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4 A remark on the first eigenvalue of the

p-Laplacian on compact submanifolds in the unit

sphere

Fábio R. dos Santos∗ and Matheus N. Soares

Abstract. An integral inequality for the singular p-laplacian is established for 3/2 <

p < 2. As consequence, lower bounds for the first eigenvalue of the p-laplacian are

obtained for minimal submanifolds and prescribed scalar curvature submanifolds in the

unit sphere.

1. Introduction

Over the past several decades, there has been a discernible surge in scholarly interest

directed towards the investigation of the p-Laplacian for values of p within the interval

(1, 2), particularly in its singular case. We recall that the p-Laplacian on a compact

Riemannian manifold Mn is defined as the second order quasilinear elliptic operator

∆pu = −div(|∇u|p−2∇u), 1 < p < ∞. (1.1)

Within the domain of mathematical analysis, this surge in interest has engendered

a concomitant exploration into the characterization of functions f such that they sat-

isfy the equation ∆pu = f . Consequently, a pivotal pursuit in this field pertains to the

identification and analysis of functions that fulfill this criterion. Among the myriad at-

tributes under scrutiny, one finds the intriguing properties of monotonicity and symmetry.

Notably, these characteristics, along with others, have been the subject of rigorous ex-

amination and elucidation in seminal works such as that of Damascelli [3]. From the

perspective of Physics, various applications arise, such as those concerning pseudo-plastic

fluids. For instance, one notable application pertains to the study of unsaturated flow for

p = 3/2 (cf. [4]) and glaciology for p ∈ (1, 4/3]. Notably, within the 3/2 < p < 2, Leiben-

son conducted an investigation into the turbulent filtration of gas in porous mediums (for
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further details, refer to [10]). Additionally, comprehensive insights into this subject can

be found in the work of Benedikt (cf. [2]).

We can consider the eigenvalue problem of ∆p similarly as the usual laplacian (when

p = 2). We say that a real number λ is a Dirichlet eigenvalue if there exists a non-zero

function u satisfying the following equation:

∆pu = λ|u|p−2u in Mn and u = 0 on ∂M. (1.2)

According to [13], these numbers λ forms a non-increasing sequence such that there exists

an isolated minimum eigenvalue called the first eigenvalue of the p-Laplacian (see also [8]).

So, the first nontrivial Dirichlet eigenvalue of Mn is given by

λ1,p(M) = inf

{∫
M
|∇u|pdM∫

M
|u|pdM ; u ∈ W 1,p

0 (M)\{0}
}
.

In the field of geometric analysis theory, there is a natural way to connect the geometric

features of a Riemannian manifold with the p-Laplacian through its eigenvalues. In this

setting, Matei [16] explored how these elements interact with geometry. In fact, she

extended several intrinsic geometric results initially established for the standard Laplacian

to encompass the p-Laplacian. Notable extensions include adaptations for p > 2 of Chern’s

comparison principle for geodesic balls, an expansion of the Faber-Krahn inequality, and

a broadening of the Lichnerowicz-Obata theorem. Most results presented by Matei are

only established for p > 2.

On the other hand, in the context of isometric immersions in the unit sphere S
n+q,

Leung [12] established a sharp estimate between the eigenvalues of the usual Laplacian for

minimal submanifolds of sphere through an integral inequality. In fact, Leung presented

a lower bound for the square length of the second fundamental form S via any eigenvalue

of the Laplace-Beltrami operator. Besides that, he showed that spheres are obtained

when the equality happens. Years later, Liu and Zhang [15] proved a similar estimate for

arbitrary submanifolds of sphere.

In a recent contribution [5], the authors undertook an investigation into compact

minimal submanifolds within the unit sphere. They introduced a divergence type operator

and proceeded to derive Bochner and Reilly formulas pertinent to it. As a consequential

application, they derived integral inequalities which encompassed the squared norm of the

second fundamental form. Notably, this extension augmented the prior findings of Leung

[12] to encompass the first eigenvalue of the p-Laplacian, particularly within the context

of manifolds featuring boundaries. It is worth emphasizing that the validity of the results

posited by the authors is contingent upon the restriction that p does not fall within the

range 1 < p < 2. In this paper, our primary objective is extend the results presented in

[5, 6] for p ∈ (3/2, 2).
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2. Some preliminaries and key lemmas

Let Mn be an n-dimensional connected compact (with nonempty boundary ∂M) sub-

manifold immersed in a unit Euclidean sphere S
n+q with codimension q. We will make

use of the following convention on the range of indices:

1 ≤ A,B,C, . . . ,≤ n+ q, 1 ≤ i, j, k, . . . ≤ n and n + 1 ≤ α, β, γ, . . . ≤ n + q.

We choose a local field of orthonormal frame {e1, . . . , en+q} in S
n+q, with dual coframe

{ω1, . . . , ωn+q}, such that, at each point of Mn, {ei}ni=1 are tangent to Mn and {eα}n+q
α=n+1

are normal to Mn. Let us consider {ωB} the corresponding dual coframe, and {ωBC} the

connection 1-forms on S
n+q. Restricting on Mn, we have

ωα = 0, n+ 1 ≤ α ≤ n+ q,

and consequently, by Cartan’s Lemma we can write

ωiα =
∑

j

hα
ijωj, hα

ij = hα
ji,

which gives the second fundamental form A of Mn,

A =
∑

α,i,j

hα
ijωi ⊗ ωj ⊗ eα.

Moreover, we define the mean curvature vector field and the mean curvature function by

h =
1

n

∑

α

Hαeα and H = |h|,

where Hα =
∑

j h
α
jj. In particular we say that Mn has constant mean curvature if the

function H is constant. In the case where this constant is zero, we say that Mn is a

minimal submanifold of Sn+q.

Directly related to the second fundamental A of Mn we have the Gauss equation

Rijkl = (δikδjl − δilδjk) +
∑

α

(hα
ikh

α
jl − hα

ilh
α
jk). (2.1)

From (2.1), we obtain the Ricci curvature tensor and the normalized scalar curvature R,

respectively, by

Rik = (n− 1)δik + n
∑

α

Hαhα
ik −

∑

α,j

hα
ijh

α
jk (2.2)

and

R =
1

(n− 1)

∑

i

Rii.

By using equations (2.2) and (2.3), we get the following relation

n(n− 1)R = n(n− 1) + n2H2 − S,
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where

S =
∑

α,i,j

(hα
ij)

2,

denotes the squared norm of the second fundamental form.

In order to proof our main results, we need of the following two results. The first

one is a low estimate of the Ricci curvature in terms of the squared norm of the second

fundamental form and the mean curvature function:

Lemma 2.1. [11, Main Theorem] Let Mn be a submanifold of the Riemannian

manifold S
n+q. Let Ric denotes the function that assigns to each point of Mn the minimum

Ricci curvature. Then

Ric ≥ −n− 1

n

(
S +

n(n− 2)√
n(n− 1)

H
√
S − nH2 − n− 2nH2

)
.

Before to present the second result, we will recall some facts about isometric immer-

sions with nonempty boundary. Let us consider η the outer unit normal field of ∂M . We

define the shape operator Aη and the mean curvature function of ∂M in Mn, respectively,

by

Aη(X) = −∇Xη and H =
1

n− 1
tr(Aη),

for any X ∈ X(∂M), where ∇ denotes the Levi-Civita connection of Mn. In this setting

let us recall that a compact manifold is said to have mean convex boundary if the mean

curvature H is nonpositive on ∂M . Let us denote by ∇∂ and ∆∂ the covariant derivative

and the Laplacian operator on ∂M with respect to the induced Riemannian metric. In

this picture, the second key result is a suitable version of [5, Proposition 4.1] for our

interest.

Lemma 2.2. Let Mn be a compact manifold with mean convex boundary ∂M . If u

is a solution of the Dirichlet eigenvalue problem (1.1), then
∫

M

Ric(∇u,∇u)|∇u|2p−4dM < λ2C̃

∫

M

|∇u|2p−2dM, (2.5)

where C̃ := C̃(n, p,M) is a positive constant depending only n, p and Mn.

Proof. From [5, Proposition 4.1], we have
∫

M

Ric(∇u,∇u)|∇u|2p−4dM

=

∫

M

(
(∆pu)

2 − |∇u|2p−4|Hess u|2
)
dM +

∫

∂M

|∇u|2p−4Q(u)dσ

− (p− 2)

∫

M

|∇u|2p−6
(
(p− 2)(∆∞u)2|∇u|2 + 2|Hess u(∇u)|2

)
dM,

(2.6)
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where |∇u|2∆∞u = 〈Hess u(∇u),∇u〉 and Q(u) is given by

Q(u) = du(η)
(
∆∂u+ (n− 1)H du(η)

)
+ 〈Aη(∇∂u),∇∂u〉+ 〈∇∂u,∇∂du(η)〉.

with du(η) = ∂η/∂u.

On the one hand, since p < 2, from Cauchy-Schwarz’s inequality, (2.6) reads
∫

M

|∇u|2p−4Ric(∇u,∇u)dM ≤ −(2p− 3)

∫

M

|∇u|2p−4|Hess u|2dM

+

∫

M

(∆pu)
2dM − (p− 2)2

∫

M

|∇u|2p−4(∆∞u)2dM

+

∫

∂M

|∇u|2p−4Q(u)dσ.

(2.7)

By using that p > 3/2, we can use again the Cauchy-Schwarz’s inequality in order to

−(2p− 3)|∇u|2p−4|Hessu|2 ≤ −(2p− 3)

n
(∆pu)

2 (2.8)

with equality holding if and only if

(p− 2)|∇u|p−4〈Hess u(∇u), X〉∇u+ |∇u|p−2Hess u(X) = −1

n
(∆pu)I(X),

for all X ∈ X(M). Thus, by inserting (2.8) in (2.7), we get
∫

M

|∇u|2p−4Ric(∇u,∇u)dM ≤ n− 2p+ 3

n

∫

M

(∆pu)
2dM − (p− 2)2

∫

M

|∇u|2p−4(∆∞u)2dM

+

∫

∂M

|∇u|2p−4Q(u)dσ

≤ n− 2p+ 3

n

∫

M

(∆pu)
2dM +

∫

∂M

|∇u|2p−4Q(u)dσ

Therefore, from (1.2)

∫

M

|∇u|2p−4Ric(∇u,∇u)dM ≤
(
n− 2p+ 3

n

)
λ2

∫

M

|u|2p−2dM +

∫

∂M

|∇u|2p−4Q(u)dσ,

with equality if and only if ∆∞u = 0.

On the other hand, since u = 0 on ∂M and the boundary is mean convex, we can

estimate the Q as follows ∫

∂M

|∇u|2p−4Q(u)dσ ≤ 0,

and then
∫

M

|∇u|2p−4Ric(∇u,∇u)dM ≤ λ2

(
n− 2p+ 3

n

)∫

M

|u|2p−2dM. (2.9)
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Since p ∈ (3/2, 2), we have 1 < 2p − 2 < p. Consequently, by Sobolev’s embedding

theory, W 1,p
0 (M) ⊂ W 1,2p−2

0 (M). As 2p− 2 < (2p− 2)∗, from Hölder inequality,

∫

M

|u|2p−2dM ≤ vol(M)
2p−2

r

(∫

M

|u|(2p−2)∗dM

) 2p−2
(2p−2)∗

(2.10)

for r > 1. Hence, by using Gagliardo-Nirenberg-Sobolev’s inequality for compact Rie-

mannian manifolds with boundary [1] (see also [7]), we have
∫

M

|u|2p−2dM ≤ vol(M)
2p−2

r C1

∫

M

|∇u|2p−2dM, (2.11)

where C1 is a constant positive depending on Mn. By inserting this in (2.9),
∫

M

|∇u|2p−4Ric(∇u,∇u)dM ≤ λ2C̃

∫

M

|∇u|2p−2dM, (2.12)

where C̃ is a positive constant depending only n, p and Mn.

By assuming the equality case, then all inequalities become into equalities, in particu-

lar the equality (2.10) implies in the equality in Hölder inequality. Hence, |u| = 1 almost

everywhere and then the p-Laplacian of u is identically zero, which cannot happens since

the first eigenvalue if nonzero. Therefore, the inequality (2.12) is not sharp. �

As a first application, we get the following lower estimate:

Theorem 2.3. Let Mn be a compact Riemannian manifold with mean convex

boundary and consider Mn as a minimal submanifold of Sn+q with S = const. Then

λ1,p(M) >
√
(n− S)C, p ∈ (3/2, 2),

where C is a positive constant depending only n, p and Mn.

Proof. From Lemma 2.2,
∫

M

Ric(∇u,∇u)|∇u|2p−4dM < C̃

∫

M

|∇u|2p−4dM.

On the other hand, since Mn is a minimal submanifold of Sn+q, by taking H = 0 in

Lemma 2.1,

Ric(∇u,∇u) ≥ −n− 1

n
(S − n) |∇u|2.

By replacing this in (2.5),

−n− 1

n
(S − n)

∫

M

|∇u|2p−2dM < λ2C̃

∫

M

|∇u|2p−2dM

where was used that S = const.. Hence

0 <

(
λ2C̃ +

n− 1

n
(S − n)

)∫

M

|∇u|2p−2dM
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and consequently since
∫
M
|∇u|2p−2dM > 0, we have

λ2 >
n

(n− 1)C̃
(n− S) .

In particular,

λ1,p(M)2 > (n− S)C,

and we have the desired result. �

By assuming that submanifold has prescribed constant scalar curvature, we get

Theorem 2.4. Let Mn be a compact Riemannian manifold with constant scalar

curvature R = 1 and mean convex boundary. Let us consider Mn as a submanifold of

S
n+q with S = const.. Then

λ1,p(M) >
√

(n2 − 2(n− 2)S)C, p ∈ (3/2, 2),

where C is a positive constant depending only n, p and Mn.

Proof. Since R = 1, from (2.4) we have S = n2H2. By Lemma 2.1,

Ric ≥ −n− 1

n

(
S +

n(n− 2)√
n(n− 1)

H
√
S − nH2 − n− 2nH2

)

≥ −n− 1

n

(
S + n2H2 − n− 4nH2

)

≥ −n− 1

n2

(
2(n− 2)S − n2

)
.

Hence, from Lemma 2.2,

0 <

(
λ2C̃ +

n− 1

n2

(
2(n− 2)S − n2

))∫

M

|∇u|2p−2dM.

So

λ2 >
n− 1

n2C̃
(n2 − 2(n− 2)S),

and therefore,

λ1,p(M) >
√

(n2 − 2(n− 2)S)C.

�

We end this paper with the following low estimate to λ1,p(M) involving the squared

norm of the total umbilicity tensor and without the necessary of prescribed the scalar

curvature.

Theorem 2.5. Let Mn be a compact Riemannian manifold having mean convex

boundary and consider Mn as a submanifold of Sn+q with S − nH2 = const.. Then

λ1,p(M) >
√
(4(n− 1)− n(S − nH2))C, p ∈ (3/2, 2),

where C is a positive constant depending only n, p and Mn.
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Proof. Following [6], by using ε-Young’s inequality 2xy ≤ εx2 + ε−1y2 for

x = H and y =
√
S − nH2

we have

2H
√
S − nH2 ≤ εH2 + ε−1(S − nH2). (2.13)

Consequently, by taking ε =
2
√

n(n−1)

n−2
, (2.13) reads

n(n− 2)√
n(n− 1)

H
√
S − nH2 ≤ nH2 +

(n− 2)2

4(n− 1)
(S − nH2).

Hence, inserting this in Lemma 2.5 we reach at the following inequality

Ric(∇u,∇u) ≥ −n− 1

n

(
S + nH2 +

(n− 2)2

4(n− 1)
(S − nH2)− n− 2nH2

)
|∇u|2

=
n− 1

n

(
n− n2

4(n− 1)
(S − nH2)

)
|∇u|2.

By replacing in Lemma 2.2,

(n− 1)

(
1− n

4(n− 1)
(S − nH2)

)∫

M

|∇u|2p−2dM < λ2C̃

∫

M

|∇u|2p−2dM

and so,

0 < λ2C̃ − 1

4

(
4(n− 1)− n(S − nH2)

)
.

Hence

λ1,p(M)2 >
(
4(n− 1)− n(S − nH2)

)
C.

�

Remark 2.6. It should notice that, by applying a similar argument, the The-

orems 2.4 and 2.5 also holds for closed manifolds. In fact, the Hölder inequality used

in (2.10) does not depends of the boundary. Moreover, the Sobolev inequality (2.11) is

still true for closed manifolds (see [7, Theorem 4.5]).
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