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On the construction of a quantum channel corresponding to non-commutative

graph for a qubit interacting with quantum oscillator

G.G. Amosov,1, ∗ A.S. Mokeev,1, † and A.N. Pechen1, ‡

1Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina str., 8, Moscow 119991, Russia

We consider error correction, based on the theory of non-commutative graphs, for a model
of a qubit interacting with quantum oscillator. The dynamics of the composite system
is governed by the Schrödinger equation which generates positive operator-valued measure
(POVM) for the system dynamics. We construct a quantum channel generating the non-
commutative graph as a linear envelope of the POVM. The idea is based on applying a
generalized version of a quantum channel using the apparatus of von Neumann algebras.
The results are analyzes for a non-commutative graph generated by a qubit interacting
with quantum oscillator. For this model the quantum anticlique which determines the error
correcting subspace has an explicit expression.

I. INTRODUCTION

One of the important notions in quantum information theory is the notion of a non-commutative
operator graph, which is an operator space containing the identity operator and closed under op-
erator conjugation. For each completely positive trace-preserving map (i.e., a quantum channel)
there is a unique operator graph determining the ability to transmit information with zero error
via the channel. This graph allows to define the Knill-Laflamme sufficient condition for the sub-
space to be a quantum error-correction code. A natural opposite task is to find quantum channel
corresponding to the given graph [1, 2]. All the graphs are known to be linearly generated by
positive operator valued measures (POVMs) and, vice versa, for each graph these exists POVM
which generates this graph, so that the task can be posed for POVMs. A solution to this problem
can be found using Naimark dilatation [2].

Non-commutative operator graphs for various infinite-dimensional quantum systems were stud-
ied in [3, 4]. In this paper, we study error correction for a model of an infinite-dimensional quantum
system consisting of a qubit interacting with quantum oscillator [5]. The dynamics of the compos-
ite system is governed by Schrödinger equation which entangles initially separable quantum states.
The dynamics generates POVM for the system. Quantum anticlique is the projector onto error
correcting subspace. We construct a generalized quantum channel, acting between preduals of two
von Neumann algebras, which determines the graph corresponding to the given POVM with an
operator-valued density. Our construction is close to the similar finite-dimensional result presented
in [6]. The techniques are based upon [7]. The results are analyzed for the graph corresponding to
the error correction model of a qubit interacting with quantum oscillator.

II. GENERALIZED QUANTUM CHANNELS GENERATED BY POVMS

We use some basic notions from the theory of von Neumann algebras (W ∗-algebras in other
terminology) [8].
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Denote B(H) and T (H) the algebra of all bounded operators and the space of nuclear operators
in a separable Hilbert space H respectively, the notation ‖ · ‖ designates the operator norm. The
subalgebra M ⊂ B(H) is said to be the von Neumann algebra if the second commutant satisfies
M′′ = M. Given a von Neumann algebra M, there exists the predual Banach space M∗ such
that (M∗)

∗ = M due to the Sakai theorem. The corresponding duality is denoted by 〈ρ, x〉 , ρ ∈
M∗, x ∈ M. The functionals on M determined by elements of M∗ are said to be normal. A
normal positive functional ρ with the property 〈ρ, I〉 = 1 is called a state.

The quantum channels can be considered as mappings Φ : B(H1) → B(H2) which can be
represented in the Kraus form

Φ(ρ) =
∑

k

AkρA
∗
k, Ak : H1 → H2,

where
∑

k

AkA
∗
k = I. The non-commutative operator graph corresponding to the channel is

V = span {A∗
kAj} .

The subspace K ⊂ H1 is a quantum error-correcting code if the orthogonal projection PK satisfies
the Knill-Laflamme condition dimPKVPK = 1. Such projection PK is called quantum anticlique.

Suppose that M(1) ⊂ B(H1) and M(2) ⊂ B(H2) are two von Neumann algebras acting in
the Hilbert spaces H1 and H2. Denote 〈·, ·〉1,2 the corresponding dualities. Given a linear map

Φ : M(1)
∗ → M(2)

∗ , one can define the conjugate map Φ∗ : M(2) → M(1) by the rule

〈ρ,Φ∗(x)〉1 = 〈Φ(ρ), x〉2 , ρ ∈ M(1)
∗ , x ∈ M(2).

Following [7], the map Φ is said to be a generalized quantum channel if Φ∗ is unital and completely
positive.

Let (Ω,B, ν) be a measurable space with the σ-finite measure ν. Then M = B(H) ⊗ L∞(Ω)
is a W ∗-algebra of operators acting in the Hilbert space H̃ = H ⊗ L2(Ω) and having the predual
space M∗ = T (H) ⊗ L1(Ω). Also note that M can be viewed as L∞(Ω → B(H)), the space of
ν-essentially bounded B(H)-valued functions. Put M(1) = B(H) and M(2) = B(H)⊗L∞(Ω) such
that M(1) ⊂ B(H) and M(2) ⊂ B(H⊗ L2(Ω)). Then, the quantum channel

Φ : M(1)
∗ → M(2)

∗

is characterized by the property

〈Φ(ρ), IH⊗L2(Ω)〉2 = 〈ρ, IH〉1 = 1 (1)

for all states ρ ∈ M(1)
∗ . Thus, Φ(ρ) ∈ M(2)

∗ is also a state. Since Φ(ρ) is a function fρ on the space
Ω taking values in T (H) the equality (1) can be rewritten in the form

∫

Ω

Tr (fρ(ω))ν(dω) = 1.

Let M be a positive operator-valued measure on (Ω,B, ν) with values in the set of positive
operators B(H)+.

Theorem 1 Suppose that there is an operator valued density P (ω), ω ∈ Ω of M with respect to
the measure ν such that

M(dω) = P (ω)ν(dω).
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Then, the formula

Tr (ρΦ∗(x⊗ f)) =

∫

Ω

f(ω)Tr ([P (ω)]1/2ρ[P (ω)]1/2x)ν(dω)

determines a unital normal completely positive map Φ∗ : M(2) → M(1).

Proof

Let Ω = ∪N
k=1Bk be the partitioning of Ω into a sum of disjoint Bk ∈ B and a simple function

f0
∣

∣

BK

= ak. Define a unital normal completely positive map Φ∗
N : M(2) → M(1) as follows

Φ∗
N (x⊗ f) =

∑

k

ak

∫

Bk

[P (ω)]1/2x[P (ω)]1/2ν(dω). (2)

So,

Tr (ρΦ∗(x⊗ f0)) =
∑

k

ak

∫

Bk

Tr ([P (ω)]1/2ρ[P (ω)]1/2x)ν(dω),

By this, the positivity of all operators under the trace results in

|Tr (ρΦ∗(x⊗ f0))| ≤ ‖f0‖L∞

∫

Ω

‖ρ‖ · ‖x‖ · Tr (P (ω))ν(dω) = ‖f0‖L∞ · ‖ρ‖ · ‖x‖,

approaching f ∈ L∞ (Ω) by simple functions not disrupt that inequality. So Φ∗ is a limit of (2) in
the weak* topology.

�

The POVM M generates some non-commutative graph V = span(M(B), B ∈ B), where B

is the σ-algebra of measurable subsets B ⊂ Ω. Let us define a unital completely positive map
Ψ̂∗ : L∞(Ω) → M(1) by the formula

Ψ̂∗(f) = Φ∗(I⊗ f), f ∈ L∞(Ω). (3)

Theorem 2 The channel Ψ complementary to Ψ̂ defined by Eq. (3) determines the graph V.

Proof The action Ψ̂∗ : L∞(Ω) → M(1) can be represented as follows

Ψ̂∗(f) =

∫

Ω

f(ω)P (ω)ν(dω)

It suffices to show that V = Φ̂∗(L∞(Ω)) [6]. The result immediately follows from the equality

Φ̂∗(χB) = M(B),

where χB ∈ L∞(Ω) is the indicator function of the measurable set B ∈ B.
�
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III. A QUBIT INTERACTING WITH QUANTUM OSCILLATOR

We consider a qubit interacting with quantum oscillator within the rotating wave approximation.
This model is known to have an explicit description of the eigenstates and eigenvalues which
completely define the model [5]. Let Hf be the Hilbert space with the basis {|k〉 , k ∈ N0} (the
quantum oscillator Hilbert space) andHs the two-dimensional Hilbert space with the basis {|g〉 , |e〉}
(qubit space). The Hilbert space of the composite system is H = Hf ⊗Hs. The Hamiltonian is

H = ωfa
+a− +

ωs

2
σz +

κ

2
(σ−a+ + σ+a−), (4)

Here ωs, ωf ∈ R+ are the frequencies of the qubit and the quantum oscillator, respectively, κ ≥ 0
is the coupling constant, σz is the Pauli matrix, σ+, σ− are the rising and lowering operators of the
qubit and the a+, a− are the creation and annihilation operators of the oscillator. The detuning
parameter is ∆ = ωf − ωs. For the non-resonant case ∆ 6= 0, the eigenstates of the Hamiltonian
are

|0, g〉 ,

|n,+〉 = cos

(

θn
2

)

|n− 1, e〉+ sin

(

θn
2

)

|n, g〉 ,

|n,−〉 = sin

(

θn
2

)

|n− 1, e〉 − cos

(

θn
2

)

|n, g〉 ,

where θn = tan−1(κ
√
n/∆) and n ∈ N. For the resonant case ∆ = 0 the eigenstates are

|0, g〉 ,
|n,+〉 = |n− 1, e〉+ |n, g〉 ,
|n,−〉 = |n, g〉 − |n− 1, e〉 .

In both cases the corresponding eigenenergies are

E0,g =
ωf +∆

2

En,± = ωf

(

n− 1

2

)

± 1

2

√

∆2 + κ2n, n ∈ N.

Our construction can be applied to this model of a qubit interacting with quantum oscillator.
Let us split the Hilbert space H into three parts [4],

H = H1 ⊕H2 ⊕H3,

The partition is determined by the parameter K0 ≥ max{3,M0}, where M0 is the minimal natural
solution of the inequality

(

√

∆2 + κ2(M0 + 1) +
√

∆2 + κ2M0

)−1
<

2ωf

κ2
. (5)

The subspaces H1 and H2 are the infinite-dimensional subspaces corresponding to two strictly
increasing sequences of eigenvalues Jk = Ek+1,+, k ∈ N0 and Sk+K0

= Ek+K0,−, k ∈ N0. The
subspaces are defined as follows

H1 = span{|n,+〉 , n ∈ N},
H2 = span{|n,−〉 , n ≥ K0},
H3 = span{|g, 0〉} ∪ {|n,−〉 , 1 ≤ n < K0}.
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The sequences Jk and Sk+K0
allow to define Gauzeau-Klauder coherent states in H1 and H2

|J, x, y〉 =
1

N1(x)

+∞
∑

k=0

xk/2e−iJky

√

c
(1)
k

|k + 1, +〉

|S, x, y〉 =
1

N2(x)

∞
∑

k=0

xk/2e−iSk+K0
y

√

c
(2)
k

|k +K0, −〉 .

Here sequences c
(2)
k are the positive converging weights, N1(x) and N2(x) are the normalization

factors.
Let Ω = R

2 ⊕ R
2 ⊕ {pt}, where {pt} is the set containing only one point. Define the POVM

over Ω as follows

M = M1 ⊕M2 ⊕M3,

where

M1(dxdµ(y)) = |J, x, y〉 〈J, x, y| τ1(x)dxdµ(y),
M2(dxdµ(y)) = |S, x, y〉 〈S, x, y| τ2(x)dxdµ(y),

and

M3(∅) = 0, M3({pt}) = P3,

Here P3 is the projection on H3 and measures τ1(x), τ1(x) are determined by the Gauzeau-Klauder
construction [5]. The POVM M is generated by orbits of the unitary group Ut = e−itH with the
Hamiltonian (4) and satisfies the conditions of Theorems 1 and 2. The corresponding graph has
the quantum anticlique P3.

IV. CONCLUSION

Based on the theory of non-commutative operator graphs, we analyze the error correction
model for a qubit interacting with quantum oscillator. The dynamics of the composite system
is governed by Schrödinger equation which generates POVM. We describe the method of how to
define the quantum channel which corresponds to a non-commutative operator graph generated
by the POVM. We analyze this construction for the model of a qubit interacting with quantum
oscillator and provide an explicit expression for the quantum anticlique which determines for this
model the error correcting subspace.
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