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Nuclear magnetic shielding in helium-like ions
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Ab initio QED calculations of the nuclear magnetic shielding constant in helium-like ions are
presented. We combine the nonrelativistic QED approach based on an expansion in powers of the
fine-structure constant α and the so-called “all-order” QED approach which includes all orders in the
parameter Zα but uses a perturbation expansion in the parameter 1/Z (where Z is the nuclear charge
number). The combination of the two complementary methods makes our treatment applicable both
to low-Z and high-Z ions. Our calculations confirm the presence of a rare anti-screening effect for
the relativistic shielding correction and demonstrate the importance of the inclusion of the negative-
energy part of the Dirac spectrum.

I. INTRODUCTION

Magnetic moments of nuclei are often determined from
nuclear magnetic resonance (NMR) measurements. De-
spite high precision of these experiments, the accuracy of
the extracted nuclear moments is severely limited by the
restricted knowledge of the magnetic shielding caused by
the chemical surrounding. Such effects are difficult to
calculate reliably, which often led to significant deficien-
cies in the literature data on nuclear magnetic moments
[1, 2]. As an example, the so-called “bismuth hyperfine
puzzle” [3, 4] was recently resolved [5] and traced back to
an inaccuracy of the nuclear magnetic moment caused by
shortcomings in calculations of the shielding correction.

Much more accurate determinations of nuclear mag-
netic moments can nowadays be achieved by Penning-
trap measurements of the combined Zeeman and hyper-
fine structure of few-electron atoms or ions. The shield-
ing constants of such systems can be calculated ab initio

within the framework of QED, with a detailed analysis
of uncertainties due to omitted higher-order effects. Pre-
cise determinations of magnetic moments of a number of
light nuclei by this method were reported in the last years
[6–9]. In particular, the magnetic moment of the proton
was accurately measured by the Penning-trap technique
in Ref. [10]. This technique can in principle be extended
to measurements of other nuclei and closed-shell ions.

Highly sophisticated calculations of the nuclear shield-
ing have been recently accomplished for the helium atom
[11–13], motivated by perspectives of using the hyperpo-
larized helium NMR probes as a new standard for abso-
lute magnetometry [14–16]. The calculation of Ref. [11]
revealed a rare effect of ‘anti-screening’ for the relativis-
tic shielding correction, corresponding to the situation
when an effect for two correlated (1s)2 electrons is larger
than for two non-interacting 1s electrons. This defies the
physically intuitive picture in which each of the corre-
lated electrons should experience a slightly smaller nu-
clear charge because it is effectively screened by the sec-
ond electron, the effect commonly known as screening.
So far the presence of the anti-screening effect has not
been confirmed by an independent calculation.

The goal of the present study is to perform ab ini-

tio QED calculations of the nuclear magnetic shielding
of helium-like ions for a wide range of nuclear charges
Z. This will be achieved by merging together two com-
plementary methods, namely, the nonrelativistic QED
(NRQED) approach based on an expansion in powers
of the fine-structure constant α and the so-called “all-
order” QED approach which includes all orders in the
parameter Zα but uses a perturbation expansion in the
parameter 1/Z. The NRQED method alone is applicable
only to low-Z ions, since the uncalculated higher-order
effects scale with high powers of Z. By contrast, the
all-order method is effective in the high-Z region, since
the 1/Z expansion converges fast there. In this work we
unify these two methods, so that the resulting approach
becomes applicable for the whole range of Z. For the
first time such unified approach was applied by G. Drake
for calculating energies and transition rates of helium-like
ions in Refs. [17, 18].
The outline of our calculations is as follows. First, we

employ the NRQED approach to calculate the leading
shielding contribution of order α2 as well as the relativis-
tic, nuclear and QED corrections of order α4, α2m/M ,
and α5 lnα. Then we address the higher-order correc-
tions within the all-order method. We calculate the one-
electron shielding contribution, the one-photon exchange,
QED, and the nuclear magnetization distribution effects.
By analysing the Zα expansion of the individual correc-
tions, we identify the lowest-order contributions already
included into the NRQED treatment and remove them,
thus avoiding double counting and obtaining the final re-
sults for the shielding constant.

II. NRQED APPROACH

Within the NRQED approach, the shielding constant
σ of low-Z atoms is represented as a double expansion in
α and the electron-to-nucleus mass ratio m/M ,

σ = α2σ(2) + α4σ(4) + α2 m

M
σ(2,1) + α5σ(5) + . . . . (1)

As is customary in NRQED calculations, we will use the
atomic units in the following formulas in this Section.
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To the leading order in α and zeroth order in m/M , the
shielding constant σ takes the form [19]

σ(2) =
1

3

∑

a

〈 1

ra

〉
, (2)

where ra is the distance between the nucleus and a’th
electron and the summation runs over all electrons. The
relativistic shielding correction of order α4 was derived
in Ref. [11], with the result

σ(4) =
∑

a

〈
1

12 r3a

(~r · ~r1 ~r · ~r2
r3

− 3
~r1 · ~r2

r

)
− 1

6

( 1

ra
p2a +

(~ra × ~pa)
2

r3a
+ 4 π δ(~ra)

)〉

+
2

3

〈(
1

r1
+

1

r2

)
1

(E −H)′

[∑

a

(
π Z

2
δ(~ra)−

p4a
8

)
+ π δ(~r)− 1

2
pi1

(
δij

r
+

ri rj

r2

)
pj2

]〉

− 2

9

〈
π
[
δ(~r1)− δ(~r2)

] 1

(E −H)

[
3 p21 − 3 p22 −

Z

r1
+

Z

r2
− ~r · (~r1 + ~r2)

r3

]〉

− 1

6

〈(
~r1 × ~p1

r31
+

~r2 × ~p2
r32

)
1

(E −H)

[
~r1 × ~p1 p

2
1 + ~r2 × ~p2 p

2
2 +

1

r
~r1 × ~p2 +

1

r
~r2 × ~p1 − ~r1 × ~r2

~r

r3
· (~p1 + ~p2)

]〉

− 1

8

〈(
ri1 r

j
1

r51
− ri2 r

j
2

r52

)(2)
1

(E −H)

(
Z

ri1 r
j
1

r31
− Z

ri2 r
j
2

r32
+

ri

r3
(rj1 + rj2)

)(2)〉
, (3)

where ~r ≡ ~r1−~r2, (p
i qi)(2) = pi qj/2+pj qi/2−δij ~p·~q/3,

and 1/(E −H)′ is the reduced Green function (with the
reference state removed from the sum over the spectrum).
The leading-order nuclear recoil correction was derived

in Ref. [20] and later corrected in Ref. [13]. The result is

σ(2,1) ≡ 1− gN
gN

σ(2,1)
a + σ

(2,1)
b

=
1− gN
gN

〈p2N 〉
3Z

+
1

3

〈∑

a

1

ra

1

(E −H)′
p2N

〉

+
1

3

〈∑

a

~ra × ~pN
1

(E −H)

∑

b

~rb
r3b

× ~pb

〉
, (4)

where ~pN = −∑
a ~pa, gN = (M/mp)(µ/µN )/(ZI) is the

nuclear g-factor; M , I and µ are the nuclear mass, spin
and the magnetic moment, respectively; mp is the proton
mass and µN is the nuclear magneton.
The logarithmic part of the leading QED correction of

order α5 was derived in Ref. [11]. We write it as

σ
(5)
log = ln(Zα)

[
− 16Z

9

〈∑

a

1

ra

1

(E −H)′

∑

b

δ(~rb)
〉

+
28

9

〈∑

a

1

ra

1

(E −H)′
δ(~r)

〉
− 40

9

〈∑

a

δ(~ra)
〉]

.

(5)

This formula differs from the one from Ref. [11] by lnZ
in the second-order correction containing δ(~r). In obtain-
ing it, we took into account that the two-electron Lamb
shift contains, in addition to lnα, an implicit lnZ term
usually hidden in the Araki-Sucher term ∼ 〈r−3〉 [21].
The nonlogarithmic QED contribution of order α5 was
derived and calculated for helium in Ref. [12]. Its nu-
merical calculation is rather complicated as it involves

perturbations of the so-called Bethe logarithm. For this
reason, we will address this and higher-order QED cor-
rections within the 1/Z expansion in the next Section.
Numerical calculations of the NRQED corrections

summarized above were carried out with the basis set of
exponential functions e−αi r1−βi r2−γi r [22]. The method
of calculations was developed in our previous investiga-
tions, see Ref. [23] for a review. The most computation-
ally intense part was the calculation of σ(4). While the
evaluation of first-order matrix elements in Eq. (3) was
relatively straightforward, the computation of second-
order matrix elements turned out to be rather demand-
ing. To achieve a high numerical accuracy, we used care-
fully optimized basis sets for the intermediate electron
states. The optimization was carried out for symmet-
ric second-order corrections, using non-uniform distribu-
tions of nonlinear basis-set parameters (see Ref. [23] for
details), with a typical size of the basis set N = 1200.
The obtained basis sets were then used for computation
of non-symmetric second-order corrections in Eq. (3).
Results of our numerical calculations of σ(2), σ(2,1),

σ(4), and σ
(5)
log for Z ≤ 12 are presented in Table I. The

corresponding values for Z > 12 can be readily obtained
by using the 1/Z expansion, which is of the form

σ(2)

Z
=

∞∑

k=0

ck
Zk

, (6)

and similarly for other corrections. The leading coeffi-
cients c0 are known analytically from the hydrogen the-
ory, whereas the higher-order coefficients ck were ob-
tained by fitting our numerical results.
For the relativistic correction σ(4) we find a small devi-

ation from the helium result of Ref. [11]. The difference
comes from the second-order contribution with the 3D
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intermediate states, labeled as Q12 in Ref. [11]. The de-
viation is small and does not influence the final theoret-
ical prediction for the helium shielding constant within
its estimated error.

Our results summarized in Table I confirm the pre-
vious findings [11] of the presence of the unusual anti-
screening effect for σ(4). Indeed, the absolute values of
σ(4)/Z3 for all nuclear charges are larger than the cor-
responding limiting value for noninteracting electrons,
c0 = 97/54 ≈ 1.796. This is in contrast to all other cor-
rections examined in Table I, which exhibit the normal
screening effect. It is important to note that the first two
1/Z-expansion coefficients c0 and c1 of σ(4) are indepen-
dently cross-checked by our calculation of the one-photon
exchange correction in Sec. III, thus excluding a possibil-
ity of a technical mistake in the derivation of σ(4). The
probable explanation of the anti-screening effect is the
singlet-triplet mixing. Specifically, the relativistic effects
mix the ground 11S0 state with intermediate n3S states.
This mixing is quite large and changes the behaviour of
the relativistic correction in the case of helium-like atoms
as compared to the hydrogen-like case.

III. ALL-ORDER APPROACH

In order to access the higher-order effects ∼ α5+, we
will adopt the so-called all-order QED approach. This
method includes all orders in the parameter Zα but ex-
pands in the electron-electron interaction, with the ex-
pansion parameter 1/Z. In order to separate out the
higher-order contributions beyond what is already in-
cluded into the NRQED treatment in Sec. II, we will
examine the Zα expansion of the all-order results and
remove the double counting by subtracting the leading-
order contributions. The zeroth order in 1/Z is deliv-
ered by the independent-particle approximation, which
neglects the interaction between the electrons. Further
terms of the 1/Z expansion are described by Feynman
diagrams containing an exchange by one, two, etc. vir-
tual photons between the electrons. In this Section we
will use the relativistic units (~ = c = 1).

A. Electron-structure effects

We start with examining the so-called electron-
structure effects, which are induced by Feynman dia-
grams without radiative loops.

1. One-electron

In the independent-particle approximation, the rel-
ativistic shielding constant for the (1s)2 state of the

helium-like ion is, see Ref. [24] for details,

σrel,1el = α
∑

µa

∑

n6=a

1

εa − εn
〈a|Vg|n〉〈n|Vh|a〉 , (7)

where µa is the momentum projection of the 1s electron,
the sum over n runs over the complete spectrum of the
Dirac equation, and Vg and Vh are effective interactions
of a Dirac electron with the external magnetic field (Vg)
and with the magnetic dipole nuclear field (Vh),

Vg = (~r × ~α)z , and Vh =
(~r × ~α)z

r3
. (8)

For the point nuclear charge, Eq. (7) can be calculated
analytically [25–29], with the result

σrel,1el = 2
(
− 4αZα

9

)(
1

3
− 1

6(1 + γ)
+

2

γ
− 3

2γ − 1

)

= 2αZα

[
1

3
+

97

108
(Zα)2 +

289

216
(Zα)4

+
3269

1728
(Zα)6 + . . .

]
, (9)

where γ =
√
1− (Zα)2. For an extended nuclear charge

distribution, Eq. (7) can be readily calculated numeri-
cally with help of the dual-kinetic balance finite basis set
method [30].
The higher-order one-electron relativistic correction is

obtained from the above expression by subtracting the
first two terms of the Zα expansion,

σh.o.
rel,1el =σrel,1el − 2α(Zα)

[1
3
+

97

108
(Zα)2

]
. (10)

It should be noted that when performing the summa-
tion over the Dirac energy spectrum in Eq. (7), the in-
clusion of the negative-energy part of the spectrum is
mandatory, as its contribution is very large, especially
for low-Z ions. This is explained by the fact that the
nonrelativistic limit of the nuclear shielding constant in
atoms is induced solely by the negative-energy part of the
Dirac spectrum. So, for Z = 2, the negative-energy states
induce 99.9% of the total result. With the increase of
Z, the relative contribution of the negative-energy states
gradually diminishes but is still very significant, e.g., for
Z = 60 it is 37%. This is in sharp contrast to calcu-
lations of transition energies, where the negative-energy
contribution is suppressed by a factor of (Zα)3 compared
to the leading nonrelativistic result [31].

2. One-photon exchange

The one-photon exchange correction to the nuclear
magnetic shielding can be obtained as a perturbation of
the one-photon exchange correction to the energy by two
external interactions, Vg and Vh. For the ground state of
a helium-like ion, we obtain
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TABLE I: NRQED shielding corrections for different nuclear charges Z and their 1/Z-expansion coefficients ck.

Z σ(2)/Z σ(4)/Z3 σ
(5)
log/[Z

3 ln(Zα)] σ
(2,1)
a /Z σ

(2,1)
b /Z

2 0.562 772 266 9 2.321 754 4 −0.710 693 3 0.510 465 64 −0.597 289 84
0.562 772 266 8a 2.321 42a

3 0.597 316 533 2.070 397 4 −0.837 418 1 0.560 658 46 −0.619 929 38
4 0.614 625 068 1.979 393 5 −0.906 430 9 0.586 503 61 −0.631 434 60
5 0.625 021 856 1.933 018 3 −0.949 438 3 0.602 232 65 −0.638 394 84
6 0.631 957 258 1.905 101 6 −0.978 729 3 0.612 807 06 −0.643 058 72
7 0.636 912 900 1.886 523 9 −0.999 940 0 0.620 402 23 −0.646 401 72
8 0.640 630 484 1.873 300 7 −1.016 000 2 0.626 121 09 −0.648 915 36
9 0.643 522 387 1.863 423 1 −1.028 579 1 0.630 582 19 −0.650 874 23
10 0.645 836 163 1.855 771 1 −1.038 696 3 0.634 159 23 −0.652 443 72
11 0.647 729 404 1.849 672 8 −1.047 009 0 0.637 091 24 −0.653 729 45
12 0.649 307 201 1.844 700 8 −1.053 960 0 0.639 538 22 −0.654 801 99
c0 2/3 97/54 −32/9π 2/3 −2/3
c1 −5/24 0.514 442 6 0.947 740 −0.327 804 0.143 12
c2 0.000 000 0 0.770 0 −0.159 8 0.026 44 −0.008 9
c3 0.002 899 7 0.288 −0.104 0.008 6 0.000 3
c4 −0.000 592 0.40 0.003
c5 −0.001 04

a Ref. [11]

σrel,1ph = α
∑

P

(−1)P
[
〈PaPb|I|δhga b〉+ 〈PaPb|I|δgha b〉

+ 〈PaPb|I|δha δgb〉+ 〈δhPaPb|I|δga b〉+ 〈δhPaPb|I|a δgb〉

− 〈PaPb|I|ab〉〈 δha|δga〉 − 〈a|Vg |a〉 〈PaPb|I|δ̃ha b〉 − 〈a|Vh|a〉 〈PaPb|I|δ̃ga b〉
]
, (11)

where a and b denote the two electrons in the (1s)2 shell,
P is the permutation operator (PaPb = ab or ba), (−1)P

is the sign of the permutation, the perturbations of the
wave functions are defined by

|δia〉 =
εn 6=εa∑

n

|n〉〈n|Vi|a〉
εa − εn

, (12)

|δ̃ia〉 =
εn 6=εa∑

n

|n〉〈n|Vi|a〉
(εa − εn)2

, (13)

|δhga〉 =
εn1

6=εa∑

n1

εn2
6=εa∑

n2

|n1〉〈n1|Vh|n2〉〈n2|Vg |a〉
(εa − εn1

)(εa − εn2
)

, (14)

and |δgha〉 is obtained from the last equation by inter-
changing g and h. Furthermore, I ≡ I(r12) denotes
the electron-electron interaction operator in the Coulomb
gauge for the zero transferred energy,

I(r12) =
α

r12
− α

2 r12

[
~α1 · ~α2 +

(
~α1 · ~̂r12

)(
~α2 · ~̂r12

)]
,

(15)

where ~α are the Dirac matrices, ~r12 = ~r1 − ~r2, and ~̂r =
~r/r. We note that in obtaining Eq. (11) we took into
account that the two electrons in the (1s)2 shell have the
same energy, so that the frequency dependence of the
electron-electron interaction operator does not play any
role in this case.
We calculated Eq. (11) numerically with help of the B-

spline basis set method [32] for the point-charge nuclear
model and with the dual-kinetic-balance method [30] for
the extended-charge nuclear model. The typical basis
size used in the computation was N = 100 - 150. In
order to achieve a high numerical accuracy in the low-
Z region (required for a high-precision fitting of the d2
coefficient), we had to use the quadruple-precision (appr.
32 decimal digits) in our computation.
The results for the point nuclear model are listed in

Table II. In order to remove the double counting with
the NRQED results, we analyse the Zα-expansion of the
one-photon exchange correction, which is of the form

σrel,1ph = α2
∞∑

k=0

d2k (Zα)2k . (16)

The coefficients d2k obtained by fitting our numerical
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results are listed in Table II. The first coefficient d0 =
−5/24 corresponds to the 1/Z1 coefficient of expansion of
σ(2)/Z, see Table I. The second coefficient d2 corresponds
to the 1/Z1 coefficient of σ(4)/Z3, see Table I. Other co-
efficients represent contributions of order α6 and higher
which have not been accounted for in Sec. II.
The higher-order one-photon exchange contribution is

obtained as

σh.o.
rel,1ph =σrel,1ph − α2

[
d0 + d2 (Zα)2

]
, (17)

where d0 and d2 are listed in Table II.
Analysing contributions induced by the positive- and

negative-energy parts of the Dirac spectrum in the one-
photon exchange shielding correction, we observe that
similarly to the one-electron case, the contribution of the
negative-energy states is very significant. For Z = 2,
they contribute 99.9% of the total result, whereas for
Z = 60, the negative- and positive-energy contributions
are of the same magnitude and of the opposite sign. This
demonstrates the importance of the proper treatment of
the negative-energy part of the Dirac spectrum in calcu-
lations of the nuclear shielding. We note that a similar
dominance of the negative-energy contribution was re-
cently found for the M1 polarizability in strontium [33].

3. ≥ 2 photon exchange

The uncertainty due to two and more photon exchange
is estimated basing on the pattern of the available 1/Z-
expansion coefficients of the σ(4) correction. Specifically,

σh.o.
rel,2ph+ ≈ ±σh.o.

rel,1ph 2
c2
c1 Z

≈ ±σh.o.
rel,1ph

3

Z
, (18)

where 2 is the conservative factor.

B. QED effects

In the independent-particle approximation, the QED
contribution for the (1s)2 state is twice the 1s QED cor-
rection calculated for hydrogen-like ions to all orders in
Zα in Refs. [24, 34]. The analytical result for the leading
Zα-expansion term was obtained in Refs. [24, 34] and
later corrected in Ref. [12]. Separating out the leading-
order result, we represent the one-electron QED contri-
bution for the (1s)2 state of helium-like ions as

σQED,1el =2α2 (Zα)3
[
− 16

9π
ln(Zα)

− 1.896 642 389+GQED(Zα)
]
, (19)

where GQED(Zα) ≈ 2.182 (Zα) + O((Zα)2) is the re-
mainder function containing one-electron contributions
of higher orders in Zα. The logarithmic term in the
above formula corresponds to the 1/Z0 term of the ex-

pansion of σ
(5)
log , whereas the other terms have not been

TABLE II: One-photon exchange shielding correction
σrel,1ph for different nuclear charges and coefficients of

its Zα expansion, for the point nuclear model.

Z σrel,1ph/α
2

2 −0.208 223 677
3 −0.208 086 391
4 −0.207 893 786
6 −0.207 340 881
8 −0.206 560 303
10 −0.205 545 466
14 −0.202 776 655
18 −0.198 940 386
22 −0.193 905 594
28 −0.183 713 434
34 −0.169 616 681
40 −0.150 469 629
46 −0.124 653 329
52 −0.089 862 182
d0 −5/24
d2 0.514 442 6
d4 1.693 21
d6 2.469

included in the NRQED treatment of Sec. II. The remain-
der functionGQED(Zα) was calculated to all orders in Zα
in Refs. [24, 34]. In the present work, we use the data
obtained in those works and ascribe to it the relative un-
certainty of ±0.3 (Zα)2, to account for the uncalculated
diagrams with magnetic-loop vacuum-polarization.
So, the higher-order QED contribution beyond those

included in Sec. II is

σh.o.
QED,1el =2α2 (Zα)3

[
− 1.896 642 389+GQED(Zα)

]
.

(20)

In order to estimate the effects of the screening of the
one-electron QED correction by the second electron, we
introduce the screening factor ζscr basing on known re-

sults for the logarithmic QED contribution σ
(5)
log . Specif-

ically, we define

ζscr = −
σ
(5)
log/[Z

3 ln(Zα)]− c0

c0
, (21)

where c0 = −32/9π is the leading 1/Z-expansion coeffi-
cient, see Table I. Using this screening factor, we estimate
the QED screening contribution as

σh.o.
QED,1ph+ ≈ −ζscr σ

h.o.
QED,1el ± 30% . (22)

The above estimate of uncertainty is supported by the
complete NRQED calculation of σ(5) for helium [12].

C. Nuclear magnetization distribution

Within the independent-particle approximation, the
nuclear magnetization distribution correction for the
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(1s)2 state is twice the 1s hydrogen-like contribution, de-
rived to the leading order in Zα in Ref. [13]. Formulas
presented in Ref. [13] include both the finite nuclear size
(fns) and the nuclear magnetization distribution (Bohr-
Weisskopf, BW) effects. Removing the fns part, we get

σBW,1el =2
(
− 2α(Zα)3

3

)[
m2r2M + 4Zαm

(
rZ − 〈r〉

)]
,

(23)

where rM and rZ are the magnetic and the Zemach ra-
dius, respectively and 〈r〉 is the mean nuclear charge ra-
dius. Within the Gaussian model for the nuclear charge
distribution ρC(r) = ρ0 exp

[
−3 r2/(2r2C)

]
(and similar

to the magnetization distribution), we obtain

rZ =

√
8

3π

√
r2C + r2M , 〈r〉 =

√
8

3π
rC , (24)

where rC = 〈r2〉1/2 is the root-mean-square nuclear
charge radius.
For light nuclei with Z = 3 and 4, we use Eq. (23) with

the experimental values of the Zemach radii, rZ(
7Li) =

3.33 fm [35] and rZ(
9Be) = 4.04 fm [36]. For heavier

nuclei, the Zemach radius is not readily available from
experiment. For some nuclei, the 1s shielding BW cor-
rection was calculated in Ref. [24] within the effective
single-particle model of the nuclear magnetization dis-
tribution. However, this model is not universal and is
applicable for some selected nuclei only. In the present
work we will use Eq. (23) with the magnetic radius ex-

pressed in terms of the charge radius by rM =
√
3 rC for

nuclear charges Z < 80. We found that with this choice of
the magnetic radius, Eq. (23) qualitatively reproduces re-
sults of the single-particle model calculations of Ref. [24].
We estimate the uncertainty of this approximation of the
one-electron BW correction to be 50%, which can be
compared to the 30% uncertainty estimate of the single-
particle model results in Ref. [24]. For Z > 80, Eq. (23)
is no longer adequate. We thus apply the single-particle
nuclear model as described in Ref. [24] to compute the
BW correction for several high-Z ions, specifically, with
Z = 80, 83, and 91.
The effects of the electron-electron interaction on the

one-electron BW corrections are estimated analogously
to Eq. (22).

IV. RESULTS AND DISCUSSION

In this work we performed numerical calculations of
the nuclear shielding correction for the ground state of
helium-like ions for a wide range of nuclear charges.
The nuclear parameters were taken from Ref. [2] (mag-
netic moments), Ref. [37] (charge radii), and Ref. [38]
(masses). Individual shielding contributions for selected
ions are presented in Table III. We observe that for the
lightest ions, the dominant theoretical uncertainty comes
from the QED screening effect. This uncertainty can
be improved further by a calculation of the nonlogarith-
mic α5 QED correction, as accomplished for helium in
Ref. [12]. For heavier ions, the largest theoretical un-
certainty comes from the extended distribution of the
nuclear magnetic moment (the BW effect). This uncer-
tainty can in principle be improved by dedicated calcu-
lations of the BW correction for specific nuclei with a
microscopic nuclear model [39]. An even better way is
to use experimental values of the effective Zemach radius
r̃Z [35] obtained from the hyperfine-splitting measure-
ments. One can then use r̃Z instead of rZ in Eq. (23)
and compute rM from Eq. (24). An additional benefit
is that this automatically accounts for some higher-order
nuclear effects included into r̃Z .
Table IV lists our theoretical predictions of the nu-

clear shielding constant for helium-like ions. We do not
present results for neutral helium since more complete
calculations are available in this case [12, 13]. The abso-
lute accuracy of theoretical predictions for the shielding
constant σ varies from 2 × 10−10 for Z = 3 to 1 × 10−4

for Z = 91. This accuracy demonstrates the precision
possible for determination of nuclear magnetic moments
from helium-like ions.
Summarizing, we performed calculations of the nuclear

magnetic shielding for helium-like ions in the ground
state. By combining two complementary approaches,
we obtained results for a wide region of nuclear charges.
Our calculations confirmed the presence of a rare anti-
screening effect for the relativistic shielding correction.
They also demonstrated the importance of inclusion of
the negative-energy part of the Dirac spectrum in calcu-
lations of the nuclear shielding, especially for low-Z ions.
In future, the developed approach can be extended to
calculations of nuclear shielding in Li-like ions, which are
of immediate experimental interest [8, 9, 40].
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