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THE ASSOCIATED GRADED ALGEBRAS OF BRAUER GRAPH ALGEBRAS II:
INFINITE REPRESENTATION TYPE

JING GUO, YUMING LIU*, AND YU YE

ABSTRACT. Let G be a Brauer graph and A the associated Brauer graph algebra. Denote by gr(A) the graded
algebra associated with the radical filtration of A. The question when gr(A) is of finite representation type was
answered in [9]. In the present paper, we characterize when gr(A) is domestic in terms of the associated Brauer
graph G.

1. INTRODUCTION

This is a continuation of our study on the associated graded algebras of Brauer graph algebras in [9]. Since
the last paper has determined the finite representation type of this class of algebras, we focus in the present
paper on the infinite representation type of them. In particular, we will characterize the domestic associated
graded algebras of Brauer graph algebras.

Brauer graph algebras are finite dimensional algebras and originate in the modular representation theory of
finite groups. They are defined by combinatorial data based on graphs: underlying every Brauer graph algebra
is a finite graph with a cyclic orientation of the edges at every vertex and a multiplicity function. The class of
Brauer graph algebras coincides with the class of symmetric special biserial algebras. For the representation
theory of Brauer graph algebras, we refer the reader to the survey article [11].

The idea of associating a finite dimensional algebra A to a graded algebra (denoted by gr(A4)) with the radical
filtration of A is not rare in representation theory (see for example, [3, 10]). For a finite dimensional algebra
A defined by quiver with relations, gr(A) often appears as a degeneration of A. The notion of degeneration
comes from the geometric representation theory of algebras. It is known that if Ag is a degeneration of some
algebra A; and Ay is representation-finite (resp. tame), then A; is also representation-finite (resp. tame) (see
[6, 7]). However, the representation type of Ay is usually more complicated than that of A;. In [9], we initiated
the study on comparing the representation theory of gr(A) and that of A in case that A is a Brauer graph
algebra. We have characterized all the algebras gr(A) which are of finite representation type and described the
relationship between the Auslander-Reiten quivers of gr(A) and A in this case.

A Brauer graph algebra A is a self-injective (even symmetric) special biserial algebra; the associated graded
algebra gr(A) is usually not self-injective. Nevertheless, gr(A) is still a special biserial algebra. Thus, both
A and gr(A) have tame representation type. To describe the tameness more precisely, one needs the notions
of domestic and polynomial growth. The relationship between these notions are: domestic = polynomial
growth = tame (cf. Section 2.1). Bocian and Skowroriski have characterized when a Brauer graph algebra A
is domestic in [2]. In the present paper, we characterize when the associated graded algebra gr(A) is domestic.

To state our main result precisely, let us first introduce some notations.

Definition 1.1 (See [9, Definition 2.4]). Let G be a Brauer graph. For each vertex v, we denote by m(v)
the multiplicity of v and by val(v) the valency of v, with the convention that a loop is counted twice in val(v).
Moreover, if val(v) = 1, we denote by v’ the unique vertex adjacent to v. For each vertex v in G, we define the
graded degree grd(v) as follows.

m(v)val(v'), if m(v)val(v) = 1.
Definition 1.2 (Compare with [9, Definition 2.12)). Let G be a Brauer graph.

ord(v) = {m(v)val(v), if m(v)val(v) > 1,
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(1) Ifu—— v is an edge in G, we write the subgraph of G by removing the edge i as follows: G\i = GinwUGiw,
where Gy, (resp. G;) is the connected branch of G\ i containing the vertex u (resp. v). (Note that it may
happen that G, = G;..) Moreover, we denote the set of vertices in Gy, (resp. Giw) by V(Gin) (resp.
V(Giyv)).

(2) An unbalanced edge in G is defined to be an edge associated with two vertices with different graded degrees.
For any unbalanced edge vs —— vy, with grd(vs) < grd(vy) in G, we write the subgraph of G by removing
the edge i as follows: G\i = G, 1,|JGi g, where G; 1, (resp. G s) is the connected branch of G\ i containing
the vertex vy, (resp. vg).

Definition 1.3 (See Section 3 for the details). Let G be a Brauer graph.

(1) A walk (for the notion of a walk in G, see Definition 8.1 below) vi —— vg —— -+ —— vy, from vy to v
in a Brauer graph G is called degree decreasing if grd(v1) > grd(vs) > -+ > grd(vg).
(2) Suppose that G is a Brauer tree with an exceptional vertex vy of multiplicity my.
(2.1) ko is defined to be the number of unbalanced edges vs —— vy, in G such that the exceptional vertex vy
is a vertex in Gy 3.
(2.2) For any vertices u and v in G, dg(u,v) is defined to be the number of edges in the unique walk from
U to v.

(i) () @ 0

(2.3) Given two unbalanced edges vg — v} and vg vy’ in G, we call (i,7) an unbalanced edge pair

if j is an edge in G; s and dg(vfgj),v(si)) +1= dg(’l}(Lj),Ugi)). Let k1 be the number of unbalanced edge
pairs in G.

With the notations above, we have the following main result. One interesting point in this result is that, as
in the finite representation type situation (see [9]), the graded degree function plays a key role in controlling
the domestic type of gr(A).

Theorem 1.4. (See Theorem 3.18) Let A be the Brauer graph algebra associated with a Brauer graph G =
(V(G),E(@)) and gr(A) the graded algebra associated with the radical filtration of A, where V(G) is the vertex
set and E(Q) is the edge set. Then gr(A) is of polynomial growth if and ony if gr(A) is domestic.

Furthermore, we have

(I) gr(A) is 1-domestic if and only if one of the following holds:
(1) G is a Brauer tree with an exceptional vertex vy of multiplicity mq such that ko(mo — 1) + k1 = 1.
(2) G is a tree and there exist two distinct vertices wg, w1, such that the following conditions hold:
(2.1) m(wp) = m(w1) =2 and m(v) =1 for v # wp, ws,
(2.2) grd(wp) = grd(wy),
(2.3) Any walk from wy (or from w1 ) is degree decreasing.
(3) G is a graph with a unique cycle of odd length and m(v) = 1 for all v € V(G), and satisfies the
following conditions:
(3.1) grd(u) = grd(v) for any two vertices w and v in the unique cycle,
(3.2) Any walk from any vertex in the unique cycle is degree decreasing.

(
1) G is a graph with a unique cycle of even length and m(v) =1 for all v € V(G),
2) grd(u) = grd(v) for any two vertices u and v in the unique cycle,
)
(

This paper is organized as follows. In Section 2, we recall various definitions and known facts needed in this
paper, including representation type of finite dimensional algebras, special biserial algebras and string algebras,
Brauer graph algebras and their associated graded algebras. In Section 3, we first introduce the notions of
*-condition and unbalanced edge pair and prove some preliminary results; then we state our main result and its
consequences. The proof of main result is based on careful analyses in different cases according to the shapes
of Brauer graphs; the detailed proofs and examples of three main cases are filled in Section 4-6 respectively.
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2. PRELIMINARIES

Throughout this paper, we fix an algebraically closed field k. Unless otherwise stated, all algebras will be
finite dimensional k-algebras, and all their modules will be finite dimensional left modules. For a k-algebra A,
we denote by rad(A) the Jacobson radical of A. For an A-module M, we denote by soc(M) and rad(M) the
socle and the radical of M, respectively. The length of a module M is denoted by ¢(M), it means the number
of composition factors in any composition series of M.

2.1. Representation type of finite dimensional algebras. We recall the various notions on representation
types of finite dimensional algebras and their relations from the textbook [12, Section XIX.3].

Let A be a finite dimensional k-algebra. We say that A is of finite representation type, if there are only finitely
many non-isomorphic indecomposable A-modules.

Let k[z] be the polynomial algebra in one variable over k. We say that A is of tame representation type, if for
any dimension d, there exists a finite number of A-k[z]-bimodules Q;, for 1 < i < ng, which are finitely generated
and free as right k[z]-modules such that all but a finite number of isomorphism classes of indecomposable A-
modules of dimension d are of the form Q; ®p,) k[z]/(x — A) for some X € k and some 4. For each d, let p(d)
be the least number of such A-k[z]-bimodules. We say that A is of polynomial growth type if there exists a
positive integer m such that pa(d) < d™ for all d > 2; A is of finite growth type (or equivalently, domestic) if
1a(d) < m for some positive integer m and for all d > 1 and A is n-domestic (or n-parametric) if n is the least
such integer m.

Clearly every domestic algebra is of polynomial growth. In other words, if an algebra is not of polynomial
growth, then the algebra is nondomestic. For examples of nondomestic algebras of polynomial growth, we refer
the reader to [13].

It is well known that an algebra of infinite representation type that is not of tame representation type is of
wild representation type, however, our study does not involve the wild representation type.

2.2. Special biserial algebras and string algebras. These algebras are defined by quivers and relations.
For more details on these algebras, we refer to [1], [4], and [11].

For a quiver @, we denote by Q¢ and )7 its vertex set and arrow set respectively. We write a path p in a
quiver from right to left and denote by s(p) and t(p) the start and the end of p, respectively. The length of a
path is defined in an obvious way. As usual, the trivial path at a vertex i is denoted by e;.

Definition 2.1. A finite dimensional k-algebra A is called special biserial if there is a quiver Q and an admissible
ideal T in kQ such that A is Morita equivalent to kQ/I and such that kQ/I satisfies the following conditions:
(1) At every vertex v in Q) there are at most two arrows starting at v and there are at most two arrows ending
at v.

(2) For every arrow « in Q, there exists at most one arrow B such that Ba ¢ I and there exists at most one
arrow ~y such that ay ¢ I.

A special biserial algebra A is called a string algebra if the defining ideal I is generated by paths.

Given a special biserial algebra A = kQ/I, we can associate a string algebra A as follows. Set

L:= {i € Qo | Ae; is an injective and not uniserial module},

Sp = @soc(Aei),
i€l
where Ae; denotes the indecomposable projective A-module at vertex i. Then Sp is an ideal of A and the

quotient algebra A = A/Sy is a string algebra (cf. [4, Section I1.1.3]). Note that the operation () preserves
representation type and we can reconstruct the AR-quiver of A from the AR-quiver of A easily.

Suppose now that A = kQ/I is a string algebra. For an arrow 8 € Q1, we denote by 37! the formal inverse
of B and set s(371) = t(B), t(B~!) = s(B), (B71)~! = B. For convenience, the formal inverse of an arrow will
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be called an inverse arrow. A word of length n is defined by a sequence ¢y, ... cac1, where ¢; € Q1 or ¢; e,
and where t(¢;) = s(¢;41) for 1 <i <n—1. We define

s(en .. .cac1) = s(c1), tlen...cac1) = tey),

and

(cn...coc)) P =crteyt et
For every vertex v in @, there is an empty word 1, of length 0 such that t(1,) = s(1,) = v and 1;! = 1,.
Suppose that a word C := ¢, ...cacy satisfies s(C) = ¢(C), we define a rotation of C' as a word of the form
Ci...C1Cp ...Ci+1. The product of two words is defined by placing them next to each other, provided that the

resulting sequence is a word.

A word C is called a string provided either C' = 1, for some vertex v in @ or C = ¢, ...cecy satisfying
cit1 #¢; tfor 1 <i <n—1, and no subword (or its inverse) of C' belongs to the ideal I. We say that a string
C =cp...cocq with n > 1 is directed if all ¢; are arrows, and C is inverse if all ¢; are inverse arrows. A string
C of positive length is called a band if all powers of C are strings and C' is not a power of a string of smaller
length. Note that a band must contain both arrows and inverse arrows.

On the set of strings, we consider two equivalence relations. Firstly, ~ denotes the relation which identifies C
and C~'; and secondly, we define ~ 4 to be the equivalence relation which identifies each word with its rotations
and their inverses. Let St(A4) (or simply St) be a set of representatives of strings in A under ~, and let Ba(A)
(or simply Ba) be the set of representatives of bands under ~ 4. In the following, we call a subword of a string
a substring.

It is well known that every indecomposable module over a string algebra is either a string module or a band
module. For each element C' in St(A), there is a unique string A-module M (C) up to isomorphism. For each
element B in Ba(A) and for any finite dimensional indecomposable k[z,x~!]-module M = (V, ) (where V
is a n-dimensional k-vector space and ¢ is an invertible linear endomorphism of V'), there is a band module
M(B,n, ) corresponding to B and M. For a detailed explanation of M(B,n, ), we refer the reader to [1,
p.160-161).

Example 2.2. Let A = kQ be the Kronecker algebra defined by the following quiver

11— 2

B

Then A is a string algebra and we can choose St and Ba as follows.
St = {113 123 aaﬁaﬁilaa aﬁilaﬁailﬁa aﬁilaa T }a
Ba={8"ta} = {af™'}.
The string module M (B8~ a) has the Loewy diagram 1 _ 8 a 1,
(81a) 2 e

a 1B . The band module M (8 e, 2, defined by the band S~ a and the
, =L ( %)

K[z, x~1]-module (k?,¢ = (8

and the string module M(aB~1) has

the Loewy diagram

)) corresponds to the representation

> =

o 2.,
k _1>k:,

©
where 0 #£ A € k and Iy denotes the 2 x 2 identity matriz.

For the representation types of special biserial algebras, there is the following theorem.

Theorem 2.3 ([4, 11.3.1 and 11.8.1]). (1) Any special biserial algebra A is tame.
(2) A string algebra A is of finite representation type if and only if there is no band in A.

The representation type and Auslander-Reiten quivers for self-injective special biserial algebras are well studied
by Erdmann and Skowroniski in [5]. Before stating their results, we recall some notions. For any algebra A,
we denote by I'4 the Auslander-Reiten quiver of A and by s[4 the stable Auslander-Reiten quiver of A. For
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the shapes of the translation quivers ZAY, ZAs, ZAs/<T">, /Ipﬁq, we refer to [8]. By /Ip,q we denote the
following orientation of the quiver with underlying extended Dynkin diagram of type Apyq—1:

QU 5
Theorem 2.4. ([5, Theorem 2.1]) Let A = kQ/I be a self-injective special biserial algebra. The following are
equivalent:

(1) sT'a has a component of the form Z[lpyq.

(2) T4 is infinite but has no component of the form ZAX.

(3) There are positive integers m, p, q such that ;T 4 is a disjoint union of m components of the form Z[lp,q,
m components of the form ZA.,/<TP>, m components of the form ZA.,/<7T1> and infinitely many com-
ponents of the form ZA.,/<T>.

) All but a finite number of components of I' s are of the form ZAy,/<1>.

) The number of primitive walks in A is a positive integer.

) A is representation-infinite domestic.

) A is representation-infinite of polynomial growth.

(4
(
(
(

Theorem 2.5. ([5, Theorem 2.2]) Let A = kQ/I be a self-injective special biserial algebra. The following are
equivalent:

(1) sT'a has a component of the form ZAL.

(2) sTa has infinitely many (regular) components of the form ZAXL.

(3) T4 is a disjoint union of a finite number of components of the form ZAo/<T™> with n > 1, infinitely
many components of the form ZAs /<> and infinitely many components of the form ZAZL.

(4) A has infinitely many primitive walks.

(5) A is not of polynomial growth.

Remark 2.6. For the definition of primitive walks (= primitive V-sequences) in a special biserial algebra A,
we refer to [14, Section 2|. In fact, the primitive walks in A are defined using the associated string algebra A
and precisely correspond to the bands in A.

Example 2.7. Let A =kQ/I be the self-injective special biserial algebra defined by the following quiver

Solie]
and the admissible ideal I generated by o2, % and aff — fa. We can choose Ba for A as follows.

Ba={8"ta} = {ap™'}.
Let Q' and Q" be the following quivers respectively:

1 ¢1
1==2; 1=—2.

C2 C2

We have two quiver homomorphisms u and v’ from Q' to Q as follows.

u(l) =u(2) =a, u(G) = a, u(G) = B;u/(1) =v/'(2) = a, W'(G) =B, W'(¢) =0

By [14, Section 2], we have that u and u' are primitive walks in A. They correspond to the bands B~ 'a and
a~ 13 in A respectively. Similarly, we also have two quiver homomorphisms from Q" to Q and they are primitive
walks in A which correspond to the bands fa™' and a3~ in A. According to [14, Proposition 2.3], all the above
primitive walks are equivalent and define isomorphic band modules over A.
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2.3. Brauer graph algebras and their associated graded algebras. In this subsection, we briefly recall
some notions and results on Brauer graphs, Brauer graph algebras and their associated graded algebras. For
more details and examples, we refer to [11, Section 2] and [9, Section 2].

Recall that a Brauer graph is denoted by G = (V(G), E(G), m, 0), where V(G) is the vertex set, E(G) is the
edge set, m is the multiplicity function, and o is the orientation of G. For simplicity, we often leave out the
symbol 0. In case that G is a Brauer tree, the exceptional vertex and whose multiplicity will be denoted by vy
and mg, respectively.

The Brauer graph algebra A associated with a Brauer graph G = (V(G), E(G), m) has the form kQ/I, where
the vertex set Qo of @ is identified with the edge set E(G) of G, and the arrow set Q1 of @ is determined by
the orientation of G. Note that there are at most two arrows starting and ending at every vertex of Q). Every
vertex v € V(G) such that m(v)val(v) > 2 (i.e. v is not truncated), gives rise to a unique cycle C), in @, called
a special cycle at v. If G contains no loops, then any special cycle in @ is a simple cycle (i.e. a cycle with no
repeated arrows and no repeated vertices). Let C, be such a special cycle at v. Then if C, is a representative
in its cyclic permutation class such that ¢(C,) = ¢ = s(Cy), © € Qo, we say that C, is a special i-cycle at v.
If a special i-cycle at v has starting arrow «, then we denote this special i-cycle at v by C,(«). Note that if
1 € E(G) is not a loop, then the special i-cycle at v is unique and we simply write it by C,.

The ideal I in kQ is generated by three types of relations:

Relation of the first type:
C, (a>m(v) —C, (a/)m(v ),

for any ¢ € Qo and for any special i-cycles C(«) and Cy (') at v and v’ respectively such that both v and v’
are not truncated.

Relation of the second type:
aC, (a)m(v),

for any ¢ € Qo, any v € V(G) and where C,(«) is a special i-cycle at v with starting arrow «.

Relation of the third type:
pa,
for any «, 8 € @1 such that Sa is not a subpath of any special cycle except if 8 = « is a loop associated with a
vertex v of valency one and multiplicity m(v) > 1.

It is well known that Brauer graph algebras coincide with symmetric special biserial algebras. From this point
of view, Bocian and Skowrorniski give a characterization of the domestic Brauer graph algebras in [2].

Theorem 2.8 (See [2] and [5], or see [11, Theorem 5.1]). Let A be the Brauer graph algebra with a Brauer graph
G = (V(G),E(G),m), where V(G) is the vertex set, E(G) is the edge set and m is the multiplicity function of
G. Then

(a) A is 1-domestic if and only if one of the following holds
(1) G is a tree with m(v) = 2 for exactly two vertices v = wo, w1 € V(G) and m(v) =1 for all v € V(G),
v # wp, w1 -
(2) G is a graph with a unique cycle of odd length and m(v) =1 for all v € V(QG).
(b) A is 2-domestic if and only if G is a graph with a unique cycle of even length and m(v) = 1 for allv € V(G).
(¢) There are no n-domestic Brauer graph algebras for n > 3.

Note that if G is neither one of the above mentioned cases in Theorem 2.8 nor a Brauer tree, then, by Theorem
2.4, the corresponding Brauer graph algebra A is not of polynomial growth.

We now turn to the associated graded algebras of Brauer graph algebras. The notion of the graded algebra
(denoted by gr(A)) associated to a finite dimensional algebra A with the radical filtration of A plays an important
role in the representation theory. For the definition and elementary properties of gr(A), we refer to [9, Subsection
2.2]. Recall from [9, Subsection 2.3] that, for a Brauer graph algebra A = kQ/I associated with a Brauer graph
G, the graded algebra gr(A) (associated with the radical filtration) of A has the same dimension with A and
can be described by the same quiver and some modified relations. More precisely, gr(A) = kQ/I’, where I’ is
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an admissible ideal in k@ generated by relations of the second and the third types in I and modified relations of
the first type in I. For a relation of the first type C, (a)m(”) — Cy (o/)m(” ) in I, its modified relation is defined
by the term of smaller length between C, ()™ and Cy (a/)™".

From the above description, we know that gr(A) is also special biserial (but not necessarily self-injective).
Thus we can reduce the study on the representation types of A and gr(A) to that of their associated string

algebras A and gr(A). The string algebra A is defined by

A=A/ soc(Ae)), (2.1)
icL
where
L= {Z c Q0| rad(Aei)/soc(Aei) = ‘/i,l D ‘/»L’Q, ‘/i,l 7é 0, %72 7é 0}
For each ¢ € L, there is a relation p; = p; — ¢; of the first type in I, where the length of p; is £(V; 1) + 1, the
length of ¢; is ¢(V;2) + 1. Therefore A can be described by the same quiver @ and an admissible ideal I; in

kQ, where I is generated by the ideal I and new relations {p;,q; | ¢ € L}. Similarly, the string algebra gr(A)
is defined by

gr(A) = gr(4)/ (€D soc(gr(4)es)), (2.2)

ieL’
where
L'={ie L|t(Vi1) = £(Vi2)}.

Note that for each i € L', there is a relation p; = p; —¢; in I’ such that p; and ¢; have the same length. Therefore
gr(A) can be described by the same quiver @) and an admissible ideal I in kQ, where I is generated by the
ideal I’ and new relations {p;,q; | i € L'}.

As a conclusion, the four concerned algebras have the same quiver and the following displayed formulas:

A=kQ/I, A=kQ/L, g(A)=kQ/I', g(A)=kQ/I.
In order to describe some relationships among these algebras, we further generalize some notions from [9].

Definition 2.9 (Compare with [9, Definition 2.12]). Let G = (V(G), E(G), m) be a Brauer graph with graded
degree function grd and A = kQ/I the corresponding Brauer graph algebra. We identify Qo with E(G) by the
natural bijection between them.

(1) For an unbalanced edge u —— v in G, we denote the endpoints of i by ’U(Li), ’U(Si) with grd(v(Li)) > grd(v(si)).
Whenever the context is clear we will omit the superscript (i). Moreover, we define
n; = the number of edges in G; g, (2.3)

where G5 is the connected branch of G\ i containing the vertex vg.
(2) For an unbalanced edge vs —— v, in G, there is a relation of the first type p; = p; — q; in I, where

pi = CLZ(US), ;= CS}(”L) are paths with lengths grd(vs), grd(vy,) respectively. We define the following sets:
W = {i € Qo|rad(Ae;)/soc(Ae;) = Vi & Vo, Vi #0,Va #0,0(V7) # £(Va)} C Qo, (2.4)
P= U {rs|ri is the longer path between p; and g;}. (2.5)

€W

Note that the set of unbalanced edges is identified with W under the natural bijection between Qo and E(G),
and that s(r;) = t(r;) =i for r; € P.

By the definitions of A and gr(A), we have that A is a quotient algebra of gr(A), that is, A = gr(A)/I3, where
the ideal I3 is the k-vector space with basis given by the paths in the set P. In particular, any indecomposable
gr(A)-module that is not gr(A)-module is an indecomposable projective-injective gr(A)-module.

For convenience, we record displayed formulas of the ideals I, I’, I1, I, I3 in kQ (see [9, Subsection 3.2]):
R; := {Relation of the first type in I}, Iy := (Relation of the second type or the third type in I);

I = I() + <R1>;
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I'=Iy+{pi—q €R1|i€Qo,i ¢ W)+ (q;|i € W,p; —q; € Ry, q; is shorter than p;);
I = Io+(pi,qi | i € Qo,pi — qi € R1);
Io =10+ (piyqi | i € Qo,i ¢ W,p; —q; € R1) + (q; | i € W, p; — q; € Ry, q; is shorter than p;);
Is={(r,eP|ieW,p; —q; € R1) = k-vector space with basis {r; € P | i € W}.

The following proposition describes when gr(A) and A are isomorphic.

Proposition 2.10 (]9, Proposition 2.13]). Let A = kQ/I be a Brauer graph algebra associated with a Brauer
graph G and gr(A) the associated graded algebra of A. Then the following statements are equivalent.

(1) A is isomorphic to gr(A) as algebras.
(2) The vertices in the Brauer graph G have the same graded degree.
(3) W (resp. P) is an empty set.

3. *-CONDITION, UNBALANCED EDGE PAIR AND MAIN RESULT

Throughout this section, we assume that A = kQ/I is a Brauer graph algebra associated with 1 a Brauer graph
G = (V(G),E(G),m) and that gr(A) = kQ/I' its associated graded algebra. Moreover, let A = kQ/I; and
gr(A) = kQ/I> be the associated string algebras in (2.1) and (2.2), respectively. Note that by definition, A and

A (resp. gr(A) and gr(A)) have the same representation type. In this section, we will define useful notions and
state our main results on the infinite representation type of gr(A).

3.1. x-Condition in a Brauer graph.

Definition 3.1 (Compare with [9, Definition 3.7]). Let u,v be two distinct vertices in a Brauer graph G.

(1) A walk from u to v is a sequence [v1,a1,va,...,Vk—1,0—1,Vk] of vertices and edges, where v1 = u, vy = v,
a; is an edge incident to the vertices v; and viy1 for each 1 < i < k — 1, and all vertices (and hence all
edges) are pairwise distinct. We often simply write this walk by [a1,...,ax—1] and call it walk from edge aq
to edge aix—1. In particular, when G is a tree, the walk from u to v is unique.

(2) The length of a walk from u to v is defined to be the number of edges in this walk and will be denoted by
de (u,v) whenever the context is clear.

(3) We say that a walk [v1,a1,v9,...,Vp—1,ax—1,Vg] s degree decreasing if grd(vy) > grd(ve) > - -+ > grd(vg).

Remark 3.2. The definition of a walk in Brauer graph is different from the definition of a walk in graph theory,
actually, any walk in Brauer graph is identified with a path in graph theory.

Remark 3.3. According to [9], gr(A) is of finite representation type if and only if G is a Brauer tree with
an exceptional vertex vy of multiplicity mq such that any walk starting from a specified vertex vy is degree
decreasing, where vy, is defined to be vg when mg > 1 or one of the vertices with maximal graded degree when
mo = 1.

In order to generalize our description from finite representation type to infinite representation type, we intro-
duce the following condition on any Brauer graph.

Definition 3.4. Let G be a Brauer graph and vs —— vy, an unbalanced edge in G. We say that G satisfies
*-condition with respect to vg —— vy, if the following three conditions hold:

(1) Gis #Gi L.
(2) Gis is a tree with m(v) =1 for allv € V(G g).
(3) The unique walk from vg to any verter vy in G, g is degree decreasing.

Remark 3.5. (1) G, = G, s for an unbalanced edge vs —— vy, in a Brauer graph G if and only if i is an
edge in some cycle of G if and only if there is another walk from vy, to vg different from [i].

(2) By [9, Theorem 4.5], we can formulate the finite representation type using x-condition as follows: gr(A) is
of finite representation type if and only if G is a Brauer tree which satisfies x-condition with respect to any
unbalanced edge in G.



Definition 3.6 (Compare with [9, Definition 3.9]). Let ¢, ...c1 be a string in gr(A). We say that ¢, ...c1 s a

simple string in gr(A) from s(c1) to t(cy) if all s(ck) are pairwise distinct and t(cy,) is different from s(cg) for
each 1 < k <n.

Remark 3.7. Similarly as in the proof of [9, Lemma 3.8], for any walk of length > 2 in G we can get exactly
two simple strings in gr(A) corresponding to this walk.

We now generalize some results for Brauer tree algebras in [9] to Brauer graph algebras.

Lemma 3.8 (Compare with [9, Lemma 3.10]). Let gr(A) = kQ/I and C = ¢, ...cc1 a string in gr(A), where
s(C) = t(C) = i. We denote by u —— v the corresponding edge in G. If ¢ or cl_1 lies in a special cycle at
v and Giy # Gin, then C has a substring C' = cs...cac1 satisfying s(C') = t(C") = i such that the edges
corresponding to vertices s(c) (2 <k <'s) lie in G;,. Moreover, if G;, is a tree, then C' has a substring Cy
such that s(Cy) = t(C1) and that Cy or Cy ™' is a directed string.

Proof. The first result is an obvious consequence of G;, # G .. The proof of the second result is identical to
[9, Lemma 3.10]. O

Lemma 3.9 (Compare with [9, Lemma 4.3]). Let G be a Brauer graph and gr(A) = kQ/I>. Suppose that
C=cp...ci...c1 18 a string in gr(A) satisfying l < n and that ¢;...c1 or cl_1 . cl_1 is an element of P, where

s(c1) = t(cn) = i. We denote by vg —— vy, the corresponding unbalanced edge in G. If Gis # G and G; s is
a tree, then at least one of the following holds.

(1) There is a vertex v with m(v) > 2 in G 5.
(2) There are some adjacent vertices v, w in Gy s, such that dg(v,vs) + 1 = dg(w,vs) and grd(v) < grd(w).

In other words, G does not satisfy x-condition with respect to vg —— vy,.

Proof. Noting that [9, Lemma 3.4], [9, Lemma 4.1] and Lemma 3.8, we have an identical proof to [9, Lemma
4.3]. O

The first statement in the following result generalizes [9, Lemma 3.5], and the second one generalizes [9,
Lemma 5.1] and [9, Proposition 5.4], both are stated in the Brauer tree case in [9].

Lemma 3.10. (1) Let E be a set consisting of some unbalanced edges in G, and for each i € E, let r; be the
element in P corresponding to the unbalanced edge i, where P is defined in (2.5). If C is a string in gr(A)

and C is not a string in gr(A)/(D,cp i), then, there exists i € E such that C or C~' has a substring r;.

In particular, if C is a string in gr(A) and C is not a string in A, then C or C~' has a substring lying in
the set P.

(2) Suppose that C = ¢, ...c;...c1 is a string in gr(A) satisfying | < n and that ¢;...c; or c¢;'. .. cl_1 s an
element of P, where s(c1) = t(c;) = i and P is defined in (2.5). Denote by vs —— vy, the corresponding
unbalanced edge in G. If G satisfies +-condition with respect to vg —— vy, then
(2.1) ¢p ... is a simple substring of C such that t(cy) is in Gis for each l+1 < k <n and in particular

the string C is not a band in gr(A);
(2.2) the number of strings C in St(gr(A)) which contain a substring r; or r;
n; s the number of edges in G, g.

(3) Let E be a set consisting of some unbalanced edges in G, and for each i € E, let r; be the element in
P corresponding to the unbalanced edge i. If G satisfies x-condition with respect to any unbalanced edge
in I, then gr(A) and gr(A)/(,cpri) have the same representation type. In particular, if E is a set of
all unbalanced edges in G and G satisfies x-condition with respect to any unbalanced edge, then, by the
relationship A = gr(A)/(B,cp i), gr(A) and A have the same representation type.

Y is equal to (n; +1)?, where

Proof. (1) Since the k-vector space €, i is an ideal of gr(A), the conclusion is clear.

(2.1) To show that the edge corresponding to t(cy) is in G; g for [+1 < k < n, it suffices to prove that t(c) # 4
for I +1 < k < n. Suppose on the contrary that there exists [ + 1 < m < n such that t(¢,,) = ¢ and t(cx) # i
9



for I+ 1 <k <m — 1. Since G satisfies x-condition with respect to vg it vy, we have that G; g # G; 1, and
Gi,s is a tree. For the substring ¢, ...c;...c1, where s(c1) = t(¢y) = 4, the string ¢, ...c; ... cq satisfies the
conditions of Lemma 3.9, which then leads to a contradiction.

Next we show that ¢, ...¢i41 is a simple string. It suffices to show that all ¢(cy) are pairwise distinct for
I <k < n. Suppose that there exist k and ¢ satisfying | < ¢ < k < n such that t(cx) = t(c;) = s(ce+1) and that
t(cm) is different from t(c,) for each I < m < k and I < s < m. Repeating the similar proof as above, we still
get a contradiction.

(2.2) Since G satisfies *-condition with respect to vs —'— vy, this proof is identical to the proof of [9,
Proposition 5.4].

(3) Since G satisfies x-condition with respect to any unbalanced edge in E, (2.1) shows that the band modules
over the two algebras gr(A) and gr(A)/(P,cp i) are the same, and (2.2) shows that the number of string

gr(A)-modules is equal to the number of string gr(A)/(@D;c p :)-modules plus Y, (n; + 1), it follows that

gr(A) and gr(A)/(€,c ri) have the same representation type. O

Proposition 3.11. Let G be a Brauer graph which is a tree with m(v) = 2 for exactly two vertices v = wg, w1
in V(G) and m(v) =1 for all v # wo,w1. Then the following two conditions are equivalent:

(1) G satisfies x-condition with respect to any unbalanced edge vy —— v ;
(2) wo and w1 are in G; 1, for any unbalanced edge vg —t _yp in G.

Moreover, if G satisfies x-condition with respect to any unbalanced edge, then gr(A) is domestic. In particular,
gr(A) is 1-domestic.
i

Proof. Assume that wy and w; are in G, 1, for any unbalanced edge vg vr, in G. Since G is a tree with

m(v) = 2 for exactly v = wp, w; and wy and w; are in G; 1, for vg — wp, G; s # G; 1, and G, g is a tree with
m = 1. Then the conditions (1) and (2) of x-condition hold. We next show that the condition (3) of x-condition
holds.

We suppose, on the contrary that, there exists a vertex w in G; g for some unbalanced edge vg —%_wy, such
that the walk [v1,a1,v2,..., Vk—1,a5—1, k] from vg to w is not degree decreasing, where v; = vg and v, = w.
In other words, there exists an unbalanced edge v; —*— v;41 with grd(v;) < grd(v,41) for some 1 < j <k — 1.
Since dg(vj,vr) + 1 = dg(vjy1,vr) and we and wy are in Gy 1, Gy, € Ga;,s and wo and wy are in Gg;, 5. It
contradicts the condition that wg and w;y are in Gaw L.

Conversely, assume that G satisfies x-condition with respect to any unbalanced edge vg —— v,. Suppose that
there is some unbalanced edge vg —— vy, such that wg or w; is in G; g. It clearly contradicts the condition (2)
of x-condition.

Now assume that G satisfies x-condition with respect to any unbalanced edge. Then, by Lemma 3.10, gr(A)

and A have the same representation type. It follows from Theorem 2.8 that gr(A) is 1-domestic. Hence gr(A)
is 1-domestic. O

Proposition 3.12. Let G be a Brauer graph with a unique cycle and m(v) = 1 for all v € V(G). Then the
following two conditions are equivalent:

(1) G satisfies x-condition with respect to any unbalanced edge vy —— vy ;
(2) all edges in the unique cycle are not unbalanced edges and the unique cycle is in G, 1, for any unbalanced

9

edge vg vy, in G.

Moreover, if G satisfies x-condition with respect to any unbalanced edge, then gr(A) is domestic. In particular,
if the unique cycle is of odd length (resp. even length), then gr(A) is 1-domestic (resp. 2-domestic).

Proof. Assume that all edges in the unique cycle are not unbalanced edges and the unique cycle is in G; 1, for

any unbalanced edge vs —— vz, in G. Since m(v) = 1 for all v € V(G), m(v) = 1 for all v € V(G;g) for

vg —— wvy. Since all edges in the unique cycle are not unbalanced edges and the unique cycle is in G, 1, for
10




vg —— v, Gi.s # G; 1 and G, g is a tree. Then the conditions (1) and (2) of x-condition hold. The condition
(3) of x-condition holds by using a similar approach to the proof of Proposition 3.11.

Conversely, assume that G satisfies x-condition with respect to any unbalanced edge vg —— vy. If there is
some edge in the unique cycle is an unbalanced edge, then it contradicts the condition (1) of *-condition. If

3

there is some unbalanced edge vg
(2) of *-condition.

vy, such that the unique cycle is in G; g, then it contradicts the condition

Now assume that G satisfies x-condition with respect to any unbalanced edge. Then, by Lemma 3.10, gr(A)
and A have the same representation type. It follows from Theorem 2.8 that if the unique cycle in G is of odd
length (resp. even length), then gr(A) is 1-domestic (resp. 2-domestic). O

The next result deals with a case where the cardinality of Ba(gr(A)) is infinite.

Lemma 3.13. If there are two distinct bands by = ¢y, ... ci4101...c1 and by = c;n, o cfﬂcl ...cq in gr(A),
where s(c1) = t(c;), c1...c1 s a directed substring, c;y1 = ¢, is an inverse arrow, and s(c;) # s(c1) (resp.

s(ch) # s(er)) forl+1<i<m (resp. l+1<i<m'). Then the cardinality of Ba(gr(A)) is infinite and gr(A)
is not of polynomial growth.

Proof. From the assumption of the two bands b; and b2, we have that all powers of byb; are strings in gr(A).
Moreover, since by and by are distinct and s(c¢;) # s(c1) (resp. s(c;) # s(c1)) for I +1 < i < m (resp.
I+1<i<m), byby is not a power of a string of smaller length. Then byb; is also a band. Similarly, for any

positive integer k, b5b; is a band. Then the cardinality of Ba(gr(A)) is infinite.

In order to prove that gr(A) is not of polynomial growth. We just prove that gr(A) is not of polyno-
mial growth. Let n, be the length of b; for i = 1,2. When nj = n), there are pairwise distinct elements
bg"flblf”bg”"lﬂblf””lbg"”blf”"z ...b5 bk in Ba(gr(A)), where n and k,, are positive integers greater than 1,
and k; is positive integer such that Y. ; k; = mnb for each 1 < i < n — 1. Considering the corresponding
indecomposable band modules with dimension d, where d = 2mn)n,. We have that the number of the above

indecomposable band modules is ZZZ;Z_I (m:éf) = 2mn2-2 _ 1. Therefore Hgray(d) = 2m12=2 _ 1 and there

is no positive integer m such that um(d) < d™ for all d > 2. Hence gr(A) is not of polynomial growth.

When n| # nb, without loss of generality, we can assume n), < mnj. There are pairwise distinct elements

b§"+m(n17n2)b’f"b§”"1blf"’l ... U508 in Ba(gr(A)), where n and k; are positive integers with 327" | k; = mn)
for each 1 < @ < n. Considering the corresponding indecomposable band modules with dimension d, where

d = 2mnn}. we have that the number of the above indecomposable band modules is Y7 (m:éfl) = gmny—1,

Therefore um(d) > 2m72=1 and there is no positive integer m such that um(d) < d™ for all d > 2. Hence
gr(A) is not of polynomial growth. U

3.2. Unbalanced edge pair in a Brauer tree. In order to describe the domestic gr(A) when G is a Brauer
tree, we introduce the notion of unbalanced edge pair.

Definition 3.14. Let G be a Brauer tree with an exceptional vertex vy of multiplicity mg.

(1) We call (i,7) an unbalanced edge pair if j is an edge in G;s and dg(v(sj),vg)) +1= dg(’()g),’l}g)), where

) U(Li) and Ug) I U(Lj) are two unbalanced edges in G.

(i
Vs

9

(2) We define ko to be the number of unbalanced edges vg
vertez in G; s.
(3) We define k1 to be the number of unbalanced edge pairs in G.

vr, in G such that the exceptional vertex vy is a

Remark 3.15. (1) (4,4) is an unbalanced edge pair if and only if (j,i) is an unbalanced edge pair.
(2) k1 =0 if and only if the unique walk from vg to any vertex in G, g is degree decreasing for any unbalanced
edge vg ' vy in G.
(3) By [9, Theorem 4.5], gr(A) is of finite representation type if and only if G is a Brauer tree such that
Ko(mo - 1) + K = 0.
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We have the following observations about ko and k.

Lemma 3.16. If k1 # 0, then there are two unbalanced edges Ug) e ’U(Li) and U(Sj) - U(Lj) in G such that

the exceptional vertex vg s a vertex in G; g and (i,7) is an unbalanced edge pair. In particular, if k1 # 0, then

/107&0.

Proof. Since k1 # 0, there are two unbalanced edges v(si) - v(Li) and v(sj) - v(Lj) in G such that (7,j) is an

unbalanced edge pair. Without loss of generality, we assume that vg is a vertex in G; 1. Since G\i = G; s JGi L
and (4, ) is an unbalanced edge pair, G; 1. C G, 5 and vy is a vertex in G 5. We get our desired result. |

Lemma 3.17. Let G be a Brauer tree with an exceptional vertex vo of multiplicity mg. Then k1 > 2 if and
only if there are three unbalanced edges ’Ug) — ’U%), vg) S v(LJ) and U(Sk) —k U(Lk) in G such that (i,7) and
(i, k) are unbalanced edge pairs.

Proof. “<=" Tt is obvious to get k1 > 2 if (4,j) and (i, k) are unbalanced edge pairs.

“=—=" Since k1 > 2, there are at least two unbalanced edge pairs. Without loss of generality, we assume

that (i,7) and (k,l) are two unbalanced edge pairs, where the unbalanced edges ’U(Si) i U(Li), Ug) o U(Lj),
ng) ko ’U(Lk) and ’U(Sl) L U(Ll) are pairwise distinct and k is an edge in G; . There are two cases to be

considered.

Case 1. If dg (vgk),vg)) +1= dg(v(Lk),v(Si)), then (4, k) is an unbalanced edge pair. Moreover, (7, j) is also an
unbalanced edge pair. We have that (i,5) and (i, k) are two unbalanced edge pairs.

Case 2. If dg(v(sk) , v(si)) —1=dg (U(Lk) , ’Ug)), since the unbalanced edge [ is an edge in Gy, s with dg(v(sl) , ’U(Sk)) +

1= dg(vg),v(sk)) and Gg,s C G, g, then [ is an edge in G; g with dg(v(sl),v(si)) +1= dg(’l)(Ll),’Ug)> and therefore
(4,1) is an unbalanced edge pair. Moreover, (i, ) is also an unbalanced edge pair. We have that (¢, 7) and (4,1)
are two unbalanced edge pairs. O

3.3. Main result and consequences. We now state our main result, which characterizes when gr(A) is
domestic.

Theorem 3.18. Let A be the Brauer graph algebra associated with a Brauer graph G = (V(G), E(G)) and
gr(A) the graded algebra associated with the radical filtration of A, where V(G) is the vertex set and E(G) is
the edge set. Let kg and k1 be defined as in Definition 3.14. Then the following three statements are equivalent.

(a) gr(A) is of polynomial growth.
(b) er(A) is domestic.
(¢) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

Furthermore, for domestic type, we have the following.

(b1) gr(A) is 1-domestic if and only if one of the following holds.
(1) G is a Brauer tree with an exceptional vertex vy of multiplicity mo such that ko(mg — 1) + k1 = 1.
(2) G is a tree and there exist two distinct vertices wo, w1, such that the following conditions hold:
(2.1) m(wg) = m(wy) =2 and m(v) =1 for v # wo, ws.
(2.2) grd(wp) = grd(wn).
(2.3) Any walk from wo (or from wy) is degree decreasing.
(3) G is a graph with a unique cycle of odd length and m(v) = 1 for all v € V(G), and satisfies the
following conditions hold:
(3.1) grd(u) = grd(v) for any two vertices w and v in the unique cycle.
(3.2) Any walk from any vertex in the unique cycle is degree decreasing.

G is a graph with a unique cycle of even length and m(v) =1 for all v € V(G).
grd(u) = grd(v) for any two vertices u and v in the unique cycle.

Any walk from any vertex in the unique cycle is degree decreasing.

(b3) gr(A) is not n-domestic for n > 3.

12



Proof. Since A and A (resp. gr(A) and gr(A)) have the same representation type, and since A is a quotient of
the algebra gr(A), if the Brauer graph algebra A is nondomestic (resp. A is not of polynomial growth), then
gr(A) is nondomestic (resp. gr(A) is not of polynomial growth). By Theorem 2.8, in order to describe when
gr(A) is domestic or is of polynomial growth, it suffices to study M in the case when G is a Brauer tree or in
the cases (a) and (b) in Theorem 2.8. The descriptions in these cases are given in Proposition 4.10, Proposition

5.4 and Proposition 6.6, respectively. O

The main result gives the following consequences.

Corollary 3.19. Let A be a Brauer tree algebra and gr(A) the associated graded algebra of A. If k1 > 1 or
k1 =1 and mo > 1, then gr(A) is not of polynomial growth.

Corollary 3.20. Let A be a Brauer graph algebra and gr(A) the associated graded algebra of A. Then gr(A) is
n-domestic if and only if the cardinality of Ba(gr(A)) is n.

According to Theorem 2.8, the similar result as in the above corollary holds for any Brauer graph algebra A,

that is, A is n-domestic if and only if the cardinality of Ba(A) is n. It would be interesting to know whether
there is a similar result for any domestic special biserial algebra.

Comparing with the results in [9], we would also like to give the following remarks on the relationships between
the Auslander-Reiten quivers of gr(A4) and A.

Remark 3.21. (1) Similar as the discussion in [9, Section 5], for domestic gr(A) except the Brauer tree case,
based on Lemma 3.10, Proposition 3.11, Proposition 3.12, we can prove that, the Auslander-Reiten quiver
of A is obtained from the Auslander-Reiten quiver of gr(A) by removing several diamonds.

(2) When G is a Brauer tree and gr(A) is domestic, the situation is more complicated. In this case we have the

following congjecture on the Auslander-Reiten quiver T' of M

(2.1) T consists of components of the form Z/Ipyq and components of the form ZA /{T™) (both components
are up to deleting some diamonds). Moreover, when mo = 1, T’ has a component Z/Ip,q satisfying
p+q=mn;+n;+2 with (i,j) the unique unbalanced edge pair in G; when mo =2, I’ has a component
Z/L”_‘_L‘E(G)‘ with © the unique unbalanced edge in G such that the exceptional vertex vg is in G; s.

(3) We note that in the picture of [9, Remark 5.14], the obtained part W in the Auslander-Reiten quiver of gr(A)
may be different from the beginning wing W, since the obtained part may contain new inserted diamonds.

4. THE CASE THAT G 1S A BRAUER TREE

In this section, we describe when gr(A) = kQ/I’ is domestic in the case when G = (V(G), E(G),m) is a
Brauer tree with an exceptional vertex vy of multiplicity mg, where V(G) is the vertex set, F(G) is the edge
set and m is the multiplicity function of G. Let kg and x; be defined in Definition 3.14.

Since the number of string modules of a given dimension is finite, it suffices to consider band modules when
we consider the representation type of a representation-infinite string algebra. The following lemma is useful
when we consider two related representation-infinite string algebras.

Lemma 4.1. Let A = kQ/I and T = A/J be two representation-infinite string algebras, where J is an ideal of
A with rad™(A) C J C rad®(A) for some m > 2. Suppose that for any indecomposable A-module M satisfying
JM # 0, M is a string A-module. Then T is of polynomial growth (resp. domestic) if and only if A is of
polynomial growth (resp. domestic).

Proof. Since the algebra I' is a quotient of the algebra A, we have that any band I'-module can be considered
as a band A-module. Moreover, from the assumption that M is a string A-module for any indecomposable
A-module M satisfying JM # 0, it follows that any band A-module is also a band I'-module. Hence there is a
one to one correspondence between band A-modules and band I'-modules. Combining the remark before this
lemma, we get the desired result. 0

Remark 4.2. We have used a special case of the above lemma in Lemma 3.10 (3), where A = gr(A) and T’ = A.
13



Proposition 4.3. Let gr(A) = kQ/Is be defined in (2.2) and G the associated Brauer tree with an exceptional
vertex vy of multiplicity mo. If mg > 3 and ko # 0. Then gr(A) and gr(A) are not of polynomial growth.

Proof. We only need to prove that gr(A) is not of polynomial growth. Since kg # 0, we have that there is an
unbalanced edge vg %, such that the exceptional vertex vg is in G; 5. Let i1 < ig < -+ < 4, < i1 be the
cyclic ordering at v, where 437 = ¢ and n = grd(vy) = val(vz). Note that n > 2. Let Fy = {i,42,...,9,} and
E; = E(G,,5) U E1, where the edge i is incident to vy, and v}, for any 2 < k < n, and E(G; ) is the edge set
of G;,5. We denote by E3 the set of all unbalanced edges in G; s and by r; the element in P corresponding to
the unbalanced edge j in E3. We have algebra homomorphisms as follows.

gr(A) — gr(4) - gr(4)/(er(A)egr(4) & P ),
JEEs

where e; is the primitive idempotent in @ corresponding to the edge i in E(G) \ Ez and e = 3, )\ g, €i-

Let C' be the above algebra gr(A4)/(gr(A)egr(4) & @;cp, 7j)- Then C' = kQ'/Ic, where I¢ is an admissible
ideal in kQ’ and Q' is a subquiver of @ by removing all vertices corresponding to the edges in E(G) \ F2 and
all related arrows. Note that C' is a string algebra and is representation-infinite.

We next construct a related Brauer graph G'. Let G' = (V(G;,¢) U{vr,v5,v5, ..., v}, B2, m), where V(G s)
is the vertex set of G; g, m(vg) = mo, m(vy) = 2 and m(v) = 1 for the other vertices v. We may visualise the
underlying graph of G’ from G as follows:

G /

. n
%
VL .

ig/ %’Ué
vy

Let B be the Brauer graph algebra associated with the new Brauer graph G’ and B = kQ’'/Ip 1 the corre-
sponding string algebra defined in (2.1). By the construction of the Brauer graph G’ and Theorem 2.8, we have
that B is not of polynomial growth. Therefore, B is not of polynomial growth.

Now let By = {ix|grd(vy) < grd(v},),1 < val(v},),2 < k < n} (which is also defined in the original Brauer
graph G), where the edge iy, is incident to vz, and v}, in G for any 2 < k < n. We can get the following algebra
isomorphism from their constructions

C=B/( P rad"'(p)e @ rad"(P,)),

ik€EE1\Es ikE€EEs

where P;, is the projective cover of the simple B-module S;, corresponding to the edge ix in G’ for each
1 <k <nand where J :== @B, cp,\p, rad"™(P,,) ® D, cr, rad"(F;,) is an ideal of B. Clearly J C rad®(B).

Note that there are two arrows starting and ending at vertex 7 of Q' and there is one arrow starting and
ending at vertex i of Q' for all 2 < k < n. So Q' contains the following subquiver:

R
A

where m; = val(vs). Moreover, J can be generated by Qg -o0qan, a0 (i € By)and o . .aqag, .o
oy, (i € By \ E4). For any band in B, we have the following claim.
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Claim: For any band b in B, b does not have the substring o, _, ...a}al, ... )0, for any iy in Ey, and
b does not have the substring o, .;o/laﬁl ... o for any 4y in By \ Ey (possibly after rotation or taking
inverse of b). That is, any band in B gives in fact a band in the quotient algebra C.

If the above claim is true, then, the ideal J satisfies the condition in Lemma 4.1, and therefore C' is not of
polynomial growth. It follows that gr(A) is not of polynomial growth. This is our desired result.

Proof of Claim. Suppose on the contrary that b has the substring o _, ... a7, ... a) o) for some iy # iy
and b=c,...c10p_ ...ajqa;, ...ap o). Since s(b) = t(b) and there is only one arrow starting and ending at
vertex iy, for 2 < k <n, s(o)) =t(cs) =ir and ¢ = o), _;. Werotatebto cs—1...c10,_; ... oa), ... a0 . If
ix—1 # i1, then we can repeat the above step and therefore we can assume that b has the substring o, . .. ahaf.
We may assume that b = ¢5...c1a4al, ... aha). Since s(a}) = t(cs) and there is only one arrow starting and
ending at vertex iy for 2 < k < n, we have that b has the substring o/, ...ohalal, ... aha). Tt contradicts the
fact that o, ...a5a0al, ... abhaf is in the ideal Ip; (indeed it is an element of soc(B)). This finishes the proof
of our claim. O

We give an example to illustrate the above result.

Example 4.4. Let G be the following Brauer tree with mg = 3.

—
i
w

Vo

7

Let A = kQ/I be the Brauer tree algebra associated with G and gr(A) the associated graded algebra of A. The
quiver @ is as follows.
C 1 TN 9

()

4 3
N
The regular representation of gr(A) is as follows.

1 2 3 4

1 2 3 4 1

3 49199

Ly 1 2 3

1 2 3 4

Note that gr(A) = gr(A) = C. We have that G’ is the following Brauer graph

where m(vy) = 3, m(vz2) = 2 and m(vs) = m(vs) = m(vs) = 1. The regular representation of the corresponding
Brauer graph algebra B is as follows.
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1 2 3 4
2 3 4 1

3 4 1 2

1 4 1 2 3
1 Po @3 Py

2 3 4 1

I 3 4 1 2
4 1 2 3

1 2 3 4

Note that B = B/soc(P1) and C = B/(rad®(Py) @ rad®(Py) @ rad® (Ps) @ rad®(Py)), where P; is the projective
cover of the simple B-module S; corresponding to the edge i in G'. Since B is not of polynomial growth and B
is not of polynomial growth, C is not of polynomial growth and therefore gr(A) is not of polynomial growth.

Lemma 4.5. Let gr( = kQ/Iz be defined in (2.2). If mo =1 and k1 =1, ormg =2, kg =1 and k1 = 0,
then gr(A) is 1-domestic and therefore the cardinality of Ba(gr(A)) is 1.

Proof. If my =1 and k1 = 1, then there are only two unbalanced edges vg) 4 v(Li) and vg) g ’U(Lj) in G such
that j is in G; s and dg(Ug), (1)) =dg (U(Lj),vg)). Let iy <ig < -+ <ip <y (resp. j1 < jo < -+ <Jy, <J1)

be the cyclic ordering at U(L) (resp. ’U(L])), where i1 =i (resp. j1 = j) and t = Val(v(LZ)) (resp. t; = val(v(Lj))).
Note that t > 2 and t; > 2. Let By = {i1,42,...,4:} and Es = {j1,Jo,...,jt, }, where the edge i is incident
to v( ) and v}, for any 2 < k < 't, and the edge jj is incident to v(Lj) and wj, for any 2 < k < t;. We denote by
Es the set of all unbalanced edges different from ¢ and j in G, and by r; the element in P corresponding to the
unbalanced edge k in F3. There are algebra homomorphisms as follows.

gr(A) — gr(4) - gr(4)/ (P rv)-

keEs

Since mg = 1 and k1 = 1, we have that grd(u) > grd(v) for any edge u—u different from ¢ and j in

G satisfying dg(u, vg)) +1= dg(v,vg)), and the unique walk [v1,a1,v9,...,0k-1, ax—1,v] from vs) to v(])

satisfies grd(vy) = grd(ve) = ... = grd(vy), where vy = Ug), Vv = Ug), and a; is an edge incident to the vertices
v; and v;41 for each 1 < i < k — 1. Then G satisfies x-condition with respect to any unbalanced edge in Fj3.
Therefore, by Lemma 3.10, gr(A) and gr(A4)/ (@, z, Tk) have the same representation type. In particular, since

ko(mo — 1) + k1 = 1 # 0, they are of infinite representation type.

Let G' = (V(G), E(G), m) be a Brauer graph, where m(v(Li)) = m(v(Lj)) = 2 and m(v) = 1 for the other vertices
v. Let B be the Brauer graph algebra associated with the new Brauer graph G’ and B the corresponding string
algebra defined in (2.1). Note that the quiver of B is also Q. By the construction of the Brauer graph G’ and
Theorem 2.8, we have that B and B are 1-domestic.

Let By = {iglgrd(0l?) > grd(v},),1 < val(v}),2 < k < t} and E5 = {j|grd(v?) > grd(w},),1 < val(w}),2 <
k < t1} (which are also defined in the original Brauer graph G), where the edge i, (resp. j) is incident to ’U%)

(resp. U(L)) and v, (resp. w},) in G for any 2 < k <t (resp. 2 < k < t1). We can get the following algebra
isomorphism from their constructions

g@/(Pr)=B/( P rnd"(EB)e PradBe P rad" 7 (R)e P rad(P),

kEE; kEEL\E4 kEE, kEE2\Es kEE;

where P, is the projective cover of the simple B-module S;, corresponding to the edge k in G.

Since B is 1-domestic and gr(A )/ (Drep, Tx) is of infinite representation type, we have that gr(A) )/ (Drep, Tr)
is 1-domestic and therefore gr(A) is 1-domestic. Hence, the cardinality of Ba(gr(A)) is 1.

%

If mg = 2, kg = 1 and k; = 0, then there is only one unbalanced edge vg v in G such that vy is
in G; g. Similarly as above, let 77 < ip < .-+ < 4y < 7; be the cyclic ordering at vy, where i1 = ¢ and
16



t = grd(vy) = val(vr). Let By = {i1,%2,...,4}, where the edge i) is incident to vz, and v}, for any 2 < k < ¢t.
We denote by E» the set of all unbalanced edges different from 4 in G, and by r the element in P corresponding
to the unbalanced edge k in Ej.

Let G' = (V(G), E(G), m) be a Brauer graph, where m(vr) = m(vg) = 2 and m(v) = 1 for the other vertices
v. Let B be the Brauer graph algebra associated with the new Brauer graph G’ and B the corresponding string

algebra defined in (2.1). Note that B and B are 1-domestic.

Let E5 = {ix|grd(vr) > grd(v},),1 < val(v},),2 < k < t} (which is also defined in the original Brauer graph G),
where the edge iy, is incident to vz, and v}, in G for any 2 < k < ¢t. We can get the following algebra isomorphism

gr(A)/ (P r) =B/ P radt () o @ rad'(P)),

keEs kEE1\E3 keEs

where P, is the projective cover of the simple B-module S} corresponding to the edge k in G’. We also have
that gr(A) is 1-domestic and the cardinality of Ba(gr(A4)) is 1. O

We give an example to illustrate the above result.

Example 4.6. Let G be the following Brauer tree with mg = 2.

e
N

4

Vo

Note that ko =1 and k1 = 0.

Let A = kQ/I be the Brauer tree algebra associated with G and gr(A) the associated graded algebra of A. The
quiver @) is as follows.

~—
Y1
The regular representation of gr(A) is as follows.
1 2 3 4
1 2 3 g1 4 43
3 1 2 4
1 2 3

Note that gr(A) = gr(A). Moreover, b := ag ' 82100 is the unique band in gr(A) (after rotation or taking
inverse). We have that G’ is the following Brauer graph

Us




where m(vy) = 2, m(va) = 2 and m(vs) = m(vs) = m(vs) = 1. The regular representation of the corresponding
Brauer graph algebra B is as follows.

1 2 3 4
1 2 3 1
3 1 2 4
12 @3 @3
2 3 1
3 1 2
1 2 3 4

Note that B = B/(soc(P}) @ soc(Ps)) and gr(A)/rs = B/(rad*(P,) ® rad*(P,) @ rad®(Ps)), where P; is the
projective cover of the simple B-module S; corresponding to the edge i in G'. Since B is 1-domestic, B 1is

1-domestic, and gr(A)/rs is of infinite representation type, we have that gr(A)/rs is 1-domestic and therefore
gr(A) is 1-domestic.

Lemma 4.7. Let gr(A) = kQ/I defined in (2.2). If mo = 2, ko > 2 or mg = 2, k1 # 0, then the cardinality

of Ba(gr(A)) is infinite and gr(A) is not of polynomial growth.

Proof. We have two cases to consider.

Case 1. If mp = 2 and k9 > 2, then there are two unbalanced edges Ug) i ’U(Li) and U(Sj) 4 ’U(Lj) in
G such that the exceptional vertex vg is a vertex in G; s and it is also a vertex in Gjs. There is a walk
[v1,a1,V2,a2,V3,. .., Vk_1,ak—1,Vk] (resp. [v],a},vh,al,vh, ... v 1, a4k _q,0k]) from vy to ’U(LZ) (resp. U(Lj)),
(&)

where v1 = vg, vy = vLi , Gk—1 =1 (resp. v} = vy, v}, = v(Lj), ay,_, =j) and q; (resp. a)) is an edge incident to
the vertices vy (resp. v;) and vyy1 (resp. vy, ) for each 1 <1 <k —1 (resp. 1 <I <k —1).

(a) If a1 = af, then @ contains the following subquiver

£
o NAS
AN YA
Y, oA

where s = val(vg)), t = Val(v(Li)

and 7}, ...7] are not in Io.

), 81 = Val(v(sj)), t = val(U(Lj)), sy = val(va), to = val(vo), o ..., Bi, ... 0]

There is a simple string c, ...cac1 (vesp. dy; ... dady) satisfying ¢; = v.," and t(ck,) =i (vesp. di =~3,' and
t(dr;) = J)

(1) If ¢, is an inverse arrow (in other words, ¢y, = B;'), then B, ...Bck, ...coc1,, -+ 7] is also a string.
There exists a simple string ¢} ... ¢} satisfying ¢j = §;,! and ¢(c}, ) = a1. Then

Y /1l / / /
by i=chy . AP, - BiChy 2017, N

is a band with source a;.
(2) If ¢y, is an arrow (in other words, cx, = fs,), then (8})™" ... (ﬁgl)flckl ...C2017, - - -7 18 also a string. In
this situation we can similarly get a band by as in (1).
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Similarly, we have two cases for dy;. Then b := d;c,z codydiag . ahaddy o dadyyg, ooy (or b = d’é codhdy
(ah)~1. (ap) iy .. dady, - - -71) is a band with source a;.

(b) If a1 # af, then dg(Ug), (1)) +1= dg(v(L]),v(S)) and j is in Gy 5. Therefore (i,7) is an unbalanced edge
pair. We have that @) contains the following subquivers

[AVE N [EVE

e she e shs
AN /TN

N A S N oA S

where s = val(vg)), t= Val(v(Li)), 81 = Val(v(sj)), t; = val(U(Lj)), ty = val(vo), s2 = val(va), o ...a4, B, ... 0]

and 7}, ...7] are not in Ip.

There is a simple string cy, ...cac1 (resp. dy ...dady) satisfying ¢; = ;' and t(c,) = j (vesp. di = o'
and t(dkg) = 0,1).

(1) If ¢k, is an inverse arrow (in other words, cx, = B '), then ] ...B{ck, ...cocia -+ o is also a string.
. . . / / / . . ! 71 / .
There exists a simple string ¢}, ...cyc) satisfying ¢f = 87" and t(c),,) = 4. Then
L Y ’ ’ ’
by i==c, ... C5C By, - BiChy - .- C2C10OG O
is a band with source i.

Ck, is an arrow (in other words, ¢, = fBs, ), then T T Cky .. -C20100 -+ - is also a string. In
2) If ¢y, i in oth ds, ek, = Bs,), then (81) 7" ... (B1) ten Lo is also a st I
this situation we can similarly get a band by as in (1).

Similarly, we have two cases for dy, . Then by := d;c; o dydyyg, e Ydy - dadiag o (or by i= d;c; codbdl
(V)7 () My - dadiad - - - o) s a band with source i.

In either case, we have that two distinct bands b, and by in gr(A) and by and by satisfy the condition of Lemma
3.13 by construction. Therefore, the cardinality of Ba(gr(A)) is infinite and gr(A) is not of polynomial growth.

Case 2. If myp = 2 and k1 # 0, by Lemma 3.16, then there are two unbalanced edges ’Ugj) e U(Li) and
Ug) g U(LJ) in G such that vy is in G; s and (4, j) is an unbalanced edge pair. It is similar to the above case

(b). We still get our desired result. O

We give an example to illustrate the above result.

Example 4.8. Let G be the following Brauer tree with mg = 2.

e
1 6
N
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Let A = kQ/I be the Brauer graph algebra associated with G and gr(A) the associated graded algebra of A.
The quiver Q is as follows.

Bo ao

Yo
PZaaaa N
60(:4\13 7W6
71

We have that by = ’Yflﬁlﬁoﬁg’yo_léo and by = 71_16160040_1aflaglaglﬁg%_léo are bands in gr(A)

Lemma 4.9. Let gr(A) = kQ/I> be defined in (2.2). If k1 > 2, then the cardinality of Ba(gr(A)) is infinite
and gr(A) is not of polynomial growth.

Proof. Since k1 > 2, by Lemma 3.17, there are three unbalanced edges v(l) ¢ v(LZ , vg) g ’U(Lj) and v(sk) L

’U(Lk) in G such that (4,7) and (4, k) are unbalanced edge pairs. Then @ contains the following subquiver

/\/\
N

A N

where s = Val(v(sk)), t= Val(v(Lk)), s1 = Val(vg)), t1 = Val(v(Lj)), S9 = val(v(si)), to = val(v(Li)), ay...ah, By - B
and 7y, ...~ are not in Io.

There is a simple string ¢, ... cac1 (vesp. dy; ... dady) satisfying ¢; = 75! and t(cy,) = j (vesp. di =~;,' and
t(dk’l) =k).

(1) If ¢, is an inverse arrow (in other words, ¢y, = By '), then B ...Bck, ...coc1,, -7} is also a string.
There exists a simple string ¢}, ... ch¢] satisfying ¢j = 8;,' and t(c},,) = i. Then

— A / / /
by = Cp, ... CHCBL, - BLChy 201V, Y
is a band with source i.

Ck, is an arrow (in other words, ci, = s, ), then T T Cky .- -C2C17y. - -1 18 also a string. In
2) If ¢y, i in oth ds, ¢k, = Bs,), then (817" ... (B81,) ten, [ s al t I
this situation we can similarly get a band by as in (1).

Similarly, we have two cases for dy; . Then by := dﬁc,z cdydyog . abaddy . dadyyg, ey (or by i= d’,2 Lodhyd)
(o))~ (ap) iy .. dadrf, -+ -71) is a band with source i. Moreover, by and by satisfy the condition of

Lemma 3.13 by construction. Therefore, the cardinality of Ba(gr(A)) is infinite and gr(A) is not of polynomial
growth. ]

By the above results, we have the following characterization of domestic representation type of gr(A).

Proposition 4.10. Let A be the Brauer tree algebra associated with a Brauer tree with an exceptional vertex
vo of multiplicity mo and gr(A) the graded algebra associated with the radical filtration of A. Then the following
are equivalent.

(1) gr(A) is of polynomial growth.

(2) gr(A) is domestic.

(3) gr(A) is 1-domestic.
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(4) Ko(mo — 1) + K1 = 1.
(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

5. THE CASE THAT G IS A TREE WITH m(v) = 2 FOR EXACTLY TWO VERTICES AND m(v) = 1 FOR OTHER
VERTICES

In this section, we describe when gr(A4) = kQ/I’ is domestic under the assumption that G = (V(G), E(G), m)
is a tree with m(v) = 2 for exactly two vertices v = wg,w; € V(G) and m(v) =1 for all v € V(G), v # wo, w1,
where V(G) is the vertex set, F(G) is the edge set and m is the multiplicity function of G.

Proposition 5.1. Let gr(A) = = kQ/I3 be defined in (2.2). If there is an unbalanced edge vs — vy, in G such
that wo and wy are in G; 5. Then gr(A) and gr(A) are not of polynomial growth.

Proof. Using an approach similar to the proof of Proposition 4.3, we have that gr(A) and gr(A) are not of
polynomial growth. O

Lemma 5.2. Let gr(A) = kQ/Iy be defined in (2.2). If there is an unbalanced edge vs —— vy, in G such that
wo and wy are in different connected branch of G\ i. Then the cardinality of Ba(gr(A)) is infinite and gr(A) is
not of polynomial growth.

Proof. Without loss of generality, we assume that wg is in G; s and w; is in G; . We consider the walk
[v1,a1,v2, ..., Vk—1,ax—1, V)] from wy to wy, where v; = wp, vy, = w;. There is an edge v; - v; 41 in the walk
such that a; = i, v; = vg and vj41 = vr. Then @ contains the following subquiver

IR L INEN TR
e e S \AV/\uw/

where s = val(vs), t = val(vy), s1 = val(vg—1), t1 = val(w), s2 = val(v2), t2 = val(wo), oy ... a4, B, ... and
Y, -+ -1 are not in I.

There is a simple string cg, .. .cacy (resp. dys ... dady) satisfying ¢ = ’ys_zl and t(cg, ) = ag—1 (resp. di = 75_21
and t(dy; ) = 1).

(1) If ¢, is an inverse arrow (in other words, ¢y, = By '), then B ...Bck, ...coc1,, -+ 71 is also a string.
There exists a simple string ¢, ... ch¢) satisfying ¢ = §;,! and t(c},,) = a1. Then
L Y ’ ’ ’
by ==, ... 3¢ 1By, - BiChy - C2C1Y, Y
is a band with source a;.

(2) If ¢k, is an arrow (in other words, cg, = S, ), then (8;) " ... (ﬁ;l)_lckl ...C2017y, - - -7 s also a string. In
this situation we can similarly get a band by as in (1).

Similarly, we have two cases for dy,. Then by := d;cé cdydyog . ahaddy . dadyyg, oy (or by i= d;C,Z codhyd)
(a))~' (o)) iy .. dadinf, - -71) is a band with source ay. Moreover, by and by satisfy the condition of

Lemma 3.13 by construction. Therefore, the cardinality of Ba(gr(A)) is infinite and gr(A) is not of polynomial
growth. g

By Proposition 3.11, Proposition 5.1 and Lemma 5.2, we have the following characterization of domestic
representation type of gr(A).

Proposition 5.3. Let A be the Brauer graph algebra associated with a Brauer graph G which is a tree with
m(v) = 2 for exactly two vertices v = wg,w; and m(v) = 1 for all v # wo, w1, and gr(A) the graded algebra
associated with the radical filtration of A. Then the following are equivalent.
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(1) gr(A) is of polynomial growth.

(2) gr(A) is domestic.

(3) gr(A) is 1-domestic.

(4) There is no unbalanced edge in G or wy and wy are in G; 1, for any unbalanced edge vg — v in G (In
other words, G satisfies *-condition with respect to any unbalanced edge in G).

(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

We can describe when gr(A) is domestic from the graded degrees of vertices in G point of view in the following

Proposition 5.4. Let A be the Brauer graph algebra associated with a Brauer graph G which is a tree with
m(v) = 2 for exactly two vertices v = wo, w1 and m(v) =1 for all v # wp, w1, and gr(A) the associated graded
algebra of A. Then gr(A) is domestic if and only if it satisfies the following conditions.

(1) grd(wg) = grd(ws).

(2) Any walk from wy (or from w1 ) is degree decreasing.

Proof. “=" Suppose on the contrary that grd(wp) # grd(w;). Consider the walk [v1,a1,va, ..., V-1, af—1, Vk]
from wy to wy, where v1 = wp, vy = wy, we have that there is an unbalanced edge v; -2 v;41 with grd(v;) #
grd(v;4+1) for some 1 <4 < k — 1 in the walk. Without loss of generality, we assume that grd(v;) < grd(v;41).
Then wy is in Gg,,s and wy is in Gy, 1, by Proposition 5.3, gr(A) is nondomestic which is a contradiction.
Therefore grd(wp) = grd(w;) and the condition (1) holds.

In order to verify the condition (2). Suppose on the contrary that there is a vertex w’ in G such that the
walk [v1, a1, v2,a2,v3,...,Vk—1,0k—1, V%] from wy to w’ is not degree decreasing, where v; = wp and v = w'.
In other words, there exists an unbalanced edge v; —%*— v;41 with grd(v;) < grd(v;+1) for some 1 <i<k—11in
the walk. We have that wq is in G, g. Moreover, since gr(A) is domestic, by Proposition 5.3, wp is in G, L
A contradiction.

“«—=” We suppose on the contrary that gr(A) is nondomestic. By Proposition 2.10 and Proposition 5.3, we
have that there is some unbalanced edge vg —— v, such that wg, w; are in G;,s or wp, wy are in different
connected branch of G \ 4.

Case 1. If wg, wy are in G; g. Consider the walk [vi,a1,v2,...,U5_1,ax_1, Vx| from wp to vy, where v; = wy
and vy, = vg. Then i = ag_1. Since the above walk is degree decreasing, we have grd(vs) > grd(vz,), which is
clearly a contradiction.

Case 2. If wg, wy are in different connected branch of G \ i. Consider the walk [v1,a1,vo,...,V5_1,ax_1, Vk]
from wy to wi, where v; = wy and vy = w;. Then 7 is an edge in the walk. Since the above walk is degree
decreasing, we have grd(wg) # grd(wq). It contradicts the condition (1). O

6. THE CASE THAT (G IS A GRAPH WITH A UNIQUE CYCLE AND m =1

In this section, we describe when gr(A) = kQ/I’ is domestic in the case that G is a graph with a unique cycle
and m(v) =1 for any vertex v in G.

Proposition 6.1. Let gr(A) = kQ/I, be defined in (2.2). If there is an unbalanced edge vs —— vy, which is not
an edge in the unique cycle such that the unique cycle is in Gi,s. Then gr(A) and gr(A) are not of polynomial
growth.

Proof. Using an approach similar to the proof of Proposition 4.3, we have that gr(A4) and gr(A) are not of
polynomial growth. O

Lemma 6.2. If some edges in the unique cycle are unbalanced edges, then the number of unbalanced edges in

the unique cycle is greater than 1. Precisely, if there is an unbalanced edge Ug) e ’US) in the unique cycle,

then there is another unbalanced edge U(Sj) g ’U(Lj) with Ug) #* ’U(Lj) in the unique cycle such that there is a walk
[v1,a1,v2,...,Vk-1,ak—1, V] from vg) to U(LJ) satisfying i # a1 and ax—1 = j, where v; = Ug), V= v(LJ) and a;
is an edge in the unique cycle incident to the vertices v; and vi4+1 for each 1 <1 <k — 1.
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Proof. Note that the unique cycle is connected, if there exists an unbalanced edge in the unique cycle, then the
number of unbalanced edges in the unique cycle is greater than 1.

G i () G 4G

For any unbalanced edge vy’ —— v}’ in the unique cycle, there is also an unbalanced edge vg vy
different from 4 in the unique cycle. If ’U(Si) = ’Uéj/), by the connectivity of cycle, then there is an unbalanced
edge v(sj) g v(Lj) different from ¢ and j’ in the unique cycle. Therefore, v(si) #+ v(Lj).

The above shows that for any unbalanced edge v(si) i v(Li) in the unique cycle, we have another unbalanced
edge Ug) g ’U(Lj) satisfying ’U(Si) #* ’U(Lj) in the unique cycle. There is a walk [v1, a1, va,. .., V-1, ak—1, V] from
vg) to v(Lj) satisfying ¢ # a1, where vy = v(si), v = v(Lj) and a; is an edge in the unique cycle incident to the
vertices v; and v;41 for each 1 <1 < k — 1. Moreover, there is also a walk [v], a}, v, ..., v} _1,a}_q, V)] from

vg) to v(Lj) different from the above walk, where v] = v(si), vy, = v(Lj) a} =i and q] is an edge in the unique

cycle incident to the vertices Ul/ and Ul/ 41 for each 1 <1 <k’ — 1. We have the following two cases for aj_;.

(a) If ax—1 = j, then j and the walk [v1, a1, ve,...,vp—1,ax—1,vg] give our desired result.
ax_1 # j, then af,_, = j an ere are two cases to be considered.
b) If i, th o1 =Jj and th t tob idered

(1) If grd(v(sj)) < grd(v(Li)), by the connectivity of cycle, then there is an unbalanced edge a; in the walk

la,as, ..., ay, ] satisfying grd(v;) > grd(v;, ;) and v; # Ug). The unbalanced edge a; and the walk
[v1,a1,v2, ..., 0k, 7, v(sj), .o,V q, 0y, vg] give our desired result.

(2) It grd(v(sj)) > grd(v(Li)), then grd(vg)) < grd(v(Lj)) and there is an unbalanced edge a; in the walk
[a1,az2,...,ar—1] satisfying grd(v;) < grd(veri). Therefore the unbalanced edge a; and the walk
[v1,a1,v2, ...,V at, vi41] give our desired result.

O

Lemma 6.3. Let gr(A) = kQ/I>. If some edges in the unique cycle are unbalanced edges, then the cardinality

of Ba(gr(A)) is infinite and gr(A) is not of polynomial growth.

Proof. If some edges in the unique cycle are unbalanced edges, by Lemma 6.2, then there are at least two
unbalanced edges v(si) — v(Li) and v(Sj) - v(Lj) with v(si) #+ v(Lj) in the unique cycle such that there is a walk
[v1,a1,v2,a2,V3,...,Vk—1,ax_1, Vx| from ’Ugj) to U(Lj) satisfying i # a1 and ax_1 = j, where v; = ’Ug), v = ’U(Lj)
and a; is an edge in the unique cycle incident to the vertices v; and v;41 for each 1 <1 < k—1. Then @ contains

the following subquiver

OER R
SN AL

where s = val(v(si)), t= val(v(Li)), 81 = Val(v(sj)), ty =val(vy’), o} ...a} and B ... B} are not in Is.

Since there is a unique cycle in G, there is a band by = ... a; ! in A. Therefore b; is also a band in gr(A).

S

There is a simple string cy, ... coc; satisfying ¢; = a; ! and t(cg,) = j and it is constructed from the walk
[ala az, ... aakfl]-

(1) If ¢k, is an inverse arrow (in other words, cx, = B8 '), then ] ...B{ck, ...cocia -+ o} is also a string.
. . . / / / . . /o 71 / .
There exists a simple string ¢}, ...cyc; satisfying ¢ = 87" and t(c),,) = 4. Then

o o ! oAl ’
by i=ay...aicy, ... C5c By, .. BiCky - .. C2C1

is a band with source <.
Ck, is an arrow (in other words, cg, = B, ), then T T Ck, ...Cc1 O ... 1s also a string. In
2) If ¢y, i in oth ds, cx, = Bs,), then (87) ... (81) 'eny !...a is also a string. 1
this situation we can similarly get a band by as in (1).
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Using an approach similar to the proof of Lemma 3.13; we have that the cardinality of Ba(gr(A)) is infinite
and gr(A) is not of polynomial growth. O

We give an example to illustrate the above result.

Example 6.4. Let G be the following Brauer graph with m = 1.

Let A = kQ/I be the Brauer graph algebra associated with G and gr(A) the associated graded algebra of A. The
quiver Q is as follows.

3< 2<—1

\\/

Note that gr(A) = gr(A)/soc(Ps), where Ps is the projective cover of simple gr(A)-module S3 corresponding to
the vertex 3 in Q.

We have that b; = aoagvglﬁoaflmﬁfl and by = aoagalﬁ(jl%a;laalaf171ﬁf1 are bands in gr(A).

By Proposition 3.12, Proposition 6.1 and Lemma 6.3, we have the following characterization of domestic
representation type of gr(A).

Proposition 6.5. Let A be the Brauer graph algebra associated with a Brauer graph G and gr(A) the graded
algebra associated with the radical filtration of A, where G is a graph with a unique cycle and m(v) =1 for all
v € V(G). Then the following are equivalent.

) gr(A) is of polynomial growth.

) gr(A) is domestic.

) gr(A) is 1-domestic (resp. 2-domestic) if the unique cycle is of odd length (resp. even length).

) There is no unbalanced edges in G or all edges in the unique cycle are not unbalanced edges and the unique
cycle is in Gy 1, for any unbalanced edge vg — vy, (In other words, G satisfies x-condition with respect to
any unbalanced edge in G).

(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

We can describe when gr(A) is domestic from the graded degrees of vertices in G point of view in the following

Proposition 6.6. Let A be the Brauer graph algebra associated with a Brauer graph G and gr(A) the associated
graded algebra of A, where G is a graph with a unique cycle and m = 1. Then gr(A) is domestic if and only if
it satisfies the following conditions.

(1) grd(u) = grd(v) for any two distinct vertices u and v in the unique cycle.
(2) Any walk from any vertex in the unique cycle is degree decreasing.

Proof. “=" Since all edges in the unique cycle are not unbalanced edges, grd(u) = grd(v) for any two vertices
uw and v in the unique cycle (hence the condition (1) holds).

In order to verify the condition (2). We suppose, on the contrary that, there is a vertex w in G such that
a walk [v1,a1,v9,..., Uk—1,0k—-1,vk] from v to w is not degree decreasing, where v is a vertex in the unique
cycle and v = w. In other words, there is an unbalanced edge v; —%— v;41 with grd(v;) < grd(v;4+1) for some
1 <i<k—1in the walk. We have v is in G, s and the unique cycle is in G,,; 5. Moreover, since gr(A) is
domestic, by Proposition 6.5, the unique cycle is in G, 1. A contradiction.

“«—=” We suppose on the contrary that gr(A) is nondomestic. By Proposition 2.10 and Proposition 6.5, since
it contradicts the condition (1) that some edges in the unique cycle are unbalanced edges, we have that all edges
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in the unique cycle are not unbalanced edges and therefore there is some unbalanced edge vg —— vy, such that

the unique cycle is in G;,s. For a vertex v in the unique cycle and any walk [v1,a1,v2, ..., Vg—1,ak—1, U] from
v to vy, which is degree decreasing, we have that 4 is an edge in the walk and therefore grd(vs) > grd(vz,), which
is clearly a contradiction. Our assumption is false and therefore gr(A) is domestic. O
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