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THE ASSOCIATED GRADED ALGEBRAS OF BRAUER GRAPH ALGEBRAS II:

INFINITE REPRESENTATION TYPE

JING GUO, YUMING LIU∗, AND YU YE

Abstract. Let G be a Brauer graph and A the associated Brauer graph algebra. Denote by gr(A) the graded
algebra associated with the radical filtration of A. The question when gr(A) is of finite representation type was
answered in [9]. In the present paper, we characterize when gr(A) is domestic in terms of the associated Brauer
graph G.

1. Introduction

This is a continuation of our study on the associated graded algebras of Brauer graph algebras in [9]. Since
the last paper has determined the finite representation type of this class of algebras, we focus in the present
paper on the infinite representation type of them. In particular, we will characterize the domestic associated
graded algebras of Brauer graph algebras.

Brauer graph algebras are finite dimensional algebras and originate in the modular representation theory of
finite groups. They are defined by combinatorial data based on graphs: underlying every Brauer graph algebra
is a finite graph with a cyclic orientation of the edges at every vertex and a multiplicity function. The class of
Brauer graph algebras coincides with the class of symmetric special biserial algebras. For the representation
theory of Brauer graph algebras, we refer the reader to the survey article [11].

The idea of associating a finite dimensional algebra A to a graded algebra (denoted by gr(A)) with the radical
filtration of A is not rare in representation theory (see for example, [3, 10]). For a finite dimensional algebra
A defined by quiver with relations, gr(A) often appears as a degeneration of A. The notion of degeneration
comes from the geometric representation theory of algebras. It is known that if Λ0 is a degeneration of some
algebra Λ1 and Λ0 is representation-finite (resp. tame), then Λ1 is also representation-finite (resp. tame) (see
[6, 7]). However, the representation type of Λ0 is usually more complicated than that of Λ1. In [9], we initiated
the study on comparing the representation theory of gr(A) and that of A in case that A is a Brauer graph
algebra. We have characterized all the algebras gr(A) which are of finite representation type and described the
relationship between the Auslander-Reiten quivers of gr(A) and A in this case.

A Brauer graph algebra A is a self-injective (even symmetric) special biserial algebra; the associated graded
algebra gr(A) is usually not self-injective. Nevertheless, gr(A) is still a special biserial algebra. Thus, both
A and gr(A) have tame representation type. To describe the tameness more precisely, one needs the notions
of domestic and polynomial growth. The relationship between these notions are: domestic =⇒ polynomial
growth =⇒ tame (cf. Section 2.1). Bocian and Skowroński have characterized when a Brauer graph algebra A
is domestic in [2]. In the present paper, we characterize when the associated graded algebra gr(A) is domestic.

To state our main result precisely, let us first introduce some notations.

Definition 1.1 (See [9, Definition 2.4]). Let G be a Brauer graph. For each vertex v, we denote by m(v)
the multiplicity of v and by val(v) the valency of v, with the convention that a loop is counted twice in val(v).
Moreover, if val(v) = 1, we denote by v′ the unique vertex adjacent to v. For each vertex v in G, we define the
graded degree grd(v) as follows.

grd(v) =

{

m(v)val(v), if m(v)val(v) > 1,

m(v′)val(v′), if m(v)val(v) = 1.

Definition 1.2 (Compare with [9, Definition 2.12]). Let G be a Brauer graph.
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(1) If u i v is an edge in G, we write the subgraph of G by removing the edge i as follows: G\i = Gi,u

⋃

Gi,v,
where Gi,u (resp. Gi,v) is the connected branch of G\ i containing the vertex u (resp. v). (Note that it may
happen that Gi,u = Gi,v.) Moreover, we denote the set of vertices in Gi,u (resp. Gi,v) by V (Gi,u) (resp.
V (Gi,v)).

(2) An unbalanced edge in G is defined to be an edge associated with two vertices with different graded degrees.

For any unbalanced edge vS
i vL with grd(vS) < grd(vL) in G, we write the subgraph of G by removing

the edge i as follows: G\i = Gi,L

⋃

Gi,S , where Gi,L (resp. Gi,S) is the connected branch of G\i containing
the vertex vL (resp. vS).

Definition 1.3 (See Section 3 for the details). Let G be a Brauer graph.

(1) A walk (for the notion of a walk in G, see Definition 3.1 below) v1 v2 · · · vk from v1 to vk
in a Brauer graph G is called degree decreasing if grd(v1) ≥ grd(v2) ≥ · · · ≥ grd(vk).

(2) Suppose that G is a Brauer tree with an exceptional vertex v0 of multiplicity m0.

(2.1) κ0 is defined to be the number of unbalanced edges vS
i vL in G such that the exceptional vertex v0

is a vertex in Gi,S .
(2.2) For any vertices u and v in G, dG(u, v) is defined to be the number of edges in the unique walk from

u to v.
(2.3) Given two unbalanced edges v

(i)
S

i v
(i)
L and v

(j)
S

j v
(j)
L in G, we call (i, j) an unbalanced edge pair

if j is an edge in Gi,S and dG(v
(j)
S , v

(i)
S ) + 1 = dG(v

(j)
L , v

(i)
S ). Let κ1 be the number of unbalanced edge

pairs in G.

With the notations above, we have the following main result. One interesting point in this result is that, as
in the finite representation type situation (see [9]), the graded degree function plays a key role in controlling
the domestic type of gr(A).

Theorem 1.4. (See Theorem 3.18) Let A be the Brauer graph algebra associated with a Brauer graph G =
(V (G), E(G)) and gr(A) the graded algebra associated with the radical filtration of A, where V (G) is the vertex
set and E(G) is the edge set. Then gr(A) is of polynomial growth if and ony if gr(A) is domestic.

Furthermore, we have

(I) gr(A) is 1-domestic if and only if one of the following holds:
(1) G is a Brauer tree with an exceptional vertex v0 of multiplicity m0 such that κ0(m0 − 1) + κ1 = 1.
(2) G is a tree and there exist two distinct vertices w0, w1, such that the following conditions hold:

(2.1) m(w0) = m(w1) = 2 and m(v) = 1 for v 6= w0, w1,
(2.2) grd(w0) = grd(w1),
(2.3) Any walk from w0 (or from w1) is degree decreasing.

(3) G is a graph with a unique cycle of odd length and m(v) = 1 for all v ∈ V (G), and satisfies the
following conditions:
(3.1) grd(u) = grd(v) for any two vertices u and v in the unique cycle,
(3.2) Any walk from any vertex in the unique cycle is degree decreasing.

(II) gr(A) is 2-domestic if and only if G satisfies the following conditions:
(1) G is a graph with a unique cycle of even length and m(v) = 1 for all v ∈ V (G),
(2) grd(u) = grd(v) for any two vertices u and v in the unique cycle,
(3) Any walk from any vertex in the unique cycle is degree decreasing.

(III) gr(A) is not n-domestic for n ≥ 3.

This paper is organized as follows. In Section 2, we recall various definitions and known facts needed in this
paper, including representation type of finite dimensional algebras, special biserial algebras and string algebras,
Brauer graph algebras and their associated graded algebras. In Section 3, we first introduce the notions of
⋆-condition and unbalanced edge pair and prove some preliminary results; then we state our main result and its
consequences. The proof of main result is based on careful analyses in different cases according to the shapes
of Brauer graphs; the detailed proofs and examples of three main cases are filled in Section 4-6 respectively.
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2. Preliminaries

Throughout this paper, we fix an algebraically closed field k. Unless otherwise stated, all algebras will be
finite dimensional k-algebras, and all their modules will be finite dimensional left modules. For a k-algebra A,
we denote by rad(A) the Jacobson radical of A. For an A-module M , we denote by soc(M) and rad(M) the
socle and the radical of M , respectively. The length of a module M is denoted by ℓ(M), it means the number
of composition factors in any composition series of M .

2.1. Representation type of finite dimensional algebras. We recall the various notions on representation
types of finite dimensional algebras and their relations from the textbook [12, Section XIX.3].

Let A be a finite dimensional k-algebra. We say that A is of finite representation type, if there are only finitely
many non-isomorphic indecomposable A-modules.

Let k[x] be the polynomial algebra in one variable over k. We say that A is of tame representation type, if for
any dimension d, there exists a finite number of A-k[x]-bimodules Qi, for 1 ≤ i ≤ nd, which are finitely generated
and free as right k[x]-modules such that all but a finite number of isomorphism classes of indecomposable A-
modules of dimension d are of the form Qi ⊗k[x] k[x]/(x− λ) for some λ ∈ k and some i. For each d, let µA(d)
be the least number of such A-k[x]-bimodules. We say that A is of polynomial growth type if there exists a
positive integer m such that µA(d) ≤ dm for all d ≥ 2; A is of finite growth type (or equivalently, domestic) if
µA(d) ≤ m for some positive integer m and for all d ≥ 1 and A is n-domestic (or n-parametric) if n is the least
such integer m.

Clearly every domestic algebra is of polynomial growth. In other words, if an algebra is not of polynomial
growth, then the algebra is nondomestic. For examples of nondomestic algebras of polynomial growth, we refer
the reader to [13].

It is well known that an algebra of infinite representation type that is not of tame representation type is of
wild representation type, however, our study does not involve the wild representation type.

2.2. Special biserial algebras and string algebras. These algebras are defined by quivers and relations.
For more details on these algebras, we refer to [1], [4], and [11].

For a quiver Q, we denote by Q0 and Q1 its vertex set and arrow set respectively. We write a path p in a
quiver from right to left and denote by s(p) and t(p) the start and the end of p, respectively. The length of a
path is defined in an obvious way. As usual, the trivial path at a vertex i is denoted by ei.

Definition 2.1. A finite dimensional k-algebra A is called special biserial if there is a quiver Q and an admissible
ideal I in kQ such that A is Morita equivalent to kQ/I and such that kQ/I satisfies the following conditions:
(1) At every vertex v in Q there are at most two arrows starting at v and there are at most two arrows ending
at v.
(2) For every arrow α in Q, there exists at most one arrow β such that βα /∈ I and there exists at most one
arrow γ such that αγ /∈ I.

A special biserial algebra A is called a string algebra if the defining ideal I is generated by paths.

Given a special biserial algebra A = kQ/I, we can associate a string algebra Ā as follows. Set

L := {i ∈ Q0 | Aei is an injective and not uniserial module},

S0 :=
⊕

i∈L

soc(Aei),

where Aei denotes the indecomposable projective A-module at vertex i. Then S0 is an ideal of A and the
quotient algebra Ā = A/S0 is a string algebra (cf. [4, Section II.1.3]). Note that the operation (·) preserves
representation type and we can reconstruct the AR-quiver of A from the AR-quiver of A easily.

Suppose now that A = kQ/I is a string algebra. For an arrow β ∈ Q1, we denote by β−1 the formal inverse
of β and set s(β−1) = t(β), t(β−1) = s(β), (β−1)−1 = β. For convenience, the formal inverse of an arrow will
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be called an inverse arrow. A word of length n is defined by a sequence cn . . . c2c1, where ci ∈ Q1 or c−1
i ∈ Q1,

and where t(ci) = s(ci+1) for 1 ≤ i ≤ n− 1. We define

s(cn . . . c2c1) = s(c1), t(cn . . . c2c1) = t(cn),

and
(cn . . . c2c1)

−1 = c−1
1 c−1

2 . . . c−1
n .

For every vertex v in Q, there is an empty word 1v of length 0 such that t(1v) = s(1v) = v and 1−1
v = 1v.

Suppose that a word C := cn . . . c2c1 satisfies s(C) = t(C), we define a rotation of C as a word of the form
ci . . . c1cn . . . ci+1. The product of two words is defined by placing them next to each other, provided that the
resulting sequence is a word.

A word C is called a string provided either C = 1v for some vertex v in Q or C = cn . . . c2c1 satisfying
ci+1 6= c−1

i for 1 ≤ i ≤ n− 1, and no subword (or its inverse) of C belongs to the ideal I. We say that a string
C = cn . . . c2c1 with n ≥ 1 is directed if all ci are arrows, and C is inverse if all ci are inverse arrows. A string
C of positive length is called a band if all powers of C are strings and C is not a power of a string of smaller
length. Note that a band must contain both arrows and inverse arrows.

On the set of strings, we consider two equivalence relations. Firstly, ∼ denotes the relation which identifies C
and C−1; and secondly, we define ∼A to be the equivalence relation which identifies each word with its rotations
and their inverses. Let St(A) (or simply St) be a set of representatives of strings in A under ∼, and let Ba(A)
(or simply Ba) be the set of representatives of bands under ∼A. In the following, we call a subword of a string
a substring.

It is well known that every indecomposable module over a string algebra is either a string module or a band
module. For each element C in St(A), there is a unique string A-module M(C) up to isomorphism. For each
element B in Ba(A) and for any finite dimensional indecomposable k[x, x−1]-module M = (V, ϕ) (where V
is a n-dimensional k-vector space and ϕ is an invertible linear endomorphism of V ), there is a band module
M(B, n, ϕ) corresponding to B and M . For a detailed explanation of M(B, n, ϕ), we refer the reader to [1,
p.160-161].

Example 2.2. Let A = kQ be the Kronecker algebra defined by the following quiver

1 2
✲✲
α

β

Then A is a string algebra and we can choose St and Ba as follows.

St = {11, 12, α, β, β
−1α, αβ−1, βα−1β, αβ−1α, · · · },

Ba = {β−1α} = {αβ−1}.

The string module M(β−1α) has the Loewy diagram 1 β
❙❙❙

❙❙❙ 1α
❦❦❦

❦❦❦

2

, and the string module M(αβ−1) has

the Loewy diagram 1α
❦❦❦

❦❦❦
β
❙❙❙

❙❙❙

2 2

. The band module M(β−1α, 2, ϕ) defined by the band β−1α and the

k[x, x−1]-module (k2, ϕ =

(

λ 1
0 λ

)

) corresponds to the representation

k2

ϕ−1

//
I2 // k2,

where 0 6= λ ∈ k and I2 denotes the 2× 2 identity matrix.

For the representation types of special biserial algebras, there is the following theorem.

Theorem 2.3 ([4, II.3.1 and II.8.1]). (1) Any special biserial algebra A is tame.
(2) A string algebra A is of finite representation type if and only if there is no band in A.

The representation type and Auslander-Reiten quivers for self-injective special biserial algebras are well studied
by Erdmann and Skowroński in [5]. Before stating their results, we recall some notions. For any algebra A,
we denote by ΓA the Auslander-Reiten quiver of A and by sΓA the stable Auslander-Reiten quiver of A. For
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the shapes of the translation quivers ZA∞
∞, ZA∞, ZA∞/<τn>, Ãp,q, we refer to [8]. By Ãp,q we denote the

following orientation of the quiver with underlying extended Dynkin diagram of type Ãp+q−1:

·

α2 //
· · · · · αp

''PP
PPP

P

·

α1
77♥♥♥♥♥♥

β1 ''PP
PPP

P ·

·
β2

//
· · · · ·

βq

77♥♥♥♥♥♥

Theorem 2.4. ([5, Theorem 2.1]) Let A = kQ/I be a self-injective special biserial algebra. The following are
equivalent:

(1) sΓA has a component of the form ZÃp,q.
(2) sΓA is infinite but has no component of the form ZA∞

∞.

(3) There are positive integers m, p, q such that sΓA is a disjoint union of m components of the form ZÃp,q,
m components of the form ZA∞/<τp>, m components of the form ZA∞/<τq> and infinitely many com-
ponents of the form ZA∞/<τ>.

(4) All but a finite number of components of ΓA are of the form ZA∞/<τ>.
(5) The number of primitive walks in A is a positive integer.
(6) A is representation-infinite domestic.
(7) A is representation-infinite of polynomial growth.

Theorem 2.5. ([5, Theorem 2.2]) Let A = kQ/I be a self-injective special biserial algebra. The following are
equivalent:

(1) sΓA has a component of the form ZA∞
∞.

(2) sΓA has infinitely many (regular) components of the form ZA∞
∞.

(3) sΓA is a disjoint union of a finite number of components of the form ZA∞/<τn> with n > 1, infinitely
many components of the form ZA∞/<τ> and infinitely many components of the form ZA∞

∞.
(4) A has infinitely many primitive walks.
(5) A is not of polynomial growth.

Remark 2.6. For the definition of primitive walks (= primitive V -sequences) in a special biserial algebra A,
we refer to [14, Section 2]. In fact, the primitive walks in A are defined using the associated string algebra A
and precisely correspond to the bands in A.

Example 2.7. Let A = kQ/I be the self-injective special biserial algebra defined by the following quiver

aα :: βdd

and the admissible ideal I generated by α2, β2 and αβ − βα. We can choose Ba for A as follows.

Ba = {β−1α} = {αβ−1}.

Let Q′ and Q′′ be the following quivers respectively:

1
ζ1 //
ζ2

// 2 ; 1 2
ζ1oo
ζ2

oo .

We have two quiver homomorphisms u and u′ from Q′ to Q as follows.

u(1) = u(2) = a, u(ζ1) = α, u(ζ2) = β;u′(1) = u′(2) = a, u′(ζ1) = β, u′(ζ2) = α.

By [14, Section 2], we have that u and u′ are primitive walks in A. They correspond to the bands β−1α and
α−1β in A respectively. Similarly, we also have two quiver homomorphisms from Q′′ to Q and they are primitive
walks in A which correspond to the bands βα−1 and αβ−1 in A. According to [14, Proposition 2.3], all the above
primitive walks are equivalent and define isomorphic band modules over A.
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2.3. Brauer graph algebras and their associated graded algebras. In this subsection, we briefly recall
some notions and results on Brauer graphs, Brauer graph algebras and their associated graded algebras. For
more details and examples, we refer to [11, Section 2] and [9, Section 2].

Recall that a Brauer graph is denoted by G = (V (G), E(G),m, o), where V (G) is the vertex set, E(G) is the
edge set, m is the multiplicity function, and o is the orientation of G. For simplicity, we often leave out the
symbol o. In case that G is a Brauer tree, the exceptional vertex and whose multiplicity will be denoted by v0
and m0, respectively.

The Brauer graph algebra A associated with a Brauer graph G = (V (G), E(G),m) has the form kQ/I, where
the vertex set Q0 of Q is identified with the edge set E(G) of G, and the arrow set Q1 of Q is determined by
the orientation of G. Note that there are at most two arrows starting and ending at every vertex of Q. Every
vertex v ∈ V (G) such that m(v)val(v) ≥ 2 (i.e. v is not truncated), gives rise to a unique cycle Cv in Q, called
a special cycle at v. If G contains no loops, then any special cycle in Q is a simple cycle (i.e. a cycle with no
repeated arrows and no repeated vertices). Let Cv be such a special cycle at v. Then if Cv is a representative
in its cyclic permutation class such that t(Cv) = i = s(Cv), i ∈ Q0, we say that Cv is a special i-cycle at v.
If a special i-cycle at v has starting arrow α, then we denote this special i-cycle at v by Cv(α). Note that if
i ∈ E(G) is not a loop, then the special i-cycle at v is unique and we simply write it by Cv.

The ideal I in kQ is generated by three types of relations:

Relation of the first type:

Cv(α)
m(v) − Cv′(α′)

m(v′)
,

for any i ∈ Q0 and for any special i-cycles Cv(α) and Cv′(α′) at v and v′ respectively such that both v and v′

are not truncated.

Relation of the second type:

αCv(α)
m(v)

,

for any i ∈ Q0, any v ∈ V (G) and where Cv(α) is a special i-cycle at v with starting arrow α.

Relation of the third type:

βα,

for any α, β ∈ Q1 such that βα is not a subpath of any special cycle except if β = α is a loop associated with a
vertex v of valency one and multiplicity m(v) > 1.

It is well known that Brauer graph algebras coincide with symmetric special biserial algebras. From this point
of view, Bocian and Skowroński give a characterization of the domestic Brauer graph algebras in [2].

Theorem 2.8 (See [2] and [5], or see [11, Theorem 5.1]). Let A be the Brauer graph algebra with a Brauer graph
G = (V (G), E(G),m), where V (G) is the vertex set, E(G) is the edge set and m is the multiplicity function of
G. Then

(a) A is 1-domestic if and only if one of the following holds
(1) G is a tree with m(v) = 2 for exactly two vertices v = w0, w1 ∈ V (G) and m(v) = 1 for all v ∈ V (G),

v 6= w0, w1.
(2) G is a graph with a unique cycle of odd length and m(v) = 1 for all v ∈ V (G).

(b) A is 2-domestic if and only if G is a graph with a unique cycle of even length and m(v) = 1 for all v ∈ V (G).
(c) There are no n-domestic Brauer graph algebras for n ≥ 3.

Note that if G is neither one of the above mentioned cases in Theorem 2.8 nor a Brauer tree, then, by Theorem
2.4, the corresponding Brauer graph algebra A is not of polynomial growth.

We now turn to the associated graded algebras of Brauer graph algebras. The notion of the graded algebra
(denoted by gr(A)) associated to a finite dimensional algebraA with the radical filtration of A plays an important
role in the representation theory. For the definition and elementary properties of gr(A), we refer to [9, Subsection
2.2]. Recall from [9, Subsection 2.3] that, for a Brauer graph algebra A = kQ/I associated with a Brauer graph
G, the graded algebra gr(A) (associated with the radical filtration) of A has the same dimension with A and
can be described by the same quiver and some modified relations. More precisely, gr(A) = kQ/I ′, where I ′ is
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an admissible ideal in kQ generated by relations of the second and the third types in I and modified relations of

the first type in I. For a relation of the first type Cv(α)
m(v)

−Cv′(α′)
m(v′)

in I, its modified relation is defined

by the term of smaller length between Cv(α)
m(v)

and Cv′ (α′)
m(v′)

.

From the above description, we know that gr(A) is also special biserial (but not necessarily self-injective).
Thus we can reduce the study on the representation types of A and gr(A) to that of their associated string

algebras A and gr(A). The string algebra A is defined by

A = A/(
⊕

i∈L

soc(Aei)), (2.1)

where
L = {i ∈ Q0| rad(Aei)/ soc(Aei) = Vi,1 ⊕ Vi,2, Vi,1 6= 0, Vi,2 6= 0}.

For each i ∈ L, there is a relation ρi = pi − qi of the first type in I, where the length of pi is ℓ(Vi,1) + 1, the

length of qi is ℓ(Vi,2) + 1. Therefore A can be described by the same quiver Q and an admissible ideal I1 in

kQ, where I1 is generated by the ideal I and new relations {pi, qi | i ∈ L}. Similarly, the string algebra gr(A)
is defined by

gr(A) = gr(A)/(
⊕

i∈L′

soc(gr(A)ei)), (2.2)

where
L′ = {i ∈ L|ℓ(Vi,1) = ℓ(Vi,2)}.

Note that for each i ∈ L′, there is a relation ρi = pi−qi in I ′ such that pi and qi have the same length. Therefore
gr(A) can be described by the same quiver Q and an admissible ideal I2 in kQ, where I2 is generated by the
ideal I ′ and new relations {pi, qi | i ∈ L′}.

As a conclusion, the four concerned algebras have the same quiver and the following displayed formulas:

A = kQ/I, A = kQ/I1, gr(A) = kQ/I ′, gr(A) = kQ/I2.

In order to describe some relationships among these algebras, we further generalize some notions from [9].

Definition 2.9 (Compare with [9, Definition 2.12]). Let G = (V (G), E(G),m) be a Brauer graph with graded
degree function grd and A = kQ/I the corresponding Brauer graph algebra. We identify Q0 with E(G) by the
natural bijection between them.

(1) For an unbalanced edge u i v in G, we denote the endpoints of i by v
(i)
L , v

(i)
S with grd(v

(i)
L ) > grd(v

(i)
S ).

Whenever the context is clear we will omit the superscript (i). Moreover, we define

ni = the number of edges in Gi,S , (2.3)

where Gi,S is the connected branch of G \ i containing the vertex vS .

(2) For an unbalanced edge vS
i vL in G, there is a relation of the first type ρi = pi − qi in I, where

pi = C
m(vS)
vS , qi = C

m(vL)
vL are paths with lengths grd(vS), grd(vL) respectively. We define the following sets:

W = {i ∈ Q0| rad(Aei)/ soc(Aei) = V1 ⊕ V2, V1 6= 0, V2 6= 0, ℓ(V1) 6= ℓ(V2)} ⊆ Q0, (2.4)

P =
⋃

i∈W

{ri|ri is the longer path between pi and qi}. (2.5)

Note that the set of unbalanced edges is identified with W under the natural bijection between Q0 and E(G),
and that s(ri) = t(ri) = i for ri ∈ P.

By the definitions of A and gr(A), we have that A is a quotient algebra of gr(A), that is, A ∼= gr(A)/I3, where
the ideal I3 is the k-vector space with basis given by the paths in the set P. In particular, any indecomposable

gr(A)-module that is not gr(A)-module is an indecomposable projective-injective gr(A)-module.

For convenience, we record displayed formulas of the ideals I, I ′, I1, I2, I3 in kQ (see [9, Subsection 3.2]):

R1 := {Relation of the first type in I}, I0 := 〈Relation of the second type or the third type in I〉;

I = I0 + 〈R1〉;
7



I ′ = I0 + 〈pi − qi ∈ R1 | i ∈ Q0, i /∈ W〉+ 〈qi | i ∈ W, pi − qi ∈ R1, qi is shorter than pi〉;

I1 = I0 + 〈pi, qi | i ∈ Q0, pi − qi ∈ R1〉;

I2 = I0 + 〈pi, qi | i ∈ Q0, i /∈ W, pi − qi ∈ R1〉+ 〈qi | i ∈ W, pi − qi ∈ R1, qi is shorter than pi〉;

I3 = 〈ri ∈ P | i ∈ W, pi − qi ∈ R1〉 = k-vector space with basis {ri ∈ P | i ∈ W}.

The following proposition describes when gr(A) and A are isomorphic.

Proposition 2.10 ([9, Proposition 2.13]). Let A = kQ/I be a Brauer graph algebra associated with a Brauer
graph G and gr(A) the associated graded algebra of A. Then the following statements are equivalent.

(1) A is isomorphic to gr(A) as algebras.
(2) The vertices in the Brauer graph G have the same graded degree.
(3) W (resp. P) is an empty set.

3. ⋆-condition, unbalanced edge pair and main result

Throughout this section, we assume that A = kQ/I is a Brauer graph algebra associated with a Brauer graph
G = (V (G), E(G),m) and that gr(A) = kQ/I ′ its associated graded algebra. Moreover, let A = kQ/I1 and

gr(A) = kQ/I2 be the associated string algebras in (2.1) and (2.2), respectively. Note that by definition, A and

A (resp. gr(A) and gr(A)) have the same representation type. In this section, we will define useful notions and
state our main results on the infinite representation type of gr(A).

3.1. ⋆-Condition in a Brauer graph.

Definition 3.1 (Compare with [9, Definition 3.7]). Let u, v be two distinct vertices in a Brauer graph G.

(1) A walk from u to v is a sequence [v1, a1, v2, . . . , vk−1, ak−1, vk] of vertices and edges, where v1 = u, vk = v,
ai is an edge incident to the vertices vi and vi+1 for each 1 ≤ i ≤ k − 1, and all vertices (and hence all
edges) are pairwise distinct. We often simply write this walk by [a1, . . . , ak−1] and call it walk from edge a1
to edge ak−1. In particular, when G is a tree, the walk from u to v is unique.

(2) The length of a walk from u to v is defined to be the number of edges in this walk and will be denoted by
dG(u, v) whenever the context is clear.

(3) We say that a walk [v1, a1, v2, . . . , vk−1, ak−1, vk] is degree decreasing if grd(v1) ≥ grd(v2) ≥ · · · ≥ grd(vk).

Remark 3.2. The definition of a walk in Brauer graph is different from the definition of a walk in graph theory,
actually, any walk in Brauer graph is identified with a path in graph theory.

Remark 3.3. According to [9], gr(A) is of finite representation type if and only if G is a Brauer tree with
an exceptional vertex v0 of multiplicity m0 such that any walk starting from a specified vertex vh is degree
decreasing, where vh is defined to be v0 when m0 > 1 or one of the vertices with maximal graded degree when
m0 = 1.

In order to generalize our description from finite representation type to infinite representation type, we intro-
duce the following condition on any Brauer graph.

Definition 3.4. Let G be a Brauer graph and vS
i vL an unbalanced edge in G. We say that G satisfies

⋆-condition with respect to vS
i vL if the following three conditions hold:

(1) Gi,S 6= Gi,L.
(2) Gi,S is a tree with m(v) = 1 for all v ∈ V (Gi,S).
(3) The unique walk from vS to any vertex vk in Gi,S is degree decreasing.

Remark 3.5. (1) Gi,L = Gi,S for an unbalanced edge vS
i vL in a Brauer graph G if and only if i is an

edge in some cycle of G if and only if there is another walk from vL to vS different from [i].
(2) By [9, Theorem 4.5], we can formulate the finite representation type using ⋆-condition as follows: gr(A) is

of finite representation type if and only if G is a Brauer tree which satisfies ⋆-condition with respect to any
unbalanced edge in G.
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Definition 3.6 (Compare with [9, Definition 3.9]). Let cn . . . c1 be a string in gr(A). We say that cn . . . c1 is a

simple string in gr(A) from s(c1) to t(cn) if all s(ck) are pairwise distinct and t(cn) is different from s(ck) for
each 1 ≤ k ≤ n.

Remark 3.7. Similarly as in the proof of [9, Lemma 3.8], for any walk of length ≥ 2 in G we can get exactly

two simple strings in gr(A) corresponding to this walk.

We now generalize some results for Brauer tree algebras in [9] to Brauer graph algebras.

Lemma 3.8 (Compare with [9, Lemma 3.10]). Let gr(A) = kQ/I2 and C = cn . . . c2c1 a string in gr(A), where

s(C) = t(C) = i. We denote by u i v the corresponding edge in G. If c1 or c−1
1 lies in a special cycle at

v and Gi,v 6= Gi,u, then C has a substring C′ = cs . . . c2c1 satisfying s(C′) = t(C′) = i such that the edges
corresponding to vertices s(ck) (2 ≤ k ≤ s) lie in Gi,v. Moreover, if Gi,v is a tree, then C′ has a substring C1

such that s(C1) = t(C1) and that C1 or C1
−1 is a directed string.

Proof. The first result is an obvious consequence of Gi,v 6= Gi,u. The proof of the second result is identical to
[9, Lemma 3.10]. �

Lemma 3.9 (Compare with [9, Lemma 4.3]). Let G be a Brauer graph and gr(A) = kQ/I2. Suppose that

C = cn . . . cl . . . c1 is a string in gr(A) satisfying l < n and that cl . . . c1 or c−1
1 . . . c−1

l is an element of P, where

s(c1) = t(cn) = i. We denote by vS
i vL the corresponding unbalanced edge in G. If Gi,S 6= Gi,L and Gi,S is

a tree, then at least one of the following holds.

(1) There is a vertex v with m(v) ≥ 2 in Gi,S .
(2) There are some adjacent vertices v, w in Gi,S , such that dG(v, vS) + 1 = dG(w, vS) and grd(v) < grd(w).

In other words, G does not satisfy ⋆-condition with respect to vS
i vL.

Proof. Noting that [9, Lemma 3.4], [9, Lemma 4.1] and Lemma 3.8, we have an identical proof to [9, Lemma
4.3]. �

The first statement in the following result generalizes [9, Lemma 3.5], and the second one generalizes [9,
Lemma 5.1] and [9, Proposition 5.4], both are stated in the Brauer tree case in [9].

Lemma 3.10. (1) Let E be a set consisting of some unbalanced edges in G, and for each i ∈ E, let ri be the

element in P corresponding to the unbalanced edge i, where P is defined in (2.5). If C is a string in gr(A)

and C is not a string in gr(A)/(
⊕

i∈E ri), then, there exists i ∈ E such that C or C−1 has a substring ri.

In particular, if C is a string in gr(A) and C is not a string in A, then C or C−1 has a substring lying in
the set P.

(2) Suppose that C = cn . . . cl . . . c1 is a string in gr(A) satisfying l < n and that cl . . . c1 or c−1
1 . . . c−1

l is an

element of P, where s(c1) = t(cl) = i and P is defined in (2.5). Denote by vS
i vL the corresponding

unbalanced edge in G. If G satisfies ⋆-condition with respect to vS
i vL, then

(2.1) cn . . . cl+1 is a simple substring of C such that t(ck) is in Gi,S for each l+1 ≤ k ≤ n and in particular

the string C is not a band in gr(A);

(2.2) the number of strings C in St(gr(A)) which contain a substring ri or r−1
i is equal to (ni + 1)2, where

ni is the number of edges in Gi,S.
(3) Let E be a set consisting of some unbalanced edges in G, and for each i ∈ E, let ri be the element in

P corresponding to the unbalanced edge i. If G satisfies ⋆-condition with respect to any unbalanced edge
in E, then gr(A) and gr(A)/(

⊕

i∈E ri) have the same representation type. In particular, if E is a set of
all unbalanced edges in G and G satisfies ⋆-condition with respect to any unbalanced edge, then, by the
relationship A ∼= gr(A)/(

⊕

i∈E ri), gr(A) and A have the same representation type.

Proof. (1) Since the k-vector space
⊕

i∈E ri is an ideal of gr(A), the conclusion is clear.

(2.1) To show that the edge corresponding to t(ck) is in Gi,S for l+1 ≤ k ≤ n, it suffices to prove that t(ck) 6= i
for l + 1 ≤ k ≤ n. Suppose on the contrary that there exists l + 1 ≤ m ≤ n such that t(cm) = i and t(ck) 6= i
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for l + 1 ≤ k ≤ m− 1. Since G satisfies ⋆-condition with respect to vS
i vL, we have that Gi,S 6= Gi,L and

Gi,S is a tree. For the substring cm . . . cl . . . c1, where s(c1) = t(cm) = i, the string cm . . . cl . . . c1 satisfies the
conditions of Lemma 3.9, which then leads to a contradiction.

Next we show that cn . . . cl+1 is a simple string. It suffices to show that all t(ck) are pairwise distinct for
l ≤ k ≤ n. Suppose that there exist k and t satisfying l ≤ t < k ≤ n such that t(ck) = t(ct) = s(ct+1) and that
t(cm) is different from t(cs) for each l ≤ m < k and l ≤ s < m. Repeating the similar proof as above, we still
get a contradiction.

(2.2) Since G satisfies ⋆-condition with respect to vS
i vL, this proof is identical to the proof of [9,

Proposition 5.4].

(3) Since G satisfies ⋆-condition with respect to any unbalanced edge in E, (2.1) shows that the band modules

over the two algebras gr(A) and gr(A)/(
⊕

i∈E ri) are the same, and (2.2) shows that the number of string

gr(A)-modules is equal to the number of string gr(A)/(
⊕

i∈E ri)-modules plus
∑

i∈E(ni + 1)2, it follows that

gr(A) and gr(A)/(
⊕

i∈E ri) have the same representation type. �

Proposition 3.11. Let G be a Brauer graph which is a tree with m(v) = 2 for exactly two vertices v = w0, w1

in V (G) and m(v) = 1 for all v 6= w0, w1. Then the following two conditions are equivalent:

(1) G satisfies ⋆-condition with respect to any unbalanced edge vS
i vL;

(2) w0 and w1 are in Gi,L for any unbalanced edge vS
i vL in G.

Moreover, if G satisfies ⋆-condition with respect to any unbalanced edge, then gr(A) is domestic. In particular,
gr(A) is 1-domestic.

Proof. Assume that w0 and w1 are in Gi,L for any unbalanced edge vS
i vL in G. Since G is a tree with

m(v) = 2 for exactly v = w0, w1 and w0 and w1 are in Gi,L for vS
i vL, Gi,S 6= Gi,L and Gi,S is a tree with

m ≡ 1. Then the conditions (1) and (2) of ⋆-condition hold. We next show that the condition (3) of ⋆-condition
holds.

We suppose, on the contrary that, there exists a vertex w in Gi,S for some unbalanced edge vS
i vL such

that the walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from vS to w is not degree decreasing, where v1 = vS and vk = w.

In other words, there exists an unbalanced edge vj
aj vj+1 with grd(vj) < grd(vj+1) for some 1 ≤ j ≤ k − 1.

Since dG(vj , vL) + 1 = dG(vj+1, vL) and w0 and w1 are in Gi,L, Gi,L ⊆ Gaj ,S and w0 and w1 are in Gaj ,S . It
contradicts the condition that w0 and w1 are in Gaj ,L.

Conversely, assume that G satisfies ⋆-condition with respect to any unbalanced edge vS
i vL. Suppose that

there is some unbalanced edge vS
i vL such that w0 or w1 is in Gi,S . It clearly contradicts the condition (2)

of ⋆-condition.

Now assume that G satisfies ⋆-condition with respect to any unbalanced edge. Then, by Lemma 3.10, gr(A)

and A have the same representation type. It follows from Theorem 2.8 that gr(A) is 1-domestic. Hence gr(A)
is 1-domestic. �

Proposition 3.12. Let G be a Brauer graph with a unique cycle and m(v) = 1 for all v ∈ V (G). Then the
following two conditions are equivalent:

(1) G satisfies ⋆-condition with respect to any unbalanced edge vS
i vL;

(2) all edges in the unique cycle are not unbalanced edges and the unique cycle is in Gi,L for any unbalanced

edge vS
i vL in G.

Moreover, if G satisfies ⋆-condition with respect to any unbalanced edge, then gr(A) is domestic. In particular,
if the unique cycle is of odd length (resp. even length), then gr(A) is 1-domestic (resp. 2-domestic).

Proof. Assume that all edges in the unique cycle are not unbalanced edges and the unique cycle is in Gi,L for

any unbalanced edge vS
i vL in G. Since m(v) = 1 for all v ∈ V (G), m(v) = 1 for all v ∈ V (Gi,S) for

vS
i vL. Since all edges in the unique cycle are not unbalanced edges and the unique cycle is in Gi,L for
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vS
i vL, Gi,S 6= Gi,L and Gi,S is a tree. Then the conditions (1) and (2) of ⋆-condition hold. The condition

(3) of ⋆-condition holds by using a similar approach to the proof of Proposition 3.11.

Conversely, assume that G satisfies ⋆-condition with respect to any unbalanced edge vS
i vL. If there is

some edge in the unique cycle is an unbalanced edge, then it contradicts the condition (1) of ⋆-condition. If

there is some unbalanced edge vS
i vL such that the unique cycle is in Gi,S , then it contradicts the condition

(2) of ⋆-condition.

Now assume that G satisfies ⋆-condition with respect to any unbalanced edge. Then, by Lemma 3.10, gr(A)
and A have the same representation type. It follows from Theorem 2.8 that if the unique cycle in G is of odd
length (resp. even length), then gr(A) is 1-domestic (resp. 2-domestic). �

The next result deals with a case where the cardinality of Ba(gr(A)) is infinite.

Lemma 3.13. If there are two distinct bands b1 = cm . . . cl+1cl . . . c1 and b2 = c′m′ . . . c′l+1cl . . . c1 in gr(A),
where s(c1) = t(cl), cl . . . c1 is a directed substring, cl+1 = c′l+1 is an inverse arrow, and s(ci) 6= s(c1) (resp.

s(c′i) 6= s(c1)) for l+ 1 < i ≤ m (resp. l+ 1 < i ≤ m′). Then the cardinality of Ba(gr(A)) is infinite and gr(A)
is not of polynomial growth.

Proof. From the assumption of the two bands b1 and b2, we have that all powers of b2b1 are strings in gr(A).
Moreover, since b1 and b2 are distinct and s(ci) 6= s(c1) (resp. s(c′i) 6= s(c1)) for l + 1 < i ≤ m (resp.
l + 1 < i ≤ m′), b2b1 is not a power of a string of smaller length. Then b2b1 is also a band. Similarly, for any

positive integer k, bk2b1 is a band. Then the cardinality of Ba(gr(A)) is infinite.

In order to prove that gr(A) is not of polynomial growth. We just prove that gr(A) is not of polyno-
mial growth. Let n′

i be the length of bi for i = 1, 2. When n′
1 = n′

2, there are pairwise distinct elements

bkn−1
2 bkn

1 b
kn−1+1
2 b

kn−1

1 b
kn−2

2 b
kn−2

1 . . . bk1

2 bk1

1 in Ba(gr(A)), where n and kn are positive integers greater than 1,
and ki is positive integer such that

∑n
i=1 ki = mn′

2 for each 1 6 i 6 n − 1. Considering the corresponding
indecomposable band modules with dimension d, where d = 2mn′

1n
′
2. We have that the number of the above

indecomposable band modules is
∑mn′

2
−1

n=2

(

mn′

2
−2

n−1

)

= 2mn′

2
−2 − 1. Therefore µ

gr(A)
(d) ≥ 2mn′

2
−2 − 1 and there

is no positive integer m such that µgr(A)(d) ≤ dm for all d ≥ 2. Hence gr(A) is not of polynomial growth.

When n′
1 6= n′

2, without loss of generality, we can assume n′
2 < n′

1. There are pairwise distinct elements

b
kn+m(n′

1
−n′

2
)

2 bkn

1 b
kn−1

2 b
kn−1

1 . . . bk1

2 bk1

1 in Ba(gr(A)), where n and ki are positive integers with
∑n

i=1 ki = mn′
2

for each 1 6 i 6 n. Considering the corresponding indecomposable band modules with dimension d, where

d = 2mn′
1n

′
2. we have that the number of the above indecomposable band modules is

∑mn′

2

n=1

(

mn′

2
−1

n−1

)

= 2mn′

2
−1.

Therefore µ
gr(A)

(d) ≥ 2mn′

2
−1 and there is no positive integer m such that µ

gr(A)
(d) ≤ dm for all d ≥ 2. Hence

gr(A) is not of polynomial growth. �

3.2. Unbalanced edge pair in a Brauer tree. In order to describe the domestic gr(A) when G is a Brauer
tree, we introduce the notion of unbalanced edge pair.

Definition 3.14. Let G be a Brauer tree with an exceptional vertex v0 of multiplicity m0.

(1) We call (i, j) an unbalanced edge pair if j is an edge in Gi,S and dG(v
(j)
S , v

(i)
S ) + 1 = dG(v

(j)
L , v

(i)
S ), where

v
(i)
S

i v
(i)
L and v

(j)
S

j v
(j)
L are two unbalanced edges in G.

(2) We define κ0 to be the number of unbalanced edges vS
i vL in G such that the exceptional vertex v0 is a

vertex in Gi,S.
(3) We define κ1 to be the number of unbalanced edge pairs in G.

Remark 3.15. (1) (i, j) is an unbalanced edge pair if and only if (j, i) is an unbalanced edge pair.
(2) κ1 = 0 if and only if the unique walk from vS to any vertex in Gi,S is degree decreasing for any unbalanced

edge vS
i vL in G.

(3) By [9, Theorem 4.5], gr(A) is of finite representation type if and only if G is a Brauer tree such that
κ0(m0 − 1) + κ1 = 0.
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We have the following observations about κ0 and κ1.

Lemma 3.16. If κ1 6= 0, then there are two unbalanced edges v
(i)
S

i v
(i)
L and v

(j)
S

j v
(j)
L in G such that

the exceptional vertex v0 is a vertex in Gi,S and (i, j) is an unbalanced edge pair. In particular, if κ1 6= 0, then
κ0 6= 0.

Proof. Since κ1 6= 0, there are two unbalanced edges v
(i)
S

i v
(i)
L and v

(j)
S

j v
(j)
L in G such that (i, j) is an

unbalanced edge pair. Without loss of generality, we assume that v0 is a vertex in Gi,L. Since G\i = Gi,S

⋃

Gi,L

and (i, j) is an unbalanced edge pair, Gi,L ⊆ Gj,S and v0 is a vertex in Gj,S . We get our desired result. �

Lemma 3.17. Let G be a Brauer tree with an exceptional vertex v0 of multiplicity m0. Then κ1 ≥ 2 if and

only if there are three unbalanced edges v
(i)
S

i v
(i)
L , v

(j)
S

j v
(j)
L and v

(k)
S

k v
(k)
L in G such that (i, j) and

(i, k) are unbalanced edge pairs.

Proof. “⇐=” It is obvious to get κ1 ≥ 2 if (i, j) and (i, k) are unbalanced edge pairs.

“=⇒” Since κ1 ≥ 2, there are at least two unbalanced edge pairs. Without loss of generality, we assume

that (i, j) and (k, l) are two unbalanced edge pairs, where the unbalanced edges v
(i)
S

i v
(i)
L , v

(j)
S

j v
(j)
L ,

v
(k)
S

k v
(k)
L and v

(l)
S

l v
(l)
L are pairwise distinct and k is an edge in Gi,S . There are two cases to be

considered.

Case 1. If dG(v
(k)
S , v

(i)
S ) + 1 = dG(v

(k)
L , v

(i)
S ), then (i, k) is an unbalanced edge pair. Moreover, (i, j) is also an

unbalanced edge pair. We have that (i, j) and (i, k) are two unbalanced edge pairs.

Case 2. If dG(v
(k)
S , v

(i)
S )−1 = dG(v

(k)
L , v

(i)
S ), since the unbalanced edge l is an edge in Gk,S with dG(v

(l)
S , v

(k)
S )+

1 = dG(v
(l)
L , v

(k)
S ) and Gk,S ⊆ Gi,S , then l is an edge in Gi,S with dG(v

(l)
S , v

(i)
S ) + 1 = dG(v

(l)
L , v

(i)
S ) and therefore

(i, l) is an unbalanced edge pair. Moreover, (i, j) is also an unbalanced edge pair. We have that (i, j) and (i, l)
are two unbalanced edge pairs. �

3.3. Main result and consequences. We now state our main result, which characterizes when gr(A) is
domestic.

Theorem 3.18. Let A be the Brauer graph algebra associated with a Brauer graph G = (V (G), E(G)) and
gr(A) the graded algebra associated with the radical filtration of A, where V (G) is the vertex set and E(G) is
the edge set. Let κ0 and κ1 be defined as in Definition 3.14. Then the following three statements are equivalent.

(a) gr(A) is of polynomial growth.
(b) gr(A) is domestic.

(c) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

Furthermore, for domestic type, we have the following.

(b1) gr(A) is 1-domestic if and only if one of the following holds.
(1) G is a Brauer tree with an exceptional vertex v0 of multiplicity m0 such that κ0(m0 − 1) + κ1 = 1.
(2) G is a tree and there exist two distinct vertices w0, w1, such that the following conditions hold:

(2.1) m(w0) = m(w1) = 2 and m(v) = 1 for v 6= w0, w1.
(2.2) grd(w0) = grd(w1).
(2.3) Any walk from w0 (or from w1) is degree decreasing.

(3) G is a graph with a unique cycle of odd length and m(v) = 1 for all v ∈ V (G), and satisfies the
following conditions hold:
(3.1) grd(u) = grd(v) for any two vertices u and v in the unique cycle.
(3.2) Any walk from any vertex in the unique cycle is degree decreasing.

(b2) gr(A) is 2-domestic if and only if G satisfies the following conditions.
(1) G is a graph with a unique cycle of even length and m(v) = 1 for all v ∈ V (G).
(2) grd(u) = grd(v) for any two vertices u and v in the unique cycle.
(3) Any walk from any vertex in the unique cycle is degree decreasing.

(b3) gr(A) is not n-domestic for n ≥ 3.
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Proof. Since A and A (resp. gr(A) and gr(A)) have the same representation type, and since A is a quotient of

the algebra gr(A), if the Brauer graph algebra A is nondomestic (resp. A is not of polynomial growth), then
gr(A) is nondomestic (resp. gr(A) is not of polynomial growth). By Theorem 2.8, in order to describe when

gr(A) is domestic or is of polynomial growth, it suffices to study gr(A) in the case when G is a Brauer tree or in
the cases (a) and (b) in Theorem 2.8. The descriptions in these cases are given in Proposition 4.10, Proposition
5.4 and Proposition 6.6, respectively. �

The main result gives the following consequences.

Corollary 3.19. Let A be a Brauer tree algebra and gr(A) the associated graded algebra of A. If κ1 > 1 or
κ1 = 1 and m0 > 1, then gr(A) is not of polynomial growth.

Corollary 3.20. Let A be a Brauer graph algebra and gr(A) the associated graded algebra of A. Then gr(A) is

n-domestic if and only if the cardinality of Ba(gr(A)) is n.

According to Theorem 2.8, the similar result as in the above corollary holds for any Brauer graph algebra A,
that is, A is n-domestic if and only if the cardinality of Ba(A) is n. It would be interesting to know whether
there is a similar result for any domestic special biserial algebra.

Comparing with the results in [9], we would also like to give the following remarks on the relationships between
the Auslander-Reiten quivers of gr(A) and A.

Remark 3.21. (1) Similar as the discussion in [9, Section 5], for domestic gr(A) except the Brauer tree case,
based on Lemma 3.10, Proposition 3.11, Proposition 3.12, we can prove that, the Auslander-Reiten quiver
of A is obtained from the Auslander-Reiten quiver of gr(A) by removing several diamonds.

(2) When G is a Brauer tree and gr(A) is domestic, the situation is more complicated. In this case we have the

following conjecture on the Auslander-Reiten quiver Γ of gr(A):

(2.1) Γ consists of components of the form ZÃp,q and components of the form ZA∞/〈τn〉 (both components

are up to deleting some diamonds). Moreover, when m0 = 1, Γ has a component ZÃp,q satisfying
p+ q = ni+nj +2 with (i, j) the unique unbalanced edge pair in G; when m0 = 2, Γ has a component

ZÃni+1,|E(G)| with i the unique unbalanced edge in G such that the exceptional vertex v0 is in Gi,S .

(3) We note that in the picture of [9, Remark 5.14], the obtained part W in the Auslander-Reiten quiver of gr(A)
may be different from the beginning wing W , since the obtained part may contain new inserted diamonds.

4. The case that G is a Brauer tree

In this section, we describe when gr(A) = kQ/I ′ is domestic in the case when G = (V (G), E(G),m) is a
Brauer tree with an exceptional vertex v0 of multiplicity m0, where V (G) is the vertex set, E(G) is the edge
set and m is the multiplicity function of G. Let κ0 and κ1 be defined in Definition 3.14.

Since the number of string modules of a given dimension is finite, it suffices to consider band modules when
we consider the representation type of a representation-infinite string algebra. The following lemma is useful
when we consider two related representation-infinite string algebras.

Lemma 4.1. Let Λ = kQ/I and Γ = Λ/J be two representation-infinite string algebras, where J is an ideal of

Λ with radm(Λ) ⊆ J ⊆ rad2(Λ) for some m ≥ 2. Suppose that for any indecomposable Λ-module M satisfying
JM 6= 0, M is a string Λ-module. Then Γ is of polynomial growth (resp. domestic) if and only if Λ is of
polynomial growth (resp. domestic).

Proof. Since the algebra Γ is a quotient of the algebra Λ, we have that any band Γ-module can be considered
as a band Λ-module. Moreover, from the assumption that M is a string Λ-module for any indecomposable
Λ-module M satisfying JM 6= 0, it follows that any band Λ-module is also a band Γ-module. Hence there is a
one to one correspondence between band Λ-modules and band Γ-modules. Combining the remark before this
lemma, we get the desired result. �

Remark 4.2. We have used a special case of the above lemma in Lemma 3.10 (3), where Λ = gr(A) and Γ = A.
13



Proposition 4.3. Let gr(A) = kQ/I2 be defined in (2.2) and G the associated Brauer tree with an exceptional

vertex v0 of multiplicity m0. If m0 ≥ 3 and κ0 6= 0. Then gr(A) and gr(A) are not of polynomial growth.

Proof. We only need to prove that gr(A) is not of polynomial growth. Since κ0 6= 0, we have that there is an

unbalanced edge vS
i vL such that the exceptional vertex v0 is in Gi,S . Let i1 < i2 < · · · < in < i1 be the

cyclic ordering at vL, where i1 = i and n = grd(vL) = val(vL). Note that n > 2. Let E1 = {i1, i2, . . . , in} and
E2 = E(Gi,S) ∪ E1, where the edge ik is incident to vL and v′k for any 2 ≤ k ≤ n, and E(Gi,S) is the edge set
of Gi,S . We denote by E3 the set of all unbalanced edges in Gi,S and by rj the element in P corresponding to
the unbalanced edge j in E3. We have algebra homomorphisms as follows.

gr(A) ։ gr(A) ։ gr(A)/(gr(A)egr(A)⊕
⊕

j∈E3

rj),

where ei is the primitive idempotent in Q corresponding to the edge i in E(G) \ E2 and e =
∑

i∈E(G)\E2
ei.

Let C be the above algebra gr(A)/(gr(A)egr(A) ⊕
⊕

j∈E3
rj). Then C = kQ′/IC , where IC is an admissible

ideal in kQ′ and Q′ is a subquiver of Q by removing all vertices corresponding to the edges in E(G) \ E2 and
all related arrows. Note that C is a string algebra and is representation-infinite.

We next construct a related Brauer graph G′. Let G′ = (V (Gi,S)∪{vL, v
′
2, v

′
3, . . . , v

′
n}, E2,m), where V (Gi,S)

is the vertex set of Gi,S , m(v0) = m0, m(vL) = 2 and m(v) = 1 for the other vertices v. We may visualise the
underlying graph of G′ from G as follows:

vL�
��

�
�

...

✂
✂✂

i2

v′2

❍❍❍i3 v′3

in
v′n

...
❅
❅

�
�...

❅
❅

ivS❅
❅

❅

�
�

�

...
. . .

. . .

G′

Let B be the Brauer graph algebra associated with the new Brauer graph G′ and B = kQ′/IB,1 the corre-
sponding string algebra defined in (2.1). By the construction of the Brauer graph G′ and Theorem 2.8, we have
that B is not of polynomial growth. Therefore, B is not of polynomial growth.

Now let E4 = {ik|grd(vL) ≤ grd(v′k), 1 < val(v′k), 2 ≤ k ≤ n} (which is also defined in the original Brauer
graph G), where the edge ik is incident to vL and v′k in G for any 2 ≤ k ≤ n. We can get the following algebra
isomorphism from their constructions

C ∼= B/(
⊕

ik∈E1\E4

radn+1(Pik)⊕
⊕

ik∈E4

radn(Pik)),

where Pik is the projective cover of the simple B-module Sik corresponding to the edge ik in G′ for each

1 ≤ k ≤ n and where J :=
⊕

ik∈E1\E4
radn+1(Pik)⊕

⊕

ik∈E4
radn(Pik ) is an ideal of B. Clearly J ⊆ rad2(B).

Note that there are two arrows starting and ending at vertex i of Q′ and there is one arrow starting and
ending at vertex ik of Q′ for all 2 ≤ k ≤ n. So Q′ contains the following subquiver:

·

αm1

��

i2

α′

2

��. . .

44

i

α′

1

66

α1

uu

. . .

uu·

α2

SS

in

α′

n

RR

,

wherem1 = val(vS). Moreover, J can be generated by α′
k−1 . . . α

′
1α

′
n . . . α

′
k+1α

′
k (ik ∈ E4) and α′

k . . . α
′
1α

′
n . . . α

′
k+1

α′
k (ik ∈ E1 \ E4). For any band in B, we have the following claim.
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Claim: For any band b in B, b does not have the substring α′
k−1 . . . α

′
1α

′
n . . . α

′
k+1α

′
k for any ik in E4, and

b does not have the substring α′
k . . . α

′
1α

′
n . . . α

′
k+1α

′
k for any ik in E1 \ E4 (possibly after rotation or taking

inverse of b). That is, any band in B gives in fact a band in the quotient algebra C.

If the above claim is true, then, the ideal J satisfies the condition in Lemma 4.1, and therefore C is not of

polynomial growth. It follows that gr(A) is not of polynomial growth. This is our desired result.

Proof of Claim. Suppose on the contrary that b has the substring α′
k−1 . . . α

′
1α

′
n . . . α

′
k+1α

′
k for some ik 6= i1

and b = cs . . . c1α
′
k−1 . . . α

′
1α

′
n . . . α

′
k+1α

′
k. Since s(b) = t(b) and there is only one arrow starting and ending at

vertex ik for 2 ≤ k ≤ n, s(α′
k) = t(cs) = ik and cs = α′

k−1. We rotate b to cs−1 . . . c1α
′
k−1 . . . α

′
1α

′
n . . . α

′
kα

′
k−1. If

ik−1 6= i1, then we can repeat the above step and therefore we can assume that b has the substring α′
1α

′
n . . . α

′
2α

′
1.

We may assume that b = cs . . . c1α
′
1α

′
n . . . α

′
2α

′
1. Since s(α′

1) = t(cs) and there is only one arrow starting and
ending at vertex ik for 2 ≤ k ≤ n, we have that b has the substring α′

n . . . α
′
2α

′
1α

′
n . . . α

′
2α

′
1. It contradicts the

fact that α′
n . . . α

′
2α

′
1α

′
n . . . α

′
2α

′
1 is in the ideal IB,1 (indeed it is an element of soc(B)). This finishes the proof

of our claim. �

We give an example to illustrate the above result.

Example 4.4. Let G be the following Brauer tree with m0 = 3.

·

v0
1

·

4
✁✁✁✁✁✁✁✁ 3

2 ❂❂
❂❂

❂❂
❂❂

·

·

Let A = kQ/I be the Brauer tree algebra associated with G and gr(A) the associated graded algebra of A. The
quiver Q is as follows.

1
$$ &&

2

��
4

FF

3ff

The regular representation of gr(A) is as follows.

1

2

3

4

1

1

1

⊕

2

3

4

1

2

⊕

3

4

1

2

3

⊕

4

1

2

3

4

Note that gr(A) = gr(A) = C. We have that G′ is the following Brauer graph

v5

v1
1

v2

4 tttttt

2 ❏❏
❏❏

❏❏
3

v3

v4

where m(v1) = 3, m(v2) = 2 and m(v3) = m(v4) = m(v5) = 1. The regular representation of the corresponding
Brauer graph algebra B is as follows.
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1

2

3

41

1

1

2

3

4

1

⊕

2

3

4

1

2

3

4

1

2

⊕

3

4

1

2

3

4

1

2

3

⊕

4

1

2

3

4

1

2

3

4

Note that B = B/ soc(P1) and C ∼= B/(rad5(P1)⊕ rad5(P2)⊕ rad5(P3)⊕ rad5(P4)), where Pi is the projective
cover of the simple B-module Si corresponding to the edge i in G′. Since B is not of polynomial growth and B
is not of polynomial growth, C is not of polynomial growth and therefore gr(A) is not of polynomial growth.

Lemma 4.5. Let gr(A) = kQ/I2 be defined in (2.2). If m0 = 1 and κ1 = 1, or m0 = 2, κ0 = 1 and κ1 = 0,

then gr(A) is 1-domestic and therefore the cardinality of Ba(gr(A)) is 1.

Proof. If m0 = 1 and κ1 = 1, then there are only two unbalanced edges v
(i)
S

i v
(i)
L and v

(j)
S

j v
(j)
L in G such

that j is in Gi,S and dG(v
(j)
S , v

(i)
S )+1 = dG(v

(j)
L , v

(i)
S ). Let i1 < i2 < · · · < it < i1 (resp. j1 < j2 < · · · < jt1 < j1)

be the cyclic ordering at v
(i)
L (resp. v

(j)
L ), where i1 = i (resp. j1 = j) and t = val(v

(i)
L ) (resp. t1 = val(v

(j)
L )).

Note that t > 2 and t1 > 2. Let E1 = {i1, i2, . . . , it} and E2 = {j1, j2, . . . , jt1}, where the edge ik is incident

to v
(i)
L and v′k for any 2 ≤ k ≤ t, and the edge jk is incident to v

(j)
L and w′

k for any 2 ≤ k ≤ t1. We denote by
E3 the set of all unbalanced edges different from i and j in G, and by rk the element in P corresponding to the
unbalanced edge k in E3. There are algebra homomorphisms as follows.

gr(A) ։ gr(A) ։ gr(A)/(
⊕

k∈E3

rk).

Since m0 = 1 and κ1 = 1, we have that grd(u) ≥ grd(v) for any edge u v different from i and j in

G satisfying dG(u, v
(i)
S ) + 1 = dG(v, v

(i)
S ), and the unique walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from v

(i)
S to v

(j)
S

satisfies grd(v1) = grd(v2) = . . . = grd(vk), where v1 = v
(i)
S , vk = v

(j)
S , and ai is an edge incident to the vertices

vi and vi+1 for each 1 ≤ i ≤ k − 1. Then G satisfies ⋆-condition with respect to any unbalanced edge in E3.

Therefore, by Lemma 3.10, gr(A) and gr(A)/(
⊕

k∈E3
rk) have the same representation type. In particular, since

κ0(m0 − 1) + κ1 = 1 6= 0, they are of infinite representation type.

Let G′ = (V (G), E(G),m) be a Brauer graph, wherem(v
(i)
L ) = m(v

(j)
L ) = 2 andm(v) = 1 for the other vertices

v. Let B be the Brauer graph algebra associated with the new Brauer graph G′ and B the corresponding string
algebra defined in (2.1). Note that the quiver of B is also Q. By the construction of the Brauer graph G′ and
Theorem 2.8, we have that B and B are 1-domestic.

Let E4 = {ik|grd(v
(i)
L ) ≥ grd(v′k), 1 < val(v′k), 2 ≤ k ≤ t} and E5 = {jk|grd(v

(j)
L ) ≥ grd(w′

k), 1 < val(w′
k), 2 ≤

k ≤ t1} (which are also defined in the original Brauer graph G), where the edge ik (resp. jk) is incident to v
(i)
L

(resp. v
(j)
L ) and v′k (resp. w′

k) in G for any 2 ≤ k ≤ t (resp. 2 ≤ k ≤ t1). We can get the following algebra
isomorphism from their constructions

gr(A)/(
⊕

k∈E3

rk) ∼= B/(
⊕

k∈E1\E4

radt+1(Pk)⊕
⊕

k∈E4

radt(Pk)⊕
⊕

k∈E2\E5

radt1+1(Pk)⊕
⊕

k∈E5

radt1(Pk)),

where Pk is the projective cover of the simple B-module Sk corresponding to the edge k in G′.

Since B is 1-domestic and gr(A)/(
⊕

k∈E3
rk) is of infinite representation type, we have that gr(A)/(

⊕

k∈E3
rk)

is 1-domestic and therefore gr(A) is 1-domestic. Hence, the cardinality of Ba(gr(A)) is 1.

If m0 = 2, κ0 = 1 and κ1 = 0, then there is only one unbalanced edge vS
i vL in G such that v0 is

in Gi,S . Similarly as above, let i1 < i2 < · · · < it < i1 be the cyclic ordering at vL, where i1 = i and
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t = grd(vL) = val(vL). Let E1 = {i1, i2, . . . , it}, where the edge ik is incident to vL and v′k for any 2 ≤ k ≤ t.
We denote by E2 the set of all unbalanced edges different from i in G, and by rk the element in P corresponding
to the unbalanced edge k in E2.

Let G′ = (V (G), E(G),m) be a Brauer graph, where m(vL) = m(v0) = 2 and m(v) = 1 for the other vertices
v. Let B be the Brauer graph algebra associated with the new Brauer graph G′ and B the corresponding string
algebra defined in (2.1). Note that B and B are 1-domestic.

Let E3 = {ik|grd(vL) ≥ grd(v′k), 1 < val(v′k), 2 ≤ k ≤ t} (which is also defined in the original Brauer graph G),
where the edge ik is incident to vL and v′k in G for any 2 ≤ k ≤ t. We can get the following algebra isomorphism

gr(A)/(
⊕

k∈E2

rk) ∼= B/(
⊕

k∈E1\E3

radt+1(Pk)⊕
⊕

k∈E3

radt(Pk)),

where Pk is the projective cover of the simple B-module Sk corresponding to the edge k in G′. We also have
that gr(A) is 1-domestic and the cardinality of Ba(gr(A)) is 1. �

We give an example to illustrate the above result.

Example 4.6. Let G be the following Brauer tree with m0 = 2.

·
4

·

v0
1

·

3 ✇✇✇✇✇✇

2 ●●
●●

●●

·

Note that κ0 = 1 and κ1 = 0.

Let A = kQ/I be the Brauer tree algebra associated with G and gr(A) the associated graded algebra of A. The
quiver Q is as follows.

1

β0

&&
α0 :: 2

β1 ��
3β2

VV
γ0

&&
4

γ1

ff

The regular representation of gr(A) is as follows.

1

2

3

1

1 ⊕

2

3

1

2

⊕

3

1

2

3

4 ⊕

4

3

4

Note that gr(A) = gr(A). Moreover, b := α−1
0 β2β1β0 is the unique band in gr(A) (after rotation or taking

inverse). We have that G′ is the following Brauer graph

v4
4

v5

v1
1

v2

3 tttttt

2 ❏❏
❏❏

❏❏

v3
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where m(v1) = 2, m(v2) = 2 and m(v3) = m(v4) = m(v5) = 1. The regular representation of the corresponding
Brauer graph algebra B is as follows.

1

2

3

1

1

2

3

1

⊕

2

3

1

2

3

1

2

⊕

3

1

2

3

1

2

3

4

⊕

4

3

4

Note that B = B/(soc(P1) ⊕ soc(P3)) and gr(A)/r3 ∼= B/(rad4(P1) ⊕ rad4(P2) ⊕ rad3(P3)), where Pi is the
projective cover of the simple B-module Si corresponding to the edge i in G′. Since B is 1-domestic, B is
1-domestic, and gr(A)/r3 is of infinite representation type, we have that gr(A)/r3 is 1-domestic and therefore
gr(A) is 1-domestic.

Lemma 4.7. Let gr(A) = kQ/I2 defined in (2.2). If m0 = 2, κ0 ≥ 2 or m0 = 2, κ1 6= 0, then the cardinality

of Ba(gr(A)) is infinite and gr(A) is not of polynomial growth.

Proof. We have two cases to consider.

Case 1. If m0 = 2 and κ0 ≥ 2, then there are two unbalanced edges v
(i)
S

i v
(i)
L and v

(j)
S

j v
(j)
L in

G such that the exceptional vertex v0 is a vertex in Gi,S and it is also a vertex in Gj,S . There is a walk

[v1, a1, v2, a2, v3, . . . , vk−1, ak−1, vk] (resp. [v′1, a
′
1, v

′
2, a

′
2, v

′
3, . . . , v

′
k′−1, a

′
k′−1, v

′
k′ ]) from v0 to v

(i)
L (resp. v

(j)
L ),

where v1 = v0, vk = v
(i)
L , ak−1 = i (resp. v′1 = v0, v

′
k′ = v

(j)
L , a′k′−1 = j) and al (resp. a

′
l) is an edge incident to

the vertices vl (resp. v
′
l) and vl+1 (resp. v′l+1) for each 1 ≤ l ≤ k − 1 (resp. 1 ≤ l ≤ k′ − 1).

(a) If a1 = a′1, then Q contains the following subquiver

·

β′

t1 ��

·

β2

��
. . .

44

j

β1

44

β′

1

tt

. . .

tt
·

β′

2

RR

·

βs1

RR

.

.

.

·

γs2

SS

·

γ′

2

RR . . .

ss

a1

γ′

1

ss

γ1

33

. . .

33
·

γ2

��

·

γ′

t2 ��

. . .
·

α′

t ��

·

α2

��
. . .

33

i

α1

44

α′

1

tt

. . .

ss
·

α′

2

SS

·

αs

QQ

,

where s = val(v
(i)
S ), t = val(v

(i)
L ), s1 = val(v

(j)
S ), t1 = val(v

(j)
L ), s2 = val(v2), t2 = val(v0), α

′
t . . . α

′
1, β

′
t1
. . . β′

1

and γ′
t2
. . . γ′

1 are not in I2.

There is a simple string ck1
. . . c2c1 (resp. dk′

1
. . . d2d1) satisfying c1 = γ−1

s2
and t(ck1

) = i (resp. d1 = γ−1
s2

and
t(dk′

1
) = j).

(1) If ck1
is an inverse arrow (in other words, ck1

= β−1
1 ), then β′

t1
. . . β′

1ck1
. . . c2c1γ

′
t2
· · · γ′

1 is also a string.

There exists a simple string c′k2
. . . c′2c

′
1 satisfying c′1 = β−1

s1
and t(c′k2

) = a1. Then

b1 := c′k2
. . . c′2c

′
1β

′
t1
. . . β′

1ck1
. . . c2c1γ

′
t2
· · · γ′

1

is a band with source a1.
(2) If ck1

is an arrow (in other words, ck1
= βs1), then (β′

1)
−1

. . . (β′
t1
)
−1

ck1
. . . c2c1γ

′
t2
. . . γ′

1 is also a string. In
this situation we can similarly get a band b1 as in (1).
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Similarly, we have two cases for dk′

1
. Then b2 := d′k′

2

. . . d′2d
′
1α

′
t . . . α

′
2α

′
1dk′

1
. . . d2d1γ

′
t2
· · · γ′

1 (or b2 := d′k′

2

. . . d′2d
′
1

(α′
1)

−1 . . . (α′
t)

−1dk′

1
. . . d2d1γ

′
t2
· · · γ′

1) is a band with source a1.

(b) If a1 6= a′1, then dG(v
(j)
S , v

(i)
S ) + 1 = dG(v

(j)
L , v

(i)
S ) and j is in Gi,S . Therefore (i, j) is an unbalanced edge

pair. We have that Q contains the following subquivers

·

β′

t1 ��

·

β2

��. . .

44

j

β1

55

β′

1

uu

. . .

tt·

β′

2

SS

·

βs1

SS
. . . . . .

·

αs

��

·

α′

2

��. . .

33

i

α′

1

44

α1

tt

. . .

ss·

α2

SS

·

α′

t

RR

·

γ′

t2 ��

·

γ2

��. . .

33

a1

γ1

44

γ′

1

tt

. . .

ss·

γ′

2

SS

·

γs2

TT . . . . . .

·

αs

��

·

α′

2

��. . .

33

i

α′

1

44

α1

uu

. . .

tt·

α2

SS

·

α′

t

QQ

,

where s = val(v
(i)
S ), t = val(v

(i)
L ), s1 = val(v

(j)
S ), t1 = val(v

(j)
L ), t2 = val(v0), s2 = val(v2), α

′
t . . . α

′
1, β

′
t1
. . . β′

1

and γ′
t2
. . . γ′

1 are not in I2.

There is a simple string ck1
. . . c2c1 (resp. dk′

1
. . . d2d1) satisfying c1 = α−1

s and t(ck1
) = j (resp. d1 = α−1

s

and t(dk′

1
) = a1).

(1) If ck1
is an inverse arrow (in other words, ck1

= β−1
1 ), then β′

t1
. . . β′

1ck1
. . . c2c1α

′
t · · ·α

′
1 is also a string.

There exists a simple string c′k2
. . . c′2c

′
1 satisfying c′1 = β−1

s1
and t(c′k2

) = i. Then

b1 := c′k2
. . . c′2c

′
1β

′
t1
. . . β′

1ck1
. . . c2c1α

′
t · · ·α

′
1

is a band with source i.
(2) If ck1

is an arrow (in other words, ck1
= βs1), then (β′

1)
−1

. . . (β′
t1
)
−1

ck1
. . . c2c1α

′
t · · ·α

′
1 is also a string. In

this situation we can similarly get a band b1 as in (1).

Similarly, we have two cases for dk′

1
. Then b2 := d′k′

2

. . . d′2d
′
1γ

′
t2
. . . γ′

2γ
′
1dk′

1
. . . d2d1α

′
t · · ·α

′
1 (or b2 := d′k′

2

. . . d′2d
′
1

(γ′
1)

−1 . . . (γ′
t2
)−1dk′

1
. . . d2d1α

′
t · · ·α

′
1) is a band with source i.

In either case, we have that two distinct bands b1 and b2 in gr(A) and b1 and b2 satisfy the condition of Lemma

3.13 by construction. Therefore, the cardinality of Ba(gr(A)) is infinite and gr(A) is not of polynomial growth.

Case 2. If m0 = 2 and κ1 6= 0, by Lemma 3.16, then there are two unbalanced edges v
(i)
S

i v
(i)
L and

v
(j)
S

j v
(j)
L in G such that v0 is in Gi,S and (i, j) is an unbalanced edge pair. It is similar to the above case

(b). We still get our desired result. �

We give an example to illustrate the above result.

Example 4.8. Let G be the following Brauer tree with m0 = 2.

·
2

❏❏
❏❏

❏❏
❏ ·

·
1

·
6

7 ✇✇✇✇✇✇

5 ●●
●●

●●
·

·

3
✉✉✉✉✉✉✉ 4
v0 ·
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Let A = kQ/I be the Brauer graph algebra associated with G and gr(A) the associated graded algebra of A.
The quiver Q is as follows.

2

β1

��

1

β0

xx
α0

&&
5

α1

��
4δ0 ::

γ1

88 3

γ0

xx

β2

GG

7

α3

NN

6
α2

ff

We have that b1 = γ−1
1 β1β0β2γ

−1
0 δ0 and b2 = γ−1

1 β1β0α
−1
0 α−1

1 α−1
2 α−1

3 β2γ
−1
0 δ0 are bands in gr(A)

Lemma 4.9. Let gr(A) = kQ/I2 be defined in (2.2). If κ1 ≥ 2, then the cardinality of Ba(gr(A)) is infinite
and gr(A) is not of polynomial growth.

Proof. Since κ1 ≥ 2, by Lemma 3.17, there are three unbalanced edges v
(i)
S

i v
(i)
L , v

(j)
S

j v
(j)
L and v

(k)
S

k

v
(k)
L in G such that (i, j) and (i, k) are unbalanced edge pairs. Then Q contains the following subquiver

·

β′

t1 ��

·

β2

��
. . .

44

j

β1

44

β′

1

tt

. . .

tt
·

β′

2

SS

·

βs1

RR

.

.

.

·

γs2

RR

·

γ′

2

SS . . .

ss

i

γ′

1

tt

γ1

44

. . .

33
·

γ2

��

·

γ′

t2 ��

. . .
·

α′

t ��

·

α2

��
. . .

33

k

α1

44

α′

1

tt

. . .

ss
·

α′

2

SS

·

αs

RR

,

where s = val(v
(k)
S ), t = val(v

(k)
L ), s1 = val(v

(j)
S ), t1 = val(v

(j)
L ), s2 = val(v

(i)
S ), t2 = val(v

(i)
L ), α′

t . . . α
′
1, β

′
t1
. . . β′

1

and γ′
t2
. . . γ′

1 are not in I2.

There is a simple string ck1
. . . c2c1 (resp. dk′

1
. . . d2d1) satisfying c1 = γ−1

s2
and t(ck1

) = j (resp. d1 = γ−1
s2

and
t(dk′

1
) = k).

(1) If ck1
is an inverse arrow (in other words, ck1

= β−1
1 ), then β′

t1
. . . β′

1ck1
. . . c2c1γ

′
t2
· · · γ′

1 is also a string.

There exists a simple string c′k2
. . . c′2c

′
1 satisfying c′1 = β−1

s1
and t(c′k2

) = i. Then

b1 := c′k2
. . . c′2c

′
1β

′
t1
. . . β′

1ck1
. . . c2c1γ

′
t2
· · · γ′

1

is a band with source i.
(2) If ck1

is an arrow (in other words, ck1
= βs1), then (β′

1)
−1

. . . (β′
t1
)
−1

ck1
. . . c2c1γ

′
t2
. . . γ′

1 is also a string. In
this situation we can similarly get a band b1 as in (1).

Similarly, we have two cases for dk′

1
. Then b2 := d′k′

2

. . . d′2d
′
1α

′
t . . . α

′
2α

′
1dk′

1
. . . d2d1γ

′
t2
· · · γ′

1 (or b2 := d′k′

2

. . . d′2d
′
1

(α′
1)

−1 . . . (α′
t)

−1dk′

1
. . . d2d1γ

′
t2
· · · γ′

1) is a band with source i. Moreover, b1 and b2 satisfy the condition of

Lemma 3.13 by construction. Therefore, the cardinality of Ba(gr(A)) is infinite and gr(A) is not of polynomial
growth. �

By the above results, we have the following characterization of domestic representation type of gr(A).

Proposition 4.10. Let A be the Brauer tree algebra associated with a Brauer tree with an exceptional vertex
v0 of multiplicity m0 and gr(A) the graded algebra associated with the radical filtration of A. Then the following
are equivalent.

(1) gr(A) is of polynomial growth.
(2) gr(A) is domestic.
(3) gr(A) is 1-domestic.
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(4) κ0(m0 − 1) + κ1 = 1.

(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

5. The case that G is a tree with m(v) = 2 for exactly two vertices and m(v) = 1 for other

vertices

In this section, we describe when gr(A) = kQ/I ′ is domestic under the assumption that G = (V (G), E(G),m)
is a tree with m(v) = 2 for exactly two vertices v = w0, w1 ∈ V (G) and m(v) = 1 for all v ∈ V (G), v 6= w0, w1,
where V (G) is the vertex set, E(G) is the edge set and m is the multiplicity function of G.

Proposition 5.1. Let gr(A) = kQ/I2 be defined in (2.2). If there is an unbalanced edge vS
i vL in G such

that w0 and w1 are in Gi,S. Then gr(A) and gr(A) are not of polynomial growth.

Proof. Using an approach similar to the proof of Proposition 4.3, we have that gr(A) and gr(A) are not of
polynomial growth. �

Lemma 5.2. Let gr(A) = kQ/I2 be defined in (2.2). If there is an unbalanced edge vS
i vL in G such that

w0 and w1 are in different connected branch of G \ i. Then the cardinality of Ba(gr(A)) is infinite and gr(A) is
not of polynomial growth.

Proof. Without loss of generality, we assume that w0 is in Gi,S and w1 is in Gi,L. We consider the walk

[v1, a1, v2, . . . , vk−1, ak−1, vk] from w0 to w1, where v1 = w0, vk = w1. There is an edge vj
aj vj+1 in the walk

such that aj = i, vj = vS and vj+1 = vL. Then Q contains the following subquiver

·

β′

t1 ��

·

β2

��
. . .

33

ak−1

β1

22

β′

1

rr

. . .

ss
·

β′

2

SS

·

βs1

VV
. . . . . .

·

α′

t ��

·

α2

��
. . .

33

i

α1

44

α′

1

tt

. . .

ss
·

α′

2

SS

·

αs

RR
. . . . . .

·

γs2

��

·

γ′

2

��
. . .

33

a1

γ′

1

33

γ1

ss

. . .

ss
·

γ2

SS

·

γ′

t2

SS

,

where s = val(vS), t = val(vL), s1 = val(vk−1), t1 = val(w1), s2 = val(v2), t2 = val(w0), α
′
t . . . α

′
1, β

′
t1
. . . β′

1 and
γ′
t2
. . . γ′

1 are not in I2.

There is a simple string ck1
. . . c2c1 (resp. dk′

1
. . . d2d1) satisfying c1 = γ−1

s2
and t(ck1

) = ak−1 (resp. d1 = γ−1
s2

and t(dk′

1
) = i).

(1) If ck1
is an inverse arrow (in other words, ck1

= β−1
1 ), then β′

t1
. . . β′

1ck1
. . . c2c1γ

′
t2
· · · γ′

1 is also a string.

There exists a simple string c′k2
. . . c′2c

′
1 satisfying c′1 = β−1

s1
and t(c′k2

) = a1. Then

b1 := c′k2
. . . c′2c

′
1β

′
t1
. . . β′

1ck1
. . . c2c1γ

′
t2
· · · γ′

1

is a band with source a1.
(2) If ck1

is an arrow (in other words, ck1
= βs1), then (β′

1)
−1

. . . (β′
t1
)
−1

ck1
. . . c2c1γ

′
t2
. . . γ′

1 is also a string. In
this situation we can similarly get a band b1 as in (1).

Similarly, we have two cases for dk′

1
. Then b2 := d′k′

2

. . . d′2d
′
1α

′
t . . . α

′
2α

′
1dk′

1
. . . d2d1γ

′
t2
· · · γ′

1 (or b2 := d′k′

2

. . . d′2d
′
1

(α′
1)

−1 . . . (α′
t)

−1dk′

1
. . . d2d1γ

′
t2
· · · γ′

1) is a band with source a1. Moreover, b1 and b2 satisfy the condition of

Lemma 3.13 by construction. Therefore, the cardinality of Ba(gr(A)) is infinite and gr(A) is not of polynomial
growth. �

By Proposition 3.11, Proposition 5.1 and Lemma 5.2, we have the following characterization of domestic
representation type of gr(A).

Proposition 5.3. Let A be the Brauer graph algebra associated with a Brauer graph G which is a tree with
m(v) = 2 for exactly two vertices v = w0, w1 and m(v) = 1 for all v 6= w0, w1, and gr(A) the graded algebra
associated with the radical filtration of A. Then the following are equivalent.
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(1) gr(A) is of polynomial growth.
(2) gr(A) is domestic.
(3) gr(A) is 1-domestic.

(4) There is no unbalanced edge in G or w0 and w1 are in Gi,L for any unbalanced edge vS
i vL in G (In

other words, G satisfies ⋆-condition with respect to any unbalanced edge in G).

(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

We can describe when gr(A) is domestic from the graded degrees of vertices in G point of view in the following

Proposition 5.4. Let A be the Brauer graph algebra associated with a Brauer graph G which is a tree with
m(v) = 2 for exactly two vertices v = w0, w1 and m(v) = 1 for all v 6= w0, w1, and gr(A) the associated graded
algebra of A. Then gr(A) is domestic if and only if it satisfies the following conditions.

(1) grd(w0) = grd(w1).
(2) Any walk from w0 (or from w1) is degree decreasing.

Proof. “=⇒” Suppose on the contrary that grd(w0) 6= grd(w1). Consider the walk [v1, a1, v2, . . . , vk−1, ak−1, vk]
from w0 to w1, where v1 = w0, vk = w1, we have that there is an unbalanced edge vi

ai vi+1 with grd(vi) 6=
grd(vi+1) for some 1 ≤ i ≤ k − 1 in the walk. Without loss of generality, we assume that grd(vi) < grd(vi+1).
Then w0 is in Gai,S and w1 is in Gai,L, by Proposition 5.3, gr(A) is nondomestic which is a contradiction.
Therefore grd(w0) = grd(w1) and the condition (1) holds.

In order to verify the condition (2). Suppose on the contrary that there is a vertex w′ in G such that the
walk [v1, a1, v2, a2, v3, . . . , vk−1, ak−1, vk] from w0 to w′ is not degree decreasing, where v1 = w0 and vk = w′.
In other words, there exists an unbalanced edge vi

ai vi+1 with grd(vi) < grd(vi+1) for some 1 ≤ i ≤ k− 1 in
the walk. We have that w0 is in Gai,S . Moreover, since gr(A) is domestic, by Proposition 5.3, w0 is in Gai,L.
A contradiction.

“⇐=” We suppose on the contrary that gr(A) is nondomestic. By Proposition 2.10 and Proposition 5.3, we

have that there is some unbalanced edge vS
i vL such that w0, w1 are in Gi,S or w0, w1 are in different

connected branch of G \ i.

Case 1. If w0, w1 are in Gi,S . Consider the walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from w0 to vL, where v1 = w0

and vk = vL. Then i = ak−1. Since the above walk is degree decreasing, we have grd(vS) ≥ grd(vL), which is
clearly a contradiction.

Case 2. If w0, w1 are in different connected branch of G \ i. Consider the walk [v1, a1, v2, . . . , vk−1, ak−1, vk]
from w0 to w1, where v1 = w0 and vk = w1. Then i is an edge in the walk. Since the above walk is degree
decreasing, we have grd(w0) 6= grd(w1). It contradicts the condition (1). �

6. The case that G is a graph with a unique cycle and m ≡ 1

In this section, we describe when gr(A) = kQ/I ′ is domestic in the case that G is a graph with a unique cycle
and m(v) = 1 for any vertex v in G.

Proposition 6.1. Let gr(A) = kQ/I2 be defined in (2.2). If there is an unbalanced edge vS
i vL which is not

an edge in the unique cycle such that the unique cycle is in Gi,S . Then gr(A) and gr(A) are not of polynomial
growth.

Proof. Using an approach similar to the proof of Proposition 4.3, we have that gr(A) and gr(A) are not of
polynomial growth. �

Lemma 6.2. If some edges in the unique cycle are unbalanced edges, then the number of unbalanced edges in

the unique cycle is greater than 1. Precisely, if there is an unbalanced edge v
(i)
S

i v
(i)
L in the unique cycle,

then there is another unbalanced edge v
(j)
S

j v
(j)
L with v

(i)
S 6= v

(j)
L in the unique cycle such that there is a walk

[v1, a1, v2, . . . , vk−1, ak−1, vk] from v
(i)
S to v

(j)
L satisfying i 6= a1 and ak−1 = j, where v1 = v

(i)
S , vk = v

(j)
L and al

is an edge in the unique cycle incident to the vertices vl and vl+1 for each 1 ≤ l ≤ k − 1.
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Proof. Note that the unique cycle is connected, if there exists an unbalanced edge in the unique cycle, then the
number of unbalanced edges in the unique cycle is greater than 1.

For any unbalanced edge v
(i)
S

i v
(i)
L in the unique cycle, there is also an unbalanced edge v

(j′)
S

j′ v
(j′)
L

different from i in the unique cycle. If v
(i)
S = v

(j′)
L , by the connectivity of cycle, then there is an unbalanced

edge v
(j)
S

j v
(j)
L different from i and j′ in the unique cycle. Therefore, v

(i)
S 6= v

(j)
L .

The above shows that for any unbalanced edge v
(i)
S

i v
(i)
L in the unique cycle, we have another unbalanced

edge v
(j)
S

j v
(j)
L satisfying v

(i)
S 6= v

(j)
L in the unique cycle. There is a walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from

v
(i)
S to v

(j)
L satisfying i 6= a1, where v1 = v

(i)
S , vk = v

(j)
L and al is an edge in the unique cycle incident to the

vertices vl and vl+1 for each 1 ≤ l ≤ k − 1. Moreover, there is also a walk [v′1, a
′
1, v

′
2, . . . , v

′
k′−1, a

′
k′−1, v

′
k′ ] from

v
(i)
S to v

(j)
L different from the above walk, where v′1 = v

(i)
S , v′k′ = v

(j)
L , a′1 = i and a′l is an edge in the unique

cycle incident to the vertices v′l and v′l+1 for each 1 ≤ l ≤ k′ − 1. We have the following two cases for ak−1.

(a) If ak−1 = j, then j and the walk [v1, a1, v2, . . . , vk−1, ak−1, vk] give our desired result.
(b) If ak−1 6= j, then a′k′−1 = j and there are two cases to be considered.

(1) If grd(v
(j)
S ) < grd(v

(i)
L ), by the connectivity of cycle, then there is an unbalanced edge a′t in the walk

[a′1, a
′
2, . . . , a

′
k′−1] satisfying grd(v′t) > grd(v′t+1) and v′t 6= v

(i)
S . The unbalanced edge a′t and the walk

[v1, a1, v2, . . . , vk, j, v
(j)
S , . . . , v′t+1, a

′
t, v

′
t] give our desired result.

(2) If grd(v
(j)
S ) ≥ grd(v

(i)
L ), then grd(v

(i)
S ) < grd(v

(j)
L ) and there is an unbalanced edge at in the walk

[a1, a2, . . . , ak−1] satisfying grd(vt) < grd(vt+1). Therefore the unbalanced edge at and the walk
[v1, a1, v2, . . . , vt, at, vt+1] give our desired result.

�

Lemma 6.3. Let gr(A) = kQ/I2. If some edges in the unique cycle are unbalanced edges, then the cardinality

of Ba(gr(A)) is infinite and gr(A) is not of polynomial growth.

Proof. If some edges in the unique cycle are unbalanced edges, by Lemma 6.2, then there are at least two

unbalanced edges v
(i)
S

i v
(i)
L and v

(j)
S

j v
(j)
L with v

(i)
S 6= v

(j)
L in the unique cycle such that there is a walk

[v1, a1, v2, a2, v3, . . . , vk−1, ak−1, vk] from v
(i)
S to v

(j)
L satisfying i 6= a1 and ak−1 = j, where v1 = v

(i)
S , vk = v

(j)
L

and al is an edge in the unique cycle incident to the vertices vl and vl+1 for each 1 ≤ l ≤ k−1. Then Q contains
the following subquiver

·

β′

t1 ��

·

β2

��. . .

44

j

β1

55

β′

1

uu

. . .

tt·

β′

2

SS

·

βs1

SS
. . . . . .

·

αs

��

·

α′

2

��. . .

33

i

α′

1

44

α1

uu

. . .

tt·

α2

SS

·

α′

t

QQ

,

where s = val(v
(i)
S ), t = val(v

(i)
L ), s1 = val(v

(j)
S ), t1 = val(v

(j)
L ), α′

t . . . α
′
1 and β′

t1
. . . β′

1 are not in I2.

Since there is a unique cycle in G, there is a band b1 = α′
t . . . α

−1
s in A. Therefore b1 is also a band in gr(A).

There is a simple string ck1
. . . c2c1 satisfying c1 = α−1

s and t(ck1
) = j and it is constructed from the walk

[a1, a2, . . . , ak−1].

(1) If ck1
is an inverse arrow (in other words, ck1

= β−1
1 ), then β′

t1
. . . β′

1ck1
. . . c2c1α

′
t · · ·α

′
1 is also a string.

There exists a simple string c′k2
. . . c′2c

′
1 satisfying c′1 = β−1

s1
and t(c′k2

) = i. Then

b2 := α′
t . . . α

′
1c

′
k2

. . . c′2c
′
1β

′
t1
. . . β′

1ck1
. . . c2c1

is a band with source i.
(2) If ck1

is an arrow (in other words, ck1
= βs1), then (β′

1)
−1

. . . (β′
t1
)
−1

ck1
. . . c2c1 α′

t . . . α
′
1 is also a string. In

this situation we can similarly get a band b2 as in (1).
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Using an approach similar to the proof of Lemma 3.13, we have that the cardinality of Ba(gr(A)) is infinite
and gr(A) is not of polynomial growth. �

We give an example to illustrate the above result.

Example 6.4. Let G be the following Brauer graph with m ≡ 1.

·

3 ●●
●●

●●
2

·
1

4

·

·

Let A = kQ/I be the Brauer graph algebra associated with G and gr(A) the associated graded algebra of A. The
quiver Q is as follows.

3
β1

//
γ0

��❃
❃❃

❃❃
❃❃

❃
2

β0oo

α1

��

1
α0

oo

4

α2

@@��������
γ1

^^❃❃❃❃❃❃❃❃

Note that gr(A) = gr(A)/ soc(P3), where P3 is the projective cover of simple gr(A)-module S3 corresponding to
the vertex 3 in Q.

We have that b1 = α0α2γ
−1
0 β0α

−1
1 γ1β

−1
1 and b2 = α0α2α1β

−1
0 γ0α

−1
2 α−1

0 α−1
1 γ1β

−1
1 are bands in gr(A).

By Proposition 3.12, Proposition 6.1 and Lemma 6.3, we have the following characterization of domestic
representation type of gr(A).

Proposition 6.5. Let A be the Brauer graph algebra associated with a Brauer graph G and gr(A) the graded
algebra associated with the radical filtration of A, where G is a graph with a unique cycle and m(v) = 1 for all
v ∈ V (G). Then the following are equivalent.

(1) gr(A) is of polynomial growth.
(2) gr(A) is domestic.
(3) gr(A) is 1-domestic (resp. 2-domestic) if the unique cycle is of odd length (resp. even length).
(4) There is no unbalanced edges in G or all edges in the unique cycle are not unbalanced edges and the unique

cycle is in Gi,L for any unbalanced edge vS
i vL (In other words, G satisfies ⋆-condition with respect to

any unbalanced edge in G).

(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

We can describe when gr(A) is domestic from the graded degrees of vertices in G point of view in the following

Proposition 6.6. Let A be the Brauer graph algebra associated with a Brauer graph G and gr(A) the associated
graded algebra of A, where G is a graph with a unique cycle and m ≡ 1. Then gr(A) is domestic if and only if
it satisfies the following conditions.

(1) grd(u) = grd(v) for any two distinct vertices u and v in the unique cycle.
(2) Any walk from any vertex in the unique cycle is degree decreasing.

Proof. “=⇒” Since all edges in the unique cycle are not unbalanced edges, grd(u) = grd(v) for any two vertices
u and v in the unique cycle (hence the condition (1) holds).

In order to verify the condition (2). We suppose, on the contrary that, there is a vertex w in G such that
a walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from v to w is not degree decreasing, where v is a vertex in the unique
cycle and vk = w. In other words, there is an unbalanced edge vi

ai vi+1 with grd(vi) < grd(vi+1) for some
1 ≤ i ≤ k − 1 in the walk. We have v is in Gai,S and the unique cycle is in Gai,S. Moreover, since gr(A) is
domestic, by Proposition 6.5, the unique cycle is in Gai,L. A contradiction.

“⇐=” We suppose on the contrary that gr(A) is nondomestic. By Proposition 2.10 and Proposition 6.5, since
it contradicts the condition (1) that some edges in the unique cycle are unbalanced edges, we have that all edges
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in the unique cycle are not unbalanced edges and therefore there is some unbalanced edge vS
i vL such that

the unique cycle is in Gi,S . For a vertex v in the unique cycle and any walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from
v to vL which is degree decreasing, we have that i is an edge in the walk and therefore grd(vS) ≥ grd(vL), which
is clearly a contradiction. Our assumption is false and therefore gr(A) is domestic. �
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