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Abstract

We develop a functional derivative approach to calculate the chemical potentials of

the second-order perturbation theory (MP2). In the functional derivative approach,

the correlation part of the MP2 chemical potential, which is the derivative of the

MP2 correlation energy with respect to the occupation number of frontier orbitals, is

obtained from the chain rule via the non-interacting Green’s function. First, the MP2

correlation energy is expressed in terms of the non-interacting Green’s function and its

functional derivative to the non-interacting Green’s function is the second-order self-

energy. Then the derivative of the non-interacting Green’s function to the occupation

number is obtained by including the orbital relaxation effect. We show that the MP2

chemical potentials obtained from the functional derivative approach agrees with that

obtained from the finite difference approach. The one-electron Hamiltonian, defined

as the derivative of the MP2 energy with respect to the one particle density matrix,

is also derived using the functional derivative approach, which can be used in the self-

consistent calculations of MP2 and double-hybrid density functionals. The developed

functional derivative approach is promising for calculating the chemical potentials and

the one-electron Hamiltonian of approximate functionals and many-body perturbation

approaches dependent explicitly on the non-interacting Green’s function.

Introduction

The chemical potential, defined as the derivative of total energy E with respect to N , the

total number of electrons at the fixed external potential, is one of the most important con-

cepts for studying fundamental electronic properties in molecules and materials, such as

the electron transfer and the chemical reactivity.1 The chemical potentials of the electron

removal and addition process are equal to the negative of the ionization potential (IP) and

the electron affinity (EA), based on the exact E(N) linear condition.2,3 Although these

quantities can be measured by photoemission and inverse photoemission spectroscopy, the
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computational study can provide insights for understanding electronic structures from basic

principles. In past decades, much efforts have been devoted to develop quantum chem-

istry approaches to predict the chemical potentials. Kohn-Sham density functional theory1,4

(KS-DFT), as the most popular approach in modern quantum chemistry, has been widely

used for molecular and periodic systems.5–7 In the (generalized) KS-DFT formalism, or-

bital energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO) energy have been shown to be rigorously the chemical potentials

for electron removal and electron addition for exchange-correlation energy functionals that

are continuous in the KS density matrix.8 In such cases, which include all commonly used

exchange-correlation energy functional approximations such as GGA, meta GGA, hybrid,

and perturbation-theory based approximation, the HOMO and LUMO energies are well jus-

tified to approximate the negative of the IP and the EA, because the chemical potentials of

the exact functional are the negative of the IP and the EA based on the linearity condition

for fractional electron numbers.2,8 For the exact functional, it has been shown to be dis-

continuous for strongly correlated systems.9 Therefore, for strongly correlated systems, the

chemical potentials are equal to the HOMO and LUMO orbital energies plus the disconti-

nuity contributions. However, DFT has an undesired dependence on the density functional

approximations (DFAs) and its accuracy is affected by the intrinsic delocalization error.10,11

Alternatively, the Green’s function formalisms such as GW 12–15 and T-matrix16–18 approx-

imation can be applied for reliable predictions of the chemical potential. In the Green’s

function formalism, the IP and the EA are predicted by the quasiparticle energy that di-

rectly measures the charged excitation energy. It has been shown that Green’s function

approaches substantially improve the accuracy of predicting energy levels over the KS-DFT

approach for both occupied and unoccupied states, which are the key quantities to calculate

IPs, EAs and core-level binding energies.16,17,19–25,25–33

The second-order perturbation theory34,35 (MP2) has been a long standing method in

the quantum chemistry community. MP2 has been widely employed for predicting many
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energetic and geometric properties including the electron density, the geometry and the en-

ergy barrier for both molecular and periodic systems.36–40 The success of MP2 stems from

the improvement over the Hartree-Fock (HF) method and the favorable computational cost

compared with coupled cluster methods. In addition, the MP2 density matrix is broadly

used to generate natural orbitals for the quantum embedding theory.41,42 However, it is well-

known that MP2 fails to describe open-shell systems and transition-metal complexes.43–45 To

address this issue, various methods based on conventional MP2 including spin-component-

scaled MP243,46,47 (SCS-MP2), orbital optimized MP245,48–50 (OO-MP2) and regularized

MP251,52 have been developed. The form of the MP2 correlation energy has also been ap-

plied in DFT as an approximation to the Görling-Levy second-order perturbation correlation

energy,53 which leads to the double-hybrid functional. In the double-hybrid functional cal-

culations, in addition to the hybridization of the HF exchange, the MP2 correlation energy

evaluated with KS orbitals is mixed as a certain portion of the correlation energy.54–56 A large

number of double-hybrid functionals have been developed in past decades, which significantly

outperform conventional DFAs for predicting a broad range of properties including geome-

tries, dissociation energies, thermochemistry and thermochemical kinetics.57–77 Recently the

Møller-Plesset adiabatic connection (MP-AC) approach that recovers MP2 at small coupling

strengths and the correct large-coupling strength expansion has been shown to describe the

noncovalent interaction well.78,79 To calculate the chemical potential, the ∆MP2 approach,

which calculates the IP and the EA by the total energy difference at integer electron num-

bers, has been used.80–86 Similar to ∆MP2, IPs and EAs can be obtained from the total

energy difference of double-hybrid functional calculations at integer electron numbers, which

are shown to provide improved accuracy over HF and conventional DFAs.87 MP2 has also

been applied in the Green’s function formalism. The second-order Green’s function the-

ory (GF2), which corrects the HF orbital energy by the second-order self-energy, has also

been applied to predict accurate IPs and EAs HF.88 Recently, the equation-of-motion MP2

(EOM-MP2) approach has also been developed to calculate IPs and EAs of molecules and
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solids.89,90 However, IPs and EAs obtained from these approaches are not the rigorous MP2

chemical potential, which is the derivative of the MP2 energy with respect to the particle

number.

The extension of MP2 to fractional charge and fraction spin systems has been estab-

lished by Yang et. al,91 which allows to obtain the rigorous MP2 chemical potential. As

shown in Ref. 91, MP2, random phase approximation88,92 (RPA), particle-particle random

phase approximation93,94 (ppRPA) and a large class many-body perturbation approaches

can be expressed as functionals of the non-interacting Green’s function. The fractional for-

mulation of the MP2 correlation energy is achieved by using the ensemble average of the

non-interacting Green’s function, which is constructed with occupation-scaled orbitals.91 In

fractional MP2 calculations, the fractional charge self-consistent HF calculation is performed

first, then the MP2 correlation energy is evaluated with the HF orbitals obtained for the frac-

tional charge system.8 With the MP2 correlation energies of the integer and the fractional

system, the MP2 chemical potential can be obtained by the finite difference approach, which

differentiates the MP2 energy expression with respect to the frontier occupation number

with the finite difference. It shows that using the MP2 chemical potential provides better

agreements with experiment IP and EA results compared with using HF orbital energy.95

By using the fractional formulation of MP2, the analytical approach to calculate the MP2

chemical potential was developed in Ref 96. In the analytical approach, the derivative of the

MP2 correlation energy to the occupation number is evaluated explicitly, where the orbital

relaxation effect is included by solving the coupled-perturbed HF97–99 (CP-HF) equation. It

shows that chemical potentials obtained from the analytical approach agree well with those

obtained from the finite difference approach.96 Then the analytical approach was further

applied to calculate the chemical potential of double-hybrid functionals, which shows that

the chemical potential of double-hybrid functionals provides smaller errors for predicting IPs

and EAs compared with HF and conventional DFAs.87 The analytical approach only needs

the system with an integer electron number and thus avoids systems with fractional charge.
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However, the analytical approach for MP2 can not be easily extended to other many-body

perturbation approaches relying on the non-interacting Green’s function.

In the present work, we introduce a functional derivative approach to calculate the MP2

chemical potential. As shown in Ref 91, the MP2 correlation energy can be expressed as

the integration of the non-interacting Green’s function and the second-order self-energy on

the real frequency axis, which allows us to calculate the MP2 chemical potential with the

chain rule via the non-interacting Green’s function. In the functional derivative approach,

we first take the functional derivative of the MP2 correlation energy with respect to the non-

interacting Green’s function, which gives the second-order self-energy. Then the derivative of

the non-interacting Green’s function with respect to the occupation number is obtained by

solving the CP-HF equation. We show that the MP2 chemical potentials obtained from the

functional derivative approach agree with those obtained from the finite difference approach.

As shown in Section.2 in the Supporting Information, for MP2 the functional derivative

approach is equivalent to the analytical approach in Ref 96. However, the functional deriva-

tive approach developed in this work can be easily applied to approximate functionals and

many-body perturbation approaches relying on the non-interacting Green’s function, such

as RPA and ppRPA. Previously, the self-consistent calculation of perturbation theory based

functionals has been performed with the optimized effective potential (OEP) method.100,101

In this work, we derive the MP2 Hamiltonian using the functional derivative approach, which

can be used in the self-consistent calculations of MP2 and double-hybrid functionals in the

generalized KS framework, with a nonlocal one-electron effective potential.

Methods

The traditional MP2 correlation energy35,102 has been extended to include fractional electrons

as91,95

EMP2
c =

1

4

∑
pqrs

npnq(1− nr)(1− ns)
⟨pq||rs⟩⟨rs||pq⟩
ϵp + ϵq − ϵr − ϵs

(1)
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where n is the occupation number, ϵ is the orbital energy and the two-electron integral is

defined as ⟨pq||rs⟩ = ⟨pq|rs⟩−⟨pq|sr⟩ with ⟨pq|rs⟩ =
∫
dxdx′ ψp(x)ψr(x)ψq(x′)ψs(x′)

|r−r′| . We use i, j,

k, l for occupied orbitals, a, b, c, d for virtual orbitals and p, q, r, s for general orbitals. Eq.1

is initially used as the finite-temperature extension of MP2 with the fractional occupations

from finite temperature excitations103 and then is derived for fractional systems at zero

temperature in Ref. 91.

As shown in Ref 91, the MP2 correlation energy can be expressed as the integration of

the non-interacting Green’s function and the second-order self-energy on the real frequency

axis

EMP2
c =

1

4

∫ ∞

−∞

dω

2πi
eiωη

∫ ∞

−∞

dω1

2πi

∫ ∞

−∞

dω2

2πi∑
pq,rst,uvw

⟨pr||st⟩⟨uv||qw⟩G0
su(ω1)G

0
tv(ω2)G

0
wr(ω1 + ω2 − ω)G0

qp(ω)

=
1

4

∫ ∞

−∞

dω

2πi
eiωηTr{Σ(2)(ω)G0(ω)}

(2)

where ω is the frequency and η is a positive infinitesimal number. In Eq 2 the fractional

extension of the non-interaction Green’s function G0 in the real space is defined as91

G0(x1, x2, ω) =
∑
i

niψi(x1)ψ
∗
i (x2)

ω − ϵi − iη
+
∑
a

(1− na)ψa(x1)ψ
∗
a(x2)

ω − ϵa + iη
(3)

Note that the fractional orbital is considered as both the occupied orbital and the virtual

orbital. Thus, the fractional orbitals enters into both occupied and virtual sets in Eq.3.

The second-order self-energy in Eq 2 is defined as88,91,104

Σ(2)
pq (ω) =

∑
rst

⟨pt||rs⟩⟨rs||qt⟩
{

(1− nr)(1− ns)nt
ω − ϵr − ϵs + ϵt + iη

+
nrns(1− nt)

ω − ϵr − ϵs + ϵt − iη

}
(4)
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which can be separated into two parts:

Σ+(2)
pq (ω) =

∑
rst

⟨pt||rs⟩⟨rs||qt⟩ (1− nr)(1− ns)nt
ω − ϵr − ϵs + ϵt + iη

(5)

and

Σ−(2)
pq (ω) =

∑
rst

⟨pt||rs⟩⟨rs||qt⟩ nrns(1− nt)

ω − ϵr − ϵs + ϵt − iη
(6)

As shown in Eq 5 and Eq 6, Σ+(2) has poles below the real frequency axis and Σ−(2) has

poles above the real frequency axis. The second-order self-energy in Eq 4 is used in GF2

to calculate dissociation energies, band structures and other properties of molecular and

periodic systems.88,105–109

With Eq 2, the derivative of the MP2 correlation energy to the occupation number can

be obtained from the chain rule via the non-interacting Green’s function

dEMP2
c

dnp
=

∫ ∞

−∞
dω

δEMP2
c

δG0(ω)

dG0(ω)

dnp
(7)

As shown in Eq 2, the functional derivative of the MP2 correlation energy to the non-

interaction Green’s function in Eq 7 is simply the second-order self-energy

δEMP2
c

δG0
pq(ω)

=
1

2πi
Σ(2)
pq (ω) (8)

Then with Eq 3, the derivative of the non-interacting Green’s function with respect to

the occupation number consists of three parts

dG0(ω)

dnp
=
∂G0(ω)

∂np
+
∑
q

∂G0(ω)

∂ϵq

dϵq
dnp

+

{∑
q

∂G0(ω)

∂ψq

dψq
dnp

+ c.c

}
(9)

where the derivative of the orbital energy to the occupation number

dϵq
dnp

=
∂ϵq
∂np

+
∑
r

[
∂ϵq
∂ψr

dψr
dnp

+ c.c.

]
(10)
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and the derivative of the orbital to the occupation number

dψq
dnp

=
∑
r

ψrU
p
qr (11)

are solved from the CP-HF equation.97–99 In Eq 10 the partial derivative of the orbital energy

to the occupation number ∂ϵq
∂np

= ⟨qp||qp⟩ is also called the “higher-order term” in Ref. 82.

Then we evaluate three parts in Eq. 9 separately. The first part in Eq 9 is the explicit

dependence of the non-interacting Green’s function on the orbital occupation number

∂G0(x1, x2, ω)

∂np
= −

ψp(x1)ψ
∗
p(x2)

ω − ϵp + iη
+
ψp(x1)ψ

∗
p(x2)

ω − ϵp − iη
(12)

The second part in Eq 9 is the dependence of the non-interacting Green’s function on the

orbital energy

∂G0(x1, x2, ω)

∂ϵp
=

(1− np)ψp(x1)ψ
∗
p(x2)

(ω − ϵp + iη)2
+
npψp(x1)ψ

∗
p(x2)

(ω − ϵp − iη)2
(13)

The third part in Eq 9 is the dependence of the non-interacting Green’s function on the

orbital

∂G0(x1, x2, ω)

∂ψp(x3)
=
(1− np)δ(x1 − x3)ψ

∗
p(x2)

ω − ϵp + iη
+
npδ(x1 − x3)ψ

∗
p(x2)

ω − ϵp − iη
(14)

∂G0(x1, x2, ω)

∂ψ∗
p(x3)

=
(1− nq)ψp(x1)δ(x2 − x3)

ω − ϵp + iη
+
nqψp(x1)δ(x2 − x3)

ω − ϵp − iη
(15)

With Eq 12, Eq 13 and Eq 14, the integral in Eq 7 can be performed on the complex

plane by using the residue theorem with the contour closing either on the upper half or the

lower half plane. Then the resulting derivative of the MP2 correlation energy with respect

to the occupation number consists of the following three parts.
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Using Eq 12, the first part is

I = Σ(2)
pp (ϵp) = Σ+(2)

pp (ϵp) + Σ−(2)
pp (ϵp) (16)

which is simply the diagonal element of the second-order self-energy as shown in Ref. 91 and

Ref. 95.

Using Eq 13, the second part is

II =
∑
q

[
nq
dΣ

+(2)
qq (ω)

dω

∣∣∣∣
ω=ϵq

+ (1− nq)
dΣ

−(2)
qq (ω)

dω

∣∣∣∣
ω=ϵq

]
dϵq
dnp

(17)

where the diagonal element of the first-order derivative of the second-order self-energy to the

frequency is

dΣ
+(2)
pp (ω)

dω
= −

∑
rst

⟨pt||rs⟩⟨rs||pt⟩ (1− nr)(1− ns)nt
(ω − ϵr − ϵs + ϵt + iη)2

(18)

and

dΣ
−(2)
pp (ω)

dω
= −

∑
rst

⟨pt||rs⟩⟨rs||pt⟩ nrns(1− nt)

(ω − ϵr − ϵs + ϵt − iη)2
(19)

Using Eq 14, the third part is

III =
∑
q

[
nq⟨ψq|Σ+(2)(ϵq)|

dψq
dnp

⟩+ (1− nq)⟨ψq|Σ−(2)(ϵq)|
dψq
dnp

⟩+ c.c

]
=
∑
q

[
nq

∑
r

Σ+(2)
qr (ϵq)U

p
rq + (1− nq)Σ

−(2)
qr (ϵq)U

p
rq + c.c

] (20)

Combining the above three parts together leads to the full derivative of the MP2 corre-

lation energy to the occupation number

dEMP2
c

dnp
= I+ II+ III = Σ+(2)

pp (ϵp) +Σ−(2)
pp (ϵp) +

∑
q

nq
d

dnp
Σ+(2)
qq (ϵq)−

∑
q

(1−nq)
d

dnp
Σ−(2)
qq (ϵq)

(21)

Because the derivative of the HF total energy to the occupation number is the HF orbital

energy,8,95 the MP2 chemical potential, which is the derivative of the MP2 total energy to
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the occupation number, is given by

dEMP2

dnp
= ϵHF

p +
dEMP2

c

dnp
(22)

Eq 22 gives the IP when p is the HOMO index and the EA when p is the LUMO index.

The chain rule used for the MP2 correlation energy in Eq.7 can be generalized as

dEc

dnp
=

∫ ∞

−∞
dω

δEc

δG0(ω)

dG0(ω)

dnp
(23)

Because the derivative of the non-interacting Green’s function to the occupation number

in Eq 23 is not dependent on the correlation energy, it is possible to apply this functional

derivative approach to calculate the chemical potential of other approximate functionals and

many-body perturbation approaches relying on the non-interacting Green’s function.

Similar to Eq.7, the correlation part of the MP2 Hamiltonian can also be derived using

the functional derivative approach by taking the derivative of the non-interacting Green’s

function G0 to the density matrix ρ

HMP2
c =

δEMP2
c

δρ
=

∫ ∞

−∞
dω

δEMP2
c

δG0(ω)

δG0(ω)

δρ
(24)

As shown in Section.3 in the Supporting Information, the derivative of the non-interacting

Green’s function to the density matrix is

δG(x1, x2, ω)

δρ(x3, x4)

=g(x1, x5, ω + iη)fHxc(x5, x6, x4, x3)g(x6, x7, ω + iη)ρ̄s(x7, x2)

+ g(x1, x5, ω − iη)fHxc(x5, x6, x4, x3)g(x6, x7, ω − iη)ρs(x7, x2)

+ [−g(x1, x5, ω + iη) + g(x1, x5, ω − iη)]δ(x3, x5)δ(x2, x4)

(25)

where ρs is the density matrix, ρ̄s = I − ρs is the density matrix of the virtual space, fHxc is
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the Hartree-exchange-correlation (Hxc) kernel is defined as functional derivative of the Hxc

potential to the density matrix

fHxc
pq,rs =

δvHxc
pq

δρsr
(26)

and the function g(x1, x2, ω) is defined as

g(x1, x2, ω) =
∑
p

ψp(x1)ψ
∗
p(x2)

ω − ϵp
(27)

Then the resulting expression of the Hamiltonian is

[HMP2
c ]pq =

δEMP2
c

δρpq

=
1

2

∑
ijabr

⟨ji||ab⟩⟨ab||ri⟩
(ϵa + ϵb − ϵi − ϵr)(ϵa + ϵb − ϵi − ϵj)

fHxc
rj,qp

+
1

2

∑
ijabr

⟨ba||ij⟩⟨ij||ra⟩
(ϵi + ϵj − ϵa − ϵr)(ϵi + ϵj − ϵa − ϵb)

fHxc
rb,qp

+
1

2
[Σ(2)

pq (ϵq) + Σ(2)
pq (ϵp)]

(28)

In Eq.28, the last term that contains the second-order self-energy is dominant, which is

similar to the GF2 Hamiltonian with quasiparticle approximation. Similar to the MP2

correlation energy in Eq. 1 and the second-order self-energy in Eq. 4, the MP2 Hamiltonian

has a divergence issue for systems with a small or vanished band gap, where further studies

are needed in future works.

Computational Details

We implemented the functional derivative approach for MP2 chemical potential in QM4D

quantum chemistry package.110 In calculations of the correlation part of MP2 chemical po-

tentials obtained from the functional derivative approach and the finite difference approach,

the cc-pVTZ basis set111–113 was used for CH4, NH3 and H2O. The cc-pVQZ basis set111–113
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was used for the remaining atomic systems. Geometries of CH4, NH3 and H2O were taken

from the Ref. 114. In the finite difference approach, the difference of the electron number was

10−4. In the calculations of IPs and EAs of molecular systems, the cc-pVTZ basis set111–113

was used. Geometries and experiment values were taken from Ref. 19. The CCSD(T) results

calculated from GAUSSIAN16 A.03 software115 were also used as the reference. All other

calculations were performed with QM4D. QM4D uses Cartesian basis sets and the resolution

of identity86,116,117 (RI) technique to compute two-electron integrals in calculations for the

MP2 chemical potential. All basis sets and corresponding fitting basis sets were taken from

the Basis Set Exchange.118–120

Results

Validation of the functional derivative approach for the MP2 chem-

ical potential

We first examine the correlation part of the MP2 chemical potential obtained from the

functional derivative approach at different levels of approximations. The finite difference

approach and the finite difference approach with frozen orbitals were used as the reference.

In the finite difference approach with frozen orbitals, the MP2 correlation energy of fractional

charge systems was evaluated with HF orbitals of the corresponding integer electron system.

The finite difference of the electron number was set to 10−4 in two finite difference approaches.

The mean absolute errors (MAEs) of the derivative of the MP2 correlation energy to the

HOMO and the LUMO occupation number obtained from the functional derivative approach

at different levels of approximations compared with the results obtained from two finite

difference approaches are tabulated in Table 1 and Table 2. The first-level approximation

(I) only considers the explicit dependence of the MP2 correlation energy on the occupation

number, which is simply the diagonal element of the second-order self-energy as shown in
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Table 1: Mean absolute errors (MAEs) of the correlation part of the MP2 cor-
relation energy with respect to the HOMO occupation number obtained from
the functional derivative approach at different levels compared with the finite
difference approach and the finite difference approach with frozen orbitals. In
the finite difference approach with frozen orbitals, the MP2 correlation energy
of fractional charge systems was evaluated with HF orbitals of integer electron
systems. In finite difference approaches, the difference of the electron number
was 10−4. The cc-pVTZ basis set was used for CH4, NH3 and H2O. The cc-pVQZ
basis set was used for atomic systems. Geometries of CH4, NH3 and H2O were
taken from the Ref. 114. All values in eV.

finite diff finite diff (frozen) I I+II I+II+III

Be -0.27 -0.56 -0.56 -0.47 -0.27
B 0.50 0.22 0.22 0.19 0.50
C 0.83 0.60 0.60 0.58 0.83
N 1.25 1.07 1.08 1.05 1.25
O 1.26 1.17 1.17 1.17 1.26
F 2.11 2.12 2.13 2.07 2.11

CH4 1.09 0.79 0.79 0.77 1.09
NH3 1.93 1.62 1.63 1.56 1.93
H2O 2.73 2.57 2.58 2.46 2.73

MAE 0.27 0.26 0.29 0.00

Eq 16. It shows that the first-level approximation provides an MAE smaller than 0.2 eV for

the derivative to the HOMO occupation number and smaller than 0.1 eV for the derivative to

the LUMO occupation number, which agrees with the results in Ref 96. Because the orbital

relaxation effect is ignored in the first-level approximation, the results from the first-level

approximation and the finite difference approach with frozen orbitals are very close. At the

first-level approximation, the functional derivative approach underestimates the derivative

to the HOMO occupation number and overestimates the derivative to the LUMO occupation

number. The first-level approximation gives similar results to the orbital energies obtained

from diagonalizing the MP2 Hamiltonian defined in Eq.28. Then we examine the second-

level approximations (I+II) that further considers the dependence of the MP2 correlation

energy on the orbital energy. It shows that the second-level approximation provides similar or

slightly larger MAEs compared with the first-level approximation. As shown in Table 1, the
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Table 2: Mean absolute errors (MAEs) of the correlation part of the MP2 cor-
relation energy with respect to the LUMO occupation number obtained from
the functional derivative approach at different levels compared with the finite
difference approach and the finite difference approach with frozen orbitals. In
the finite difference approach with frozen orbitals, the MP2 correlation energy
of fractional charge systems was evaluated with HF orbitals of integer electron
systems. In finite difference approaches, the difference of the electron number
was 10−4. The cc-pVTZ basis set was used for CH4, NH3 and H2O. The cc-pVQZ
basis set was used for atomic systems. Geometries of CH4, NH3 and H2O were
taken from the Ref. 114. All values in eV.

finite diff finite diff (frozen) I I+II I+II+III

Be -0.42 -0.47 -0.48 -0.55 -0.42
B -0.96 -0.96 -0.96 -1.07 -0.96
C -1.67 -1.61 -1.61 -1.75 -1.66
N -2.03 -2.03 -2.00 -2.10 -2.03
O -3.19 -3.19 -3.05 -3.22 -3.19
F -4.53 -4.24 -4.25 -4.48 -4.53

CH4 -0.59 -0.58 -0.58 -0.64 -0.59
NH3 -0.65 -0.61 -0.62 -0.70 -0.65
H2O -0.60 -0.60 -0.55 -0.64 -0.60

MAE 0.07 0.07 0.06 0.00

second-level approximation further underestimates the derivative to the HOMO occupation

number by around 0.05 eV. And in Table 2, the second-level approximation gives values

that are more negative compared with the first-level approximation, which leads to similar

MAEs. The results of the second-level approximation in this work agree well with the results

that includes the dependence on the orbital energy in Ref 96. The accurate derivative to the

occupation number is obtained at the third-level approximation (I+II+III). In the third-level

approximation, the full derivative of the MP2 correlation energy to the occupation number

is obtained by further including the dependence on the orbital. The MAEs of the third-

level approximation for calculating the derivative to the HOMO and the LUMO occupation

number is 0.0 eV, which means the results obtained from the functional derivative approach

completely agree with the finite difference approach when the orbital relaxation effect is

taken into account.
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Therefore, we demonstrate that the functional derivative approach is capable of predicting

accurate chemical potentials of MP2, which has a simpler form than the analytical approach

in Ref 96. The equivalence between the functional derivative approach and the analytical

approach in Ref 96 for calculating MP2 chemical potentials is shown in Section.2 in the

Supporting Information.

IPs and EAs obtained from the MP2 chemical potentials

Table 3: Mean absolute errors (MAEs) of calculated ionization potentials (IPs)
of molecular systems obtained from HF, MP2, ∆HF, ∆MP2 and GF2. MP2
stands for the MP2 chemical potential obtained from the functional derivative
approach. CCSD(T) results obtained from GAUSSIAN16 A.03 software115 and
experiment values were used as the reference. Geometries and experiment values
were taken from Ref. 19. The cc-pVTZ basis set was used. All values in eV.

HF ∆HF MP2 ∆MP2 GF2 CCSD(T) exp

BeO 10.50 7.72 8.29 10.31 7.78 9.97 10.10
BN 11.15 9.78 13.33 11.70 12.04 11.98
Cl2 12.06 11.10 10.67 11.46 11.00 11.41 11.49
CS2 10.13 8.73 9.28 10.67 9.83 9.99 10.09
MgF2 15.28 13.45 11.93 14.12 11.61 13.68 13.30
F2 18.09 15.35 13.40 17.63 13.58 15.67 15.70
Li2 4.95 4.35 5.02 4.93 5.21 5.22 4.73

MgCl2 12.23 10.65 11.10 11.89 11.31 11.64 11.80
MgO 8.57 4.89 7.40 8.22 6.65 7.77 8.76
Na2 4.52 4.11 4.69 4.71 4.85 4.86 4.89
NaCl 9.57 7.97 8.44 9.14 8.59 9.01 9.80
P2 10.08 10.07 10.11 10.69 10.57 10.66 10.62
PN 12.02 10.08 11.58 13.14 12.04 11.80 11.88
SO2 13.39 11.39 10.79 13.66 11.33 12.21 12.50

MAE CCSD(T) 0.77 1.16 0.90 0.56 0.72
MAE exp 0.65 1.24 1.04 0.59 0.97 0.28

Then we examine the performance of using the MP2 chemical potential for predicting

IPs and EAs of molecular systems. The MAEs of calculated IPs and EAs obtained from

HF, MP2, ∆HF, ∆MP2 and GF2 compared with CCSD(T) results and experiment results

are shown in Table 3 and Table 4. MP2 means the MP2 chemical potential obtained from
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Table 4: Mean absolute errors (MAEs) of calculated electron affinities (EAs)
of molecular systems obtained from HF, MP2, ∆HF, ∆MP2 and GF2. MP2
stands for the MP2 chemical potential obtained from the functional derivative
approach. CCSD(T) results obtained from GAUSSIAN16 A.03 software115 were
used as the reference. MAEs of all systems and bound systems only are listed
separately. Geometries were taken from Ref. 19. The cc-pVTZ basis set was
used. All values in eV.

HF ∆HF MP2 ∆MP2 GF2 CCSD(T)

BeO 1.64 2.01 1.89 1.85 2.17 1.95
BN 2.65 4.26 5.07 2.94 3.92 2.77
Cl2 -1.14 -0.11 0.89 0.30 0.68 0.14
CS2 -1.43 -0.28 0.31 -0.71 0.36 -0.51
MgF2 -0.36 -0.28 -0.04 -0.05 -0.05 -0.05
F2 -2.55 -0.18 0.78 -0.44 -0.05 -0.66
Li2 -0.17 0.32 0.22 0.11 0.23 0.31

MgCl2 -0.43 -0.22 0.27 0.22 0.29 0.15
MgO 1.23 2.79 1.78 -0.08 1.25 1.36
Na2 -0.05 0.28 0.31 0.16 0.32 0.34
NaCl 0.47 0.53 0.57 0.57 0.59 0.55
P2 -0.65 0.00 0.53 -0.05 0.42 0.02
PN -1.33 -0.35 -0.14 -1.41 -0.28 -0.65
SO2 -0.47 0.55 0.77 0.05 0.58 0.14

MAE 0.60 0.38 0.55 0.26 0.36
MAE (bound) 0.47 0.41 0.49 0.25 0.31
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the functional derivative approach. In Table 4 of the EA results, MAEs of all systems and

bound systems only are shown separately. As shown in the literature,121,122 the prediction

of EAs highly depends on basis sets. To obtain fully converged EA results, augmented basis

sets and extrapolation schemes are needed.121,122 In this work, we focus on the comparison

between the functional derivative approach and the analytical approach. Thus, the cc-pVTZ

basis set was used.

For the prediction of IPs, using HF orbital energies provides a relatively small MAE of

0.77 eV for the small molecular systems in the test set. Because of the lack of correlation

effects, ∆HF is known to have a poor description for anion systems.96 Thus, ∆HF has a large

MAE of 1.16 eV. By including the correlation effects, ∆MP2 provides the smallest MAE of

0.56 eV. The MAE of GF2 for IPs is slightly larger than ∆MP2, which agrees with the results

in Ref 86. The IPs predicted by the MP2 chemical potential provides a relatively large MAE

of 0.90 eV, because of the deviations of MP2 from the linearity condition.123 As shown in

Ref 123, the accuracy of using the MP2 chemical potential can be improved by using the

two-point formula that averages the derivative to the HOMO occupation number of the N -

electron system and the derivative to the LUMO occupation number of the (N − 1)-electron

system.

For the prediction of EAs, using HF orbital energies provides the largest MAE of 0.60

eV for all systems and 0.47 eV for bound system. In addition, HF incorrectly predicts most

bound systems as unbound systems. ∆HF provides improvements over HF with smaller

MAEs around 0.4 eV. Similar to the prediction of IPs, ∆MP2 provides the smallest MAE

for predicting EAs and correctly describes bound systems except MgO and P2. Compared

with HF, using the MP2 chemical potential correctly describes bound systems. The EAs

obtained from the MP2 chemical potential have larger MAEs compared with ∆MP2, which

is similar to the IP results and can also be improved by using the two-point formula.123
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Conclusions

In summary, we developed a functional derivative approach to calculate the MP2 chemical

potential. By expressing the MP2 correlation energy as an integration of the non-interacting

Green’s function and the second-order self-energy on the real frequency axis, the MP2 chem-

ical potential is obtained from the chain rule via the non-interacting Green’s function. First,

the functional derivative of the MP2 correlation energy with respect to the non-interacting

Green’s function leads to the second-order self-energy. Then the derivative of the non-

interacting Green’s function with respect to the occupation number is obtained by including

the orbital relaxation effect. We showed that the MP2 chemical potential from the func-

tional derivative approach agrees with that from the finite difference approach. Then the

MP2 chemical potential obtained from the functional derivative approach was used to predict

IPs and EAs of molecular systems. It shows that MP2 chemical potentials outperform HF

orbital energies for predicting IPs and provides good estimations for EAs. The MP2 Hamil-

tonian was also derived using the functional derivative approach, which can be used in the

self-consistent calculations of MP2 and double-hybrid functionals. The developed functional

derivative approach for the MP2 chemical potential can be applied to calculate the chemi-

cal potential and the one-electron Hamiltonian of approximate functionals and many-body

perturbation approaches relying on the non-interacting Green’s function, which expands the

applicability of the Green’s function formalism.

SUPPORTING INFORMATION

Supporting Information Available: derivation of the functional derivative approach for the

MP2 chemical potential, equivalence of the analytical approach and the functional derivative

approach for the MP2 chemical potential, derivation of the MP2 Hamiltonian using the

functional derivative approach.
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(22) Vlček, V.; Li, W.; Baer, R.; Rabani, E.; Neuhauser, D. Swift GW beyond 10,000

Electrons Using Sparse Stochastic Compression. Phys. Rev. B 2018, 98, 075107.
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(76) Zhang, I. Y.; Su, N. Q.; Brémond, É. A. G.; Adamo, C.; Xu, X. Doubly Hybrid Density

Functional xDH-PBE0 from a Parameter-Free Global Hybrid Model PBE0. J. Chem.

Phys. 2012, 136, 174103.

(77) Sharkas, K.; Savin, A.; Jensen, H. J. A.; Toulouse, J. A Multiconfigurational Hybrid

Density-Functional Theory. J. Chem. Phys. 2012, 137, 044104.

(78) Daas, K. J.; Fabiano, E.; Della Sala, F.; Gori-Giorgi, P.; Vuckovic, S. Noncovalent

Interactions from Models for the Møller–Plesset Adiabatic Connection. J. Phys. Chem.

Lett. 2021, 12, 4867–4875.

28



(79) Daas, K. J.; Kooi, D. P.; Peters, N. C.; Fabiano, E.; Della Sala, F.; Gori-Giorgi, P.;

Vuckovic, S. Regularized and Opposite Spin-Scaled Functionals from Møller–Plesset

Adiabatic Connection-Higher Accuracy at Lower Cost. J. Phys. Chem. Lett. 2023,

14, 8448–8459.

(80) Chong, D. P.; Herring, F. G.; McWilliams, D. Perturbation Corrections to Koopmans’

Theorem. II. A Study of Basis Set Variation. J. Chem. Phys. 2003, 61, 958–962.

(81) Bacskay, G. B. The Calculation of Ionisation Potentials by Perturbation Theory Cou-

pled with Configuration Interaction. Chem. Phys. 1977, 26, 47–57.
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