 𝑋14 

𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, 𝑋12, 𝑋13 

𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, 𝑋12 

𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11 

𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10 
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sample consisting only of features[24]: 

 

f (x) = sign(Σ j∈S V αi ∗i .k(xi, xs   V ) + b∗) (10) 

Where K is the kernel, this kernel in our training data model is RBF, which is 

defined as follows: 

              

                                                                   

(11) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

3. XGBoost : XGBoost [25] is widely used by data scientists to achieve advanced 

results in many machine learning challenges. The main idea of this algorithm 

is to present a new algorithm with dispersion awareness for scattered data, and 

a quantitative scheme for approximate tree learning. XGBoost has a very high 

predictive power, which makes it the best option for accuracy in various events 

because it can be used in both linear and tree models. This algorithm is approxi- 

mately 10 times faster than existing gradient upgrade algorithms. This algorithm 

includes various objective functions, regression, classification and ranking. XG- 

Boost works as follows: If, for example, we have a DS dataset that has m at- 

tributes and n instances of DS = (hi, yi  ) : i = 1, ..., n, hi ∈ Rm, y ∈ R. 

yi 

The 

predicted output is a group tree model produced by following equations[26]: 
 

 i 

pred 

k 
k=1 fk  (hi) (12) 

 

 Where K represents the number of trees. fk   represents (k-th tree). This model 

need to find the best set of functions by minimizing the loss and regularization 

objective according to following equation: 

 

                                                                            
  (13)

 

Where l the loss function and Ω is a measure of the complexity of the model and 

can help prevent the model from over-fitting. This criterion is obtained using the 

 following equation: 

pred 

y = Σ 
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2 

l 

Ω( fk  ) = YT + 
1    

λ||W||2 (14) 

where T represents the number of leaves and w is the weight of each leaf in 

the decision tree. In decision trees, to minimize the objective function, function 

amplification is used in the model training process, which is used by adding a 

new function f as a continuation of the model training. Therefore, in iteration t, 

 a new function is added as follows: 
 

  
                               

                                          𝜄(t) = ∑ 𝑙(𝑦𝑖 , 𝑦𝑃𝑟𝑒𝑑
𝑖 𝑡 − 1 + ft    (hi ))𝑎𝑛−𝑘𝑛

𝑖=1
 +  Ω(ft )            (15) 

                       
                                                                                                                                                            (16)

 

 
 

                                                    

                        (17) 

 

  

                                (18) 

4. Random forests(RF): RF consist of a set of decision trees(DT)[27]. Mathemat- 

ically, let Ĉb(x) be the class prediction of the bth tree; the class obtained from 

the random forest Ĉr f (x) is defined as follows: 

Ĉr f (x) = ma jorityvoteĈb(x)B 

 

(19)

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5. Decision tree(DT):DT are powerful and popular tools used for both classifi- 

cation and prediction tasks. A DT represents rules that can be understood by 

humans and used in knowledge systems such as databases. These classification 

systems are in the form of tree structures. One of the most important questions 

that arise in decision tree-based models is how to choose the best split. The data 

set used is assumed to be a sample representation of real data, in which case 

reducing the error on the training data set can reduce the error on the test data. 

For this purpose, an attribute should be selected for the split that causes the sep- 

aration of training samples of each class as much as possible, in other words, it 

causes the child nodes with less impurity. The following three different criteria 

can be used for this purpose[28][29]: 

• Gini 

• Entropy 
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Table 1: hyperparameters for different approaches. 

Model Hyper parameters 

Gradient Boosting 

Classifier 

n estimators=3000, learning rate=0.05, max depth=4, subsample=1.0, criterion=’friedman mse’, min 

samples split=2, min samples leaf=1 

XGB Classifier learning rate=0.1, n estimators=200, nthread=8, max depth=5, subsample=0.9, colsample bytree=0.9 

SVM C=1.0, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, shrinking=True, tol=0.0001 

Random Forest n estimators=100 

Decision Tree n estimators=100 

LSTM LSTM Block=100, Dropout=0.5, layers(LSTM(100),Dropout(0.5),Dense(100),Dense(8)) 

GRU GRU Block=100, layers(GRU(200),Dense(100),Dense(8)) 

GRU+LSTM GRU Block=100, LSTM Block=100, layers(GRU(100), LSTM(100), Dense(100) ,Dense(8)) 

 

Model Accuracy Precision Recall F1-Score 

Gradient Boosting Classifier 0.8775 0.8627 0.9207 0.8904 

SVM 0.8823 0.9212 0.9178 0.9194 

XGB Classifier 0.9183 0.9234 0.9118 0.9175 

Random Forest 0.9345 0.9347 0.9336 0.9341 

Decision Tree 0.9489 0.9535 0.9524 0.9529 

 
 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

• Miss classification error 

The following Table 4.1 are the hyperparameters of these models. 

Table 2 shows the results of traditional machine learning approaches on the target 

data set. These approaches need to extract features manually. The Gradient Boosting 

Classifier approach in these data reached Accuracy=0.8775, Precision=0.8627, Re- 

call=0.9207, and F1-Score=0.8904. The SVM model obtained better results than GB. 

This model was able to achieve Accuracy=0.8823. The superiority of this model in 

other metrics could also be considered, and it achieved Precision=0.92, Recall=0.9178, 

and F1=0.9194. XBG Classifier obtained higher accuracy than the two examined ap- 

proaches, but in terms of F1 and Recall metrics, it obtained weaker results than SVM. 

This approach achieved Precision=0.9234, Recall=0.9118, and f1-score=0.9175. The 

Random Forest and Decision Tree approaches achieved the best results among them. 

These two approaches were able to reach a high accuracy of 0.93%. The Random 

Forest approach achieved Accuracy=0.9345, Precision=0.9347, Recall=0.9336, and 

F1=0.9341, respectively, and the Decision Tree approach also achieved Accuracy=0.9489, 

Precision=0.9535, Recall=0.9524, and F1-score=0.9529. acquired. 
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4.2. Proposed models 

Table 2 shows the results of the proposed approach on the data set. These three 

approaches were compared in four criteria of evaluation of Accuracy, Precision, Recall 

and F1. All approaches have achieved a high accuracy of 0.99%. The GRU approach 

achieved an accuracy of 0.9989%, which is lower than the other two approaches. The 

LSTM approach also achieves an accuracy of 0.9990. Which was less hybrid than the 

proposed approach and better than the GRU. The difference between these approaches 

in the f1 criterion seems much better. The proposed approach has been able to achieve 

f1 = 0.9452%. All of these algorithms were implemented in 10 epochs and 10 blocks, 

3000 batch size, and 10 fully connected layer size were used for each approach. In fact, 

it was tried to consider equal conditions for each of the algorithms. 

 
Table 2: The results of applying the proposed models on point cloud dataset. 

 

Model Accuracy F1 Recall Precision 

GRU 0.9989 0.9294 0.9049 0.9182 

LSTM 0.9990 0.9354 0.9495 0.9240 

GRULSTM 0.9991 0.9420 0.9425 0.9452 

 
 

Diagrams of different approaches to different performances are given in Figure 8. 

According to the accuracy chart, it can be concluded that all three models do not have 

overfitting. On the other hand, according to the error diagram and their logarithmic 

shape, it can be concluded that underfitting did not occur in all three models. 

The remarkable thing about deep learning models is their parameter space. This 

space is continuous, which requires the correct selection of values. Two critical pa- 

rameters in these networks are batch size and learning rate: Batch Size: Batch size 

determines the number of samples that a neural network uses in one session to train. 

The selection of categories has a balance between processing power and model learn- 

ing speed. Learning rate: The learning rate shows the speed of convergence of an 

algorithm in deep learning. Incorrect selection of this value can trap the model in local 

minima.
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Figure 6: Accuracy, loss, precision,recall, and f1 of different approach. 

 

 

 
 
 

 

 

 

 

Figure 7: Accuracy, loss, precision,recall, and f1 of different approach. 

 

 

 
 

 

 

Figure 8: Accuracy, loss, precision,recall, and f1 of different approach. 
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Figures 3 and 4 show the effect of choosing different categories and dropouts. 

The values [8,16,32,64,128,296,512,1024] were considered for the batch size, and 

[0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] for the dropout size. The best results for models with 

high batch sizes and the worst results in Dropout are obtained for models with low 

        rates. 

 

 
5. Conclusion 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this article, point cloud classification in 3D space was investigated. Machine 

learning approaches have achieved poor results due to manual feature selection. These 

approaches achieved a maximum accuracy of 0.94 in large amounts of data and features 

with little data. On the other hand, deep learning approaches achieved an accuracy of 

0.99 due to the automatic selection of features and the huge amount of training data. 

The challenge of speed and accuracy was raised in the proposed models. The LSTM 

approach has high accuracy and slow learning speed, and the GRU approach has a 

higher learning speed and lower learning accuracy than LSTM. For this purpose, it was 

tried to use the GRULSTM hybrid approach for classification. A fundamental issue in 

deep and machine learning approaches is that despite the high accuracy values, the 

models still have low F1-Score values. In the data set under study, some classes have a 

low frequency, and for this purpose, imbalance learning approaches can be used. The 

approaches [30][31][32][33] are suitable for this purpose, and these approaches can 

be used for future works. Also, the parameter space of the models is still challeng- ing, 

which can be overcome for future works by using PSO, Bat optimizer and APPE 

approaches to get the optimal parameter space. 

 
References 

References 
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