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Abstract: We study topological lumps supported by the second homotopy group π2(S
2) ≃

Z in a gauged O(3) model without any potential term coupled with a (non)dynamical U(1)

gauge field. It is known that gauged-lumps are stable with an easy-plane potential term

but are unstable to expand if the model has no potential term. In this paper, we find

that these gauged lumps without a potential term can be made stable by putting them

in a uniform magnetic field, irrespective of whether the gauge field is dynamical or not.

In the case of the non-dynamical gauge field, only either of lumps or anti-lumps stably

exists depending on the sign of the background magnetic field, and the other is unstable

to shrink to be singular. We also construct coaxial multiple lumps whose size and mass

exhibit a behaviour of droplets. In the case of the dynamical gauge field, both the lumps

and anti-lumps stably exist with different masses; the lighter (heavier) one corresponds

to the (un)stable one in the case of the nondynamical gauge field. We find that a lump

behaves as a superconducting ring and traps magnetic field in its inside, with the total

magnetic field reduced from the background magnetic field.
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1 Introduction

Solitons are non-perturbative excitations playing significant roles in physics and mathemat-

ics. In particular, topological solitons are protected by topology and thus are quite stable,

ubiquitously appearing in quantum field theory [1–11], cosmology [12–16] and condensed

matter systems [17–21]. Topological solitons are classified into defects and textures, the

both of which are characterized by homotopy groups in a different fashion. The former

contains domain walls, vortices and monopoles, while the latter does sine-Gordon solitons,

baby(2D) Skyrmions, and Skyrmions. However, topology is not sufficient for the stability

of solitons; energetically they may prefer to shrink or expand without suitable settings.

The Derrick’s scaling argument offers a simple criterion of the stability under scaling of

solitons of finite energy [22]. For instance, in d = 3 + 1 dimensions, Skyrmions [23, 24]

and Hopfions [25–27] are unstable to shrink without a four derivative Skyrme term. In

d = 2 + 1 dimensions, topological lumps (equivalently sigma model instantons in 2+0 di-

mensions) are scale invariant [28], while they shrink in the presence of a potential term,

which can be prevented by introducing a four-derivative Skyrme term as baby Skyrmions

[29–32] or time dependence as Q-lumps [33, 34]. Vortices can be made finite energy by

introducing gauge field, otherwise they have infinite energy.
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Here, we pursue a yet another possibility for the stabilization of topological solitons

in terms of a background field. Topological solitons unstable to shrink or expand can be

prevented from collapsing by a background field. In fact, such a stabilization mechanism is

well known in condensed matter physics as far as background fields are not dynamical, while

our target is the case of dynamical fields with backgrounds; In condensed matter physics,

a typical example with nondynamical background field is given by magnetic Skyrmions

[35–43], that is 2D Skyrmions in chiral magnets, which are stable even without a four

derivative Skyrme term. Chiral magnets are described by the CP 1 model with a so-called

Dzyaloshinskii-Moriya (DM) interaction [44, 45] which prevents Skyrmions from shrink-

ing. This interaction can be reformulated as a background SU(2) gauge field (a constant

SU(2) magnetic field) [43, 46]. See e.g. Refs. [43, 47] for a Derrick’s scaling argument.

One of characteristic features is that only Skyrmions are stable while anti-Skyrmions are

unstable to shrink. Magnetic Skyrmions have been generalized to CP 2 Skyrmions [48, 49].

Ultracold atomic gases with spin-orbit couplings or synthetic gauge fields [50, 51] offer

various examples such as 2D Skyrmions [52] and 3D Skyrmions [53]. As mentioned above,

in all condensed matter examples, a gauge field is nondynamical and thus is a constant

background field.

Let us illustrate our idea with taking a concrete example of topological lumps (or

sigma model instantons in d = 2+0) supported by the second homotopy group π2(S
2) ≃ Z

in an O(3) model or equivalently CP 1 model in d = 2 + 1 dimensions [28]. Topological

lumps are scale invariant solutions in the CP 1 model without a potential. The structure of

topological lumps becomes completely different if we gauge an SO(2) ≃ U(1) subgroup of

O(3). The U(1) gauged CP 1 model with an easy-plane potential term is known to admit

stable lumps [54–57], where a lump is decomposed into a pair of a vortex and anti-vortex

with fractional lump charges (sometimes called merons). However, if there is no potential

term, lumps are unstable to expand and eventually diluted.

In this paper, we show that these gauged-lumps without potentials can be made stable

if we put them in a uniform magnetic field background. We separately consider the cases

that the U(1) gauge field is nondynamical and dynamical, and construct topological lump

solutions in the presence of a uniform magnetic field background. In the both cases, we

apply the Derrick’s scaling argument, numerically solve the equations of motion (EOM)

for the axisymmetric lumps, and confirm the Derrick’s scaling argument within numerical

accuracy. One of interesting results peculiar to our models with the background magnetic

field is asymmetry between solitons and anti-solitons; In the case of the non-dynamical

gauge field, either of lumps or anti-lumps stably exists depending on the sign of the back-

ground magnetic field, and the other is unstable to shrink to a singular configuration. This

situation is quite analogous to magnetic Skyrmions in chiral magnets. We find that the

stable (anti-)lumps have no size modulus reflecting the fact that the model is not scale in-

variant due to the mass scale
√
eB with the background magnetic field B and U(1) gauge

coupling constant e. We numerically find that the lump size is of order 1/
√
eB and asymp-

totic tails of profile functions decay to the vacuum exponentially, unlike ungauged BPS

lumps whose profiles decay polynomially. The mass of the single lump is smaller than that

of a BPS lump. We also construct coaxial lumps with higher winding number k and find
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that their size and mass are proportional to
√
k up to a constant shift, implying that the

lumps behave as droplets. The higher lumps exhibit ring-like shape and their interiors are

empty. On the other hand, in the case of the dynamical gauge field, the above properties of

the stable lumps for the non-dynamical gauge field remain qualitatively correct. However,

unlike the nondynamical case, both the lumps and anti-lumps stably exist as regular solu-

tions with different masses; the lighter one corresponds to the regular one in the case of the

nondynamical gauge field, while the heavier one does to the unstable (singular) one. The

dynamical gauge field deforms the magnetic field around the lumps. We find that a lump

behaves as a superconducting ring and traps magnetic field in its inside, with the total

magnetic field reduced from the background magnetic field because of superconductiviy

expelling it. The higher lumps appear as ring-like shape but their interiors are not empty

and are filled by trapped magnetic fields which are almost constant.

A motivation to consider the problem of this paper is originated from QCD in the

presence of strong magnetic fields. QCD phase structure with a finite chemical potential

in the presence of strong magnetic fields gather a lot of attention due to its relevance in

neutron stars and heavy-ion collisions [58–63]. When a magnetic field and/or chemical

potential is large enough, a neutral pion π0 domain wall or soliton has a negative tension

due to the anomalous term [64] when it is perpendicular to the magnetic field [65]. Thus,

domain walls are spontaneously created in such a region, and the ground state is a stack

of the domain walls, called a chiral soliton lattice (CSL) [66, 67]. However, it has been

recently found that a large part of CSL with stronger magnetic field and larger baryon

density should be replaced by a new phase, the domain-wall Skyrmion phase [68, 69] (see

also Ref. [70] for a counterpart under rapid rotation), where topological lumps supported

by π2(S
2) ≃ Z have negative energy and spontaneously appear inside a soliton [71–73].

To conclude this result, the effective theory on a single soliton was used, which is nothing

but a d = 2 + 1 dimensional U(1) gauged CP 1 model without a potential in a constant

magnetic field background. In the previous studies [68–70], we have used conventional BPS

lumps by neglecting the electromagnetic interaction as an approximation. However, they

should be replaced by gauged lumps constructed in this paper that may improve the phase

boundary between the CSL and domain-wall Skyrmion phase.

This paper is organized as follows. In Sec. 2, we construct gauged lumps with non-

dynamical gauge field in a constant magnetic field background. In Sec. 3, we consider

dynamical gauge field and find that gauged lump solutions remain stable. Sec. 4 is devoted

to a summary and discussion.

2 Gauged lumps with nondynamical gauge field in a constant magnetic

field background

In this section, we consider nondynamical constant background gauge field. In Sec. 2.1, we

briefly explain the gauged CP 1 model. Then we explain the Derrick’s theorem in Sec. 2.2,

and show the numerical solutions for the single lump in Sec. 2.3 and for the higher charged

lumps in Sec. 2.4.
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2.1 The U(1) gauged CP 1 model

We consider a U(1) gauged O(3) model or equivalently CP 1 model in 2 + 1 dimensions.

The Lagrangian is given by

L = −1

4
FµνF

µν +Dµn⃗ ·Dµn⃗ , (2.1)

where n⃗ is a three-component real column vector of scalar fields with the S2 constraint

n⃗ =

n1n2
n3

 , n⃗2 = v2 , (2.2)

where v is a radius of S2 whose mass dimension is
1

2
. We gauge the SO(2) symmetry about

the n3-axis as

n1 + in2 → e−iθ(x) (n1 + in2) , n3 → n3 , (2.3)

with the covariant derivatives

Dµn1 = ∂µn1 + eAµn2 , Dµn2 = ∂µn2 − eAµn1 , Dµn3 = ∂µn3 . (2.4)

Here, Aµ is the U(1) gauge field and e is the U(1) gauge coupling constant. This can be

also expressed as Dµ(n1 + in2) = (∂µ − ieAµ)(n1 + in2) with Aµ → Aµ − ∂µθ/e. The mass

dimensions are summarised as [n⃗] = [v] =
1

2
, [Aµ] =

1

2
, and [e] =

1

2
. The symmetry of the

model is U(1)× Z2 where the Z2 is n3 → −n3.
In the rest of this section we will consider a constant magnetic field background F12 =

B, where the gauge field is not dynamical. In order to distinguish the nondynamical

background gauge field from a dynamical one, we will use Aµ for the former. Hereafter,

we will take

A0 = 0 , A1 = −By
2
, A2 =

Bx

2
. (2.5)

2.2 Derrick’s theorem

We will study the topological lump solutions for B ̸= 0 below. The static energy of the

scalar field in the temporal gauge A0 = 0 is given by

E[n⃗] =

∫
d2x |Din⃗|2 =

∫
d2x

[
|∂in⃗|2 + 2eAiεab∂inanb + e2A2

i (n
2
1 + n22)

]
. (2.6)

Here we remove infinite energy of the constant magnetic field, so that E[n⃗] can be finite.

We now want to apply the Derrick’s scaling argument to E[n⃗]. For this purpose, we divide

the energy into three pieces as

E = E2 + E1 + E0 (2.7)
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with

E2 =

∫
d2x |∂in⃗|2 , (2.8)

E1 =

∫
d2x 2eAiεab(∂ina)nb , (2.9)

E0 =

∫
d2x e2A2

i (n
2
1 + n22) . (2.10)

where the indices on E represent the number of the partial derivative. The indices a and

i runs from 1 to 2. Note that E0 and E2 are positive semidefinite while E1 can be either

positive, negative or zero.

Let us define the scaling of n⃗(x) as usual

n⃗(λ)(x) = n⃗(λx) , ∂in⃗
(λ)(x) = λ∂′in⃗(λx) , (2.11)

where ∂′i stands for ∂/∂(λx
i). On the other hand, the scaling of the gauge field differs from

the dynamical one because we deal with the constant magnetic field and the gauge field is

not dynamical. We define the scaling of the background gauge field as follows

A(λ)
i (x) = λ−1Ai(λx) . (2.12)

Plugging Eq. (2.5) into this, we indeed see A(λ)
i (x) = Ai(x), and therefore the constant

background magnetic field is not affected by the rescaling.

The λ dependence of the energy functional reads

e(λ) = E
[
n⃗(λ)(x)

]
=

∫
d2x

[(
∂na(λx)

∂xi

)2

+ 2e
(
λ−1Ai(λx)

)
εab

∂na(λx)

∂xi
nb(λx)

+e2
(
λ−1Ai(λx)

)2
(n1(λx)

2 + n2(λx)
2)

]
=

∫
d2x′

λ2

[(
λ
∂na(x

′)

∂x′i

)2

+ 2e
(
λ−1Ai(x

′)
)
εab

(
λ
∂na(x

′)

∂x′i

)
nb(x

′)

+e2
(
λ−1Ai(x

′)
)2

(n1(x
′)2 + n2(x

′)2)

]
= E2 + λ−2E1 + λ−4E0 , (2.13)

where we have used x′j = λxj . In order to see if this functional has a stationary point or

not, we differentiate this with respect to λ to obtain

de(λ)

dλ
= −2λ−3E1 − 4λ−5E0 . (2.14)

If n⃗(x) is a static solution, this must be zero at λ = 1, provided

δ ≡ E1 + 2E0 = 0 . (2.15)

As mentioned above E0 ≥ 0 whereas E1 can be positive or negative. Hence, the system

can successfully evade the Derrick’s no-go theorem only for E1 < 0.
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2.3 k = ±1 lump solution and the selecting rule

Under the presence of nonzero background magnetic field B ̸= 0, the charged field cannot

be condensed in the vacuum. Therefore, the vacuum configuration should be n3 = ±v with

n1 + in2 = 0. Hence, the Z2 symmetry is spontaneously broken. We refer n3 = +v to the

up vacuum while n3 = −v to the down vacuum.

Let us construct lump and anti-lump solutions. To this end, we make an axially

symmetric Ansatz, given by

n1 = v
x

r
sinΘ(r) , n2 = v

y

r
sinΘ(r) , n3 = v cosΘ(r) , (2.16)

with r =
√
x2 + y2. The lump with the winding number k = +1 satisfies the boundary

condition Θ(0) = 0 and Θ(∞) = π. Equivalently, this can be expressed as n3(0) = +v and

n3(∞) = −v. Thus, this lump with k = +1 lives in the down vacuum n3 = −v. Eq. (2.16)
can also describe an anti-lump with k = −1 with the different boundary condition: Θ(0) =

π and Θ(∞) = 0 or equivalently n3(0) = −v and n3(∞) = +v. Hence, the anti-lump lives

in the up vacuum n3 = +v. The lump in the down vacuum and the anti-lump in the up

vacuum can be exchanged by Θ → π −Θ or n3 → −n3.
Plugging this into Eq. (2.1), we find the Lagrangian written in terms of Θ as

L = −B
2

2
− v2Θ′2 − v2(2− eBr2)2

4r2
sin2Θ , (2.17)

and the corresponding EOM reads

Θ′′ +
Θ′

r
− (2− eBr2)2

4r2
sinΘ cosΘ = 0 , (2.18)

where v disappears from EOM. Here, it is important to point out that EOM is not invariant

under flipping the sign of eB. Note that the sign of eB is also important in the Derrick’s

scaling condition. Having the Ansatz (2.16), we can express E0 and E1 with respect to

Θ(r) as

E0 =
πe2B2v2

2

∫ ∞

0
dr r3 sin2Θ , (2.19)

E1 = −2πeBv2
∫ ∞

0
dr r sin2Θ . (2.20)

Both E0 and E1 can be nonzero for B ̸= 0, thus the above scaling argument is meaningful

only for the lump under a nonzero magnetic field. While E0 ≥ 0 is obvious from this

expression, the sign of E1 is the same as −eB. Since it has to be negative for Eq. (2.15) to

be satisfied, we should choose eB > 0 for the Ansatz (2.16). More specifically, the lump in

the down vacuum and the anti-lump in the up vacuum can only exist for eB > 0.

We can take another Ansatz with n2 being replaced by n2 = −vy
r
sinΘ in Eq. (2.16)

while n1 and n3 are unchanged. We call this transformation (n2 → −n2 up to U(1) gauge

transformation) the topological charge (TC) conjugation. This should be distinguished

from the previous transformation n3 → −n3 that flips not only the winding number but also
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Figure 1. The selecting rule. The cones stand for n⃗. The cone upward is n3 = +v and that

downward is n3 = −v. The TC conjugation exchanges two diagonal entries, and two off-diagonal

entries.

the vacuum. In contrast, the only lump charge is flipped by the TC conjugation. Indeed,

the solution satisfying the boundary condition Θ(0) = 0 and Θ(∞) = π (equivalently

n3(0) = +v and n3(∞) = −v) lives in the down vacuum and has the winding number

k = −1, whereas that satisfying Θ(0) = π and Θ(∞) = 0 (equivalently n3(0) = −v and

n3(∞) = +v) lives in the up vacuum and has the winding number k = +1. Note that the

TC conjugation is identical to the normal charge conjugation n1 + in2 → n1 − in2. The

charge conjugation is also same as e → −e. Therefore, Eqs. (2.17)–(2.20) remain correct

with replacement eB → −eB. Hence, we now need eB < 0 for realizing E1 < 0. More

specifically, the anti-lump in the down vacuum and the lump in the up vacuum can only

exist for eB < 0.

The selecting rule and soliton-anti-soliton asymmetry This results in an interest-

ing phenomenon. To clarify the lump solutions, we need to specify signs for the following

three quantities: the first is the sign for the vacuum (n3 = ±v), the second is that for the

magnetic field (eB > 0 or eB < 0), and the third is that for the topological charge (k > 0

or k < 0). If the background magnetic field is absent, we can put a lump or an anti-lump

either in the up or down vacuum. However, when B ̸= 0, there is a selecting rule that the

lumps with positive topological charges (k > 0) can exist only when sign(n3) · sign(eB) < 0

is satisfied. Similarly, the anti-lumps with a negative topological charge (k < 0) can exist

only when sign(n3) · sign(eB) > 0 holds. Hence, once the vacuum is chosen, one can select

either lumps or anti-lumps by applying magnetic field. We call this phenomenon a violation

of the TC conjugation, see Fig. 1.

Solutions for B ̸= 0 can be only available by a numerical computation. However,

asymptotic behavior can be analytically understood as follows. Since EOM includes eB

(its mass dimension is 2), a solution will not have a size modulus. Indeed, the asymptotic
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Figure 2. The numerical solution Θ and energy density of the single lump for eB > 0.

behavior should obey an exponential law rather than a power law. This can be easily

verified by analyzing the linearized EOM for the fluctuation ϑ(r) = π−Θ(r) at r ≫ 1/
√
eB

as

−ϑ′′ + e2B2r2

4
ϑ = 0 , ϑ ∝ exp

(
−eB

4
r2
)
, (2.21)

with the expected decay length 1/
√
eB.

Let us show the numerical solution. To this end, we first change the variable as

ρ =
√
eB r. Then, EOM to be solved uniquely becomes

Θ′′ +
Θ′

ρ
− (2− ρ2)2

4ρ2
sinΘ cosΘ = 0 , (2.22)

where Θ′ =
dΘ

dρ
. The energy density and the mass are expressed as

E =
B2

β

[
Θ′2 +

(
2− ρ2

)2
4ρ2

sin2Θ

]
, M = 2πv2

∫
ρdρ E , (2.23)

respectively. Here, we have introduced the dimensionless parameter for later convenience

β ≡ B

ev2
. (2.24)

A numerical solution is shown in Fig. 2. Let us discuss features of this solution. First, we

verify the Derrick’s constraint in Eq. (2.15). With respect to the dimensionless coordinate,

we have

E0 = 2πv2
∫ ∞

0
dρ

ρ3

4
sin2Θ , (2.25)

E1 = −2πv2
∫ ∞

0
dρ ρ sin2Θ , (2.26)

and we numerically obtain δ/(2πv2) = 3.32494× 10−7, thus Eq. (2.15) is satisfactory met

within numerical accuracy. The mass of the lump is numerically evaluated as M/(2πv2) =
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3.62188. Note that this does not depend on eB. We also numerically determine the size

r0 =
0.544784√

eB
of the lump from the condition n3(r0) = 0

(
Θ(r0) =

π

2

)
. Hence, the

magnetic flux inside the lump can be evaluated as Φ = πr20B ≃ 0.15× 2π

e
.

We can compare our numerical solution with the BPS lump at B = 0, see Appendix

A for some details. The mass of BPS lump is MBPS/(2πv
2) = 4, therefore our numerical

solution for B ̸= 0 is slightly lighter than the BPS lump at B = 0. Furthermore, rough

estimation of the fixed size of a BPS lump under the constant magnetic field B was given

as r̃0 =

√
2

eB
due to the magnetic flux quantization condition that the magnetic flux inside

r̃0 is Φ̃ =
2π

e
[68]. Our numerical solution improves this, and the actual size is about 40%

of r̃0, and the magnetic flux inside the lump is about 15% of Φ̃.

2.4 Coaxial multiple lumps

We here quickly show the axially symmetric lumps with the winding number k > 1. To

this end, we slightly change the Ansatz

n1 = v
Re zk

rk
sinΘ(r) , n2 = v

Im zk

rk
sinΘ(r) , n3 = v cosΘ(r) , (2.27)

with z ≡ x+ iy. The EOM reads

Θ′′ +
Θ′

r
− (2k − eBr2)2

4r2
sinΘ cosΘ = 0 , (2.28)

and E0 and E1 are expressed as

E0 = 2πv2
∫ ∞

0
dρ

ρ3

4
sin2Θ , (2.29)

E1 = −2kπv2
∫ ∞

0
dρ ρ sin2Θ . (2.30)

Here E0 is independent of k while E1 is proportional to k. The numerical solutions for

k = 1, 2, 3, 4, 5, 6 are shown in Fig. 3. We numerically verify if the Derrick’s condition

is satisfied and find δ/(2πv2) = −6.83875 × 10−7, −1.17859 × 10−6, −1.58112 × 10−6,

−1.63619× 10−6, −2.50128× 10−6 for k = 2, 3, 4, 5, 6, respectively.

The lumps get fat as k increased. We numerically measure the radius r0 for k as shown

in Fig. 4 and find that it can be well approximated by
r0√
eB

= a
√
k+ b with a = 1.77 and

b = −1.16. Similarly, the mass is found as
M

2πv2
= c

√
k + d with c = 4.86 and d = −1.18.

This suggests that the lumps are well described by a droplet model. Note that the lumps

with k > 1 are empty in the sense that the energy densities at the cores are negligibly

small.

3 Gauged lumps with dynamical gauge field in a magnetic field back-

ground

In this section, we consider a dynamical gauge field with a uniform background magnetic

field. In Sec. 3.1, we introduce the dynamical gauge field. Then we explain the Derrick’s
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Figure 3. The numerical solutions Θ and energy densities for k = 1, 2, 3, 4, 5 with eB > 0.
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Figure 4. The numerical solutions Θ and energy densities for k = 1, 2, 3, 4, 5, 6 with eB > 0.

theorem in Sec. 3.2, and show the numerical solutions for the gauged lumps in Sec. 3.3.

The anti-lumps and the soliton-anti-soliton asymmetry are explained in Sec. 3.4.

3.1 The model with dynamical gauge field

Next we deal with Aµ as a dynamical field. Since we are interested in the lumps under the

constant magnetic field, we first need to decompose the gauge field into two parts as

Aµ = Aµ + aµ , (3.1)

where Aµ is the nondynamical background gauge field given in Eq. (2.5) and aµ is the

dynamical gauge field.

3.2 Derrick’s theorem

We modify the Derrick’s scaling argument in the previous section to the case with a dy-

namical gauge field. The static and finite energies of the scalar field in the temporal gauge
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A0 = 0 are given by

E[n⃗, aµ] =

∫
d2x

(
F 2
12

2
− B2

2
+ |Din⃗|2

)
=

∫
d2x

[
(B + f12)

2

2
− B2

2

+|∂in⃗|2 + 2e(Ai + ai)εab∂inanb + e2(Ai + ai)
2(n21 + n22)

]
, (3.2)

respectively. We have subtracted B2/2, and so that the energy remains finite. Let us

decompose this into four pats as follows:

E[n⃗, aµ] = E4 + E2 + E1 + E0 , (3.3)

with

E4 =

∫
d2x

f212
2
, (3.4)

E2 =

∫
d2x

[
Bf12 + |∂in⃗|2 + 2eaiεab∂inanb + e2a2i (n

2
1 + n22)

]
, (3.5)

E1 =

∫
d2x

[
2eAiεab∂inanb + 2e2Aiai(n

2
1 + n22)

]
, (3.6)

E0 =

∫
d2x e2A2

i (n
2
1 + n22) , (3.7)

and f12 = ∂1a2 − ∂2a1.

Now we apply the Derrick’s scaling argument to these as before. To this end, we use

the same scaling laws Eqs. (2.11) and (2.12) for n⃗ and Ai, respectively. On the other hand,

we adopt the standard scaling law for the dynamical gauge field aµ as

a
(λ)
i (x) = λ ai(λx) . (3.8)

The λ dependence of the energy functional reads

e(λ) = E[n⃗(λ), a(λ)µ ] = λ2E4 + λ0E2 + λ−2E1 + λ−4E0 . (3.9)

In order to see if this functional has a stationary point or not, we differentiate this with

respect to λ as

de(λ)

dλ
= 2λE4 − 2λ−3E1 − 4λ−5E0 . (3.10)

If {n⃗(x), aµ} is a static solution, this must be zero at λ = 1, provided

δ′ ≡ −E4 + E1 + 2E0 = 0 . (3.11)

As before, E1 can be either positive or negative whereas E0 and E4 are positive.
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3.3 Multiple gauged lumps in the down vacuum with eB > 0

For a single lump, we make the following Ansatz

a0 = 0 , a1 = −Ba(r)
2

y , a2 =
Ba(r)

2
x , (3.12)

where aµ is the dynamical gauge field as given in Eq. (3.1). Together with the background

gauge field in Eq. (2.5), the full gauge field is given by

A0 = 0 , A1 = −B(1 + a(r))

2
y , A2 =

B(1 + a(r))

2
x . (3.13)

The mass dimension of a(r) is zero. The magnetic field is given by

F12 = B(1 + a) +
Bra′

2
. (3.14)

We impose the profile function a(r) to approach 0 as r → ∞, so that the magnetic field

asymptotically behaves as F12 → B.

Plugging Eqs. (2.27) and (3.13) into Eq. (2.1), we find the reduced Lagrangian for Θ

and a

L = −B
2

2

(
1 + a+

ra′

2

)2

− v2Θ′2 − v2
(
2k − eBr2(1 + a)

)2
4r2

sin2Θ . (3.15)

The corresponding EOMs are given by

Θ′′ +
Θ′

r
−

(
2k − eBr2(1 + a)

)2
4r2

sinΘ cosΘ = 0 , (3.16)

a′′ +
3a′

r
+

2ev2
(
2k − eBr2(1 + a)

)
Br2

sin2Θ = 0 . (3.17)

Up to here in this subsection, the prime stands for a derivative in terms of the physical

coordinate r.

For numerical analysis, let us rewrite these with respect to the dimensionless coordinate

ρ =
√
eB r. Then we have

Θ′′ +
Θ′

ρ
−

(
2k − ρ2(1 + a)

)2
4ρ2

sinΘ cosΘ = 0 , (3.18)

a′′ +
3a′

ρ
+

2
(
2k − ρ2(1 + a)

)
βρ2

sin2Θ = 0 . (3.19)

Now the prime indicates a derivative in terms of ρ. The EOMs include the dimensionless

parameter β defined in Eq. (2.24). If we assume a = 0, Eq. (3.18) is identical to Eq. (2.22).

On the other hand, Eq. (3.19) with a = 0 cannot be satisfied except for Θ = 0 or π.

Eq. (3.19) with a = 0 is approximately satisfied for a large B (or small e) such as B ≫ ev2.

This is a reasonable condition for us to ignore the back reaction to the background gauge

field.
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Figure 5. The numerical solution of k = 1 lump. Θ (top-left) and a (top-right). The back reaction

f12 to the background magnetic field B (bottom-left) and energy density excited by the single lump.

We take β = {1/4, 1/2, 1, 2}.

In what follows, we will concentrate on the lumps with k > 0 in the down vacuum with

eB > 0. Namely, the boundary condition for Θ is Θ(0) = 0 and Θ(∞) = π. The numerical

solutions of k = 1 with different β = 1
4 ,

1
2 , 1, and 2 are shown in Fig. 5. The anti-lumps

with k < 0 in the negative vacuum with eB > 0 will separately be explained in Sec. 3.4.

We first realize that back reaction to Θ is negligibly small irrespective of β, see the top-left

panel. On the other hand, as can be seen in the top-right panel, the dynamical gauge field

aµ sensitively reacts to β. We also show the back reactions of the magnetic flux density

and energy density

f12 = B
(
a+

ρ

2
a′
)
, (3.20)

E =
B2

β

[
β

2

{(
1 + a+

ρ

2
a′
)2

− 1

2

}
+Θ′2 +

(2k − ρ2(1 + a))2

4ρ2
sin2Θ

]
, (3.21)

respectively, in the second row of Fig. 5. Note that the net magnetic flux is F12 = B + f12
and we show f12 in Fig. 5. The magnetic flux is condensed at the center of the lump. It gets

stronger than the background value B inside the lump core, and it reduces and changes

its sign as going away from the lump, and asymptotically decays at spatial infinity. As

expected, the greater β is, the smaller deformation of the profile a is. Namely, the back
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k = 1 β = 1/4 β = 1/2 β = 1 β = 2 β = ∞
δΦ/(2π/e) −1.11 −0.400 −0.132 −0.0402 0

M/(2πv2) 2.90 3.14 3.33 3.45 3.62

δ′/(2πB/e) −5.61× 10−4 −7.18× 10−4 −2.43× 10−4 −8.84× 10−5 —

Table 1. The quantitative properties of the k = 1 lump for β = 1/2, 1, and 2. We numerically

evaluate changes of the net magnetic flux, the mass, and the Derrick’s scaling condition δ′ = 0.

reaction tends to be small for the strong background magnetic field B ≫ ev2. This behavior

can be explained as follows. Since |n1 + in2| ≠ 0 at the edge of lump, the lump behaves as

a superconducting ring and traps magnetic field in its inside, with the total magnetic field

reduced from the background magnetic field because of superconductiviy expelling it.

Let us quantitatively evaluate the numerical solutions. First, we measure a net change

of the magnetic flux due to the single lump,

δΦ =

∫
d2x f12 =

2π

e

∫
ρdρ

(
a+

ρ

2
a′
)
. (3.22)

This is shown for β = {1
4 ,

1
2 , 1, 2} in Table 1. We find that δΦ is always negative, and thus

the net background magnetic field is weakened under the presence of lump regardless of β.

Second, we measure the mass of the lump by

M = 2πv2
∫
ρdρ

[
β

2

{(
1 + a+

ρ

2
a′
)2

− 1

}
+

{
Θ′2 +

(2k − ρ2(1 + a))2

4ρ2
sin2Θ

}]
.(3.23)

This is also summarised in Table 1.

Third, we calculate E4, E1, and E0 by

E4 =
2πB

e

∫
ρdρ

1

2

(
a+

ρ

2
a′
)2

, (3.24)

E1 =
2πB

eβ

∫
ρdρ

(
ρ2a

2
− k

)
sin2Θ , (3.25)

E0 =
2πB

eβ

∫
ρdρ

ρ2

4
sin2Θ , (3.26)

and verify the scaling-stability condition δ′ = 0. The results are summarize in Table. 1 and

they are satisfactory small.

Finally, we show the lumps with higher topological charges k = 1, 2, 3, 4, 5, 6 for β = 1

in Fig. 6. The profiles of Θ are qualitatively the same as those for the constant magnetic

field shown in Fig. 3. The gauge field a and magnetic flux density f12 show plateaus inside

the lump cores. The lumps are no longer empty and are filled by the magnetic field. These

behaviors in f12 and E are similar to those of well-known Abrikosov-Nielsen-Olsen vortices.

We also numerically solved EOMs for β = 1/4, 1/2 and β = 2, and the results are

qualitatively the same as those for β = 1. As an example to see the similarity, we show the

relation between the lump width r0 and the winding number k for β = {1/4, 1/2, 1, 2} in

Fig. 7. We find it is well approximated by
r0(k)√
eB

=
√
ak + b as before. Namely, the lumps

with magnetic fluxes behave as droplets.

– 14 –



0 2 4 6 8 10

0

π

4

π

2

3 π

4

π

0

π

4

π

2

3 π

4

π

ρ

Θ

k=1

k=2

k=3

k=4

k=5

k=6

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

ρ

a

k=1

k=2

k=3

k=4

k=5

k=6

0 2 4 6 8 10

-0.5

0.0

0.5

1.0

1.5

2.0

ρ

f 1
2
/
B

k=1

k=2

k=3

k=4

k=5

k=6

0 2 4 6 8 10

0

2

4

6

8

10

ρ

E
β
/
B
2

k=1

k=2

k=3

k=4

k=5

k=6

Figure 6. The axially symmetric lumps for k = 1, 2, 3, 4, 5, 6 for β = 1. Θ and a are shown in the

top row, and f12 and E are shown in the bottom row.
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Figure 7. The relation between the lump size r0 and the winding number k for β = {1/4, 1/2, 1, 2}.
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3.4 Gauged anti-lumps in the down vacuum with eB > 0

Let us construct anti-lumps with the negative winding number k < 0 which do not exist

in the case of nondynamical gauge field. For comparison, we take the same boundary

condition as that taken in Sec. 3.3. Namely, we consider the anti-lumps in the negative

vacuum and the background magnetic field is fixed by eB > 0.

We first remind that, in the treatment that the U(1) gauge field is non-dynamical

in Sec. 2, the Derrick’s scaling condition (2.15) strictly prohibits the anti-lumps existing

in the down vacuum with eB > 0. On the other hand, in the treatment that the U(1)

gauge field is dynamical, the scaling condition is relaxed as Eq. (3.11) due to the additional

contribution by E4. Therefore, there would exist a room for the anti-lumps to exist in the

model with dynamical gauge fields.

To verify this, we numerically solve EOMs in Eqs. (3.18) and (3.19) with k < 0 and the

boundary condition Θ(0) = 0 and Θ(∞) = π. Indeed, we numerically found non-singular

anti-lump solutions.
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Figure 8. The axially symmetric lumps for k = −1,−2,−3 for β = 1/4 in the down vacuum. Θ

and a are shown in the top row, and f12 and E are shown in the bottom row.

As an example, we show the numerical solutions with k = −1, −2, −3 for β = 1/4 in

Fig. 8. The anti-lumps trap the negative magnetic field in the cores which is opposite to the
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background one B(> 0). Unlike the case with k > 0, the back reaction f12 is everywhere

negative.

The asymmetry between the lumps and anti-lumps in the model with the dynamical

gauge field is more modest than that in the model without the dynamical field. However,

the asymmetry does not disappear and remains as obviously seen in the EOMs in Eqs. (3.18)

and (3.19). This can be also verified by our numerical solutions. Fig. 9 shows the energy

densities (more explicitly, we show Eρβ/B2) of the k = −1 and k = +1 lumps under the

same down vacuum with β = 1/4. We find that k = −1 lump has higher energy around its

core and slightly lower at the outer bump. We numerically evaluate the mass of k = −1,

and found
M

2πv2
= 2.97 which is higher than

M

2πv2
= 2.90 for k = +1, as shown in Table

1.
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Figure 9. The comparison of energy densities of k = −1 and k = +1 for β = 1/4.

In conclusion, both the lumps and anti-lumps exist in the down vacuum with eB > 0,

but the former is energetically favored than the latter. Intuitively, this reflects the fact

that putting the soliton with the magnetic field opposite to the vacuum costs an energy

than the soliton with the same magnetic field as the vacuum. The mass difference becomes

larger as β is increased. In the limit β → ∞ where the gauge field is non-dynamical, the

anti-lumps tend to be singular and to be excluded from the system.

The same can be said for the up vacuum with eB > 0 or eB < 0 by appropriately

exchanging the lump and anti-lump.

4 Summary and discussion

In this paper, we have worked out stable lumps in a gauged O(3) model without any

potential term coupled with a (non)dynamical U(1) gauge field. We have found that the

gauged-lumps without a potential term can be made stable by putting them in a uniform

magnetic field, irrespective of whether the gauge field is dynamical or not. In the case
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of the non-dynamical gauge field, we have found that only either of lumps or anti-lumps

stably exists depending on the sign of the background magnetic field, and the other is

unstable to shrink to be singular. The case of nondynamical gauge field resemble magnetic

Skyrmions in chiral magnets. We have also constructed coaxial lumps with higher winding

number k, whose size and mass are proportional to
√
k up to a constant shift, implying

that they behave as droplets. On the other hand, in the case of the dynamical gauge field,

we have found that both the lumps and anti-lumps stably exist with different masses; the

lighter (heavier) one corresponds to the (un)stable one in the case of the nondynamical

gauge field. The lumps behave as superconducting rings, trapping magnetic fields in their

interiors. The total magnetic fluxes are reduced from the background magnetic field because

of superconductivity.

In this paper, we have discussed only axially symmetric configurations for multiple

lump states. The next step should be to investigate separated configurations and study

interaction among them. Since the profile of a single lump exponentially decays, the inter-

action would be exponentially suppressed like vortices in superconductors. In particular,

we expect a repulsive force between two lumps and the existence of a lattice as the case of

magnetic Skyrmions [37–40, 42]1. This is quite important for an application to domain-wall

Skyrmions in QCD under strong magnetic field.

One natural generalization of the current work is the CPN−1 model. From a theoretical

point of view, a naive question is if one U(1) gauging is enough or U(1)N−1 gauging is

necessary for the stability of CPN−1 lumps. From a physical point of view, such a U(1)

gauged CP 2 model appears on a chiral soliton with three flavors (up, down and strange

quarks) in which case CP 2 lumps are SU(3) Skyrmions from the bulk point of view. The

U(1) gauged CP 2 model also appears [74–76] on the worldsheet of a non-Abelian vortex in

dense QCD [11, 77–81] in which case lumps are sigma model instantons viewed as Yang-

Mills instantons from the bulk [82].

Our model would have an impact on production of topological solitons. During a phase

transition accompanied with a spontaneous symmetry breaking, topological solitons are in

general created by the Kibble-Zurek-mechanism. Usually the numbers of solitons and anti-

solitons created in this way are the same. If we consider such a phase transition in our

model, the background magnetic field works as a bias leading to an asymmetry between

the lumps or anti-lumps. Hence, this suggests a new impact on solitogenesis and might be

useful for baryogenesis in early Universe.
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A A BPS lump for B = 0

Here let us quickly recall the analytic solution for B = 0. The EOM reduces to one for a

usual CP 1 lump, and its analytic solution is available as

n3(r)

v
= cosΘ(r) =

a2 − r2

a2 + r2
. (A.1)

Here, a is so called size modulus. As usual, we define the size r0 of lump by n3(r0) = 0.

Clearly, we have r0 = a. This solution satisfies the boundary condition cosΘ(0) = 0 and

cosΘ(∞) = π (n3(0) = v and n3(∞) = −v). The asymptotic behavior at r → ∞ is power

law as n3
v = −1 + 2a2

r2
+ · · · .

Let C be a closed curve on which n3 = 0, and D be the interior of C. The U(1)

is spontaneously and maximally broken around |n1 + in2| = v. Thus, the closed curve

C is a superconducting ring, and there is a persistent current along it. Let us write

n1 + in2 = veiψ on C. The configuration of the gauge field along C is determined by

minimizing the gradient energy |Dα(n1 + in2)|2 = 0, yielding ∂αψ = eAα. Then, we have

a flux (and area) quantization on D:

BSD =

∫
D
d2xB =

∮
C
dxiAi =

1

e

∮
C
dxi∂iψ =

2π

e
(A.2)

with the area SD of D. This gives a constraint among the lump moduli. For a single BPS

lump with n3 = v(a2 − r2)/(a2 + r2). Thus, the size of D bounded by n3 = 0 is r = a, and

the flux quantization implies a quantization of the size a =
√
2/eB.
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