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Abstract

We put forward a concrete experimental setup allowing to measure light-by-light scattering in the

collision of two optical high-intensity laser beams at state-of-the-art high-field facilities operating

petawatt class laser systems. Our setup uses the same focusing optics for both laser beams to be

collided and employs a dark-field approach for the detection of the single-photon-level nonlinear

quantum vacuum response in the presence of a large background. Based on an advanced modeling

of the colliding laser fields, we in particular provide reliable estimates for the prospective numbers

of signal photons scattered into the dark-field for various laser polarizations.
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I. INTRODUCTION

Quantum fluctuations mediate effective couplings of macroscopic electromagnetic fields

in vacuum. These supplement Maxwell’s linear theory of classical electrodynamics with

effective nonlinear interactions [1–3]. All macroscopic electric E⃗ and magnetic B⃗ fields

currently available in the laboratory meet the criterion {|E⃗|, c|B⃗|} ≪ Ecr, with the reference

field strength ES = m2c3/(eℏ) ≃ 1.3× 1018V/m set by the electron mass m and elementary

charge e, respectively. If these fields vary on spatial and temporal scales λ, τ much larger

then the Compton wavelength of the electron λC = ℏ/(mc) ≃ 3.9 × 10−13m, i.e., fulfill

the low-energy condition {λ, cτ} ≫ λC, the leading quantum vacuum non-linearity can be

parameterized by the interaction Lagrangian (ℏ = c = 1) [4]

Lint ≃
m4

1440π2

[
a

(
B⃗2 − E⃗2

E2
S

)2

+ b

(
2B⃗ · E⃗
E2

S

)2
]
=

1

360π2

( e

m

)4(
aF2 + bG2

)
, (1)

where the numerical constants a and b are fully determined by the underlying quantum field

theory; F = FµνF
µν/4 and G = Fµν

⋆F µν/4 with (dual) field strength tensor F µν (⋆F µν).

Within the standard model of particle physics their values are accurately determined by

quantum electrodynamics (QED), predicting these to be given by [5–7]

a = 4
(
1 +

40

9

α

π
+O(α2)

)
and b = 7

(
1 +

1315

252

α

π
+O(α2)

)
, (2)

where α = e2/(4π) ≃ 1/137 is the fine structure constant. The above weak and slowly

varying field conditions are in particular well met by the field configurations generated by

state-of-the-art high-intensity lasers that produce the strongest macroscopic electromagnetic

fields currently available in the laboratory. Higher-order QED corrections to Eq. (1) are

parametrically suppressed by additional powers of 1/ES ∼ λ2
C ∼ 1/m2.

The effective couplings of macroscopic electromagnetic fields in Eq. (1) generically gives

rise to a signal component that may differ in characteristic properties such as propagation

direction and polarization from the originally applied fields. Because these signals are very

small, they could not yet be verified in a controlled laboratory experiment [8–10]. However,

recent advances in high-intensity laser technology have substantiated the perspectives of a

first measurement of this effect with state-of-the-art technology in the near future [11–15].

One of the key challenges is to achieve a sufficiently large signal-to-noise ratio allowing to

measure the small quantum vacuum signal in the presence of the huge number of photons

constituting the driving laser fields.

In the present work we put forward a specific setup allowing for its detection in an

experiment based on the collision of two focused high-intensity laser pulses in a counter-
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propagating geometry; cf. also Refs. [16–25]. For recent measurements of signatures of

light-by-light scattering processes using the strong Coulomb fields of heavy ions, see Refs.

[26–29]. The basic idea of our setup is to use the same focusing optics for both pulses to

be collided and to employ a dark-field approach for the detection of the induced single-

photon-level signal. To this end two subsequent pulses generated by the same laser system

and appropriately separated in time by means of a delay line are collided in their common

focus after the propagation direction of the first pulse has been reversed at a spherical retro-

reflector. Moreover, a central shadow is imprinted in the transverse profile of the initial beam

by reflecting the initial beam off a mirror with hole. By construction this shadow is then

present both in the converging beam prior to its focus and the diverging beam after its focus,

while a peaked on-axis focus profile is retained [30, 31]. The shadow in the diverging beam

is effectively imaged onto a single-photon sensitive detector via a hole in the retro-reflector

such as to spatially filter out a sizable fraction of the quantum vacuum signal induced in the

collision of the two laser pulses.

Our article is organized as follows: In Sec. II we explain the scenario put forward for

the measurement of photonic quantum vacuum signals in the present work. To this end, we

briefly recall how the relevant quantum vacuum signal can be derived from Eq. (1). Our

method of choice is the vacuum emission picture [21, 32] for which a flexible and convenient

numerical solver allowing to study all-optical signatures of quantum vacuum nonlinearities

in generic laser fields is available [33]. Thereafter we explain the experimental setup devised

by us in full detail. Finally, we discuss the theoretical modeling of the driving laser fields and

comment on the numerical implementation of the considered scenario in the vacuum emission

solver [33] which we employ to evaluate the signal photon yield and emission characteristics

for our setup. In Sec. III we present results for the prospective quantum vacuum signals

attainable in our setup using state-of-the-art laser parameters as input. Finally, we close

with conclusions and a brief outlook in Sec. IV.

II. SCENARIO

A. Theoretical Basics

Photonic quantum vacuum signals can be conveniently analyzed by viewing them as

vacuum emission processes stimulated by the applied macroscopic electromagnetic field F µν

[21, 32]. In the parameter regime considered throughout this work, single signal photon

emission vastly dominates over emission processes with higher multiplicities. The amplitude
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for the relevant zero-to-single signal photon transition can be compactly expressed as [21]

Sp(k⃗) =
〈
γp(k⃗)

∣∣ ∫ d4x
∂Lint

∂F µν
(x)f̂µν(x)

∣∣0〉 = −2ikα
ϵ∗µ(p)(k⃗)√

2k0

∫
d4x e−ikx ∂Lint

∂Fαµ
(x)

∣∣∣∣∣
k0=|⃗k|

, (3)

where the in-state |0⟩ denotes the vacuum subjected to the initially applied field featuring

zero signal photons by definition, and ⟨γp(k⃗)
∣∣ is the out-state containing a single on-shell

transverse signal photon of wave vector k⃗ and polarization p; polarization vector ϵµ(p)(k⃗).

Finally, f̂µν(x) denotes the canonically quantized field strength tensor of the signal photon

field. Equations (1) and (3) imply that determining the signal emission amplitude effectively

boils down to performing a four-dimensional Fourier integral of a function cubic in F µν .

The signal-photon polarizations can be parameterized as ϵµ(p)(k⃗) =
(
0, e⃗p(k⃗)

)
by two

orthonormal three vectors e⃗p(k⃗) fulfilling k⃗ · e⃗p(k⃗) = 0. For a linear polarization basis we

have p ∈ {1, 2}. The associated vectors e⃗1(k⃗), e⃗2(k⃗) are real and fulfill k⃗/|⃗k|× e⃗1(k⃗) = e⃗2(k⃗).

On the other hand, for a circular polarization basis we have p ∈ {+,−} and e⃗± =
{
e⃗1(k⃗)±

ie⃗2(k⃗)
}
/
√
2. Here, “+” denotes right and “−” left hand circular polarization, respectively.

The above definitions imply ϵ(p)µ(k⃗)ϵ
∗µ
(p′)(k⃗) = δp,p′ for both cases. We also note that generic

elliptic polarizations can be parameterized by polarization vectors e⃗ϵ(k⃗) = {c1(k⃗) e⃗1(k⃗) +
i c2(k⃗) e⃗2(k⃗)}/

√
c21(k⃗) + c22(k⃗), with real-valued functions c1(k⃗), c2(k⃗).

The differential number of signal photons of energy k ≡ |⃗k|, propagation direction k⃗/|⃗k|
and polarization p associated with the transition amplitude (3) can then be expressed as [21]

d3Np(k⃗) =
d3k

(2π)3
∣∣Sp(k⃗)

∣∣2 . (4)

Clearly, the signal attainable in a polarization insensitive measurement follows upon sum-

mation over two transverse signal polarizations as d3N(k⃗) =
∑

p d
3Np(k⃗). For the analysis

of the signal in Eq. (4) it is particularly convenient to employ spherical momentum coordi-

nates where d3k = k2 dk dφ dcosϑ. The angular emission characteristics of the signal is then

encoded in
d2Np(φ, ϑ)

dφ dcosϑ
=

1

(2π)3

∫ ∞

0

dk k2
∣∣Sp(k⃗)

∣∣2 . (5)

In the present work we will ultimately employ the numerical solver put forward in Ref. [33]

to evaluate the signals in Eqs. (4) and (5) for the specific laser field configuration to be

implemented in our experimental setup detailed in Sec. II B.

In the parameter regime where the driving laser fields can be accurately modeled as

leading-order paraxial beams detailed analytical insights into Eq. (4) are possible. This

is especially true for the collision of just two beams: here, the signal decomposes in two
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distinct main contributions that can be understood in terms of laser photons of one beam

(“the probe”) being quasi-elastically scattered off the cycle-averaged intensity profile of the

other beam (“the pump”) and vice versa [34]. Due to the nonlinear interaction of the driving

laser fields, in this case the signal generically comprises components polarized similar (∥)
and perpendicular (⊥) to the laser photons constituting the probe field. It can be shown

that in the low-energy limit considered throughout this work the associated signal photon

numbers scale as

N∥,⊥ ∼ c∥,⊥ α4
(Wpump

m

ωprobe

m

)2

Nprobe , (6)

with α, the pulse energy of the pump Wpump, the probe photon energy ωprobe and the probe

photon number Nprobe ≃ Wprobe/ωprobe. Finally, the coefficients c∥,⊥ governing the strength

of the signal components induced in a ∥,⊥-polarized mode depend on both the low-energy

constants (2) and the polarizations of the driving laser fields. Besides, the signal photon

numbers typically depend non-trivially on other characteristic parameters of the colliding

beams such as the collision angle, their pulse durations, waist sizes and Rayleigh ranges; cf.,

e.g., Ref. [35, 36]. Specifically, the dependence on the collision angle is such that the signal

vanishes for co-propagating beams and becomes maximum for counter-propagation. In the

paraxial limit, these additional dependencies are encoded in a function that amounts to

global factor in Eq. (6) in the sense that it is independent of the polarization characteristics

of the driving beams as well as the signal. In turn, ratios of the explicit values of c∥,⊥ provided

below reproduce the ratios of the associated signal photon numbers. Note, however, that

higher-order corrections in the diffraction angles characterizing both the colliding beams

and the signal, which can for instance be safely neglected for state-of-the-art XFEL probes,

generically break this factorization. Besides, beyond the low-energy limit also higher-order

derivative corrections [37–39] to Eq. (1) are expected to impact the signal polarizations

[20, 40]. Because in the present context we are only interested in an estimate for the signals

to provide for a reference and guidance for our full numerical calculations detailed below,

in our analytical calculations we restrict ourselves to the paraxial limit. In this case, the

coefficients c∥,⊥ in Eq. (6) are given by

c∥ ≃ ([a+ b) + (a− b) cos(2ϕ)]2 ,

c⊥ ≃ [(a− b) sin(2ϕ)]2 , (7)

for linearly polarized beams; ϕ measures the relative polarization of the colliding beams. On

the other hand, if both beams are circularly polarized we have

c∥ ≃ (a+ b)2 ,
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c⊥ ≃ 0 , (8)

independent of the helicities of pump and probe. The same result (8) is obtained for a

linearly polarized probe being collided with a circularly polarized pump. Finally, for a

circularly polarized probe and a linearly polarized pump we find

c∥ ≃ (a+ b)2 ,

c⊥ ≃ (a− b)2 . (9)

These results for c∥,⊥ clearly depend on the low-energy constants a and b only in terms of

a + b and a − b. The numbers of signal photons N attainable in a polarization insensitive

measurement follow by adding the ∥ and ⊥ polarized signals, i.e., are given by Eq. (6) with

c∥,⊥ → c∥ + c⊥. We will make use of these dependencies to benchmark our numerical results

in Sec. III.

A comparison of the results in Eqs. (7)-(9) then implies that the maximum signal photon

number is obtained for linearly polarized pump and probe beams and ϕ = π/2 [41] for

which c∥ + c⊥ ≃ 4b2. Because c⊥ ≃ 0 in this case, this number also amounts to the

maximum possible signal polarized similarly to the probe. On the other hand, the maximum

polarization/helicity-flip signal is obtained in the collision of linearly polarized pump and

probe beams with ϕ = π/4 [16] or a circularly polarized probe collided with a linearly

polarized pump, respectively. Both of these cases result in c⊥ = (a− b)2.

Also note that Eqs. (7) and (9) imply that when colliding either linearly or circularly

polarized probe light with a linearly polarized pump and measuring both signal components

– at least in principle – the values of a and b can be inferred separately [31].

B. Experimental Setup

The experimental setup envisioned by us to allow for the measurement of quantum vac-

uum signals in an all-optical experiment at a petawatt (PW) class laser system, such as the

3PW Advanced Titanium-Sapphire Laser System (ATLAS 3000) at the Centre for Advanced

Laser Applications (CALA) [42] in Garching, Germany, is depicted schematically in Fig. 1.

We have decided for a counter-propagating geometry of the driving laser fields to maximize

the signal-photon yield in Eq. (6). With regard to an experimental implementation in the

high-intensity domain, this geometry has so far been excluded for optical frequencies because

the signal photons predominantly emerge in the forward cones of the driving laser beams and

are thus completely background dominated. In addition, the large diameter of the amplified

high-intensity beam, which is typically of the order of several tens of centimeters, and the
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FIG. 1: Schematic layout of the experimental setup. Two pulses generated by the same frontend are

separated in time and fed into the same focusing optics such that they are collided in their common

focus after the propagation direction of the first pulse has been reversed at a retro-reflector. A

central shadow is imprinted in the transverse profile of the initial beam by reflecting it off a mirror

with hole. The shadow is effectively imaged onto a single-photon sensitive detector via another

hole in the retro-reflector such as to spatially filter out a sizable fraction of the quantum vacuum

signal while minimizing the background. The remaining pump background traversing the hole in

the retro-reflector about 2 ns in advance to the signal can be filtered out by a Pockels cell (PC).

Abbreviations: Wave plate (WP), off-axis parabolic mirror (OAP), focal point (F), spatial filter

(SF), polarizer (POL).

strong focusing required for a significant signal yield pose challenges on possible schemes

even with only two colliding pulses.

We address this challenge by generating a double pulse each containing an energy of

several tens of Joules. The two pulses will be introduced in the frontend of the high-intensity

laser system by splitting the original pulse, introducing an appropriate temporal delay of

about 2 ns. The delay and the pulse energy content can be finely tuned by a delay stage and

an appropriate continuous Neutral Density (ND) filter. Subsequently these pulses will travel

the exact same path through the amplifiers, compressor and the laser beam delivery to the

experimental vacuum chamber, where a 90◦ off-axis parabolic mirror (OAP) with effective

focal length of feff = 30 cm focuses the pulses. A spherical mirror with suitable radius of

curvature (R = 30 cm) will be mounted downstream of the primary focus point. It will

reflect and refocus the pulses, such that the first pulse on its return collides with the second

pulse in its first pass in the common focus spot. A motorized hexapod will enable precise

spatial overlap, whereas fine tuning the temporal delay between the pulses in the frontend

varies temporal overlap. The spatial overlap between the pulses can be optimized to better

than < 0.1µm with typically available hardware. At the same time, fine tuning the temporal
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delay between the pulses in the frontend to vary the temporal overlap is possible to better

than fs precision. We note, however, that this overlap will be influenced by shot-to-shot

variations, especially of the beam pointing, present in any large laser system. In principle,

these can be minimized by active control to a similar or better level. The necessary level

of improvement will depend on the real-world background contributions and thus is beyond

the scope of this manuscript.

By introducing two large aperture wave plates, one before the OAP (WP1) and one in

front of the spherical retro-reflecting mirror (WP2), we can change the polarization of both

pump and probe pulses and thus realize all potentially relevant polarization combinations

studied in Sec. IIA in experiment; see Fig. 1. To this end, we consider all incident laser

pulses to be linearly polarized. In turn, if WP1 is a quarter wave plate and WP2 is an

eighth wave plate, the probe will be circularly polarized and the pump polarization will be

linear. If WP1 is omitted and only an eighth wave plate is used for WP2, the probe will

be linearly polarized and the pump circularly polarized. On the other hand, if we use a

quarter wave plate for WP1 and omit WP2, probe and pump will be circularly polarized

with opposite helicity. If both WP1 and WP2 are quarter wave plates, probe and pump

will also be circularly polarized but with equal helicity. Finally, if we do not use WP1 and

operate WP2 as a quarter wave plate we can rotate the polarization of the pump pulse by an

angle of 0 ≤ ϕ ≤ 90◦ relative to that of the probe. This allows us to tune the coefficients in

Eq. (7). In particular, recall that ϕ = 45◦ maximizes the polarization-flip signal N⊥. Even

though being reduced by a factor of about c⊥/(c∥ + c⊥)
∣∣
ϕ=45◦

≃ 0.07 relative to the total

signal, this signal can likely be more efficiently separated from the residual co-propagating

laser background that is inevitable in any actual experimental implementations of our setup

using polarimetry.

The second key-challenge, namely achieving a sufficient signal-to-background separation

in experiment, is mastered by an approach pioneered by Refs. [43, 44] for the detection

of weak nonlinear optics signals in the presence of strong fields. Its great potential for the

measurement of quantum vacuum signals has recently been showcased in Refs. [30, 31] for the

case of high-intensity and x-ray free electron laser (XFEL) collisions. The idea underlying

this approach is to remove a central part of the collimated beam by reflecting the initial

beam at a mirror with hole to create an annular beam. Alternatively the annular beam

profile can be introduced by an obstacle put into the beamline.

The central shadow implemented in the transverse beam profile is then present in both

the convergent beams prior to focusing and the divergent beams after focusing; see Fig. 1.

At the same time, a strongly peaked on-axis focus profile, very similar to that of an ordinary

focused beam without dark field, is retained; in the focus the information about the central

shadow is encoded in the Airy ring structure [30]. Because the peak-field driven quantum
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vacuum signal is predominantly induced by the central focus peak, which – to leading order

– can locally not be distinguished from the focus profile of a Gaussian beam, a sizable signal

fraction is thus expected to be emitted into the dark field. Our setup in Fig. 1 is designed

such as to image the signal induced in forward direction via a hole in the retro-reflector onto

a single-photon sensitive detector, and thus to allow for a spatial separation of the quantum

vacuum signal from the background of the driving laser photons. To reduce background

due to diffracted photons in this shadow region, a beam block will be inserted closer to the

primary focus. A set of two lenses positioned behind the hole in the retro-reflector images the

beam block onto the entrance aperture of a spatial filter (SF) with pinhole matched to the

image of the high-intensity focal spot. This arrangement prevents singly scattered photons

from the OAP from propagating to the detector and we hence have a situation where only

doubly scattered photons could enter the beam path. The photons that pass through the

pinhole of the spatial filter naturally decompose into (i) a pure background component due

to the pump pulse and (ii) a probe background plus signal component arriving delayed by

∆t = 2R/c. Ideally, the background contribution is negligible with respect to the signal.

In Refs. [30, 31] a relation between the inner θin and outer θout radial divergences of a

paraxial beam of wavelength λ featuring a circular flat top near-field profile with a perfect

central circular shadow and its 1/e2 beam waist w0 (w.r.t. intensity) was derived. This can

be expressed as

w0 ≃
λ

πθout

√
2(1− e−1)

1 + ν
, where ν =

( θin
θout

)2

(10)

measures the fraction of the transverse area of the beam in the near field obstructed by the

central shadow; in the limit of ν → 0 we recover the result for a flat top without shadow.

Assuming the full beam entering our setup in Fig. 1 to feature a flat top transverse profile into

which the central shadow is imprinted and neglecting the impact of the asymmetry induced

by the 90◦ OAP in our setup for the moment, the parameter ν can also be related to the beam

energies of the initial beam W0 and the resulting annular beam as W = W0(1− ν). Clearly,

θout is to be kept fixed and amounts to the radial opening angle of the focused beam. At

this point we also emphasize that in the present context the paraxial approximation should

allow for reliable insights as long as θout ≪ 1. Moreover, it can be shown that the focus peak

field amplitude of such a beam is given by [45]

Epeak ≃ (1− ν)

√
1− e−1

1 + ν
E0 , (11)

where E0 is the peak field amplitude of a Gaussian beam of energy W0 featuring the same

waist size and temporal envelope. Also note that by construction in our setup the pump

and probe laser pulses have the same pulse duration τ and the same waist w0 when they
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collide in their common focus.

Using the above findings in the analytical approximation for the angular emission char-

acteristics in the collision of two pulsed Gaussian beams provided in Eq. (11) of Ref. [36]

and integrating over a forward cone with radial opening angle θdet ≤ θin we thus can ar-

rive at an estimate for the quantum vacuum signal to be measured by a detector with an

angular acceptance of πθ2det located behind the central hole in the retro-reflector in Fig. 1.

For completeness, we emphasize that though formally resorting to an infinite Rayleigh range

approximation for the probe, the analytical approximation [36] should allow for reasonable

estimates even for the collision of beams with the same Rayleigh range as considered here:

the somewhat less pronounced localization of the composite laser field in the interaction re-

gion in longitudinal direction and the stronger localization in transverse direction associated

with this idealization tend to compensate each other.

Identifying the beam waists with Eq. (10), equating the pulse durations with τ and

multiplying by an overall rescaling factor of (Epeak/E0)6 to account for the reduction of the

peak field amplitude, Eq. (11) of Ref. [36] provides us with an estimate for the number of

p ∈ {∥,⊥} polarized signal photons reaching the detector,

Np,det ≃ cp

√
3

π

2(1− e−1)

6075
(πα)4

(W0

m

)3(λC

λ

)5

θ4out
(1− ν)6

1 + ν

√
F0F1

×
(
1− exp

{
−4

3

1− e−1

1 + ν

√
F1

F0

(θdet
θout

)2
})

, (12)

where

Fβ := F

(
8

π

√
2

3

1− e−1

1 + ν

λ

τ

√
1 + 2β2

θ2out

)
, with

F (χ) := χ2 e2χ
2

∫ ∞

−∞
dκ e−κ2

[
e2κχ erfc(χ+ κ) + e−2κχ erfc(χ− κ)

]2
, (13)

and τ denotes the 1/e2 pulse duration w.r.t. intensity. In the limit where θdet → θin and the

maximum possible number of signal photons is detected within the hole in the retro-reflector

we clearly have (θdet/θout)
2 → ν. Adopting this choice, for a wavelength of λ = 800 nm, a

typical pulse duration of τFWHM = 30 fs (τ ≃ 51 fs) available at state-of-the-art high-intensity

laser systems and an outer radial beam divergence as large as θout ≃ 1/2 such as to reach a

large peak field strength in the focus, Eq. (12) allows us to infer that the maximum signal can

be achieved for ν ≃ 0.1. We emphasize that, because θout ≃ 1/2 does not fulfill the citerion

θout ≪ 1, higher-order corrections to the (leading-order) paraxial approximation adopted in

the derivation of Eqs. (10)-(12) may become sizable in the considered limit. Especially as it

makes use of an infinite Rayleigh range approximation, Eq. (12) thus is likely to allow only
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for a qualitative estimate for the present parameters.

When aiming at implementing the experimental setup outlined above at the ATLAS 3000

system where the beam radius is rbeam = 14 cm, we obtain θout ≈ rbeam/feff ≃ 0.47. Cor-

respondingly, because of ν ≃ (rhole/rbeam)
2 the optimal value for the radius of the hole in

the first mirror and the retro-reflector should be of the order of rhole ≈
√
0.1 rbeam ≈ 4.5 cm.

Specializing to ATLAS 3000 parameters in the remainder of this work, we choose a somewhat

larger value of rhole = 4.75 cm for the hole in the first mirror and rdet = 3.75 cm for the one in

the retro-reflector that effectively defines the size of the detection region. Correspondingly,

we have ν ≃ 0.12. These hole sizes are manageable in terms of available, high quality op-

tics for collection and subsequent signal filtering and analysis. The experimental results in

Ref. [46] suggest that double scattering at the OAP and in the collection lens will contribute

the majority of background photons within a gate window width of 1 ns around the laser

pulse. Importantly, these are significantly delayed or advanced with respect to the signal

photons and can hence be further suppressed by appropriate temporal gating techniques.

C. Laser Field Model

As detailed above, the 90◦ OAP constitutes a key component of our setup. For the

modeling of its impact on the driving laser fields we resort to the vector diffraction formulae

allowing to infer the electromagnetic field near the focus of an off-axis paraboloid for a given

incident field configuration derived in Ref. [47] on the basis of the Stratton–Chu formula

[48]. See also Ref. [49] for a recent systematic investigation. This in particular ensures that

the distortions of the laser fields when reflected off the OAP are consistently accounted for

in our calculation of the quantum vacuum signals.

The input to this calculation is the transverse profile of a monochromatic paraxial beam

specified at a longitudinal coordinate z = z0 right in front of the OAP such that diffraction

effects from the input plane to the OAP surface can be safely neglected. This beam prop-

agates in negative z direction and is characterized by a complex electric field of the form

E⃗in(x) = e−iωt E⃗in(ω, x⃗) with

E⃗in(ω, x⃗)
∣∣
z=z0

= e−iωz0
[
E0,x(x, y) e⃗x + E0,y(x, y) e⃗y

]
, (14)

and a corresponding magnetic field given by B⃗in = −e⃗z× E⃗in. Here, ω denotes the oscillation

frequency of the beam and the transverse profile functions E0,x(x, y) and E0,y(x, y) implement

transverse beam sizes much larger than its wavelength λ = 2π/ω [47]. The origin of our

coordinate system is in the focal point F in Fig. 1. For a monochromatic input beam, the

beam reflected off the OAP is, of course, also monochromatic. For a 90◦ OAP the electric
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field of the resulting beam near its focus at x⃗ = 0 (see below for the precise condition) can

then be expressed as [47]

Ex(ω, x⃗) =
iω

2π

∫∫
dx̃ dỹ

[
E0,x

(
1− x̃2

2f 2(1 + s)

)
− E0,y

x̃ỹ

2f 2(1 + s)

]
1

f(1 + s)
e−iωϕ ,

Ey(ω, x⃗) =
iω

2π

∫∫
dx̃ dỹ

[
E0,y

(
1− ỹ2

2f 2(1 + s)

)
− E0,x

x̃ỹ

2f 2(1 + s)

]
1

f(1 + s)
e−iωϕ ,

Ez(ω, x⃗) =
iω

2π

∫∫
dx̃ dỹ

(
E0,xx̃ + E0,yỹ

) 1

f 2(1 + s)2
e−iωϕ , (15)

with the phase

ϕ =
x̃x + ỹy + f(s− 1)z

f(1 + s)
(16)

containing the full dependence of Eq. (15) on x⃗. Here, f = feff/2 is the parent focal length

of the 90◦ OAP, E0,x ≡ E0,x(x̃, ỹ), E0,y ≡ E0,y(x̃, ỹ), s = (x̃2 + ỹ2)/f 2
eff and the integrations

are performed over the transverse coordinates x̃ and ỹ of the input beam. The associated

magnetic field B⃗(ω, x⃗) is fully determined by Maxwell’s equations in vacuum [47] and thus

can be readily extracted from Eq. (15); for its explicit expression see Ref. [47]. The use of

Eq. (15) is well-justified given the near focus condition |x⃗|2 ≪ 2|x̃x + ỹy + f(s− 1)z| is met

[47], i.e., as long as |x⃗| is sufficiently small and the integrals over x̃ and ỹ in Eq. (15) receive

their main contributions from regions where this condition is met.

Also note that knowledge of the electromagnetic fields near the beam focus immediately

grants access to the far-field angular distribution of the number N = W/ω of laser photons

per unit time. To this end, recall that in momentum space the (appropriately regularized)

energy stored in the electromagnetic field can be expressed as

W =

∫
d3k

1

2

(∣∣E⃗(ω, k⃗)
∣∣2 + ∣∣B⃗(ω, k⃗)

∣∣2) , (17)

which for a monochromatic beam with
∣∣E⃗(ω, k⃗)

∣∣ = ∣∣B⃗(ω, k⃗)
∣∣ as considered here implies that

d2N (φ, ϑ)

dφ dcosϑ
=

1

ω

∫ ∞

0

dk k2
∣∣E⃗(ω, k⃗)

∣∣2 . (18)

Making use of the fact that the electric field can be spanned by two orthogonal polarization

vectors e⃗p(k⃗) transverse to k⃗ (see Sec. IIA), we can write

∣∣E⃗(ω, k⃗)
∣∣2 = ∑

p

∣∣e⃗p(k⃗) · E⃗(ω, k⃗)
∣∣2 . (19)

This identity allows us to infer from Eq. (18) that the far-field angular distribution of laser

12



photons polarized in mode p can be represented as (cf., e.g., Ref. [14])

d2Np(φ, ϑ)

dφ dcosϑ
=

1

ω

∫ ∞

0

dk k2
∣∣e⃗p(k⃗) · E⃗(ω, k⃗)

∣∣2 . (20)

With Eq. (15), and rewriting the relevant Fourier integral in the following form∫
d3x e−i(k⃗·x⃗+ωϕ) =

( feff
ω + kz

)2

(2π)3 δ
(
x̃ + feff

kx
ω + kz

)
δ
(
ỹ + feff

ky
ω + kz

)
δ(k− ω) , (21)

it is then straightforward to work out explicit expressions for Eqs. (18) and (20). For com-

pleteness and future reference we provide the explicit results for the components of E⃗(ω, k⃗) in

Appendix A. In a coordinate system oriented such that k⃗ = k (cosϑ, sinφ sinϑ,− cosφ sinϑ)

especially the far-field angular distribution of the total number of laser photons (18) can be

expressed as

d2N (φ, ϑ)

dφ dcosϑ
= N

E2
0,x(x̃, ỹ) + E2

0,y(x̃, ỹ)

(1− cosφ sinϑ)2

(∫ 2π

0

dφ

∫ 1

−1

dcosϑ
E2

0,x(x̃, ỹ) + E2
0,y(x̃, ỹ)

(1− cosφ sinϑ)2

)−1

, (22)

where

x̃ = −feff
cosϑ

1− cosφ sinϑ
and ỹ = −feff

sinφ sinϑ

1− cosφ sinϑ
. (23)

The only input needed to evaluate Eq. (22) is the transverse profile of the beam (14) im-

pinging the 90◦ OAP. In this context, we also note that the ratio of Eq. (20) and N as

determined from Eq. (18) is manifestly finite and therefore specifically provides direct access

to the fraction Np/N of p polarized laser photons Np contained in the total number of laser

photons N .

For a linearly polarized incident top-hat beam featuring a perfect central circular shadow

we have

E0,x(x, y) = E0(x, y) cos β , E0,y(x, y) = E0(x, y) sin β , (24)

where the angle β parameterizes the possible polarization directions and the field profile

reads

E0(x, y) = E0Θ(
√
(x + feff)2 + y2 − rhole)Θ(rbeam −

√
(x + feff)2 + y2) , (25)

with Heaviside step function Θ(·) and field amplitude E0, the value of which is left unspecified

for the moment; see the discussion in the context of Eq. (28) below. On the other hand, for

a “±” circularly polarized input beam we have

E0,x(x, y) =
1√
2
E0(x, y) , E0,y(x, y) = ∓i

1√
2
E0(x, y) ; (26)
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cf. also Sec. IIA. To this end, recall that the beam impinging the 90◦ OAP propagates in

negative z direction.

In a next step, we plug either Eq. (24) or Eq. (26) into Eq. (14) and determine the resulting

electric field (15) in the vicinity of the focus. The associated magnetic field is determined

therefrom via Maxwell’s equations. Accounting for the fact that the beam reflected off the

90◦ OAP propagates along the positive x axis, we then multiply all field components with a

factor of exp
{
−(x− t)2/(τ/2)2

}
with ωτ ≫ 1 such as to implement a physical finite energy

beam; τ is the 1/e2 duration of the resulting pulsed beam w.r.t. intensity. We denote the

resulting (complex) electric and magnetic fields near focus by

E⃗(x) = e−iωt−( x−t
τ/2 )

2

E⃗(ω, x⃗) and B⃗(x) = e−iωt−( x−t
τ/2 )

2

B⃗(ω, x⃗) . (27)

The demand of ωτ ≫ 1 ensures that (i) the resulting pulsed beam has a negligible bandwidth

and thus can be considered as quasi-monochromatic, and (ii) the violations of Maxwell’s

equations in vacuum inevitably introduced by this ad hoc prescription can be safely neglected;

they are parametrically suppressed by inverse powers of ωτ . For λ = 800 nm and τFWHM =

30 fs we have ωτ ≃ 314 which implies that this assumption is indeed well-justified. Modeling

the electric field of the incident beam by the real part of Eq. (14) with transverse profile (25)

and adopting the above pulsed beam prescription, we then fix the field amplitude E0 by

demanding the focus pulse energy W = W0 (1− r2hole/r
2
beam) to fulfill [33]

W =

∫
dt

∫
dy

∫
dz

(
e⃗x · S⃗(x)

)∣∣
x=0

. (28)

Here, W0 is the total pulse energy of the employed laser system and S⃗(x) = Re{E⃗(x)} ×
Re{B⃗(x)}, with the electric and magnetic fields given in Eq. (27), is the Poynting vector.

ATLAS3000 can routinely provide pulses with an energy of W0 = 25 J, which is the value

adopted by us in the remainder of this work. With the values for rbeam and rhole envisioned

for the implementation of our setup at ATLAS3000 given above we thus have W ≃ 22.1 J.

Figure 2 depicts the far-field angular distributions of the laser photons (22) of such a

beam, namely the one constituting the probe beam in the experimental setup devised by

us in Sec. II B for the parameters available at ATLAS3000. This distribution features

a pronounced asymmetry with regard to the xy plane, but is symmetric with respect to

the xz plane. We emphasize that because the distance from the focus F to the retro-

reflector with hole is R = 30 cm in our setup and correspondingly R/zR ≫ 1 assuming the

detection to take place in the far field is well-justified; recall that the Rayleigh range zR of

the beam is the distance from the waist along its beam axis to the longitudinal coordinate

where the cross section area (characterized by its 1/e2 average radius w.r.t. intensity) is
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FIG. 2: Normalized far-field angular distribution (22) of the laser photons constituting the probe

beam in our setup; feff = 30 cm, rbeam = 14 cm, rhole = 4.75 cm. The asymmetry is induced by the

90◦ OAP.

doubled. To be specific, in our case we numerically infer zR ≈ 4.9µm and thus indeed have

R/zR ≈ 6× 104 ≫ 1; the mean waist size is w0 ≈ 708 nm.

Finally, we assume the electric field of the laser beam reflected back to the focus by the

retro-reflector to be again well-modelled by E⃗(x) = E⃗(t, x⃗) in Eq. (27). To be precise, as both

the propagation direction and the orientation of the electric field of this beam are reversed

at the mirror, the electric field of this beam follows by the mapping E⃗(t, x⃗) → −E⃗(t,−x⃗)

and the associated magnetic field from Maxwell’s equations. This choice ensures perfect

collisions at zero impact parameter. However, note that this construction does not require

the colliding laser fields to have the same polarization. In fact, along the lines of Eqs. (24)

and (26) we can always choose a different polarization for the collimated incident top-hat

beam impinging the OAP in our setup depicted in Fig. 1 prior to implementing the above

mapping. We emphasize that throughout the present work we fix the polarization of a

given beam in this way, which allows for an unambiguous, theoretically solid definition of

the beam’s polarization state. In experiment, the polarization of the reflected beam can

alternatively be modified with respect to the left-moving one by the appropriate insertion of

optical elements such as half-wave and quarter-wave plates into its beam path; cf also Fig. 1.
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III. RESULTS

Instead of setting up a dedicated integrator allowing to directly evaluate the signal photon

amplitude (3) in the combined electromagnetic field of the left- and right-moving focused

beams in our setup, we make use of the numerical vacuum emission solver [33] to determine

the relevant quantum vacuum signals. This solver allows to initialize a given laser beam by

providing its (complex) electric field at a fixed time discretized on a three dimensional grid.

For a finite-energy beam, inherently coming with a spatial localization of the electromagnetic

field, the input volume can – at least in principle – always be chosen large enough such as

to accommodate the full laser field. In the present work, we identify the input time with the

time where the maximum intensity is reached in the beam focus at x⃗ = 0. This amounts to

setting t = 0 in Eq. (27) and thus using

E⃗(x)
∣∣
t=0

= e−4( x
τ )

2

E⃗(ω, x⃗) , (29)

with the components of E⃗(ω, x⃗) given in Eq. (15) to initialize a given laser beam in the

vacuum emission solver [33]. The field configuration of the resulting beam is then self-

consistently propagated to times t ̸= 0 by the solver according to Maxwell’s equations in

vacuum. For further details on the numerical implementation see Appendix B and Ref. [33].

A. Laser Polarizations

Here, we provide results for seven different polarizations of the colliding laser beams.

As clarified in the last paragraph of Sec. II C, in our theoretical considerations these are

assumed to be implemented for the collimated beams prior to being reflected off the 90◦

OAP in Fig. 1. Namely, we consider (A) both beams to be linearly polarized with a relative

polarization of

(A1) : ϕ = 0 (βprobe = βpump = π/2) ,

(A2) : ϕ = π/4 (βprobe = π/4 , βpump = π/2) ,

(A3) : ϕ = π/2 (βprobe = 0 , βpump = π/2) ,

where we also provide the explicit value of the angle β used for the probe and pump laser

fields in Eq. (24) to realize a given relative polarization. (B) Both beams are circularly

polarized with the

(B1) : opposite helicity (probe = “ + ” , pump = “− ”) ,
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(B2) : same helicity (probe = “ + ” , pump = “ + ”) .

Recall that in out setup in Fig. 1 the propagation direction and the orientation of the electric

field of the pump beam, and thus also its helicity, are reversed at the mirror acting as retro-

reflector prior to the collision with the probe. Finally, we assume (C) one beam to be linearly

polarized and the other one to be circularly polarized. The specific cases considered here

are

(C1) : circ. polarized probe, lin. polarized pump (probe = “ + ” , βpump = π/2) ,

(C2) : lin. polarized probe, circ. polarized pump (βprobe = π/2 , pump = “− ”) .

We emphasize that the polarizations of the colliding laser beams near focus encoded in

E⃗(x) certainly do differ from the polarizations of the collimated input beams. The reasons

for this are both the focusing and the asymmetry induced by the use of the 90◦ OAP in our

setup. In addition, also the finite pulse duration of the colliding beams implemented by the

above ad hoc description can impact the polarization of the beams. As we have explicitly

ensured that ωτ ≫ 1, the latter effect should, however, be negligible.

In any case, we expect characteristic properties such as the dominant polarization compo-

nent to be inherited by the focused beam. To this end, it is, however, important to note that

the 90◦ reflection at the OAP genuinely maps the polarization vector of a linearly polarized

input beam propagating in −z direction given by e⃗in = cos β e⃗x + sin β e⃗y [cf. Eqs. (14)

and (24)] onto e⃗out = cos β e⃗z − sin β e⃗y for the output ray propagating along +x towards

the focal point, i.e., the beam axis of the focused beam. The reason for this is that upon

hitting a mirror the electric field component tangential to the mirror surface is compensated

by a field induced in the mirror such as to ensure the electric field to vanish identically on

its surface. Analogously, the polarization vector of a “±” circularly polarized input beam

e⃗in = (e⃗x ∓ i e⃗y)/
√
2 [cf. Eq. (26)] is mapped onto e⃗out = (e⃗z ± i e⃗y)/

√
2 by the 90◦ OAP,

which clearly implies that the reflection reverses the polarization from right to left hand

circular polarization and vice versa.

At the same time, we emphasize that within the present approach we have direct access

to the polarization vectors e⃗div(k⃗) of the laser photons of wavevector k⃗ forming the divergent

laser beam propagating towards the retro-reflector in our setup in Fig. 1. In line with this,

we refer to signal photons that co-propagate with the divergent OAP reflected beam after

focusing and fulfill the criterion

e⃗p(k⃗) · e⃗ ∗
div = 0 (30)

as being perpendicularly polarized to this beam; we denote their polarization vectors by
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e⃗⊥(k⃗). For the details, see Appendix A.

B. Prospective signals

In Tab. I we provide our results for the numbers of signal photons reaching a detector

registering all signal photons traversing the hole in the retro-reflector per shot, i.e., those

signal photons scattered to polar angles ϑ ≤ θdet. To this end we integrate Eq. (5) over the

full azimuthal angle 0 ≤ φ ≤ 2π and the polar angle interval 0 ≤ ϑ ≤ arctan(rdet/feff) ≃ 7.1◦.

The estimates presented here are obtained from Eq. (12) which, as detailed in Sec. II B above,

(A1) (A2) (A3) (B1) (B2) (C1) (C2)

estimate
Ndet 1.41 2.86 4.32 2.67 2.67 2.86 2.67
N⊥,det 0 0.20 0 0 0 0.20 0

full calc.
Ndet 1.48 2.88 4.29 3.11 2.32 2.88 2.72
N⊥,det 6.71× 10−4 0.19 7.78× 10−3 3.29× 10−11 2.72× 10−11 0.18 1.83× 10−2

TABLE I: Numbers of signal photons scattered into the hole in the retro-reflector fulfilling ϑ ≤ θdet.

Ndet: polarization insensitive measurement; N⊥,det: perpendicularly polarized signal.

is severely based on the paraxial approximation and completely neglects the asymmetry

introduced by the 90◦ OAP visible in Fig. 2, as well as any effects associated with the

finite Rayleigh length of the probe. In turn, deviations from the results of a full numerical

calculation in the parameter regime where θout ≃ rbeam/feff ≃ 0.47 are to be expected.

Still, Tab. I shows that the analytical estimates (12) with coefficients (7)-(9) encoding the

polarization dependence of the signal nevertheless predict the full numerical results as well

as their general trends reasonably well.

This is in particular true for the numbers Ndet of signal photons to be registered by

the detector in a polarization insensitive measurement. In general, the analytical estimates

deviate from these only by factors of ≈ 0.9 . . . 1.2. For the linearly polarized cases (A)

the estimates and the results of the full calculation fulfill Ndet|(A1) < Ndet|(A2) < Ndet|(A3).

Moreover, the ratios of Ndet|(A2)/Ndet|(A1) ≈ 2 and Ndet|(A3)/Ndet|(A2) ≈ 1.5 inferred from

both approaches agree well with each other. Also the degeneracy of the results for (A2) and

(C1) that is to be expected from the estimate is reproduced by the full calculation. At the

same time, the outcomes for (B1), (B2) and (C2) agree for the estimate but differ for the

full calculation. As to be expected from the paraxial limit (cf. the second to last paragraph

of Sec. IIA), for the cases considered here the maximum signal of Ndet ≃ 4.29 signal photons

per shot is obtained for orthogonally polarized probe and pump beams in (A3).

In Fig. 3 we depict the angular emission characteristics of the polarization insensitive

signal for this particular case; note that d2Np(φ,−ϑ) = d2Np(φ + π, ϑ) and similarly for
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d2Np. The depicted angular resolved signal photon distributions exhibit a pronounced dent

in the field free shadow imprinted in the probe beam. We note that this behavior can

be attributed to the specific collision geometry considered here where both the probe and

the pump beam are focused to the same waist size. In principle, a peaked signal photon

distribution in the shadow can be ensured but requires to tune the probe and pump waists

appropriately [30].

FIG. 3: Differential number (5) of signal photons N attainable in a polarization insensitive mea-

surement (solid red line) and laser photons N (dotted blue line) for case (A3). Dependence on ϑ

for φ = 0 (left) and φ = π/2 (right). The blue shaded areas delimited by dashed vertical lines

mark the fraction of the signal reaching the detector.

For completeness, we also note that the full calculation allows us to infer that the total

numbers N of induced signal photons scattered into the right half-space, i.e., to angles

0 ≤ φ ≤ 2π and 0 ≤ ϑ ≤ π/2, are about a factor of ≈ 17.2 . . . 17.8 larger than those for

Ndet in Tab. I. However, these numbers are typically only of academic interest as most of

the signal photons are vastly dominated by the background of the driving laser photons and

thus essentially inaccessible in experiment.

For all cases apart from (A2) and (C1) the polarization-flipped signals per shot N⊥,det

are suppressed by at least two orders of magnitude relatively to the polarization unresolved

signals Ndet. This is in good accordance with the analytic estimates predicting N⊥,det to

vanish identically in these cases. On the other hand, the analytical estimates for (A2) and

(C1) overestimate the results of the full calculation for our setup by a factor of just ≈ 1.1.

This minor discrepancy is in line with the one found above for the polarization insensitive

signals Ndet. Because (A2) maximizes the polarization-flip signal in the collision of linearly

polarized beams, this choice is typically envisioned for vacuum birefringence experiments;

cf., e.g., Refs. [50, 51]. In accordance with the corresponding analytical estimates, the full

calculation predicts the signal photon numbers N⊥,det to (approximately) agree for (A2) and

(C1) and result in a maximum yield of N⊥,det ≃ 0.19 polarization-flipped signal photons per
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FIG. 4: Differential number (5) of ⊥ polarized signal photons N⊥ (solid red line) for case (A2).

Note, that by definition there are no ⊥-polarized laser photons. Dependence on ϑ for φ = 0 (left)

and φ = π/2 (right). The blue shaded areas delimited by dashed vertical lines mark the fraction

of the signal reaching the detector.

shot. Also note that for these cases the total-to-flipped signal ratio Ndet/N⊥,det, predicted to

be ≃ 14.3 by the analytical estimate, is found to be ≈ 15.5 . . . 15.8 for the full calculation,

and thus is in reasonable agreement. Figure 4 shows the angular emission characteristics of

the ⊥ polarized signal for (A2).

IV. CONCLUSIONS AND OUTLOOK

In this work we have put forward a concrete experimental schema allowing to detect

nonlinear quantum vacuum signals in the head-on collision of two tightly focused high-

intensity beams of the petawatt class with state-of-the-art technology.

The key components of our setup are a 90◦ off-axis parabolic mirror and a retro-reflector

arranged such as to allow two subsequent laser pulses generated by the same frontend to be

focused by the same optics and to be collided in the common focal point of the OAP and

the retro-reflector. In order to allow for a measurement of the small quantum vacuum signal

in the presence of the large background of the laser photons constituting the driving beams

our setup employs a dark-field approach: to this end a central shadow is imprinted into

the colliding laser beams and the signature of quantum vacuum nonlinearity to be detected

in experiment amounts to signal photons scattered into the central shadow. The latter is

imaged onto a detector through a hole in the retro-reflector. By appropriately preparing

the polarization state of the incident beams prior to being fed into the focusing optics also

polarization sensitive observables can be studied with our setup.

Resorting to a set of well-justified assumptions and theoretical idealizations, in the present

work we have explicitly demonstrated that the setup envisioned by us should indeed provide
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a prospective new route towards a first measurement of nonlinear quantum vacuum signals

in an all-optical experiment at present and forthcoming petawatt-class high-intensity laser

laboratories, such as CALA in Garching, Germany. As a critical next step, it needs to

be shown that the scattering and diffraction background that is inevitable in any real-

world experimental implementation of the setup can indeed be appropriately controlled and

sufficiently suppressed in experiment.
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Appendix A: Components of E⃗(ω, k⃗) and far-field polarization vectors

Equations (15) and (21) imply that the components of E⃗(ω, k⃗) can be expressed as

Ex(ω, k⃗) =
i

ω
(2π)2 δ(k− ω)

feff
(ω + kz)2

[
E0,x(ω

2 + ωkz − k2
x)− E0,ykxky

]
,

Ey(ω, k⃗) =
i

ω
(2π)2 δ(k− ω)

feff
(ω + kz)2

[
E0,y(ω

2 + ωkz − k2
y)− E0,xkxky

]
,

Ez(ω, k⃗) = − i

ω
(2π)2 δ(k− ω)

feff
ω + kz

(
E0,xkx + E0,yky

)
, (A1)

where the arguments x̃ and ỹ of E0,x and E0,y are to be identified with Eq. (23). One can

easily convince oneself that the electric field components in Eq. (A1) indeed fulfill k⃗·E⃗(ω, k⃗) =

0 in accordance with Maxwell’s equations in vacuum. The unit vector

e⃗div(k⃗) =
1∣∣E⃗(ω, k⃗)

∣∣ E⃗(ω, k⃗)

∣∣∣∣
ω=|⃗k|

(A2)

can hence be interpreted as the far-field polarization vector of the photons of wavevector k⃗

constituting the divergent laser beam after focusing. In our setup in Fig. 1 these are the laser

photons propagating towards the retro-reflector. The latter is sufficiently separated from the

focal point F, such as to be effectively located in the far field; cf. also the corresponding

discussion in the paragraph below Eq. (28) in Sec. II C. In line with that, the polarization

vector of photons propagating towards the retro-reflector and being polarized perpendicular

to the laser photons can be defined as

e⃗⊥(k⃗) := k⃗ × e⃗ ∗
div(k⃗) . (A3)
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Finally, some comments on a subtlety are in order here: clearly, Eq. (A1) is non-zero only for

directions k⃗/|⃗k| for which the components E0,x and E0,y determined by the input field (14)

[cf. also Eqs. (22) and (23)] do not vanish. This immediately implies that, even though the

dependence on E0,x and E0,y drops out completely for our specific profile choices (24)-(26),

Eq. (A2) is a priori only defined for these directions. However, we emphasize that for the

present analysis it indeed amounts to a natural choice to extend the definitions (A2) and

(A3) to arbitrary photon propagation directions. This is completely in line with the origi-

nal derivation of [47] underlying our present considerations, where the transverse direction

dependence of E0,x and E0,y effectively only acts as a regulator enforcing a finite transverse

beam profile, but does not at all affect the polarization characteristics relative to an infinitely

extended monochromatic plane-wave input field.

Appendix B: Numerical Implementation

The numerical evaluation of Eq. (3) requires the tuning of eight numerical parameters.

These are the extents (Lt, Lx, Ly, Lz) parameterizing the space-time volume of the simulation

box and the corresponding numbers of grid points n(4) = (nt, n(3)) = (nt, nx, ny, nz). The

simulation box needs to be large enough such as to capture the interaction region of the

colliding laser pulses where the quantum vacuum signals are induced. In our setup in Fig. 1

this amounts to the region around the focal point F, the transverse and longitudinal extents

of which are controlled by the beam waist w0 and the Rayleigh length zR, respectively. The

temporal extent is set by the overlap of the colliding pulses and is controlled by the pulse

duration τ .

For the temporal extent we choose Lt = 2τ ≃ 102 fs centered at t = 0 where the colliding

pulses overlap best; recall that τFWHM = 30 fs. Moreover, we choose Lx = 4cτ ≃ 61.1µm and

Ly = Lz ≃ 19.1µm ≈ 24λ for the spatial extents in longitudinal and transverse directions,

respectively. We have explicitly checked that the field strengths at the boundaries reach at

most 2% of the peak field value for t = 0.

A quantitative prediction of the quantum vacuum signals requires resolving all frequency

components of the signal. The four-field interaction in Eq. (1) gives rise to signals at two

different photon oscillation frequencies k ≈ {ω, 3ω}. In order to resolve the signal the

maximum frequency k ≈ 3ω, we use nt = 688 grid points in temporal direction and nx = 920

grid points in longitudinal direction. This corresponds to a sampling with approximately 6

and 4 grid points per minimum wavelength λ/3, respectively. In the focal plane the annular

flat top beam reflected off the 90◦ OAP features side lobes that have to be resolved for an

accurate determination of the signal. As default value for our simulations we use ny = nz =

245 grid points in the transverse directions, which implies a sampling with approximately 3
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FIG. 5: Log-log plot of the mean relative error (MRE) of the total number N of signal photons

scattered into the right half-space as a function of the number of temporal grid points nt for different

spatial grid resolutions. The reference value for the MRE is N ≃ 49.58 obtained for the highest

resolution of n(4) = (1376, 315, 315, 1150). The data point enclosed by a circle (MRE ≃ 0.06%) is

determined with the default resolution of n(4) = (688, 245, 245, 920) used in this work.

grid points per λ/3. For case (A2) in Sec. IIIA, the above extents of the simulation box and

n(4) = (688, 245, 245, 920) we obtain a total number of N ≃ 49.58 signal photons scattered

into the right half-space. With a finer resolution based on n(4) = (1376, 315, 315, 1150) grid

points the analogous result is found to be N ≃ 49.61. We use this value as reference value

Nref for the estimation of the mean relative error MRE = |N−Nref |/Nref of the signal photon

numbers N extracted from our simulations. Therewith we attribute a MRE ≃ 0.06% to the

results determined with the default resolution, indicating a reasonably small discretization

error for the present purposes. See Fig. 5 for a plot of the MRE of N as a function of nt

for different spatial grid resolutions. Here, we observe a decrease of the MRE for increasing

grid resolution. Figure 5 clearly indicates the convergence of the results for N for the above

finite space-time volume of the simulation box.

To discretize the signal photon energies and emission directions in spherical momentum

coordinates, we use nk = 718 grid points in radial direction to span the energy range 0 ≤
k ≤ 14.5 eV, nϑ = 363 grid points to discretize the azimuthal angle 0 ≤ ϑ ≤ π and nφ = 726

grid points for the polar angle 0 ≤ φ ≤ 2π. This corresponds to a resolution of about 0.5◦

for the angles and 0.02 eV for the energy. To quantify the discretization error arising from

the spherical momentum grid we also performed a reference calculation with nk = 1077,
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nϑ = 543 and nφ = 1086 grid points. Therewith, we obtain a MRE of ≃ 1.8× 10−3% for N

and ≃ 2.0× 10−3% for N⊥ obtained by integration over 0 ≤ φ ≤ 2π and 0 ≤ ϑ ≤ π/2.

The accuracy of our numerical results does not only depend on the volume and the grid

resolution of the simulation box just discussed, but of course also on the resolution of the

discretization adopted for the numerical evaluation of Eq. (15). For the simulations presented

in this work, we sample the rotationally symmetric beam of outer radius rbeam = 14 cm in

the input plane (14) by a rectangular grid of side lengths lx = ly = 2rbeam consisting of

nx = ny = 432 points centered at the beam axis. For comparison, we also performed a

calculation at half resolution, i.e., for lx = ly = 2rbeam with nx = ny = 216 and extract the

associated results for N and N⊥. Calculating the MRE of these results with respect to the

analogous values obtained at full resolution we find ≃ 0.08% for N and ≃ 0.20% for N⊥.

The quoted values for the MRE are of the same order as those inferred for the resolution of

the simulation box used for the vacuum emission solver above. In turn, they also hint at a

sufficiently small discretization error for the present work.
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