
I/O Transit Caching for PMem-based Block Device
Qing Xu, Qisheng Jiang and Chundong Wang∗

School of Information Science and Technology, ShanghaiTech University, Shanghai, China

A R T I C L E I N F O
Keywords:
Persistent Memory
Block Translation Table
I/O Transit Caching

A B S T R A C T
Byte-addressable non-volatile memory (NVM) sitting on the memory bus is employed to make
persistent memory (PMem) in general-purpose computing systems and embedded systems for data
storage. Researchers develop software drivers such as the block translation table (BTT) to build
block devices on PMem, so programmers can keep using mature and reliable conventional storage
stack while expecting high performance by exploiting fast PMem. However, our quantitative study
shows that BTT underutilizes PMem and yields inferior performance, due to the absence of the
imperative in-device cache. We add a conventional I/O staging cache made of DRAM space to BTT.
As DRAM and PMem have comparable access latency, I/O staging cache is likely to be fully filled
over time. Continual cache evictions and fsyncs thus cause on-demand flushes with severe stalls, such
that the I/O staging cache is concretely unappealing for PMem-based block devices. We accordingly
propose an algorithm named Caiti with novel I/O transit caching. Caiti eagerly evicts buffered data
to PMem through CPU’s multi-cores. It also conditionally bypasses a full cache and directly writes
data into PMem to further alleviate I/O stalls. Experiments confirm that Caiti significantly boosts the
performance with BTT by up to 3.6×, without loss of block-level write atomicity.

1. Introduction
Non-volatile memory (NVM) technologies bring about

the availability of persistent memory (PMem) that is placed
on the memory bus alongside DRAM, for CPU to load
and store data. As NVM generally has shorter access la-
tency and higher write endurance than flash memory, re-
searchers have considered using it for data storage in general-
purpose computing systems, cloud and virtual machines
(VMs), internet-of-things (IoT) endpoints, and broad embed-
ded systems [2, 22, 29, 50]. Although Intel has discontinued
its Optane DC memory business [3, 77], the exploration of
NVM technologies continues. The other types of NVM, such
as STT-RAM [16], are still being developed and deployed
in embedded systems. A number of new file systems for
PMem have been developed [15, 12, 11, 81, 33]. These file
systems mainly follow the direct access (DAX) fashion to
directly write and read files with PMem, bypassing DRAM
page cache of operating system (OS). In spite of exploiting
the performance potential of PMem, they fail to satisfy a
few fundamental requirements raised by applications with
respect to reliability, compatibility, deployment cost, and so
on. One of them is block-level write atomicity, which means
that writing a block (e.g., 512B or 4KB) of data shall be done
in an atomic (all-or-nothing) manner. Typical applications
and system softwares, such databases, rely on the atomic
write of a block, because non-atomic write might leave a mix
of up-to-date and stale data in one block and in turn cause the
breach of data integrity. However, many of PMem-oriented
file systems do not support this feature, while conventional
block devices have it [35, 6, 44, 15, 33, 80].

∗Corresponding author at: School of Information Science and Technol-
ogy, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shang-
hai, China 201210.

(cd_wang@outlook.com) (C. Wang)
ORCID(s): 0000-0001-9069-2650 (C. Wang)

As of today, PMem-oriented file systems have not been
merged into Linux kernel or employed in production en-
vironments, mainly due to the issues of reliability, com-
patibility, and deployment cost concerned by applications.
By contrast, conventional block-based file system mounted
on a block device has been the de facto storage stack
for decades. To be compatible with this storage stack,
researchers have tried to build block devices on top of
PMem, e.g., PMBD [10]. Intel’s developers, regarding the
need of block-level write atomicity with Optane memory,
proposed the block translation table (BTT) [69]. BTT is
actively maintained as a software driver in Linux kernel
[65] for programmers to make block devices from raw
PMem and mount conventional file systems like Ext4 or
XFS. Compared to their DAX variants without block-level
write atomicity (e.g., Ext4-DAX and XFS-DAX) that show
‘WARNING: use at your own risk’ upon being mounted,
Ext4 and XFS are of maturity, robustness, and reliability
after undergoing evolutions in past years. Programmers can
continue using their tactics tuned for conventional storage
stack with block I/O (bio) interfaces that BTT provides atop
fast PMem.

As a software driver, BTT employs a combination of
copy-on-write (CoW) and logging to achieve block-level
write atomicity. However, the cost of doing so is non-trivial.
We have done a comparative test with mature Ext4 on PMem
formatted with BTT, mature Ext4 with raw PMem, and Ext4-
DAX. Ext4 on PMem formatted with BTT yields inferior
performance. For example, when randomly writing 64GB
data with 4KB per I/O request, Ext4 with BTT spends
37.4% and 16.6% more time than Ext4 with raw PMem and
Ext4-DAX, respectively. Whereas, neither of the latter two
guarantees the block-level write atomicity.

When using fast PMem, we aim to yield high perfor-
mance like raw PMem or Ext4-DAX while preserving the

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 1 of 21

ar
X

iv
:2

40
3.

06
12

0v
1

 [
cs

.A
R

]
 1

0
M

ar
 2

02
4

I/O Transit Caching for PMem-based Block Device

block-level write atomicity for critical system and applica-
tion softwares. To attain this aim, we thoroughly analyze
the source code of BTT and compare it against traditional
block devices. We find that a critical component is absent
in it, i.e., the internal device cache1 commonly installed in
hard disk drives (HDD) or solid state drives (SSD) for I/O
staging and acceleration [34, 74, 78, 73, 56]. The reason
behind the absence of device cache is that BTT has been
designed in line with DAX, by which data is directly written
and read with PMem. Assuming that we complement BTT
with a device cache, we could use it to absorb write requests.
This is likely to conceal the performance overhead caused
by maintaining block-level write atomicity at the BTT driver
and in turn promote the overall performance. Inspired by this
potential gain, we consider adding and managing a DRAM
cache within BTT in the I/O staging fashion. We follow
two common polices to manage the cache when the cache
space is used up. One is a PMBD-like caching that flushes
a batch of buffered blocks when the cache is filled to an
extent (watermark), e.g., 70% or 100% full [10]. The other
one evicts the least-recently-used (LRU) buffered block to
make space. We expect them to improve the performance
with BTT. However, with the foregoing test, both algorithms
decrease the performance by 6.0% and 15.1%, respectively.
When no free space is left in the cache, I/O requests have to
stall for the drain of buffered data in one or multiple cache
slots. Moreover, the upper-level file system such as Ext4 pe-
riodically (five seconds by default) issues a bio request with
a flag named REQ_PREFLUSH being set to asynchronously flush
the internal cache of block device [64, 66]. Frequent on-
demand flushes are hence occurring over time. An explicit
call of fsync is another source of cache flushes [45, 76]. Our
further test confirms that I/O stalls also emerge when I/O
staging caches serve fsyncs.

The PMBD-like and LRU caching policies represent the
conventional I/O staging strategy, which, however, is prac-
tically ineffectual for BTT-like PMem-based block device
with fast access speed. Aforementioned tests motivate us
to consider what a gainful device cache shall be for PMem
managed by BTT driver. Firstly, it shall be simple and
efficient to incur minimal performance penalty, since PMem
is relatively fast while BTT itself suffers from the software
cost of preserving block-level write atomicity. Secondly,
cache is likely to be fully filled at runtime. Using fsyncs
to flush data is also common for applications. We need to
ensure that flushing buffered data does not cause stalls on
the critical path of serving I/O requests. Thirdly, as both
DRAM and PMem are operated by CPU through the mem-
ory bus, we shall leverage multi-cores to handle I/O requests
for high parallelism and efficiency. Last but not the least,
as mentioned, the caching strategy must not impair block-
level write atomicity but simultaneously retain all features
required by applications and file systems, such as the support

1We interchangeably refer to the cache inside a block device as DRAM
cache, internal cache, or device cache. However, for distinguishing, we
always refer to the kernel-space page cache of OS with the combinational
terminology page cache, without calling it DRAM cache or cache.

for bio flags and fsyncs [45, 76]. Taking into account these
concerns, we design a new caching algorithm named Caiti
(caching with I/O transit) for PMem-based block device.
The main ideas of Caiti are summarized as follows.

• Caiti eagerly evicts buffered data. Once the cache
receives a data block, Caiti promptly launches a write-
back for eviction, instead of waiting for a flush or
replacement. It places buffered blocks in multi-queues
and engages a pool of background threads in concur-
rently moving them to PMem.

• Caiti bypasses a fully filled cache. When no space
is left in DRAM cache and a cache miss occurs at
the arriving write request, Caiti directly writes data
to PMem.This avoids I/O congestion at the cache and
further reduces response time on the critical path of
serving I/O request.

• Caiti exploits multi-core CPU for high concurrency
and scalability. Each bio request carries an 𝑙𝑏𝑎 and
runs on a CPU core. Caiti logically partitions cache
space into multiple sets and hashes each 𝑙𝑏𝑎 to find
an appropriate set without maintaining a mapping
table. With a core handling a bio request in one cache
set, Caiti manages to simultaneously proceed concur-
rent bio requests. The multi-queues and background
thread pool also accelerate concurrent write-backs of
buffered data blocks to PMem and help to achieve
scalability.

In contrast to I/O staging strategy intentionally buffers
data for sufficiently long time, Caiti exploits scores of CPU
cores to place data into cache in the foreground and swiftly
transits data to PMem in the background to avoid I/O stalls.
Extensive experiments on benchmarks and applications
show that I/O transit caching enables Caiti to boost the
performance with BTT by up to 3.6×. Besides PMBD
and LRU, we further port and implement a state-of-the-
art caching algorithm named Co-Active with PMem-based
block device [61]. Caiti significantly outperforms them with
up to 3.6×, 3.6×, and 2.9× higher throughput, respectively.

The rest of this paper is organized as follows. In Section 2
we briefly present PMem and BTT. We show a motivational
study in Section 3. We detail the design of Caiti in Section 4
and evaluate it in Section 5. We discuss related works in
Section 6. We conclude the paper in Section 7.

2. Background
2.1. The Usage of Persistent Memory

PMem products are available in DRAM backed by
flash memory (referred to as NVDIMM or NVDIMM-N)
or NVM technologies such as spin-transfer torque RAM
(STT-RAM) [16], phase-change memory (PCM) [23, 1, 42,
53, 25], and Intel Optane memory [28]. PCM and Optane
memory technologies generally hold inferior access speeds
compared to DRAM and are the main focus of this paper.
General-purpose computing systems, cloud and VMs, and

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 2 of 21

I/O Transit Caching for PMem-based Block Device

embedded systems are using PMem for storage [2, 22, 29,
50]. As CPU loads and stores data with PMem through the
memory bus, researchers have developed new file systems
upon using PMem as memory device (e.g., [80, 33, 15]).
These file systems mainly bypass OS’s page cache with the
DAX feature and directly operate with files stored in PMem.
Without the involvement of OS’s page cache, DAX helps
to reduce the cost of traversing software stack and alleviate
the overhead of memory copying. With regards to space
efficiency, the DAX feature saves DRAM space that can be
used for OS and applications.

Though, most of file systems developed with DAX are
not merged in the mainline of Linux kernel. For Ext4-
and XFS-DAX that are already contained in Linux kernel
because of being based on stable Ext4 and XFS, a mount
of them shows a warning that says ‘use at your own risk’.
To deploy them in product environments has to take into
account reliability, compatibility, and cost efficiency, partic-
ularly regarding the absence of sector- to block-level (e.g.,
512B or 4KB) write atomicity within them. These require
considerable efforts. In addition, the aforementioned Intel
Optane memory was only one commercial NVM product
shipped in a large capacity (up to terabytes) to build scalable
PMem. Whereas, Optane memory is physically not byte-
addressable. Its access unit for write and read operations
is 256B [82], which deviates from the assumption of DAX
that PMem shall be accessible at the same byte granularity
as DRAM. Using DAX on Optane memory-based PMem
causes unnecessary write and read amplifications, which in
turn hinder the use of DAX on real-world NVM products.

Meanwhile, how to use PMem depends on the need of
systems and applications. Mainstream file systems are built
on the assumption of sector- to block-level atomic I/O that
eases development, maintenance, and extension [14, 6, 44,
52]. Many applications, such as databases that have gained
wide popularity for decades, explicitly or implicitly demand
the support of block-level write atomicity, because a mix of
up-to-date and stale data in one block leaves ambiguity [35,
6]. As a result, configuring PMem in the form of block
device is a promising and necessary alternative to use it.

To facilitate the use of real PMem products, Intel pro-
vides two configuration modes. One is AppDirect mode
and the other one is Memory mode [82, 70]. On one hand,
the Memory mode uses PMem to expand main memory
capacity without persistence [82]. When PMem is con-
figured in the Memory mode, it presents capacious but
volatile memory space, because the Memory mode employs
DRAM as a cache to hide PMem’s higher latency, with
hardware-controlled caching policy between DRAM and
PMem [48]. On the other hand, if programmers intend to
explicitly utilize a separate, visible PMem space, they must
choose the AppDirect mode [82, 48, 5]. In the AppDirect
mode, programmers can create and use a namespace in
different usage modes for different purposes [31, 30, 32]. For
example, they can set up a namespace in the “fsdax” mode
that exposes the raw PMem space without sector- or block-
level write atomicity [30]. In practice, with such an exposed

PMem space, programmers can mount a file system with
aforementioned DAX feature (e.g., Ext4-DAX), and they can
also mount a mature file system (e.g., Ext4) in spite of no
support for block-level write atomicity. Also, programmers
can create a namespace for a “sector” mode and mount a
mature file system with block-level write atomicity through
the block translation table.
2.2. Block Translation Table

Researchers have developed software-based block de-
vices on PMem, such as PMBD [10] and Block Transla-
tion Table (BTT) [65, 32]. Both of them are kernel-space
device drivers that achieve block-level write atomicity in the
software approach. As BTT has been actively maintained in
Linux kernel since version 4.2, we focus on it in this paper.
In fact, the aforementioned “sector” mode for practically
creating a PMem space with block-level write atomicity is
also known as “btt” mode or “safe” mode [31]. BTT is
named after its main component, i.e., the block translation
table recording the mapping from logical block number (𝑙𝑏𝑎)
to physical block number (𝑝𝑏𝑎). However, it is much more
than address translation. To upper-level file system, BTT
provides standard bio interfaces and allows programmers to
configure the block size (e.g., 4KB). Programmers thus can
make and mount mature file systems such as Ext4 on BTT.
Inside the device, it achieves block-level write atomicity by
a hybrid scheme of CoW and logging for data and metadata,
respectively. In addition, programmers cannot mount a file
system with DAX feature on a PMem space created in the
“btt” mode to bypass the OS’s page cache [31]. However,
they can still perform direct I/Os in the “btt” mode by using
the O_DIRECT flag that has been used for conventional
block devices such as HDDs and SSDs.

Figure 1 illustrates the layout of PMem space formatted
with BTT and how BTT manages the PMem-based block
device. BTT driver has no data or metadata kept in DRAM.
It divides the PMem space into multiple arenas. Each arena
can have a maximum capacity of 512GB. Two identical
Info blocks are placed at the head and tail of each arena
for redundant backup. BTT divides an arena’s PMem space
into data blocks, each of which is indexed with a 𝑝𝑏𝑎. As
mentioned, BTT utilizes a table to record address mapping
from 𝑙𝑏𝑎s carried in bio requests to 𝑝𝑏𝑎s of PMem space.

BTT introduces the concept of lanes to support simulta-
neous writes to PMem. The number of lanes is configured
as the number of CPU cores or 256, whichever is smaller.
Among all data blocks per arena, BTT keeps a dynamic set
of up to 256 free blocks. Each lane is associated to a free
block. The BTT Flog of an arena is composed of multiple
log entries, used to track changes of address mapping from
𝑙𝑏𝑎s to 𝑝𝑏𝑎s when BTT is serving write requests.

Each bio request is running on a CPU core with an ID
for high concurrency. This core ID determines in which
lane BTT serves that bio request. On a read request with
a target 𝑙𝑏𝑎, BTT driver locates the corresponding arena
before going to the lane indicated by core ID. It then looks
up the mapping table and gets the 𝑝𝑏𝑎. Next, BTT loads

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 3 of 21

I/O Transit Caching for PMem-based Block Device

Page Cache

BTT

DAX Buffered I/O Buffered I/O Direct I/O

PMEM0 PMEM1s

Arena

Get laneWrite free block

Update mapping

In
fo

 B
lo

ck

BT
T

Fl
og

Applications (e.g., LevelDB, QEMU)

Data Blocks

Free

M
ap

pi
ng

Ta

bl
e

In-use

12 Write Flog3

4

In
fo

 B
lo

ck

Ext4-DAX Ext4

Block I/O Layer

Figure 1: An Illustration of Block Translation Table (BTT)

data indexed by 𝑝𝑏𝑎 to complete the read request. On a write
request, as shown in Figure 1, BTT still takes the correspond-
ing lane (1). Instead of in-place updating, BTT writes data
carried in the request into the lane’s free block for out-of-
place updating (2), i.e., the CoW way. Next, BTT initiates
redo logging to record the change of address mapping for
the 𝑙𝑏𝑎. BTT records 𝑙𝑏𝑎, old 𝑝𝑏𝑎, new 𝑝𝑏𝑎 of the lane’s
free block in the log entry for crash recoverability (3). After
doing so, BTT modifies the mapping indexed by 𝑙𝑏𝑎 in the
mapping table (4). The previously-mapped block indexed
by old 𝑝𝑏𝑎 is factually swapped out to be free and BTT
employs this free block to supplement the lane. As a result,
each lane is always with an active free block at runtime. In
summary, CoW and logging jointly ensure block-level write
atomicity for BTT with the capability of rolling back on
failed write for an 𝑙𝑏𝑎 if system crashes (e.g., power outage
or kernel panic).

3. Motivation
We have conducted a study on a real PMem device con-

figured in the AppDirect mode to observe the performance of
BTT. More details of the platform are presented in Section
5. We consider three variants based on different usages of
PMem. Firstly, we create a namespace in the “btt” mode
and mount Ext4 on the PMem-based block device. Secondly,
we mount mature Ext4 on bare-metal raw PMem created in
the default “fsdax” mode. Thirdly, we mount Ext4-DAX on
raw PMem reinitialized and created in the default “fsdax”
mode. They are denoted as BTT, PMem, and DAX, respectively.
As shown by the green arrows in Figure 1, both BTT and PMem

utilize block I/O interfaces, while DAX bypasses the page
cache of OS. Note that among them only BTT supports block-
level write atomicity. PMem and DAX may leave data corrupted
if a power outage occurs.

To quantitatively test three utilization ways, we use
Fio [4] to generate a write-intensive workload that randomly
writes a total volume of 64GB data in 4KB per I/O request
under the direct I/O mode in order to exclude the impact of
OS’s page cache. Figure 2a compares their results measured

in execution time. Although BTT provides the strongest crash
consistency and write atomicity, it spends 37.4% and 16.6%
more time than PMem and DAX, respectively. DAX is faster than
BTT because Ext4-DAX, as tuned with the DAX feature, has
been optimized in the software stack for PMem. BTT creates
a block device on raw PMem that is just used by PMem. The
37.4% gap between PMem and BTT indicates that, although
BTT has employed CPU’s multi-cores to concurrently process
I/O requests, the cost of maintaining block-level atomic
writes by BTT driver. In short, The performance with BTT
suffers from such non-trivial cost of enforcing block-level
write atomicity.

When using fast PMem, we intend to make use of it
for high performance like raw PMem or Ext4-DAX. In the
meantime, we shall retain the block-level write atomicity
for critical system and application softwares. In order to
improve the performance with BTT, we analyze the source
code of it. We find that an internal device cache, a key
component that is widely built in modern HDDs and SSDs,
is not contained in BTT. I/O staging cache is widely used
to accelerate performance for storage [34, 74, 78, 73, 56].
For example, PMBD employs a DRAM cache to temporarily
store dirty pages for I/O staging [10]. It has maintained
a syncer daemon thread that flushes the buffer to PMem
when the buffer is filled to an extent (watermark). Though,
the developers of PMBD did not fully consider how to
utilize the multi-cores of CPU to accelerate caching for high
concurrency when in designing PMBD, because they still
followed the classic caching strategy used for a conventional
block device. In short, PMBD divides the DRAM cache
into multiple sub-buffers. Once one sub-buffer is filled to
the watermark (e.g., 70% or 100%), PMBD drains it by
writing back buffered data to PMem. We have added multi-
buffers in an overall capacity of 512MB to BTT with PMBD-
like caching (referred to as PMBD). However, in contrast to
an expectation that I/O staging cache should have boosted
the performance of BTT, the execution time spent by PMBD,
as shown in Figure 2a, is even 6.3% longer than that of
BTT. The flush of a sub-buffer upon preset watermark is
likely to cause high I/O congestion on the critical path.
Moreover, Ext4 periodically performs a journal commit for
crash consistency and data durability every five seconds by
default, through issuing a bio request with the REQ_PREFLUSH

flag being set to flush the volatile internal cache of storage
device [64, 66]. However, Ext4 does not synchronously wait
for the completion of such a periodical flush with the SYNC

flag unset per request [51, 76]. Whereas, a user request
that encounters one such asynchronous flush still suffers
from additional overhead. Besides PMBD, we introduce the
conventional LRU strategy that evicts the least recently used
(LRU) cached block when the DRAM cache is full. Yet LRU
still periodically flushes all data that it caches per bio request
with REQ_PREFLUSH set. As demonstrated by Figure 2a, the
execution time of LRU is even a bit longer than that of PMBD.

To figure out why the performance with BTT is not
improved with the employment of I/O staging cache, we have
recorded the individual response time of serving every write

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 4 of 21

I/O Transit Caching for PMem-based Block Device

0
125
250
375
500

Direct I/O Fsync

DAX Pmem
BTT PMBD
LRU

Ex
ec

ut
io

n
Ti

m
e

(s
)

250
375

0

500

125

(a) Execution time

0
75

150
225
300

512KB 2MB 8MB 32MB 128MB

PMBD

LRU

Caiti

Fs
yn

c
Ti

m
e

(m
s)

Data Size

75
150

0

300
225

(b) fsync time for PMBD, LRU, and Caiti

20
40
60
80

60
00
00

60
22
73

60
45
46

60
68
19

60
90
92

61
13
65

61
36
38

61
59
11

61
81
84

62
04
57

62
27
30

62
50
03

62
72
76

62
95
49

63
18
22

63
40
95

63
63
68

63
86
41

64
09
14

64
31
87

64
54
60

64
77
33

Re
sp

on
se

 T
im

e
(u

s)

Write Request Sequence Number

0
20

80

40
60

#>25000: 154 99.00P: 23.5 us
99.90P: 28.5 us 99.99P: 36.0 us

(c) Runtime Response Time for BTT

20
40
60
80

60
00
00

60
22
73

60
45
46

60
68
19

60
90
92

61
13
65

61
36
38

61
59
11

61
81
84

62
04
57

62
27
30

62
50
03

62
72
76

62
95
49

63
18
22

63
40
95

63
63
68

63
86
41

64
09
14

64
31
87

64
54
60

64
77
33

>> 80 us

Re
sp

on
se

 T
im

e
(u

s)

Write Request Sequence Number

0
20

80

40
60

#>25000: 741 99.00P: 25.8 us
99.90P: 37.6 us 99.99P: 127.8 us

(d) Runtime Response Time for PMBD

20
40
60
80

60
00
00

60
22
73

60
45
46

60
68
19

60
90
92

61
13
65

61
36
38

61
59
11

61
81
84

62
04
57

62
27
30

62
50
03

62
72
76

62
95
49

63
18
22

63
40
95

63
63
68

63
86
41

64
09
14

64
31
87

64
54
60

64
77
33

>> 80 us

Re
sp

on
se

 T
im

e
(u

s)

Write Request Sequence Number

0
20

80

40
60

#>25000: 743 99.00P: 25.9 us
99.90P: 36.9 us 99.99P: 57.5 us

(e) Runtime Response Time for LRU
Figure 2: A Comparison on BTT, Ext4-DAX, PMem, and PMBD

request. Figure 2c, Figure 2d, and Figure 2e capture a part
of these records in a contiguous window of 50,000 requests
for BTT, PMBD, and LRU, respectively. The bottom margins in
Figure 2d and Figure 2e are evidently narrower than that
in Figure 2c, which indicates that writing data into cache
truly helps to cause shorter response time (≤5𝜇s) in serving
a part of I/O requests. However, a comparison among three
diagrams clearly shows that PMBD and LRU have completed
numerous I/O requests with more than 20𝜇s, as depicted
in Figure 2d and Figure 2e. Moreover, the continuous and
frequent spikes exhibited in Figure 2d and Figure 2e are not
commonly present in Figure 2c. At runtime, PMBD is likely to
use up DRAM space under I/O pressure and flushes buffered
data to make space for incoming requests. Similarly, LRU lays
a 2-step write where LRU firstly evicts a buffered block to
PMem and then writes arriving data to DRAM cache.

Furthermore, the periodical flushes that Ext4 launches
also cause PMBD and LRU to asynchronously flush cached data.
To observe the impact of all flushes, we have captured the
runtime response time in a larger time window with one mil-
lion (1,000,000) requests. Figure 3 captures each request’s
response time for two caching algorithms. Both of them
exhibit almost uniformly distributed long tail latency over
time. Particularly, in Figure 3a, we can distinguish for PMBD

what tail latencies are caused by synchronous flushes (higher
ones) due to a fulfilled cache or periodical asynchronous
flushes (relatively lower ones) demanded by Ext4. Those
flushes occur on the critical path of serving I/O requests,
thereby generating frequent latency spikes.

In the meantime, applications explicitly call fsyncs to
persistently store data and impose I/O ordering with the
REQ_PREFLUSH, REQ_FUA, and SYNC flags set, like what LevelDB
does with SSTable files for compactions [19]. On receiving
an fsync, the device management firmware or software has to
forcefully flush buffered data to persistent storage [76]. Since
fsyncs are the other source of on-demand flushes, we have

modified the foregoing test case by inserting one fsync after
every 128 write requests with 512KB (128×4KB). As shown
by the right part of Figure 2a, fsyncs evidently increase the
execution time for all five. Note that PMBD and LRU still take
6.1% and 10.8% more time than BTT, respectively.

In order to further explore how I/O staging cache influ-
ences the fsync performance, we invoke an fsync in different
frequencies, i.e, after randomly writing 512KB to 128MB
data. Figure 2b shows two close curves for PMBD and LRU, re-
spectively. The fsync time of them rises sharply as more data
is written between two consecutive fsyncs. More written data
means more data is buffered in the cache. As fsync drains the
cache, the impact of flushing buffered data becomes more
and more detrimental. In practical, the cache is likely to be
fully filled over time since it continuously and uniformly
receives data. On-demand flushes are hence inevitable
and severely impair performance of I/O staging cache.

To sum up, the performance with BTT suffers from
the cost of preserving block-level write atomicity, while
the fashion of I/O staging cache with frequent on-demand
flushes cannot improve its performance. The exploitation of
CPU’s multi-cores is also promising for caching data in a
PMem-based block device which is directly handled by the
CPU. We thus reconsider how to manage an effectual cache
for BTT-like block device made of fast PMem. The cache
management must avoid flushing data on the critical path of
serving I/O requests. It shall be simple, without introducing
dramatic performance penalty. It may apply non-uniform
caching policy under different conditions. For example, in
case of a fully filled cache that is undergoing I/O congestion,
it should handle arriving requests in a different but efficient
way. Notably, BTT emulates a block device sitting on the
memory bus. Both DRAM and PMem are operated by multi-
core CPU. If we exploit scores of CPU cores to place data
into cache in the foreground and swiftly transit data to
PMem in the background, we may effectively boost the

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 5 of 21

I/O Transit Caching for PMem-based Block Device

20
40
60
80

1
4

7
6

6
4

9
5

3
2

7
1

4
2

9
9

0
1

9
0

6
5

3
2

3
8

3
1

6
2

8
5

9
7

9
3

3
3

6
4

2
3

8
1

3
0

5
4

2
8

9
6

8
4

7
6

6
3

1
5

2
4

2
9

4
5

7
1

9
5

7
6

1
9

6
2

0
6

6
7

2
8

3
7

1
4

9
4

6
7

6
2

6
0

9
8

1
0

2
7

2
8

5
7

9
3

5
9

0
5

5
9

8
9

5
3

2
6

1
1

0
0

0
9

2
4

R
es

p
o

n
se

 T
im

e
(u

s)

Write Request Sequence Number

102

101

100

103

106

105

104

Flush due to full cache

Periodical flush

(a) Runtime Response Time for PMBD (512MB Cache)

20
40
60
80

1
4

7
6

6
4

9
5

3
2

7
1

4
2

9
9

0
1

9
0

6
5

3
2

3
8

3
1

6
2

8
5

9
7

9
3

3
3

6
4

2
3

8
1

3
0

5
4

2
8

9
6

8
4

7
6

6
3

1
5

2
4

2
9

4
5

7
1

9
5

7
6

1
9

6
2

0
6

6
7

2
8

3
7

1
4

9
4

6
7

6
2

6
0

9
8

1
0

2
7

2
8

5
7

9
3

5
9

0
5

5
9

8
9

5
3

2
6

1
1

0
0

0
9

2
4

R
es

p
o

n
se

 T
im

e
(u

s)

Write Request Sequence Number

102

101

100

103

106

105

104

(b) Runtime Response Time for LRU (512MB Cache)
Figure 3: The response time for PMBD and LRU in a window of one million requests

performance with BTT. This summarizes the essence of
Caiti.

4. Design of Caiti
4.1. Overview

Caiti manages a DRAM cache that significantly differs
from conventional I/O staging caches. Firstly, it decouples
cache space management from address mapping. By log-
ically organizing cache space into sets and hashing 𝑙𝑏𝑎s
to localize a set, Caiti places a block freely in the cache
and finds a block swiftly (Section 4.2). Secondly, in order
to avoid stalls that prevent I/O requests from proceeding,
Caiti has two writing policies to enable I/O transit caching
(Section 4.3). On one hand, Caiti immediately initiates an
eager eviction to write back a block into PMem-based block
device once the block is put down into a cache slot. On
the other hand, if no free space is available in the DRAM
cache, Caiti conditionally bypasses the full cache but directly
writes a block to PMem, so as to circumvent I/O congestion.
Caiti bases both policies on CPU’s multi-cores, which in turn
enables scalability and concurrency for it. Thirdly, without
losing block-level write atomicity, Caiti comprehensively
supports all standard bio flags and facilitates order preserv-
ing needed by applications and system softwares (Section
4.4).

In the storage stack, Caiti’s cache is positioned under the
OS’s page cache. They complement each other and share
the functionality of buffering data for application and system
softwares. The OS’s page cache helps to absorb frequently
accessed data for Caiti. In turn Caiti’s cache helps to further
reduce the time cost on the critical path of serving write
requests. In addition, Caiti is software-only solution and
incurs no change to hardware like memory controllers for
PMem or DRAM. It has been practicable on a platform with
real DRAM and PMem devices.
4.2. Caiti’s Cache Space Management

Organization. Caiti demands and reserves a contiguous
DRAM space, e.g., in 512MB, from the OS. It freely places
blocks across this cache space and partitions the space into
cache slots. For example, the cache illustrated in Figure 4
has six slots. All slots share a configurable uniform size,
which by default is equivalent to the block size of BTT. To
track slots and handle I/O requests, Caiti logically maintains

a number of cache sets holding valid data indexed by the hash
value of 𝑙𝑏𝑎. Caiti organizes each cache set as a write-back
queue (WBQ). As shown in Figure 4, Caiti also manages a
global free set to group unoccupied slots over time.

Slot header. As illustrated by Figure 4, Caiti tracks and
manipulates a slot with slot header, in which there are a
slot number, an 𝑙𝑏𝑎, a slot state, a WBQ pointer, and a
lock. The lock is used for supporting concurrent accesses
between multiple threads. Slot number is the identity of a
slot and points to where a block is stored in the cache. The
𝑙𝑏𝑎 indicates where a block is stored in the PMem-based
block device. Although the mapping from an 𝑙𝑏𝑎 to a slot
number is fundamental for caching algorithms, it only holds
transiently for Caiti, because Caiti employs the I/O transit
strategy that swiftly sends a cached block down to device
(see Section 4.3). Any slot staying in the free set is assigned
an outlier 𝑙𝑏𝑎, e.g., −1. Given a normal 𝑙𝑏𝑎, Caiti hashes
the 𝑙𝑏𝑎 to get the corresponding cache set number. The hash
function exemplified in Figure 4 is a modulo operation with
four. In practical, we do a similar modulo operation with 𝑙𝑏𝑎
over the number of cache sets. A collision may happen if
two 𝑙𝑏𝑎s are hashed to the same set. However, we allocate
multiple cache slots per set and, more important, the eager
eviction to be presented later helps to swiftly vacate cache
slots. These jointly alleviate the impact of hash collisions.

The WBQ pointer in each slot header is used to link
slots in the cache set’s WBQ as well as ones in the free set.
As to the slot state, Caiti defines four legal ones, i.e., Free,
Pending, Valid, and Evicting. Initially all slots are placed on
standby in the free set with the Free states. At the Pending
state, data is being written into the slot. The Valid state
means data has been put in the slot while Evicting means
Caiti is doing write-back to PMem-based block device. After
a successful write-back (eviction), Caiti recycles the slot to
be Free and puts it back to the free set for use in the near
future.
4.3. Caiti’s Writing and Reading Policies
4.3.1. Caiti’s Writing Policies

The way Caiti handles a write request significantly dif-
fers from ordinary storage device caches. Conventionally,
since SRAM or DRAM embraces much shorter write latency
than HDD and SSD, researchers employ a cache to keep
blocks buffered, expecting a sufficiently long period of I/O

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 6 of 21

I/O Transit Caching for PMem-based Block Device

Free set

Set 0 Set 1

C A I

Cache slot

Slot header (Free)

Pmem-based block device (e.g., BTT)

Write #2022

#0060 #3721 #2730

Set 3

#9527

Set 2

Background
write-back thread

Hit & write

Allocation

Miss, then write

Slot header (In-use)
#lba

Captions

#9527 lba

lock

slot_state

wbq_next

en
q

u
eu

e

Slot 0 Slot 1 Slot 2 Slot 3 Header for slot 2

slot_no

3210

3 CPU core

Write #0060 1 2
5

3

4

#0060 #9527 #3721

#2022

W
B

Q
 0

W
B

Q
 1

W
B

Q
 2

W
B

Q
 3

T
Slot 4

#2730

I
Slot 5

#4981
…

#4981

2

Evicting

-1

Figure 4: Main Components and Write Procedure of Caiti

staging to hide the slow access speed of underlying storage
media. When the device cache is full or an fsync is re-
ceived, the device management flushes partial or all buffered
blocks for orderly persistence, which incurs drastically long
response time on the critical path. Even though BTT builds a
block device on top of relatively fast PMem, it demands non-
trivial cost to enforce block-level write atomicity (see Fig-
ure 2a and Section 3), so waiting for data to be flushed and
persisted is still costly for PMem-based block device. As a
result, we attempt to avoid the DRAM cache from being fully
packed and minimize I/O stalls at runtime. This intention
leads to two main policies Caiti utilizes in handling a write
request.

Eager eviction is a policy that Caiti employs for prompt
write-backs. In contrast to buffering a block for long-term
I/O staging, Caiti immediately launches a write-back and
delivers received blocks to underlying PMem-based block
device through a background thread. By eager eviction,
Caiti aims to free up cache slots in a timely fashion, so as
not to engage incoming write requests in waiting for the
completion of flushing buffered blocks due to no available
cache space. Concretely, Caiti manages to write arriving data
to a free slot with one DRAM write on the critical path,
regardless of cache hit or miss, which, interestingly, renders
the same effect of a write hit in I/O staging cache. The latter
even occupies cache space and affects serving other write
requests. In addition, when receiving an explicit fsync call
that shall trigger the flush of device cache, Caiti is able to
quickly complete the fsync since continuous eager evictions
have drained most of the buffered data to PMem.

Conditional bypass is the other writing policy of Caiti.
Under high I/O pressure, it is possible that no free slot is
available in the DRAM cache. Waiting for a vacant slot by
evicting a buffered block to make room would stall the cur-
rent I/O request with a long response latency. Whereas, Caiti
bypasses the full cache and directly stores arriving block to
the PMem-based block device. The reason why Caiti does
so is twofold. Firstly, a fully occupied cache means a tense
I/O congestion is ongoing. Waiting for a slot to be vacated
by flushing the slot’s buffered data down further worsens the
congestion. Secondly, vacating a slot to make space implies
that the current write request cannot be finished until Caiti

Algorithm 1 Caiti’s Write Procedure (caiti_write(𝑙𝑏𝑎, 𝑑))
Require: A write request that carries 𝑙𝑏𝑎 and data 𝑑

1: 𝜂 := find_set_by_hash(𝑙𝑏𝑎); ⊳ Hash to find cache set
2: 𝑞 := get_WBQ(𝜂); ⊳ Get the WBQ pointer 𝑞 of set 𝜂
3: 𝑠ℎ := dequeue(𝑞, 𝑙𝑏𝑎); ⊳ Get slot header 𝑠ℎ by dequeue
4: if (𝑠ℎ ≠ NULL) then ⊳ Cache hit
5: ⊳ We make Caiti first test and set the hit slot’s state
6: test_and_set_state(𝑠ℎ, Pending);⊳ state → Pending
7: ⊳ Caiti writes data to the hit slot and set Valid state
8: 𝑟𝑒𝑡 := write_slot(𝜂, 𝑠ℎ, 𝑙𝑏𝑎, 𝑑, Valid); ⊳ state →

Valid
9: 𝑟𝑒𝑡 := enqueue(𝑠ℎ, 𝜂, 𝑞); ⊳ For eager eviction

10: else ⊳ Cache miss, 𝑙𝑏𝑎 is not matched in any slot
11: if (is_cache_full() == False) then ⊳ Cache is not

full
12: ⊳ Let Caiti allocate a free slot 𝑠ℎ from the free

set
13: 𝑠ℎ := allocate_slot_from_free_set(𝜂);
14: set_state(𝑠ℎ, Pending); ⊳ state →Pending
15: ⊳ Caiti writes data to slot 𝑠ℎ and sets Valid state
16: 𝑟𝑒𝑡 := write_slot(𝜂, 𝑠ℎ, 𝑙𝑏𝑎, 𝑑, Valid);
17: ⊳ Let Caiti get the WBQ of set 𝜂 for later

eviction
18: 𝑞 := get_WBQ(𝜂);
19: 𝑟𝑒𝑡 := enqueue(𝑠ℎ, 𝜂, 𝑞); ⊳ For eager eviction
20: else ⊳ Cache is currently full
21: 𝑟𝑒𝑡 := btt_write(𝑙𝑏𝑎, 𝑑); ⊳ Conditional bypass
22: return 𝑟𝑒𝑡; ⊳ SUCCESS or -EIO
23: end if
24: end if
25: if (𝑟𝑒𝑡 ≠ False) then ⊳ Writing cache slot not failed
26: 𝑟𝑒𝑡 := notify_eager_eviction(𝑠ℎ, 𝜂); ⊳ Eager

Eviction
27: end if
28: return 𝑟𝑒𝑡; ⊳ SUCCESS or -EIO

performs one PMem write and one DRAM write for putting
down the arriving data into the vacated slot. The conjunction
of these operations, however, costs even more time than a
direct single write to PMem.

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 7 of 21

I/O Transit Caching for PMem-based Block Device

Write procedure. Eager eviction and conditional bypass
jointly make Caiti function as I/O transit rather than staging.
Algorithm 1 shows main steps of Caiti’s write procedure. On
receiving a bio request with a target 𝑙𝑏𝑎 and data, it firstly
hashes the 𝑙𝑏𝑎 to decide the corresponding cache set (Line
1). Hashing helps to balance I/O loads among the entire
cache space as well as quickly identify a buffered block.
The hash function may incur conflicts with different 𝑙𝑏𝑎s.
As mentioned, Caiti links the slot headers of conflicting
𝑙𝑏𝑎s in a cache set’s WBQ. Over time, the eager eviction
policy of Caiti ensures that not many slots stay in one set.
Caiti gains access to the set’s WBQ (Line 2). It performs a
scan to dequeue and grab the slot header for the target 𝑙𝑏𝑎
(Line 3). It expects a cache hit with a non-null slot header
(Line 4). If so, Caiti tests the slot’s state (Line 6). Given
a Valid state, it transitions the slot to the Pending state in
order to prevent the slot from being written back as the eager
eviction is continually working. In case of the Evicting state,
which means BTT is writing down the block to PMem, Caiti
waits for the completion from BTT so as not to interrupt a
persist operation. This makes Caiti retain block-level write
atomicity. If Caiti finds the slot in the Pending state, which
means a previous cache write is still ongoing, it waits for the
completion of that DRAM write. Next Caiti updates data in
the slot and sets the slot’s state as Valid (Line 8). It then puts
the slot to the set’s WBQ for eager eviction (Line 9).

If a cache miss happens to target 𝑙𝑏𝑎 while the cache
is not full (Line 11), Caiti allocates a free slot and places
the slot into proper cache set 𝜂 (Line 13), with the slot’s
state set as Pending (Line 14). Next, Caiti puts down data
into allocated slot for caching and fills metadata in the slot’s
header, such as the 𝑙𝑏𝑎 and Valid state (Line 16). Note that
the state transition from Pending to Valid is essential and
useful for Caiti. During the duration of writing a block of
data to DRAM, a read request that hits at the cache slot with
matched 𝑙𝑏𝑎 would not see incomplete data because of the
Pending state. Also, Caiti would not do eager eviction on
a slot unless the slot has accommodated an integral block
with a Valid state stationed. Then, Caiti fetches the entry
pointer of WBQ (Line 18) and prepares for eager eviction
by enqueuing the slot (Line 19).

In case of a full cache, Caiti directly persists the data
to PMem-based block device and returns a success or not
(Lines 20 to 22). This corresponds to conditional bypass.
On the other hand, every time a slot is placed in the set’s
WBQ, Caiti instantly notifies the submodule of eager evic-
tion (Line 26). Upon evicting a slot, Caiti changes the slot’s
state from Valid to Evicting. A background thread now ini-
tiates the write-back. In the meantime, Caiti returns a signal
of success or fail for serving the write request (Line 28).

Figure 4 briefly illustrates three cases for a write hit (1),
a write miss with a slot allocation (2 3 4), and a concurrent
write-back in the background for eager eviction (5). As
mentioned, the hash function used in Figure 4 is the modulo
operation with four. On a write request with 𝑙𝑏𝑎 #0060 that is
executing on CPU core 0 (1), Caiti hashes the 𝑙𝑏𝑎 and gets
set 0. Then, through core 0, Caiti finds that a cache slot with

the same 𝑙𝑏𝑎 already stays in set 0’s WBQ, thereby indicating
a write hit. Thus, Caiti writes data into the cache slot directly.
After finishing the write, Caiti transitions the slot’s state to
Valid. As to the next write request with 𝑙𝑏𝑎 #2022 running
on CPU core 2, after hashing, Caiti does not find any slot
holding #2022 among cache set 2. Therefore, Caiti needs to
handle this request as a write miss (2). Since the cache is
not full, it allocates a free slot from the free set (3). In the
end, Caiti uses core 2 to set the slot as Valid as well and add
it into set 2’s WBQ for eager eviction (4). In Figure 4, Caiti
is leveraging a background thread on core 3 to conduct eager
eviction (5). Caiti finds a slot in the Valid state staying in set
3’s WBQ. It transitions the slot state to Evicting and starts
writing back the data of 𝑙𝑏𝑎 #9527. In these procedures, read-
write locks of involved slots shall be acquired and released
carefully in order to rule out any disorders on writing and
reading data for upper-level software layers.

Scalable and concurrent I/Os. The efficiency of Caiti
is supported by CPU’s multi-cores. An ongoing bio request
naturally executes on a CPU core that is responsible for
proceeding the write to a cache slot or in-PMem location.
BTT functions as the backend of Caiti and embraces multiple
lanes that are ready to take and handle multiple I/O streams
simultaneously [65]. As shown in Figure 4, Caiti maintains
a thread pool. At runtime, it grabs a background thread from
the pool and runs the thread on an idle CPU core. The thread
checks WBQs and writes buffered blocks within PMem-
based block device. In addition, Caiti leverages the lock in
each slot header to coordinate race conditions and resolve
write-write or write-read conflicts between concurrent bio

requests on one 𝑙𝑏𝑎. Additionally, the use of a global free
set neither posits a bottleneck for multi-threads nor impairs
the scalability of Caiti. On one hand, when allocating or
deallocating a free cache slot, Caiti deals with the lock in
the slot header through efficient compare-and-swap (CAS)
operations. On the other hand, a global free set, rather
than distributed local ones that are respectively dedicated to
multiple CPU cores, is more friendly to workloads that are
with write or read skewness. Assume that a workload keeps
writing data via few particular cores with multiple threads.
Local free sets, if employed, are likely to be used up for
those working cores while the free sets of other cores stay
idle. Caiti’s globally shared free set has no such inefficiency
in utilizing cache slots. In summary, these above-mentioned
components concretely guarantee high scalability and con-
currency for the collaboration between Caiti and BTT.
4.3.2. Caiti’s Reading Policy

When Caiti receives a read request with an 𝑙𝑏𝑎, Caiti
firstly checks whether the 𝑙𝑏𝑎 exists in a cache slot with
Valid or Evicting state. This ensures that applications and file
systems always perceive the latest valid and complete data. If
a cache hit occurs, Caiti returns the buffered data copy from
the matched slot. Otherwise, it redirects the read request to
underlying PMem-based block device. Additionally, Caiti

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 8 of 21

I/O Transit Caching for PMem-based Block Device

prioritizes write I/Os and a read miss in the DRAM cache
does not entail loading a block for buffering.
4.4. Important Aspects of Caiti

Cache mapping and replacement. As mentioned, ad-
dress mapping from storage space to cache space is basic for
cache management. Employing a table for address mapping
was widely utilized in block devices [49]. Comparatively,
rather than keeping a mapping table, Caiti performs the
mapping from an 𝑙𝑏𝑎 to a cache set by hash calculation.
After hashing a target 𝑙𝑏𝑎, Caiti avoids checking lots of
slot headers in the calculated cache set because of continual
eager evictions in the background, so it gains promising
efficiency in satisfying on-demand I/O requests. The condi-
tional bypass also helps to avoid cache replacement for Caiti.
Waiving the mapping table and replacement structurally
distinguishes Caiti from conventional caching designs.

bio and ordering. Caiti supports all bio flags. The afore-
mentioned REQ_PREFLUSH is used to flush the entire cache.
Applications such as databases and mail service frequently
call fsyncs to orderly flush file data to persistent storage.
An fsync is eventually translated to a bio request with two
flags, namely REQ_PREFLUSH and REQ_FUA, turned on. REQ_FUA
ensures that storage device signals I/O completion only after
the data has been persistently committed [64]. To support
these flags for order preservation, Caiti flushes all WBQ
entries on receiving both REQ_PREFLUSH and REQ_FUA and waits
for I/O completion signals from underlying PMem-based
block device. Then Caiti continues to serve subsequent bio
requests. The alignment of bio standard secures compati-
bility and viability for Caiti. As to recent research works
that proposed new methods to restructure emerging storage
devices by adjusting store ordering [76, 8, 44], Caiti can be
easily adapted to suit their flags, primitives, or commands.

There is another ordering case in which an applica-
tion keeps writing the same 𝑙𝑏𝑎 for consecutive updating.
Given a high update frequency, the OS’s page cache is
very likely to filter and absorb repeated write I/Os. As to
a low frequency, Caiti handles them as ordinary requests
since previous data versions should have been evicted to
PMem. Neither scenario affects Caiti’s work, which in turn
addresses its robustness.

A volatile internal cache has been widely employed for
decades in HDDs and SSDs. The aforementioned periodical
flush that Ext4 issues is used to ensure that, once a power fail
or kernel panic happens, at most modified data put in the past
five seconds would be lost in the volatile device cache [66].
If an application such as a database demands a higher guar-
antee of crash consistency and data durability, it shall call
fsync or fdatasync, with the REQ_PREFLUSH set alongside write
bio requests to forcefully flush cached data [76, 64].

Positioning. Caiti is positioned in the latest develop-
ments of software and hardware for storage stack. For
example, current Linux kernel has included multi-queues
(blk-mq [67] for modern storage devices that BTT emulates
with high parallelism. Caiti’s WBQs align with blk-mq. Also,
manufacturers are shipping emerging block devices (e.g.,

Samsung CXL SSDs [54]) with large DRAM cache. The
ideas of Caiti are applicable to enhance them.

Wear leveling. Write endurance is crucial for NVM [9,
46, 39, 26, 82, 24, 53, 25] . Previous works have proposed
wear leveling algorithms at both hardware and software
levels. For example, researchers have reverse-engineered
the hardware wear leveling algorithm that Intel deploys for
Optane memory [75, 47]. On the other hand, software-
based wear leveling is promising to prolong the lifetime
of PMem with wear-aware space allocation and recycling
through the software stack [23, 1, 42, 18, 21]. During its
procedures of eager eviction and conditional bypass, Caiti
can take into account the write endurance issue of NVM
and collaborate with a software-based wear leveling scheme
customized with the consideration of I/O transit caching. By
doing so, Caiti is supposed to simultaneously gain both high
performance and enhanced lifetime. We leave this as one of
our works for exploration in the near future.

5. Evaluation
Setup. All experiments have been conducted on a ma-

chine with real PMem products, i.e., Intel Optane DC mem-
ory in 768GB configured in the AppDirect mode. There are
also 384GB DRAM installed in the machine. The CPU is
36-core Intel Xeon Gold 6240. The OS is Ubuntu 20.04.5
with Linux kernel 5.1. The compiler is GCC/G++ 8.4.0.
The vanilla BTT has 2,001 lines of code (LOC). We add
or change 1,066 LOC to implement the core functions and
structures of Caiti.

We compare BTT with Caiti to Ext4-DAX, Ext4 mounted
on raw PMem, original BTT, and NOVA in CoW mode [80].
They represent common ways of using PMem and are
referred to as DAX, PMem, BTT, and NOVA, respectively. Note
that DAX and PMem do not provide block-level write atomicty.
As to caching with the I/O staging strategy, we consider
algorithms including aforementioned PMBD and LRU, as
well as the state-of-the-art Co-Active [61]. For PMBD-like
caching, we have implemented two variants. One is denoted
as PMBD. It flushes the entire cache if the cache is 100% full
(see Section 3). In other words, when there is no free cache
slot available upon the arrival of a write request, PMBD does a
cache flush. The other one, referred to as PMBD-70, strictly
follows the literature and source code of PMBD. PMBD-70

flushes the buffer when the buffer is 70% full. PMBD-70 further
differs from PMBD in that the former flushes the cache through
a syncer daemon thread [10]. Unlike PMBD and PMBD-70, LRU
evicts the LRU slot rather than an entire cache if cache is
full. Co-Active is a collaborative active write-back cache
management approach. We port it from NVMe SSD to
PMem-based block device managed by BTT. It employs a
cold/hot separation module to distinguish cold and hot data
via a Bloom Filter. Meanwhile, it maintains two linked lists
for dirty and clean blocks in DRAM cache, respectively.
When PMem stays idle, Co-Active proactively evicts data
from the dirty list to PMem. We refer to it as COA. We
configure the block size as 4KB for BTT. Caiti, PMBD, PMBD-70,

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 9 of 21

I/O Transit Caching for PMem-based Block Device

0

5

10

15

20

32 64 128 256 512 1024

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA Caiti

I/O Depth

A
vg

. R
es

p
. T

im
e

(u
s)

(a) Average Response Time

20

40

60

80
6
0
00
0
0

6
0
10
2
1

6
0
20
4
2

6
0
30
6
3

6
0
40
8
4

6
0
51
0
5

6
0
61
2
6

6
0
71
4
7

6
0
81
6
8

6
0
91
8
9

6
1
02
1
0

6
1
12
3
1

6
1
22
5
2

6
1
32
7
3

6
1
42
9
4

6
1
53
1
5

6
1
63
3
6

6
1
73
5
7

6
1
83
7
8

6
1
93
9
9

6
2
04
2
0

6
2
14
4
1

6
2
24
6
2

6
2
34
8
3

6
2
45
0
4

6
2
55
2
5

6
2
65
4
6

6
2
75
6
7

6
2
85
8
8

6
2
96
0
9

6
3
06
3
0

6
3
16
5
1

6
3
26
7
2

6
3
36
9
3

6
3
47
1
4

6
3
57
3
5

6
3
67
5
6

6
3
77
7
7

6
3
87
9
8

6
3
98
1
9

6
4
08
4
0

6
4
18
6
1

6
4
28
8
2

6
4
39
0
3

6
4
49
2
4

6
4
59
4
5

6
4
69
6
6

6
4
79
8
7

6
4
90
0
8

0

Write Request Sequence Number

R
es

p
o

n
se

 T
im

e
(u

s)

#>25000: 23 99.00P: 16.1 us
99.90P: 22.0 us 99.99P: 29.7 us

(b) Runtime Response Time for Caiti in a window of 50,000 requests

1
2
1
40
1

4
2
80
1

6
4
20
1

8
5
60
1

1
0
70
0
1

1
2
84
0
1

1
4
98
0
1

1
7
12
0
1

1
9
26
0
1

2
1
40
0
1

2
3
54
0
1

2
5
68
0
1

2
7
82
0
1

2
9
96
0
1

3
2
10
0
1

3
4
24
0
1

3
6
38
0
1

3
8
52
0
1

4
0
66
0
1

4
2
80
0
1

4
4
94
0
1

4
7
08
0
1

4
9
22
0
1

5
1
36
0
1

5
3
50
0
1

5
5
64
0
1

5
7
78
0
1

5
9
92
0
1

6
2
06
0
1

6
4
20
0
1

6
6
34
0
1

6
8
48
0
1

7
0
62
0
1

7
2
76
0
1

7
4
90
0
1

7
7
04
0
1

7
9
18
0
1

8
1
32
0
1

8
3
46
0
1

8
5
60
0
1

8
7
74
0
1

8
9
88
0
1

9
2
02
0
1

9
4
16
0
1

9
6
30
0
1

9
8
44
0
1

1
0
05
8
0
1

1
0
27
2
0
1

Write Request Sequence Number

R
es

p
o

n
se

 T
im

e
(u

s)

102

101

100

103

104

105

106

(c) Runtime Response Time for Caiti in a window of one million requests

32 64 128 256 512 1024

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA Caiti

100

102

106

104

I/O Depth

9
9

.9
9

P
 L

at
en

cy
 (

u
s)

(d) 99.99P Latency (log scale)

0

5

10

15

20

25

1 2 4 8 16 32

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA Caiti

Number of Threads

A
vg

. R
es

p
. T

im
e

(u
s)

(e) Multi-threading Test
Figure 5: A Comparison with Fio on Average/Runtime Response Time, Tail Latency, and Multi-threads

LRU and COA are four designs that manage a DRAM cache on
top of PMem-based block device and for each of them, we
set the cache slot size and default cache capacity as 4KB and
512MB, respectively.

We conduct experiments with micro-benchmarks (e.g.,
Fio) and real-world applications (e.g., LevelDB [19] and
QEMU [68]) to thoroughly evaluate Caiti. The main metrics

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 10 of 21

I/O Transit Caching for PMem-based Block Device

to measure performance is response (execution) time and
throughput (bandwidth in MB/s).
5.1. Micro-benchmark (Fio)

Fio is a powerful and capacious benchmark [4]. The
reason why we choose it for evaluation is multifold. Firstly,
it can continuously generate I/O requests with varying I/O
depth to launch different pressure tests. Secondly, it reports
meaningful results that help to observe and interpret the
performance of Caiti. Thirdly, it allows us to configure
multiple threads, enabling us to test the scalability of Caiti.
Fourthly, it further supports a configurable composition of
I/O engine, access pattern, I/O depth, and multiple jobs
(threads) to comprehensively evaluate caching algorithms
under comparison.

With Fio, we firstly test Caiti with substantial I/O pres-
sure. As we have done in the motivational study, we con-
figure Fio in the direct I/O mode, with libaio engine contin-
uously issuing random writes for 30 minutes in a 64GB file
with 4KB I/O size. We vary the I/O depth from 32 to 1024 so
that the storage stack undergoes increasingly more orderless
I/O requests in flight [44]. By doing so, we aim to impose
stressful workloads and thus deeply explore the capability of
Caiti with ample I/O pressure. As shown in Figure 5a, Caiti
consistently outperforms other designs by taking much less
response time. For example, with 128 I/O depth, it boosts the
performance with BTT by up to 3.6×, while PMBD, PMBD-70,
LRU, COA and NOVA that enforce block-level write atomicity
incur 3.6×, 3.6×, 3.5×, 2.9× and 4.1× execution time com-
pared to Caiti, respectively. The superior performance of
Caiti justifies the efficacy of its strategy of I/O transit caching
with timeliness and concurrency. On massive write requests
arriving, Caiti handles them with multiple cache sets sup-
ported by multi-cores in the foreground and leverages a
pool of background threads and WBQs to promptly move
buffered data to PMem. As a result, I/O stall and congestion
hardly occur to Caiti. Meanwhile, BTT and NOVA directly write
data to PMem with efforts for achieving block-level write
atomicity. PMBD’s cache, albeit employing multi-buffers, is
likely to be overfilled at runtime and stall for the drain
of buffers. Although PMBD-70 flushes the cache when the
cache space is used as much as 70%, it cannot timely handle
burst requests with the syncer daemon thread, resulting in
limited improvement. LRU also frequently stalls due to its
2-step write upon no free cache space (see Section 3) and
yields similar performance compared to PMBD. Compared
to other I/O staging algorithms, COA reduces response time
by taking advantage of cold/hot data separation. However,
COA is still inferior to Caiti. Upon the arrival of continuous
I/O requests, PMem is unlikely to be idle. COA has to evict
buffered data and stall incoming requests. As a result, many
cache replacements occur on the critical path for COA. This
is a common issue shared by caching algorithms with the
I/O staging strategy. Separating cold and hot data also incurs
cost for it. The performance gap between these I/O staging
algorithms and Caiti is concretely significant as regards I/O
stall and congestion the formers are encountering.

DAX and PMem spend 115.7% and 120.2% more time than
Caiti, respectively. They directly persist data to PMem, while
Caiti puts data to DRAM cache. Caiti’s hashing on 𝑙𝑏𝑎s
distributes data in multiple sets to leverage multi-cores and
eases its eager eviction that concurrently vacates filled cache
slots. Conditional bypasses also occasionally alleviate I/O
congestion at DRAM cache. In addition, Yang et al. [82]
obtained a similar observation as they found that writing data
to PMem has lower throughput than doing so with DRAM.

Secondly, we have captured the runtime response time
per request for Caiti. We present 50,000 points of response
time in Figure 5b and a comparison with Figure 2c to Fig-
ure 2e conveys that Caiti spends much shorter time in serving
each request than BTT, PMBD, and LRU. At runtime, the number
of flushes does not change significantly for Caiti, since Ext4
consistently issues a bio request with the REQ_PREFLUSH set
for flush every five seconds. Though, the eager eviction
has moved data aggressively to PMem and results in much
more lightweight flushes for Caiti compared to PMBD and
LRU. This explains why the majority of runtime latencies in
Figure 5b for Caiti is below 20𝜇s. In fact, we also record the
runtime response time in the large window of one million
requests and shown their points in Figure 5c. A comparison
between Figure 5c and Figure 3 indicates that in a long
run, Caiti yields much shorter runtime response time at
the presence of periodical flushes since eager eviction and
conditional bypass help to reduce the volume of cached data
that is supposed to be flushed every five seconds. Though,
foreground and background threads of Caiti may contend
for the same cache slot and incur lock/unlock operations.
Meanwhile, many processes are running simultaneously and
numerous events (e.g., I/O interrupts or exceptions) are
concurrently happening. When serving an I/O request, the
CPU core on which Caiti is running might be scheduled to
run for the other process or handle a sudden event. These two
factors are likely to bring latency spikes to Caiti over time.
To grab a more quantitative and comprehensive view on the
critical path of serving write requests, we have recorded the
99.99 percentile (99.99P) tail latency that Fio reports after
finishing all requests. The tail latencies shown in Figure 5d
with Y axis being in the logarithmic scale complement
our observation with Figure 5a. Caiti generally achieves
shorter tail latency by I/O transit caching. With greater I/O
depth, all nine algorithms experience higher pressure and the
tail latency dramatically increases. Caiti is likely to trigger
more conditional bypasses to avoid I/O congestion while, for
instance, PMBD at 1024 I/O depth makes 14.0× 99.99P latency
than Caiti because PMBD insists on waiting for the flush of
buffered data.

Thirdly, we test the scalability of Caiti by varying the
number of Fio’s jobs (threads) under 32 I/O depth. In Fig-
ure 5e, with more jobs (1 to 32) issuing write requests, Caiti
is more performant than others. It works with multiple sets
by dynamically utilizing multi-cores over its foreground and
background threads. Caiti thus yields high performance in a
scalable and balanced way with multi-threading workloads.
However, COA shows a clear distinction between a single

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 11 of 21

I/O Transit Caching for PMem-based Block Device

Table 1
The Impact of Cache Size (Avg. Resp. Time in 𝜇s)

Capacity 64MB 128MB 256MB 512MB 1GB 2GB
PMBD 16.81 16.50 16.67 16.39 16.53 16.23

PMBD-70 16.84 16.75 16.58 16.47 16.47 16.29
LRU 16.72 16.95 16.42 16.85 16.55 16.53
COA 12.89 12.81 12.85 12.95 12.55 12.30

Caiti 4.44 4.42 4.29 4.41 4.44 4.37

job and multiple jobs. This is because COA has difficulty
in handling concurrent and continuous I/O requests from
multiple threads, since its cold/hot data separation approach
cannot efficiently identify overwhelming data.

Fourthly, we observe the impact of cache capacity on
Caiti, PMBD, PMBD-70, LRU and COA with one job and 32 I/O
depth. We set six cache sizes which, as shown in Table 1,
hardly affect performance for all. This phenomenon is
mainly due to the large volume of data received at the
cache. For example, in the starting first minute, no less than
15GB data has been written. With massive data continuously
arriving, a cache in tens of or even more gigabytes stays
overloaded. This again explains why I/O transit caching is
effective and useful for PMem.

Fifthly,we measure the spatial cost of metadata Caiti and
other algorithms need for caching. For every 4KB block
(cache slot), the spatial cost for each caching algorithm is
as follows.

• Caiti with 102B in all: 8B for 𝑙𝑏𝑎, 4B for slot_number,
1B for state, 40B for lock, 33B for work_struct, and
16B for two pointers (WBQ and free list).

• PMBD, PMBD-70 and LRU with 84B in all: 8B for 𝑙𝑏𝑎, 4B
for slot_number, 40B for lock, and 32B for lists.

• COA with 102B in all: 8B for 𝑙𝑏𝑎, 4B for slot_number,
40B for lock, 48B for lists, and 2B for Bloom Filter.

For Caiti, 512MB cache costs about 12.75MB and a 4KB slot
demands 102B on average. The ratio of 2.5% (102

4096) indicates
high space efficiency for Caiti.
5.2. The Breakdown for Caiti

In order to comprehensively investigate what factors
contribute to the performance of Caiti and other caching
algorithms, we have conducted a breakdown test. To obtain
relatively pure time trajectory, we choose the most funda-
mental POSIX I/O calls for the test. We overhaul the critical
paths of calling POSIX write and read (pwrite and pread),
respectively, when each caching algorithm serves them. The
main steps of Caiti include ‘cache metadata management’,
‘cache eviction and write’ (a stalled write), ‘conditional
bypass’, ‘cache write only’ (due to cache hit or a vacant slot),
‘WBQ enqueue’, ‘cache flush’ (due to Ext4 committing its
journal every five seconds [66] or fsync [45]), and others
(e.g., software overhead across kernel- and user-spaces).
Moreover, in order to measure the respective impact of

eager eviction or conditional bypass, we also include two
variants of Caiti with either eager eviction or conditional
bypass disabled. They are denoted as ‘w/o EE’ and ‘w/o BP’,
respectively. In our test program, we continuously send write
requests to a file stored in PMem. The file is opened in the
O_DIRECT mode to rule out the impact of OS’s page cache.
Each write operation is performed at a granularity of 4KB.
Overall 1024×1024 write operations are done. The target
offset in the file for each write is randomly generated in ad-
vance by following a uniform distribution. The contributions
of aforementioned factors are captured in Figure 6a. With
these results, we have obtained following key insights.

Firstly, the occurrence of ‘cache eviction and write’ is
extremely rare for Caiti, which means that almost no stall has
been detected for Caiti. This is because the eager eviction
timely makes space through multiple background threads
and an arriving write request does not need to wait for a free
cache slot. As shown by Figure 6a, PMBD, PMBD-70, LRU, and COA

all suffer from stalls caused by insufficient cache space and
spend 40.5%, 25.3%, 40.0%, and 32.7% on ‘cache eviction
and write’, respectively. Comparatively, the time taken for
Caiti’s all writes on the critical path of pwrite, including
both ‘cache write only’ and ‘cache eviction and write’, is just
11.5% of all the time cost.

Secondly, without either eager eviction or conditional
bypass, the time cost spent on corresponding operations
dramatically rises up and impacts the overall performance
of Caiti. For example, as shown in Figure 6a, with the bar
of ‘w/o EE’, the absence of eager eviction accumulates data
in the DRAM cache and conditional bypasses are triggered
more frequently, thereby incurring more percentage of con-
ditional bypasses. In the meanwhile, without conditional
bypass, all data blocks must be written into cache slots,
which helps to increase cache hits (i.e., ‘Cache Write Only’).
Though, the pwrite workload studied here is quite simple
with regard to simply writing 1024×1024 data blocks and
I/O stalls hardly happen. Consequently, with both eager
eviction and conditional bypass enabled, Caiti achieves close
performance to the variant with eager eviction only.

Thirdly, as to the critical path for pread, each caching
algorithm achieves a similar breakdown (see Figure 6b). We
note that our test program writes and reads data across a 4GB
space, which is eight times the cache capacity of 512MB.
Meanwhile, in the Linux kernel, Ext4 commits its journal ev-
ery five seconds (periodical write-back) and in turn enforces
a cache flush with REQ_PREFLUSH flag [64]. Consequently, the
limited cache capacity and periodical cache flushes jointly
entail cache misses. Yet the penalty of loading target data
from PMem is equivalent among all caching algorithms.

Fourthly, Figure 6c illustrates the percentages of ‘writing
cache only’ due to cache hits or available free slots, ‘cache
eviction and write’, as well as ‘conditional bypass’ over
all writes. It is evident that Caiti almost handles all write
requests by writing data to cache slots. This again justifies
why Caiti yields superior write performance. The syncer
daemon thread helps PMBD-70 to vacate cache slots and in
turn exhibits different percentages on ‘cache eviction and

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 12 of 21

I/O Transit Caching for PMem-based Block Device

0.0E+00

4.0E+09

8.0E+09

1.2E+10

1.6E+10
Ti

m
e

(n
s)

Metadata management Cache Eviction and Write
Conditional Bypass Cache Write Only
WBQ Enqueue Cache Flush
Others

(a) Time Breakdown of Calling pwrite

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

Ti
m

e
(n

s)

Others

Metadata Management

Cache Miss and Read from pmem
Cache Hit and Read from Cache

(b) Time Breakdown of Calling pread

89.57%

19.15%

89.51%

59.12%

10.43%

80.84%

10.47%

40.88%

51.58%

100.00% 99.99%100.00%

48.42%

0.01%

0%

30%

60%

90%

120%

150%

Pe
rc

en
ta

ge

The Percentage of Conditional Bypass

The Percentage of Cache Write Only

The Percentage of Cache Eviction and Write

(c) The Percentages of Cache and Non-cache Writes

5,646

13,138

5,632
6,685

815

977

1,262

1,334

588 933 960

5,097

6,710
5,102

0

4000

8000

12000

16000

20000

A
ve

ra
ge

 o
p

er
at

io
n

 t
im

e
(n

s)

Average Time for Conditional Bypass

Average Time for Cache Write Only

Average Time for Cache Eviction and Write

(d) Average Time under Different Write Conditions
Figure 6: A Detailed Breakdown of Different Cache Management Categories

write’ compared with PMBD. In addition, COA writes more
data directly to cache than LRU and PMBD. However, the more
complex management of COA demands substantially more
processing time, especially upon a REQ_PREFLUSH flag due to
Ext4’s periodical write-back every five seconds. As shown
in Figure 6a, COA spends 1.9× time compared to that of
LRU and PMBD on ‘cache flush’. Comparatively, Caiti eagerly
evicts cached data to underlying PMem-based block device
through multiple concurrent threads in the background. As
mentioned, upon a periodical flush every five seconds, Caiti
is very likely to write down only a handful of data to PMem.
This in turn justifies why the time Caiti uses to flush the
cache is almost negligible as shown in Figure 6a.

Fifthly, Figure 6d displays the average time needed for
‘writing cache only’, ‘cache eviction and write’, and ‘con-
ditional bypass’. For PMBD-70, the time for ‘cache eviction
and write’ increases due to contention between the daemon
thread and the working thread (e.g., for the list lock). Con-
versely, Caiti’s ‘conditional bypass’ costs shorter time than
other algorithms’ ‘cache eviction and write’, highlighting
the efficiency of conditional bypass when the cache is under
congestion.

Sixthly, as told by the bars in Figure 6a, the remaining
time (‘others’) accounts for a large proportion in the overall

time cost. To gain a deep insight, we capture the detailed
timeline of 100 consecutive write requests and present a
contiguous period in Figure 7 for both Caiti and BTT. In
the upper half, we mark the timestamps when the test pro-
gram has initiated the write requests, when these requests
reach Caiti, when Caiti places data into a WBQ, when
Caiti completes processing each write request, and when
Caiti’s background thread finishes evicting the cached block.
The lower half of Figure 7 is for original BTT. The latency
between a request’s issuance and the request’s arrival at
Caiti is significant, taking 54.0% of the time cost per write
request on average. This latency is mainly caused by the
software penalty due to handling a system call between user-
and kernel-spaces [59, 84, 7, 40, 37]. The latency, however,
provides a sufficient time window for Caiti’s background
threads to eagerly evict cached data to PMem. Consequently,
given that a program consecutively writes data to the same
file location twice without the involvement of OS’s page
cache, it is impossible that Caiti’s eager eviction stalls the
second write request from being served since the cache slot
would be timely vacated when the request is still traversing
the software stack. In the buffered I/O mode, the OS’s page
cache would accumulate two consecutive file writes before
they are sent to underlying device driver.

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 13 of 21

I/O Transit Caching for PMem-based Block Device

0

5
0

00

1
0

00
0

1
5

00
0

2
0

00
0

2
5

00
0

3
0

00
0

3
5

00
0

4
0

00
0

4
5

00
0

5
0

00
0

5
5

00
0

6
0

00
0

6
5

00
0

7
0

00
0

7
5

00
0

8
0

00
0

8
5

00
0

9
0

00
0

9
5

00
0

1
0

00
0

0

1
0

50
0

0

1
1

00
0

0

Working
Thread
Background
Thread

application issues a request

Caiti receives the request

request enqueues WBQ

Caiti completes the request

Cached block has been evicted

Working
Thread

Ti
m

e
(n

s)

Caiti

BTT

BTT Completes the Request

BTT Starts to Update Mapping Table

BTT Starts to Write Flog

BTT Receives the Request

Application Issues a Request

Figure 7: Runtime Time Fragments of pwrite for Caiti and BTT

Last but not the least, the metadata management ac-
counts for a very small proportion in the overall time cost
for Caiti. As shown by the bottom segment in Figure 6a,
it only takes 2.9% for Caiti. This low percentage addresses
the cost efficiency of Caiti’s management tactics. Take slot
allocation/deallocation for example. Allocating or deallocat-
ing a free slot with the free set is done through efficient
CAS operation. Furthermore, as Caiti makes the free set
globally shared, each core is able to quickly fetch a vacant
slot and avoids being blocked upon serving highly-skewed
workloads.
5.3. Real-world Application
5.3.1. LevelDB

We illustrate with LevelDB for several reasons. Firstly,
LevelDB is a key-value store gaining wide popularity. Sec-
ondly, LevelDB frequently calls fsyncs to persistently store
data through storage stack and causes on-demand flushes not
covered in Fio tests. Thirdly, Fio performs random I/Os in
block size while LevelDB generates bulky I/Os batched in
megabytes with SSTable files. Fourthly, we run Fio under
direct I/O mode but with LevelDB, OS’s page cache and
LevelDB’s application-level caches are involved. Fifthly,
db_bench built in LevelDB has various write- and read-
intensive workloads. While we focus on optimizing write
performance, we fully test Caiti’s capability in handling read
requests with LevelDB.

Figure 8 shows the average response time of all designs
on serving ten million requests issued by db_bench on fill-
random, overwrite, readrandom, and readhot with value size
varied from 128B to 4KB. Take 2KB values for example.
Caiti spends 40.6% and 38.2% less time than BTT on fill-
random and overwrite, respectively. Still with 2KB values
and fillrandom, Caiti takes 41.9%, 46.2%, 20.0%, 17.8%,
19.6% and 48.8% less time than DAX, NOVA, PMBD, PMBD-70,
LRU and COA, respectively. LevelDB writes an SSTable in
4MB or 2MB with an fsync followed. Once receiving such a
bulk of data, Caiti absorbs with cache slots and background

threads launch eager evictions. Ideally, when a foreground
thread finishes writing a slot, a background thread promptly
initiates write-back. When fsync drains the cache, Caiti
leaves only a handful of slots being in Valid states. If many
SSTables arrive and congest at the cache, Caiti forwards
them to PMem for avoidance of stalling. Comparatively,
PMBD, PMBD-70, and LRU forcefully drain buffered data upon
fsync or full cache while DAX’s and NOVA’s DAX does not use
OS’s page cache for buffering. As to PMBD-70, overwhelming
bulky I/Os continually fill the 70% cache capacity and many
cache evictions thus have to happen on the critical path. COA
struggles to find an opportune moment to move out dirty
data to PMem. However, the cold/hot prediction strategy
is rendered ineffective for COA, since all SSTable files are
written only once to become immutable. Worse, fsyncs
continually drain the cache over time and hinder COA from
accurately identifying cold or hot data. For the same reasons,
the fsync time of Caiti is also much lower than that of PMBD

and LRU, as shown in Figure 2b. PMem yet achieves comparable
or a bit higher write performance because it benefits from
no cost for block-level write atomicity and the use of OS’s
page cache for I/O staging. Figure 9a depicts the cumulative
distribution of response time for LevelDB on fillrandom with
4KB values. Evidently Caiti climbs to the end of 100 percent
at a much steeper rate. A comparison on these curves also
tells that Caiti incurs shorter tail latency, thereby enabling
higher quality of service.

As to read-intensive workloads, both readrandom and
readhot follow a uniform distribution to fetch data, except
that readhot’s accesses are limited to a small range to simu-
late the hot spots commonly found in real-world situations.
A comparison between Figure 8c and Figure 8d shows that
readhot generally demands much less response time. This
is because it is easier for LevelDB’s and OS’s caches to
buffer and hit hot data than all data. DAX and NOVA are two
that read data with DAX bypassing OS’s page cache, so
they spend increasingly more time in loading larger values

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 14 of 21

I/O Transit Caching for PMem-based Block Device

1

10

100

1000

128 256 512 1024 2048 4096

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA w/o EE w/o BP Caiti

100

101

102

103

Value Size (Bytes)

A
vg

. R
es

p
. T

im
e

(u
s/

o
p

)

(a) Fillrandom (log scale)

1

10

100

1000

128 256 512 1024 2048 4096

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA w/o EE w/o BP Caiti

A
vg

. R
es

p
. T

im
e

(u
s/

o
p

)

Value Size (Bytes)

100

101

102

103

(b) Overwrite (log scale)

0

20

40

60

80

128 256 512 1024 2048 4096

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA w/o EE w/o BP Caiti

A
vg

. R
es

p
. T

im
e

(u
s/

o
p

)

Value Size (Bytes)

(c) Readrandom

0

1

2

3

4

128 256 512 1024 2048 4096

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA w/o EE w/o BP Caiti

A
vg

. R
es

p
. T

im
e

(u
s/

o
p

)

Value Size (Bytes)

(d) Readhot
Figure 8: A Comparison with LevelDB on Fillrandom, Overwrite, Readrandom, and Readhot

from PMem. By taking advantage of upper-level caches,
Caiti yields comparable read performance than others, which
further justifies the soundness of its write buffering strategy.

In addition, we also use aforementioned four workloads
issued by db_bench to test the two variants with either eager
eviction or conditional bypass disabled, i.e., ‘w/o EE’ and
‘w/o BP’, respectively. As shown in Figure 8a and Figure 8b
with two write-intensive workloads, the full Caiti spends
less time than either variant lacking one of two components.
Interestingly, as shown in Figure 8c and Figure 8d for
two read-intensive workloads, i.e., readrandom and readhot,
respectively, the variant without eager eviction generally
achieves a bit shorter average response time than two other

Caiti variants with eager eviction. The reason is that, the
eager eviction strategy aggressively evicts cached data down
to PMem-based block device and is likely to result in more
cache misses, leading to longer response latency.

To showcase the versatility of Caiti in a more rigorous
manner, we subject LevelDB to typical workloads generated
by YCSB (Yahoo! Cloud Serving Benchmark) [13]. Besides
loading data into LevelDB, we evaluate Caiti with YCSB’s
A (update-heavy workload with 50% point queries and 50%
updates) and F (workload with 50% read-modify-write and
50% read) that are both mixed with write and read requests.
We configure uniform, zipfian, and latest distributions to
cover various data access patterns that mimic real-world

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 15 of 21

I/O Transit Caching for PMem-based Block Device

0
20
40
60
80

100

1 10 100 1000 10000 100000 1000000

DAX

Pmem

NOVA

BTT

PMBD

PMBD-70

LRU

COA

Caiti

Response Time (us/op)
104 1051031021011

20
40

80

0

60

100
Pe

rc
en

ta
ge

 (
%

)

End of Pmem, NOVA,
Caiti: 25ms

End of LRU: 30ms

BTT: 1.4s

PMBD / -70:
1.6s

DAX: 3.5s

106

COA: 4.5s

(a) A Cumulative Distribution of Response Time for LevelDB on
Fillrandom with 4KB Values

0

10

20

30

40

Load A Run A Run F

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA Caiti

10

20

40

0

30

Th
ro

u
gh

p
u

t
(M

B
/s

)

Uniform

(b) YCSB Benchmark with Uniform Distribution on LevelDB

0

10

20

30

40

Load A Run A Run F

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA Caiti

10

20

40

0

30

Th
ro

u
gh

p
u

t
(M

B
/s

)

Zipfian

(c) YCSB Benchmark with Zipfian Distribution on LevelDB

0

20

40

60

80

Load A Run A Run F

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA Caiti

20

40

80

0

60

Th
ro

u
gh

p
u

t
(M

B
/s

)

Latest

(d) YCSB Benchmark with Latest Distribution on LevelDB
Figure 9: Fillrandom Latency and YCSB Throughput on LevelDB

Webserver Webproxy Varmail Fileserver

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA Caiti

A
vg

. R
es

p
. T

im
e

(u
s/

o
p

)

Workload

15

30

60

0

45

(a) Comparison of Overall Performance with Filebench

Webserver Webproxy Varmail Fileserver

DAX Pmem NOVA BTT PMBD PMBD-70 LRU COA Caiti

A
vg

. R
es

p
. T

im
e

(u
s/

o
p

)

Workload

2

6

0

4

(b) Comparison of Read Performance with Filebench
Figure 10: A Comparison with Filebench on Webserver, Webproxy, Varmail, and Fileserver in VM

scenarios. As shown by Figure 9b to Figure 9d, Caiti
still achieves higher or comparable performance than other
caching algorithms. For example, as depicted in Figure 9c
with data following the skewed Zipfian distribution, the
throughput of Caiti is 65.8%, 40.0%, 66.3% and 51.8%
higher than PMBD, PMBD-70, LRU and COA, respectively, upon
loading data. Caiti also outperforms other caching algo-
rithms under the latest distribution with workloads A and
F which alternately write and read data over time. We note
that the highly-skewed latest distribution always chooses the
most recent data for operation. As indicated by Figure 9d,
Caiti efficiently exploits the locality of cached data. These
results with varying data access distributions justify the
rationality of Caiti’s I/O transit strategy with eager eviction
and conditional bypass.
5.3.2. Virtual Machine

Virtual machines (VMs) are widely used in multi-tenant
cloud and practitioners have considered deploying PMem to
enhance VMs [22, 29, 50]. To evaluate the efficacy of Caiti
for VM, we utilize Filebench [17] to generate different access
patterns with Webserver, Webproxy, Varmail, and Fileserver

workloads in a VM with disk images atop PMem. The guest
OS is Ubuntu 21.04 with Ext4 as file system, running within
QEMU 6.2.0 and KVM [68, 38]. VM disk images are set
in the RAW format with virtio enabled. We use the default
writeback cache policy for QEMU and the VM is with 32GB
DRAM and eight vCPUs.

Figure 10a depicts average response time for Caiti and
other algorithms with aforementioned workloads running
in VM. Caiti reduces the average response time by 12.0%,
13.3%, 62.0%, 43.9%, 52.4%, 48.6%, 53.1% and 43.2% than
DAX, PMem, NOVA, BTT, PMBD, PMBD-70, LRU and COA respectively,
on Fileserver. Fileserver is write-intensive and emulates
I/O activities for a multi-threading file-server that gener-
ates numerous write operations for multiple files. Caiti is
effectual because of concurrent eager evictions and flexible
conditional bypasses. As to Varmail that simulates a mail-
server and performs mandatory synchronization operations
(i.e., fsync) after writing files, Caiti takes 21.7%, 22.4%,
26.8%, 31.8%, 8.2% and 30.9% less time than NOVA, BTT, PMBD,
PMBD-70, LRU and COA. Though, it is slightly inferior to DAX and

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 16 of 21

I/O Transit Caching for PMem-based Block Device

PMem since the latter two have no cost of guaranteeing block-
level atomic writes and flushing buffered data.

As for two read-intensive workloads, i.e., Webserver and
Webproxy, Caiti still achieves comparable performance with
other algorithms. Webserver produces a sequence of read
operations on files and simulates a web-server’s I/O activity,
while Webproxy emulates a web-proxy server. Interestingly,
on Webproxy, Caiti takes 12.7%, 14.3%, 11.9%, 15.3%, 9.6%
and 13.4% less time than NOVA, BTT, PMBD, PMBD-70, LRU and
COA. The reason is that Webproxy consists of a mix of write
and read operations while Webserver is dominated by read
operations. In particular, we collect the read latency with
Filebench’s workloads and present them in Figure 10b. It is
evident that compared to other caching algorithms, Caiti’s
eager eviction hardly affects its read latency.

6. Related Work
In this section, we discuss related works mainly on cache

management and storage systems built on PMem.
6.1. Cache Management

Caching has been proven to be useful for storage systems.
Researchers explored various novel cache management poli-
cies tailored with regard to specific access patterns and the
usage status of storage systems [61, 10, 12, 71, 62, 63, 36,
58, 60].

SSD cache management. Leveraging the device cache
to buffer metadata for address translation or data has been
thoroughly studied in the development of SSDs [20, 57,
27, 74]. For example, For example, Wang and Wong [71]
designed TreeFTL that organizes address translation and
data pages in a tree-like structure in the device cache of
SSD. TreeFTL dynamically adjusts the partitions for address
mapping and data buffering in order to adapt to a workload’s
access patterns. Sun et al. [62] proposed dynamic active and
collaborative cache management, namely DAC, with a cache
composed of cold/hot caches and ghost cold/hot caches.
DAC adjusts the real cache size based on observing cold/hot
data in I/O requests with ghost caches. The idea of Caiti is
portable with SSDs, especially NVMe ones with fast access
speed and multiple hardware queues [40, 37, 41, 61].

Cache management in file system. Researchers have
considered effectual cache management in developing file
systems for the evolving storage stack. HiNFS is a promising
design that uses DRAM buffer to accelerate direct accesses
with NVM in the file system [12]. In short, HiNFS employs
a write buffer in DRAM to cache lazy-persistent writes
while performing direct access to PMem for eager-persistent
writes. Kannan et al. [36] proposed DevFS that is a device-
level file system, providing performant direct-access capa-
bilities within a storage device. In particular, DevFS employs
reverse caching to move inactive data structures of the file
system off the device to host memory and coordinates with
the OS to ensure secured file access. Caiti shares similarities
with HiNFS and DevFS in caching data by using a part of
host OS’s DRAM space, instead of a device’s internal cache,

for underlying storage. Whereas, Caiti takes effects as I/O
transit rather than I/O staging.

Machine learning-based cache management. Recently,
a few researchers have taken machine learning (ML) based
approaches for cache management [55, 58, 60]. For example,
at the CPU cache level, Sethumurugan et al. [55] used ma-
chine learning as an offline tool to design a new replacement
policy for CPU cache. TCRM [58] addresses the trade-off
between thermal and cache contention-induced slowdowns.
It uses a neural network-based model to predict slowdown
caused by cache contention. At the storage cache level,
NCache [60] uses an ML model to predict data reaccess
before eviction, preferentially evicting data unlikely to be
accessed again and conserving cache space for frequently ac-
cessed data. The idea of Caiti and such ML-based techniques
complement each other. The way Caiti separates cold from
hot data through LRU evictions is simple but a bit coarse-
grained. These ML-based techniques can help Caiti to make
a fine-grained separation. However, Caiti has to schedule an
offline training and profiling, as it is non-trivial to build an
ML framework in Linux kernel. Moreover, the workloads
Caiti serves vary significantly in different environments and
over time. This is the second concrete challenge that Caiti
shall consider when employing ML-based techniques. We
leave this work for future exploration.

In all, these works aim to advance cache management
policies, with a focus on improving performance, reduc-
ing access latency, and enhancing load and store efficiency
in storage systems. Comparatively, Caiti boosts the per-
formance of PMem-based block devices by leveraging a
DRAM buffer with I/O transit strategy to accelerate writes.
6.2. Storage Systems on PMem

The development of NVM technologies has motivated
researchers to develop various approaches in effectively
utilizing NVM as PMem [80, 11, 81, 24, 43, 72].

File system on PMem. Developing new file systems
for PMem has drawn wide attention, such as PMFS [15],
HiNFS, and NOVA. They mainly follow the DAX fashion
that does not take PMem as block device but memory. Chen
et al. [11] considered improving file access speed by min-
imizing kernel overhead. They expose files into user-space
in constant time independent of file sizes. They also imple-
ment efficient user-space journaling for consistency. Yang et
al. [81] addressed problems caused by physical superpages
in PMem file system. Their design utilizes virtual super-
pages and includes Multi-grained Copy-on-Write (MCoW)
and Zero-copy File Data Migration (ZFDM) mechanisms
to reduce write amplification and improve space utilization
efficiency. The concept of Caiti can be applied to DAX-
based file systems developed for PMem. Although such file
systems do not format PMem with BTT to be block devices,
they mainly manage PMem space in the unit of pages and
tend to perform data updates in the COW fashion for data
consistency. These leave an opportunity for Caiti.

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 17 of 21

I/O Transit Caching for PMem-based Block Device

The use of DRAM-PMem system. The slower access
speed of PMem has motivated researchers to build a hy-
brid DRAM-PMem system [24, 83, 85, 72]. Sorting, index-
ing, and KV stores have been studied with DRAM-PMem.
Hua et al. [24] conducted extensive experiments on various
sorting methods adapted for PMem and further considered
designing PMem-friendly sorting techniques on DRAM-
PMem system. The PMSort they proposed adaptively selects
optimal algorithms and reduces failure recovery overhead.
Li et al. [43] designed MuHash that is a novel persistent
and concurrent hashing index for DRAM-PMem. MuHash
employs a multi-hash function scheme to solve the cascading
write problem in PMem-based open-addressed hash-based
indexes. Wang et al. [72] presented a server-bypass architec-
ture for KV stores on DRAM-PMem system. Their design
incorporates hopscotch hashing for latch-enabled append
operations and a fully server-bypass read/write paradigm, so
as to eliminate network round trips and reduce hash conflicts
for efficient client access to KV stores. Caiti can also be
viewed as a design built on DRAM-PMem system. However,
Caiti works at a lower level as part of device driver. In
addition, indexing, sorting, and KV stores need application-
level caches [79, 85], which can be managed with Caiti’s I/O
transit strategy.

7. Conclusion
In this paper, we revisit the use of PMem as block device

and consider adding a cache to BTT that achieves block-level
write atomicity. We develop Caiti which, in contrast to I/O
staging caches, promptly transits buffered data into PMem
in order to avoid I/O stalls caused by full cache or fsyncs.
To further alleviate I/O congestion, it conditionally bypasses
full cache without waiting for the drain of cache slots. Lever-
aging multi-core CPU, Caiti achieves high concurrency and
scalability. It also retains block-level write atomicity. We
have thoroughly evaluated Caiti. Caiti substantially boosts
performance for BTT by as much as 3.6× in extensive
experiments conducted with both micro-benchmarks and
real-world applications.

Acknowledgment
This work was jointly supported by National Key R&D

Program of China No. 2022YFB4401700, Natural Science
Foundation of Shanghai under Grants No. 22ZR1442000
and 23ZR1442300, and ShanghaiTech Startup Funding. We
are very grateful to Mr. Meng Chen for his valuable help.

In addition, this paper was eventually accepted for pro-
duction by the Journal of Systems Architecture: Embedded
Software Design (JSA) 2 after 10 months (12 May 2023
to 10 March 2024) of processing. The Associate Editor
of JSA who was in charge of this paper invited overall
fourteen (14) reviewers and the paper underwent five (5)
rounds of revisions. To our best knowledge, such a number

2The website of JSA: https://www.sciencedirect.com/journal/journa

l-of-systems-architecture

of reviewers should be very rare for a research paper in the
domain of electrical engineering and computer science.

References
[1] Aghaei Khouzani, H., Xue, Y., Yang, C., Pandurangi, A., 2014. Pro-

longing PCM lifetime through energy-efficient, segment-aware, and
wear-resistant page allocation, in: Proceedings of the 2014 Interna-
tional Symposium on Low Power Electronics and Design, Association
for Computing Machinery, New York, NY, USA. p. 327–330. URL:

https://doi.org/10.1145/2627369.2627667, doi: 10.1145/2627369.

2627667.
[2] Ahmed, S., Bhatti, N.A., Alizai, M.H., Siddiqui, J.H., Mottola, L.,

2019. Efficient intermittent computing with differential checkpoint-
ing, in: Proceedings of the 20th ACM SIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded
Systems, Association for Computing Machinery, New York, NY,
USA. p. 70–81. URL: https://doi.org/10.1145/3316482.3326357,
doi: 10.1145/3316482.3326357.

[3] Alcorn, P., 2022. Intel kills Optane memory business, pays $559
million inventory write-off. https://www.tomshardware.com/news/in

tel-kills-optane-memory-business-for-good. [Online; accessed 02-
June-2023].

[4] Axboe, J., . Fio - flexible I/O tester. https://github.com/axboe/fio.
[Online; accessed 02-June-2023].

[5] Benson, L., Makait, H., Rabl, T., 2021. Viper: An efficient hybrid
PMem-DRAM key-value store. Proc. VLDB Endow. 14, 1544–1556.
URL: https://doi.org/10.14778/3461535.3461543, doi: 10.14778/3

461535.3461543.
[6] BTRFS, 2022. Hardware considerations.

https://btrfs.readthedocs.io/en/latest/Hardware.html#when-things-
go-wrong. [Online; accessed 02-June-2023].

[7] Caulfield, A.M., Mollov, T.I., Eisner, L.A., De, A., Coburn, J., Swan-
son, S., 2012. Providing safe, user space access to fast, solid state
disks, in: Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, Association for Computing Machinery, New York, NY,
USA. p. 387–400. URL: https://doi.org/10.1145/2150976.2151017,
doi: 10.1145/2150976.2151017.

[8] Chang, Y.S., Liu, R.S., 2019. OPTR: Order-Preserving translation
and recovery design for SSDs with a standard block device interface,
in: 2019 USENIX Annual Technical Conference (USENIX ATC 19),
USENIX Association. pp. 1009–1024.

[9] Chen, C.H., Hsiu, P.C., Kuo, T.W., Yang, C.L., Wang, C.Y.M., 2012.
Age-based PCM wear leveling with nearly zero search cost, in: Pro-
ceedings of the 49th Annual Design Automation Conference (DAC
’12), ACM. pp. 453–458. doi: 10.1145/2228360.2228439.

[10] Chen, F., Mesnier, M.P., Hahn, S., 2014. A protected block device
for persistent memory, in: 2014 30th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–12. doi: 10.1109/MSST.2

014.6855541.
[11] Chen, X., Sha, E.H.M., Zhuge, Q., Wu, T., Jiang, W., Zeng, X.,

Wu, L., 2018a. UMFS: An efficient user-space file system for non-
volatile memory. Journal of Systems Architecture 89, 18–29. URL:

https://www.sciencedirect.com/science/article/pii/S13837621173

05064, doi: https://doi.org/10.1016/j.sysarc.2018.04.004.
[12] Chen, Y., Shu, J., Ou, J., Lu, Y., 2018b. HiNFS: A persistent memory

file system with both buffering and direct-access. ACM Trans. Storage
14. URL: https://doi.org/10.1145/3204454, doi: 10.1145/3204454.

[13] Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.,
2010. Benchmarking cloud serving systems with YCSB, in: Proceed-
ings of the 1st ACM Symposium on Cloud Computing, Association
for Computing Machinery, New York, NY, USA. p. 143–154. URL:

https://doi.org/10.1145/1807128.1807152, doi: 10.1145/1807128.

1807152.
[14] Corbet, J., . Atomic I/O operations. https://lwn.net/Articles/552

095/. [Online; accessed 02-June-2023].

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 18 of 21

https://www.sciencedirect.com/journal/journal-of-systems-architecture
https://www.sciencedirect.com/journal/journal-of-systems-architecture
https://doi.org/10.1145/2627369.2627667
http://dx.doi.org/10.1145/2627369.2627667
http://dx.doi.org/10.1145/2627369.2627667
https://doi.org/10.1145/3316482.3326357
http://dx.doi.org/10.1145/3316482.3326357
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://github.com/axboe/fio
https://doi.org/10.14778/3461535.3461543
http://dx.doi.org/10.14778/3461535.3461543
http://dx.doi.org/10.14778/3461535.3461543
https://doi.org/10.1145/2150976.2151017
http://dx.doi.org/10.1145/2150976.2151017
http://dx.doi.org/10.1145/2228360.2228439
http://dx.doi.org/10.1109/MSST.2014.6855541
http://dx.doi.org/10.1109/MSST.2014.6855541
https://www.sciencedirect.com/science/article/pii/S1383762117305064
https://www.sciencedirect.com/science/article/pii/S1383762117305064
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2018.04.004
https://doi.org/10.1145/3204454
http://dx.doi.org/10.1145/3204454
https://doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
https://lwn.net/Articles/552095/
https://lwn.net/Articles/552095/

I/O Transit Caching for PMem-based Block Device

[15] Dulloor, S.R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D.,
Sankaran, R., Jackson, J., 2014. System software for persistent mem-
ory, in: Proceedings of the Ninth European Conference on Computer
Systems, ACM. pp. 1–15. doi: 10.1145/2592798.2592814.

[16] Everspin Technologies, . Spin-transfer torque MRAM technology.
https://www.everspin.com/spin-transfer-torque-mram-technology.

[Online; accessed 02-June-2023].
[17] Filebench, 2020. Filebench: File system and storage benchmark that

uses a custom language to generate a large variety of workloads.
https://github.com/filebench/filebench. [Online; accessed 02-June-
2023].

[18] Gogte, V., Wang, W., Diestelhorst, S., Kolli, A., Chen, P.M.,
Narayanasamy, S., Wenisch, T.F., 2019. Software wear management
for persistent memories, in: 17th USENIX Conference on File and
Storage Technologies (FAST 19), USENIX Association, Boston, MA.
pp. 45–63. URL: https://www.usenix.org/conference/fast19/prese

ntation/gogte.
[19] Google, 2024. LevelDB. https://github.com/google/leveldb;

[Online; accessed 16-February-2023].
[20] Gupta, A., Kim, Y., Urgaonkar, B., 2009. DFTL: A flash translation

layer employing demand-based selective caching of page-level ad-
dress mappings, in: Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems, Association for Computing Machinery, New York, NY,
USA. p. 229–240. URL: https://doi.org/10.1145/1508244.1508271,
doi: 10.1145/1508244.1508271.

[21] Hakert, C., Chen, K.H., Schirmeier, H., Bauer, L., Genssler, P.R.,
von der Brüggen, G., Amrouch, H., Henkel, J., Chen, J.J., 2022.
Software-managed read and write wear-leveling for non-volatile main
memory. ACM Trans. Embed. Comput. Syst. 21. URL: https:

//doi.org/10.1145/3483839, doi: 10.1145/3483839.
[22] Hansen, A., Downie, K., . Understand and deploy persistent memory.

https://learn.microsoft.com/en-us/azure-stack/hci/concepts/dep

loy-persistent-memory. [Online; accessed 02-June-2023].
[23] Hu, J., Zhuge, Q., Xue, C.J., Tseng, W.C., Sha, E.H.M., 2013.

Software enabled wear-leveling for hybrid PCM main memory on
embedded systems, in: 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 599–602. doi: 10.7873/DATE

.2013.131.
[24] Hua, Y., Huang, K., Zheng, S., Huang, L., 2021. PMSort: An adaptive

sorting engine for persistent memory. J. Syst. Archit. 120. URL:
https://doi.org/10.1016/j.sysarc.2021.102279, doi: 10.1016/j.sysa

rc.2021.102279.
[25] Huang, F., Feng, D., Xia, W., Zhou, W., Zhang, Y., Fu, M., Jiang, C.,

Zhou, Y., 2016. Security RBSG: Protecting phase change memory
with security-level adjustable dynamic mapping, in: 2016 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
pp. 1081–1090. doi: 10.1109/IPDPS.2016.22.

[26] Huang, K., Mei, Y., Huang, L., 2020. Quail: Using NVM write
monitor to enable transparent wear-leveling. Journal of Systems
Architecture 102, 101658. URL: https://www.sciencedirect.com/

science/article/pii/S1383762119304655, doi: https://doi.org/10.1

016/j.sysarc.2019.101658.
[27] Huang, P.C., Chang, Y.H., Kuo, T.W., 2012. Joint management

of RAM and flash memory with access pattern considerations, in:
Proceedings of the 49th Annual Design Automation Conference,
Association for Computing Machinery, New York, NY, USA. p.
882–887. URL: https://doi.org/10.1145/2228360.2228518, doi:
10.1145/2228360.2228518.

[28] Intel, 2024. Intel optane memory - responsive memory, accelerated
performance. https://www.intel.com/content/www/us/en/products

/details/memory-storage/optane-memory.html. [Online; accessed 16-
February-2024].

[29] Intel Coporation, . Scaling MySQL in the cloud with Intel Optane
persistent memory. https://www.intel.com/content/dam/www/

public/us/en/documents/white-papers/scaling-mysql-in-the-clo

ud-with-optane-persistent-memory-paper.pdf. [Online; accessed
02-June-2023].

[30] Intel Corpration, a. ipmctl-create-namespace - creates a
namespace from a persistent memory region. https:

//github.com/intel/ipmctl/blob/master/Documentation/ipmctl/Persi

stent_Memory_Provisioning/ipmctl-create-namespace.txt. [Online;
accessed 15-Dec-2023].

[31] Intel Corpration, b. ndctl-create-namespace - provision or reconfigure
a namespace. https://github.com/pmem/ndctl/blob/main/Document

ation/ndctl/ndctl-create-namespace.txt. [Online; accessed 15-Dec-
2023].

[32] Intel Corpration, c. Speeding up I/O workloads with intel Optane
persistent memory modules. https://www.intel.com/content/ww

w/us/en/developer/articles/technical/speeding-up-io-workloads-

with-intel-optane-dc-persistent-memory-modules.html. [Online;
accessed 14-Dec-2023].

[33] Kadekodi, R., Lee, S.K., Kashyap, S., Kim, T., Kolli, A., Chi-
dambaram, V., 2019. SplitFS: Reducing software overhead in file
systems for persistent memory, in: Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP ’19), ACM. p.
494–508. doi: 10.1145/3341301.3359631.

[34] Kang, W.H., Lee, S.W., Moon, B., Kee, Y.S., Oh, M., 2014. Durable
write cache in flash memory SSD for relational and NoSQL databases,
in: Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’14), ACM. p. 529–540. doi:
10.1145/2588555.2595632.

[35] Kang, W.H., Lee, S.W., Moon, B., Oh, G.H., Min, C., 2013. X-FTL:
Transactional FTL for SQLite databases, in: Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data
(SIGMOD ’13), ACM. p. 97–108. doi: 10.1145/2463676.2465326.

[36] Kannan, S., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Wang,
Y., Xu, J., Palani, G., 2018. Designing a true Direct-Access file
system with DevFS, in: 16th USENIX Conference on File and Storage
Technologies (FAST 18), USENIX Association. pp. 241–256.

[37] Kim, S., Lee, G., Woo, J., Jeong, J., 2021. Zero-copying I/O stack for
low-latency SSDs. IEEE Computer Architecture Letters 20, 50–53.
doi: 10.1109/LCA.2021.3064876.

[38] KVM, 2019. Kernel virtual machine. https://www.linux-kvm.org/

page/Main_Page. [Online; accessed 02-June-2023].
[39] Lee, C., Song, Y., Shin, Y., 2019a. Endurance enhancement of multi-

level cell phase change memory, in: 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–8. doi:
10.1109/ICCAD45719.2019.8942175.

[40] Lee, G., Shin, S., Song, W., Ham, T.J., Lee, J.W., Jeong, J., 2019b.
Asynchronous I/O stack: A low-latency kernel I/O stack for ultra-low
latency SSDs, in: Proceedings of the 2019 USENIX Conference on
Usenix Annual Technical Conference, USENIX Association, USA.
p. 603–616.

[41] Li, H., Putra, M.L., Shi, R., Lin, X., Ganger, G.R., Gunawi, H.S.,
2021. LODA: A host/device co-design for strong predictability con-
tract on modern flash storage, in: Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, Association for
Computing Machinery, New York, NY, USA. p. 263–279. URL:
https://doi.org/10.1145/3477132.3483573, doi: 10.1145/3477132.34

83573.
[42] Li, W., Shuai, Z., Xue, C.J., Yuan, M., Li, Q., 2019. A wear leveling

aware memory allocator for both stack and heap management in PCM-
based main memory systems, in: 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 228–233. doi:
10.23919/DATE.2019.8715132.

[43] Li, Y., Zeng, L., Chen, G., Gu, C., Luo, F., Ding, W., Shi, Z., Fuentes,
J., 2022. A multi-hashing index for hybrid DRAM-NVM memory
systems. Journal of Systems Architecture 128, 102547. URL:

https://www.sciencedirect.com/science/article/pii/S13837621220

01047, doi: https://doi.org/10.1016/j.sysarc.2022.102547.
[44] Liao, X., Lu, Y., Xu, E., Shu, J., 2020. Write dependency disentangle-

ment with HORAE, in: 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), USENIX Association.
pp. 549–565.

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 19 of 21

http://dx.doi.org/10.1145/2592798.2592814
https://www.everspin.com/spin-transfer-torque-mram-technology
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://www.usenix.org/conference/fast19/presentation/gogte
https://www.usenix.org/conference/fast19/presentation/gogte
https://github.com/google/leveldb
https://doi.org/10.1145/1508244.1508271
http://dx.doi.org/10.1145/1508244.1508271
https://doi.org/10.1145/3483839
https://doi.org/10.1145/3483839
http://dx.doi.org/10.1145/3483839
https://learn.microsoft.com/en-us/azure-stack/hci/concepts/deploy-persistent-memory
https://learn.microsoft.com/en-us/azure-stack/hci/concepts/deploy-persistent-memory
http://dx.doi.org/10.7873/DATE.2013.131
http://dx.doi.org/10.7873/DATE.2013.131
https://doi.org/10.1016/j.sysarc.2021.102279
https://doi.org/10.1016/j.sysarc.2021.102279
http://dx.doi.org/10.1016/j.sysarc.2021.102279
http://dx.doi.org/10.1016/j.sysarc.2021.102279
http://dx.doi.org/10.1109/IPDPS.2016.22
https://www.sciencedirect.com/science/article/pii/S1383762119304655
https://www.sciencedirect.com/science/article/pii/S1383762119304655
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2019.101658
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2019.101658
https://doi.org/10.1145/2228360.2228518
http://dx.doi.org/10.1145/2228360.2228518
http://dx.doi.org/10.1145/2228360.2228518
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/scaling-mysql-in-the-cloud-with-optane-persistent-memory-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/scaling-mysql-in-the-cloud-with-optane-persistent-memory-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/scaling-mysql-in-the-cloud-with-optane-persistent-memory-paper.pdf
https://github.com/intel/ipmctl/blob/master/Documentation/ipmctl/Persistent_Memory_Provisioning/ipmctl-create-namespace.txt
https://github.com/intel/ipmctl/blob/master/Documentation/ipmctl/Persistent_Memory_Provisioning/ipmctl-create-namespace.txt
https://github.com/intel/ipmctl/blob/master/Documentation/ipmctl/Persistent_Memory_Provisioning/ipmctl-create-namespace.txt
https://github.com/pmem/ndctl/blob/main/Documentation/ndctl/ndctl-create-namespace.txt
https://github.com/pmem/ndctl/blob/main/Documentation/ndctl/ndctl-create-namespace.txt
https://www.intel.com/content/www/us/en/developer/articles/technical/speeding-up-io-workloads-with-intel-optane-dc-persistent-memory-modules.html
https://www.intel.com/content/www/us/en/developer/articles/technical/speeding-up-io-workloads-with-intel-optane-dc-persistent-memory-modules.html
https://www.intel.com/content/www/us/en/developer/articles/technical/speeding-up-io-workloads-with-intel-optane-dc-persistent-memory-modules.html
http://dx.doi.org/10.1145/3341301.3359631
http://dx.doi.org/10.1145/2588555.2595632
http://dx.doi.org/10.1145/2588555.2595632
http://dx.doi.org/10.1145/2463676.2465326
http://dx.doi.org/10.1109/LCA.2021.3064876
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
http://dx.doi.org/10.1109/ICCAD45719.2019.8942175
http://dx.doi.org/10.1109/ICCAD45719.2019.8942175
https://doi.org/10.1145/3477132.3483573
https://doi.org/10.1145/3477132.3483573
http://dx.doi.org/10.1145/3477132.3483573
http://dx.doi.org/10.1145/3477132.3483573
http://dx.doi.org/10.23919/DATE.2019.8715132
http://dx.doi.org/10.23919/DATE.2019.8715132
https://www.sciencedirect.com/science/article/pii/S1383762122001047
https://www.sciencedirect.com/science/article/pii/S1383762122001047
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2022.102547

I/O Transit Caching for PMem-based Block Device

[45] Linux manual page, . fsync, fdatasync - synchronize a file’s in-core
state with storage device. https://man7.org/linux/man-pages/man2/

fsync.2.html; [Online; accessed 16-February-2024].
[46] Liu, D., Wang, T., Wang, Y., Shao, Z., Zhuge, Q., Sha, E.H.M.,

2014. Application-specific wear leveling for extending lifetime of
phase change memory in embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 33, 1450–
1462. doi: 10.1109/TCAD.2014.2341922.

[47] Liu, S., Kanniwadi, S., Schwarzl, M., Kogler, A., Gruss, D., Khan, S.,
2023. Side-channel attacks on Optane persistent memory, in: 32nd
USENIX Security Symposium (USENIX Security 23), USENIX
Association, Anaheim, CA. pp. 6807–6824. URL: https://www.

usenix.org/conference/usenixsecurity23/presentation/liu-sihang.
[48] Lu, B., Hao, X., Wang, T., Lo, E., 2020. Dash: Scalable hashing

on persistent memory. Proc. VLDB Endow. 13, 1147–1161. URL:
https://doi.org/10.14778/3389133.3389134, doi: 10.14778/3389133

.3389134.
[49] Ma, D., Feng, J., Li, G., 2014. A survey of address translation

technologies for flash memories. ACM Comput. Surv. 46. URL:
https://doi.org/10.1145/2512961, doi: 10.1145/2512961.

[50] Morera, D., . Understanding persistent memory (pmem) in vSphere.
https://core.vmware.com/blog/understanding-persistent-memory-p

mem-vsphere. [Online; accessed 02-June-2023].
[51] Park, D., Shin, D., 2017. iJournaling: Fine-Grained journaling for

improving the latency of fsync system call, in: 2017 USENIX Annual
Technical Conference (USENIX ATC 17), USENIX Association,
Santa Clara, CA. pp. 787–798. URL: https://www.usenix.org/c

onference/atc17/technical-sessions/presentation/park.
[52] Qin, H., Feng, D., Tong, W., Zhao, Y., Qiu, S., Liu, F., Li, S.,

2021. Better atomic writes by exposing the flash out-of-band area to
file systems, in: Proceedings of the 22nd ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for
Embedded Systems, Association for Computing Machinery, New
York, NY, USA. pp. 12–23. URL: https://doi.org/10.1145/3461

648.3463843, doi: 10.1145/3461648.3463843.
[53] Qureshi, M.K., Karidis, J., Franceschini, M., Srinivasan, V., Lastras,

L., Abali, B., 2009. Enhancing lifetime and security of PCM-
based main memory with start-gap wear leveling, in: 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 14–23. doi: 10.1145/1669112.1669117.

[54] Samsung Semiconductor, 2022. Samsung electronics unveils
far-reaching, next-generation memory solutions at flash memory
summit 2022. https://news.samsung.com/global/samsung-electron

ics-unveils-far-reaching-next-generation-memory-solutions-at-f

lash-memory-summit-2022. [Online; accessed 02-June-2023].
[55] Sethumurugan, S., Yin, J., Sartori, J., 2021. Designing a cost-effective

cache replacement policy using machine learning, in: 2021 IEEE In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), pp. 291–303. doi: 10.1109/HPCA51647.2021.00033.

[56] Shen, Z., Chen, F., Jia, Y., Shao, Z., 2018. DIDACache: An integration
of device and application for flash-based key-value caching. ACM
Trans. Storage 14. URL: https://doi.org/10.1145/3203410, doi:
10.1145/3203410.

[57] Shim, H., Seo, B.K., Kim, J.S., Maeng, S., 2010. An adaptive parti-
tioning scheme for DRAM-based cache in solid state drives, in: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–12. doi: 10.1109/MSST.2010.5496995.

[58] Sikal, M.B., Khdr, H., Rapp, M., Henkel, J., 2022. Thermal- and
cache-aware resource management based on ML-driven cache con-
tention prediction, in: 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1384–1388. doi: 10.23919

/DATE54114.2022.9774776.
[59] Silberschatz, A., Galvin, P.B., Gagne, G., 2018. Operating System

Concepts, 10th Edition. Wiley. URL: http://os-book.com/OS10/ind

ex.html.
[60] Sun, H., Cui, Q., Huang, J., Qin, X., 2023a. NCache: A machine-

learning cache management scheme for computational SSDs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and

Systems 42, 1810–1823. doi: 10.1109/TCAD.2022.3208769.
[61] Sun, H., Dai, S., Huang, J., Qin, X., 2021. Co-active: A workload-

aware collaborative cache management scheme for NVMe SSDs.
IEEE Transactions on Parallel and Distributed Systems 32, 1437–
1451. doi: 10.1109/TPDS.2021.3052028.

[62] Sun, H., Dai, S., Huang, J., Yue, Y., Qin, X., 2023b. DAC: A
dynamic active and collaborative cache management scheme for solid
state disks. Journal of Systems Architecture 140, 102896. URL:

https://www.sciencedirect.com/science/article/pii/S13837621230

00759, doi: https://doi.org/10.1016/j.sysarc.2023.102896.
[63] Tang, C., Sha, Z., Li, J., Lin, H., Chen, L., Cai, Z., Liao, J., 2023.

Cache eviction for SSD-HDD hybrid storage based on sequential
packing. Journal of Systems Architecture 141, 102930. URL:

https://www.sciencedirect.com/science/article/pii/S13837621230

01091, doi: https://doi.org/10.1016/j.sysarc.2023.102930.
[64] The kernel development community, . Explicit volatile write back

cache control. https://docs.kernel.org/block/writeback_cache_con

trol.html. [Online; accessed 02-June-2023].
[65] The kernel development community, 2022. BTT - block translation

table. https://www.kernel.org/doc/html/latest/driver-api/nvdimm

/btt.html.[Online;accessed02-June-2023].
[66] The kernel development community, 2023a. Ext4 general informa-

tion. https://docs.kernel.org/admin-guide/ext4.html. [Online;
accessed 17-Dec-2023].

[67] The kernel development community, 2023b. Multi-
queue block IO queueing mechanism (blk-mq).
https://www.kernel.org/doc/html/latest/block/blk-mq.html#multi-
queue-block-io-queueing-mechanism-blk-mq. [Online; accessed
02-June-2023].

[68] The QEMU Project Developers, . QEMU user documentation —
QEMU documentation. https://www.qemu.org/docs/master/syste

m/qemu-manpage.html. [Online; accessed 02-June-2023].
[69] Verma, V., 2014. Using the block translation table for sector atomicity.

https://pmem.io/blog/2014/09/using-the-block-translation-table

-for-sector-atomicity/. [Online; accessed 02-June-2023].
[70] VMware Inc., . Intel optane DC persistent memory “memory mode”

virtualized performance study. https://www.vmware.com/content/d

am/digitalmarketing/vmware/en/pdf/techpaper/performance/IntelOpt

aneDC-PMEM-memory-mode-perf.pdf. [Online; accessed 09-Dec-2023].
[71] Wang, C., Wong, W.F., 2016. TreeFTL: An efficient workload-

adaptive algorithm for RAM buffer management of NAND flash-
based devices. IEEE Transactions on Computers 65, 2618–2630. doi:
10.1109/TC.2015.2485221.

[72] Wang, J., Huang, R., Huang, K., Chen, Y., 2023a. A server bypass
architecture for hopscotch hashing key–value store on DRAM-NVM
memories. Journal of Systems Architecture 134, 102777. URL:

https://www.sciencedirect.com/science/article/pii/S13837621220

02624, doi: https://doi.org/10.1016/j.sysarc.2022.102777.
[73] Wang, T., Liu, D., Wang, Y., Shao, Z., 2013. FTL2: A hybrid flash

translation layer with logging for write reduction in flash memory,
in: Proceedings of the 14th ACM SIGPLAN/SIGBED Conference on
Languages, Compilers and Tools for Embedded Systems, Association
for Computing Machinery, New York, NY, USA. p. 91–100. URL:
https://doi.org/10.1145/2491899.2465563, doi: 10.1145/2491899.24

65563.
[74] Wang, Y., Qin, Z., Chen, R., Shao, Z., Yang, L.T., 2016. An adaptive

demand-based caching mechanism for NAND flash memory storage
systems. ACM Trans. Des. Autom. Electron. Syst. 22. URL:
https://doi.org/10.1145/2947658, doi: 10.1145/2947658.

[75] Wang, Z., Taram, M., Moghimi, D., Swanson, S., Tullsen, D., Zhao,
J., 2023b. NVLeak: Off-Chip Side-Channel attacks via Non-Volatile
memory systems, in: 32nd USENIX Security Symposium (USENIX
Security 23), USENIX Association, Anaheim, CA. pp. 6771–6788.
URL: https://www.usenix.org/conference/usenixsecurity23/prese

ntation/wang-zixuan.
[76] Won, Y., Jung, J., Choi, G., Oh, J., Son, S., Hwang, J., Cho, S.,

2018. Barrier-Enabled IO stack for flash storage, in: 16th USENIX
Conference on File and Storage Technologies (FAST 18), USENIX

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 20 of 21

https://man7.org/linux/man-pages/man2/fsync.2.html
https://man7.org/linux/man-pages/man2/fsync.2.html
http://dx.doi.org/10.1109/TCAD.2014.2341922
https://www.usenix.org/conference/usenixsecurity23/presentation/liu-sihang
https://www.usenix.org/conference/usenixsecurity23/presentation/liu-sihang
https://doi.org/10.14778/3389133.3389134
http://dx.doi.org/10.14778/3389133.3389134
http://dx.doi.org/10.14778/3389133.3389134
https://doi.org/10.1145/2512961
https://doi.org/10.1145/2512961
http://dx.doi.org/10.1145/2512961
https://core.vmware.com/blog/understanding-persistent-memory-pmem-vsphere
https://core.vmware.com/blog/understanding-persistent-memory-pmem-vsphere
https://www.usenix.org/conference/atc17/technical-sessions/presentation/park
https://www.usenix.org/conference/atc17/technical-sessions/presentation/park
https://doi.org/10.1145/3461648.3463843
https://doi.org/10.1145/3461648.3463843
http://dx.doi.org/10.1145/3461648.3463843
http://dx.doi.org/10.1145/1669112.1669117
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
http://dx.doi.org/10.1109/HPCA51647.2021.00033
https://doi.org/10.1145/3203410
http://dx.doi.org/10.1145/3203410
http://dx.doi.org/10.1145/3203410
http://dx.doi.org/10.1109/MSST.2010.5496995
http://dx.doi.org/10.23919/DATE54114.2022.9774776
http://dx.doi.org/10.23919/DATE54114.2022.9774776
http://os-book.com/OS10/index.html
http://os-book.com/OS10/index.html
http://dx.doi.org/10.1109/TCAD.2022.3208769
http://dx.doi.org/10.1109/TPDS.2021.3052028
https://www.sciencedirect.com/science/article/pii/S1383762123000759
https://www.sciencedirect.com/science/article/pii/S1383762123000759
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2023.102896
https://www.sciencedirect.com/science/article/pii/S1383762123001091
https://www.sciencedirect.com/science/article/pii/S1383762123001091
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2023.102930
https://docs.kernel.org/block/writeback_cache_control.html
https://docs.kernel.org/block/writeback_cache_control.html
https://www.kernel.org/doc/html/latest/driver-api/nvdimm/btt.html. [Online; accessed 02-June-2023]
https://www.kernel.org/doc/html/latest/driver-api/nvdimm/btt.html. [Online; accessed 02-June-2023]
https://docs.kernel.org/admin-guide/ext4.html
https://www.qemu.org/docs/master/system/qemu-manpage.html
https://www.qemu.org/docs/master/system/qemu-manpage.html
https://pmem.io/blog/2014/09/using-the-block-translation-table-for-sector-atomicity/
https://pmem.io/blog/2014/09/using-the-block-translation-table-for-sector-atomicity/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/IntelOptaneDC-PMEM-memory-mode-perf.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/IntelOptaneDC-PMEM-memory-mode-perf.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/IntelOptaneDC-PMEM-memory-mode-perf.pdf
http://dx.doi.org/10.1109/TC.2015.2485221
http://dx.doi.org/10.1109/TC.2015.2485221
https://www.sciencedirect.com/science/article/pii/S1383762122002624
https://www.sciencedirect.com/science/article/pii/S1383762122002624
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2022.102777
https://doi.org/10.1145/2491899.2465563
https://doi.org/10.1145/2491899.2465563
http://dx.doi.org/10.1145/2491899.2465563
http://dx.doi.org/10.1145/2491899.2465563
https://doi.org/10.1145/2947658
https://doi.org/10.1145/2947658
http://dx.doi.org/10.1145/2947658
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-zixuan
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-zixuan

I/O Transit Caching for PMem-based Block Device

Association. pp. 211–226.
[77] Woo, H., Han, D., Ha, S., Noh, S.H., Nam, B., 2023. On stacking

a persistent memory file system on legacy file systems, in: 21st
USENIX Conference on File and Storage Technologies (FAST 23),
USENIX Association, Santa Clara, CA. pp. 281–296. URL: https:

//www.usenix.org/conference/fast23/presentation/woo.
[78] Wu, C., Li, Q., Ji, C., Kuo, T.W., Xue, C.J., 2020a. Boosting user

experience via foreground-aware cache management in UFS mobile
devices. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems 39, 3263–3275. doi: 10.1109/TCAD.2020.30

13078.
[79] Wu, F., Yang, M.H., Zhang, B., Du, D.H., 2020b. AC-Key: Adaptive

caching for LSM-based key-value stores, in: 2020 USENIX Annual
Technical Conference (USENIX ATC 20), USENIX Association. pp.
603–615. URL: https://www.usenix.org/conference/atc20/presen

tation/wu-fenggang.
[80] Xu, J., Swanson, S., 2016. NOVA: A log-structured file system

for hybrid Volatile/Non-volatile main memories, in: 14th USENIX
Conference on File and Storage Technologies (FAST 16), USENIX
Association. pp. 323–338.

[81] Yang, C., Yu, Z., Zhang, R., Nie, S., Li, H., Chen, X., Long, L., Liu,
D., 2022. Efficient persistent memory file systems using virtual su-
perpages with multi-level allocator. Journal of Systems Architecture
130, 102629. URL: https://www.sciencedirect.com/science/articl

e/pii/S1383762122001552, doi: https://doi.org/10.1016/j.sysarc.2

022.102629.
[82] Yang, J., Kim, J., Hoseinzadeh, M., Izraelevitz, J., Swanson, S.,

2020. An empirical guide to the behavior and use of scalable
persistent memory, in: 18th USENIX Conference on File and Storage
Technologies (FAST 20), USENIX. pp. 169–182.

[83] Zhan, J., Zhang, Y., Jiang, W., Yang, J., Li, L., Li, Y., 2018.
Energy-aware page replacement and consistency guarantee for hybrid
NVM–DRAM memory systems. Journal of Systems Architecture 89,
60–72. URL: https://www.sciencedirect.com/science/article/pii/

S1383762118300596, doi: https://doi.org/10.1016/j.sysarc.2018.07

.004.
[84] Zhong, Y., Li, H., Wu, Y.J., Zarkadas, I., Tao, J., Mesterhazy, E.,

Makris, M., Yang, J., Tai, A., Stutsman, R., Cidon, A., 2022. XRP: In-
Kernel storage functions with eBPF, in: 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), USENIX
Association, Carlsbad, CA. pp. 375–393. URL: https://www.usenix

.org/conference/osdi22/presentation/zhong.
[85] Zou, X., Wang, F., Feng, D., Zhu, J., Xiao, R., Su, N., 2022. A

write-optimal and concurrent persistent dynamic hashing with radix
tree assistance. Journal of Systems Architecture 125, 102462. URL:

https://www.sciencedirect.com/science/article/pii/S13837621220

00522, doi: https://doi.org/10.1016/j.sysarc.2022.102462.

Qing Xu received her B.Eng. degree
in software engineering from Hunan
Normal University in 2021. She is
currently a Master’s student majoring
in computer science in ShanghaiTech
University. Her research interests in-
clude file systems, data storage, and
persistent memory.

Qisheng Jiang obtained his B.Eng.
degree in software engineering from
Tongji University in 2021. He is cur-
rently a Master’s student majoring
in computer science in ShanghaiTech
University. Qisheng’s research inter-
ests include systems for AI, persistent
memory, and key-value store.

Chundong Wang received the Bach-
elor’s degree in computer science and
technology from Xi’an Jiaotong Uni-
versity in 2008, and the Ph.D. degree
in computer science from National
University of Singapore in 2013. Cur-
rently he works in ShanghaiTech Uni-
versity as a tenure-track assistant

professor. Before joining ShanghaiTech, he successively
worked in Data Storage Institute, A⋆STAR, Singapore and
Singapore University of Technology and Design (SUTD).
He has published more than forty research papers in IEEE
TC, IEEE TDSC, ACM TOS, ACM TECS, SC, DAC,
USENIX Security, USENIX ATC, USENIX FAST, etc.
His research interests include data storage and computer
architecture.

Qing Xu, Qisheng Jiang, Chundong Wang: Research Paper Accepted by Journal of Systems Architecture Page 21 of 21

https://www.usenix.org/conference/fast23/presentation/woo
https://www.usenix.org/conference/fast23/presentation/woo
http://dx.doi.org/10.1109/TCAD.2020.3013078
http://dx.doi.org/10.1109/TCAD.2020.3013078
https://www.usenix.org/conference/atc20/presentation/wu-fenggang
https://www.usenix.org/conference/atc20/presentation/wu-fenggang
https://www.sciencedirect.com/science/article/pii/S1383762122001552
https://www.sciencedirect.com/science/article/pii/S1383762122001552
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2022.102629
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2022.102629
https://www.sciencedirect.com/science/article/pii/S1383762118300596
https://www.sciencedirect.com/science/article/pii/S1383762118300596
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2018.07.004
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2018.07.004
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.sciencedirect.com/science/article/pii/S1383762122000522
https://www.sciencedirect.com/science/article/pii/S1383762122000522
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2022.102462

