
Next4: Snapshots in Ext4 File System
Aditya Dani1, Shardul Mangade2, Piyush Nimbalkar3, Harshad Shirwadkar4

Computer Engineering, Pune Institute of Computer Technology,
Pune-411043, Maharashtra, India

1aditya.dani@gmail.com, 2shardul.mangade@gmail.com, 3piyushmnimbalkar@gmail.com,

4harshadshirwadkar@gmail.com

Abstract- The growing value of data as a strategic asset has given
rise to the necessity of implementing reliable backup and
recovery solutions in the most efficient and cost-effective manner.
The data backup methods available today on Linux are not
effective enough, because while running, most of them block I/Os
to guarantee data integrity. We propose and implement Next4 -
file system based snapshot feature in Ext4 which creates an
instant image of the file system, to provide incremental versions
of data, enabling reliable backup and data recovery. In our
design, the snapshot feature is implemented by efficiently
infusing the copy-on-write strategy in the write-in-place, extent
based Ext4 file system, without affecting its basic structure. Each
snapshot is an incremental backup of the data within the system.
What distinguishes Next4 is the way that the data is backed up,
improving both space utilization as well as performance.

Keywords- Ext4, Snapshot, Copy-on-Write, Backup

1. INTRODUCTION

1.1. Motivation:
In any storage system, the feature that is of paramount
importance to the user is data protection. While the user takes
for granted that data will not be lost due to a system crash or a
design bug, the user also expects that a storage system will
protect him or her from inadvertent deletions, unwanted
modifications, malicious agents, etc.
Various solutions have been proposed by the storage industry,
and have been adapted to various degrees. One very common
method is by taking regular backups, either on the storage
system itself, or onto tapes. This method has the major
disadvantage of requiring massive storage capacity, and
additionally, of causing substantial disruption in service while
a backup is being made. Additionally, because of these
disadvantages, it is not possible to create backups that are
more frequent than about once a day, causing a large window
of loss if data must be restored.

1.2. Snapshot Concept:
A snapshot is a point-in-time copy of a volume similar to
taking a picture of the data at that instant. Snapshots look and
behave like complete backups – they can be mounted as
volumes, read simultaneously without affecting the volume
that they are snapshots of, rolled back onto the volume if
necessary, and deleted to free space. The ease and flexibility
with which these operations may be performed has been
instrumental in speeding up the adoption of snapshot
technology in the IT industry.

Snapshots can be implemented at volume level as well by a
volume manager such as LVM/LVM2[1]. Logical Volume
Manager (LVM)/LVM2 is a volume manager located between
a file system and a device driver. The snapshot in LVM is
achieved by block- level copy-on-write (COW) and is
performed on a unit of Logical Volume in the Volume Group.
However, the snapshot capabilities at the LVM level have
some caveats as below:

▪ The need to define a fixed volume size per snapshot.

▪ Copy overhead per snapshot for every write operation.

▪ Not scalable to O(1TB), requires O(1GB) RAM and long
loading time.

▪ There is some memory overhead per mounted snapshot
volume.

▪ Not possible to define a snapshot on a directory (sub
volume).

Some of these caveats can be tackled by changes to the LVM
snapshot implementation, but some are fundamental to the
volume level snapshot approach. For this reason it makes
sense to try to reach the design goals by implementing
snapshots at the file system level.

1.3. Next4 Snapshots:
Next4 deals with implementation of file system based
snapshot feature in Ext4 file system, without disturbing the
basic Ext4 structure and features. Ext4 is the successor of the
popular and most widely used Ext3 file system. Next4 will
enable to create an incremental, read only snapshot of the file
system, which can be recovered back by mounting the
snapshot file on a loop back device. Next4 snapshots provide
the simplicity of the LVM snapshots with high performance
and scalability. The snapshot management capabilities include
creating as many snapshots as desired and deleting any past
snapshots to free up file system space.

2. DESIGN DETAILS

Snapshot File
Every snapshot taken is stored in a snapshot file, which is a
regular sparse file. A sparse file is a type of computer file that
attempts to use file system space more efficiently when blocks
allocated to the file are mostly empty. This is achieved by
writing brief information (metadata) representing the empty



blocks to disk instead of the actual ‘empty’ space which
makes up the block, using less disk space. A snapshot file has
size same as that of the entire file system and represents the
state of the file system when the snapshot was taken. Every
logical block offset in the snapshot file represents a physical
block in the underlying block device. A mapped block in a
snapshot file holds a copy of the physical block data at the
time of snapshot creation. A 'hole' in the snapshot file signifies
that the snapshot's version of this block is identical to a later
snapshot's version or to the version on the file system.
Snapshot files are marked with a snapshot file flag, which is
inherited from their parent directory and cannot be otherwise
set on regular files.

Fig 2.1 Sparse File

Copy on Write (COW)
Copy on write is a strategy in which a copy of data to be
modified is made before write. In this method data from the
original physical block is copied to a new physical location.
The old data in the original physical block is then overwritten
by new data. In case of a rewrite, after a snapshot is taken, the
original data is preserved under snapshot file by the COW
operation. Thus the logical offset in the snapshot file
corresponding to the original physical block offset is mapped
to the new physical location containing original data.

Move on Write (MOW)
Move on write is a slight variation of copy on write technique.
In this case too copy of the data is made to a new physical
location however, the new data is written at new physical
location instead of the original physical location. Thus in case
of rewrite after snapshot, logical offset in the snapshot file
corresponds to the original physical location itself.

COW Bitmap
Cow bitmap keeps track of the blocks on which the COW or
MOW operation is to be performed, in the same fashion as
block bitmap keep track of the blocks which used by the file
system. A COW bitmap is essentially a copy of the block
bitmap at the time of creation of the snapshot and thus keeps
track of the blocks which were present in the file system at
that time. A ‘set’ bit in COW bitmap indicates that the
corresponding block is in use by a snapshot.

Exclude Bitmap
Exclude Bitmap keeps track of the blocks which are to be
skipped from any COW or MOW operation, essentially the

blocks mapped to the snapshot file. The result is that snapshot
file blocks are never copied or moved to active snapshot.
During initialization of a COW bitmap block, the block
bitmap block is masked with the exclude bitmap block.

Extent
Ext4 is an extent based file system, wherein extent mapped
files can be used instead of the traditional block mapped files.
An extent is a combination of two integers, the first stating the
offset block and the second denoting the length i.e. number of
contiguous blocks after the offset that are free or allocated. It
thus improves large file performance and reduces
fragmentation. A single extent in ext4 can map up to 128 MB
of contiguous space with a 4 KB block size [2]. There can be
4 extents stored in the inode. When there are more than 4
extents to a file, the rest of the extents are indexed in an Htree.

Fig.2.2 Extent

3. WORKING

Let us illustrate the working by the following example:
1. Suppose initially the file system consists of a file
which contains data “HEADSHOT”. As shown in figure 3.1
the file consists of two data extents (40-43) “HEAD” and
(50-53) “SHOT” referred to by its inode at block number 10.

Fig. 3.1 File System

2. Now at this stage if we take a snapshot S1 then, a
new sparse file for the snapshot is created with its inode at
block number 90 as shown in figure 3.2.This snapshot is the
‘active’ snapshot as it is the only one which is being modified.
Initially the snapshot file is empty and consists of holes for
corresponding data blocks. Thus the logical offsets (L) 10,
40-43, 50-53 map to physical offsets (P) ‘0’ which represents
a ‘hole’.



Fig. 3.2 Snapshot (S1) Take

3. Suppose we have a re-write request for data at extent
40-43 from “HEAD” to “SNAP”. Thus now we do a MOW
operation for the data and COW operation for metadata
(inode). As explained earlier, the data “SNAP” is written at a
new location 60-63(MOW) and a copy of the inode at location
10 is made to the location 20 (COW). The metadata at
location 10 is then modified to point extents “SNAP”(60-63)
and “SHOT” (50-53). The logical offsets at 10 and 40-43 in
the snapshot file are then mapped to blocks 20 and 40-43
instead of ‘holes’. Thus the file refers to data “SNAPSHOT”
under the file system and the same file refers to data
“HEADSHOT” under snapshot S1.

Fig. 3.3 Data Rewrite

4. Now we take another snapshot S2, thus an empty
snapshot file consisting of all holes mapping to data blocks on
disk will be created (shown in figure 3.4) Now S2is the
‘active’ snapshot as explained earlier.

Fig. 3.4 Snapshot (S2) Take

5. Suppose we have a re-write request for data from
“SH” to “FS” at location 50-51. The data “FS” is written at a
new location 70-71(MOW) and a copy of the inode at location
10 is made to the location 30(COW). The metadata at location
10 is then modified to point extents “SNAP”(60-63) “FS”
(70-71) and “OT”(52-53). The logical offsets at 10 and 50-51
in the snapshot file S2 are then mapped to blocks 30 and
50-51 instead of ‘holes’. Thus the file refers to data
“SNAPFSOT” under the file system and the same file refers to
data “SNAPSHOT” under snapshot S2.

Fig. 3.5 Data Rewrite – Extent Break

6. Suppose now there is a request to delete data “OT”.
Thus entry for extent 70-71in inode at 10 is removed and the
inode points to only “SNAP” 60-63 and “FS” 50-51. The
extent containing data “OT” is not freed but is protected under
the active snapshot S2 by MOW operation. The snapshot file
inode maps the logical offset52-53 to the blocks 52-53 instead
of hole.

Fig. 3.6 Data Delete

7. Now we wish to delete the snapshot S2, then the data
blocks under S2 are checked for being referred to by any
previous snapshots. In this case (as in figure 3.6) the data
“SHOT”(50-53) is referred to by S1.The logical offsets 50-53
in the snapshot file S1 are then mapped to blocks 50-53
instead of ‘holes’. The inode blocks at location 80 (S2) and 30
(File under S2) are then unallocated and the space is returned
to the file system.(as shown in figure 3.7)



Fig. 3.7 Snapshot Delete

4. BENEFITS

▪ Snapshots are space efficient; require significantly less
storage space as compared to traditional backup
techniques.

▪ Creation of a snapshot (backup) is time efficient and
requires low performance overhead.

▪ Some of the next generation file systems such as ZFS,
Btrfs support snapshot feature, however both are not ready
for production use and both implement COW by default.
By implementing COW and MOW along with snapshot
feature in Ext4, which is already a file system used in
production system[5][6], Next4 implementation will add
use case for Ext4.

5. CONCLUSION

In this paper, we present a file system level snapshot design
suitable for recovery and backup. Snapshot technology
represents one of the most significant storage enhancements in
recent years, promising to reshape future data backup and
recovery solutions. Apart from backup systems snapshot
would also prove useful in applications such as software
testing and system recovery tools. We implement snapshot in
the extent based Ext4 file system. Ext4 is the successor of
Ext3, the most widely used file system, and is shipped as the
base file system in most Linux distributions today. Thus
introducing snapshot feature in Ext4 will cater a huge number
of users with its benefits.

ACKNOWLEDGEMENT

We wish to thank the following people for their contribution
to the system or the paper. Mrs. Rekha Kulkarni whose
reviews helped us to build on our own ideas. Mr. Vedang
Manerikar and Mr. Chinmay Kamat, our guides whose ideas
and timely criticism helped us to bring this project about. Mr.
Amir Golstein, who laid the seed of the idea in the first place.
Lastly, but not the least, we wish to thank the anonymous
reviewers, who patiently read our paper and gave us valuable

inputs which helped make significant improvements in this
paper.

REFERENCE

[1] D. Teigland, H. Mauelshagen, 2001, "Volume Managers
in Linux", USENIX Technical Conference.

[2] The new ext4 file system: current status and future
plans- Avantika Mathur, Mingming Cao, Suparna
Bhattacharya in the proceedings of Ottawa Linux
Symposium 2007.

[3] “Ext4 block and inode allocator improvements” by
Aneesh Kumar K.V., Mingming Cao, Jose R Santos,
Andreas Dilger in the proceedings of Ottawa Linux
Symposium 2008.

[4] Maurice J. Bach, The Design of the Unix Operating
System, Prentice Hall.

[5] “Android 2.3 Gingerbread to use Ext4 file system”. The
H Open. 14 December 2010.

[6] “Google to switch to Ext4”. Phoronix. 14 January 2010.
[7] Ext4 wiki: http://en.wikipedia.org/wiki/ext4.


