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A method for accelerating low precision operations by sparse matrix multiplication
Hongyaoxing Gu

• A hybrid precision quantization method
• Sparsity is introduced into low precision to improve accuracy
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A B S T R A C T
In recent years, the fervent demand for computational power across various domains has prompted
hardware manufacturers to introduce specialized computing hardware aimed at enhancing computa-
tional capabilities. Particularly, the utilization of tensor hardware supporting low precision has gained
increasing prominence in scientific research. However, the use of low-precision tensor hardware for
computational acceleration often introduces errors, posing a fundamental challenge of simultaneously
achieving effective acceleration while maintaining computational accuracy.

This paper proposes improvements in the methodology by incorporating low-precision quanti-
zation and employing a residual matrix for error correction and combines vector-wise quantization
method.. The key innovation lies in the use of sparse matrices instead of dense matrices when
compensating for errors with a residual matrix. By focusing solely on values that may significantly
impact relative errors under a specified threshold, this approach aims to control quantization errors
while reducing computational complexity. Experimental results demonstrate that this method can
effectively control the quantization error while maintaining high acceleration effect.The improved
algorithm on the CPU can achieve up to 15% accuracy improvement while 1.46 times speed
improvement.

1. Introduction
In the field of deep learning, neural networks typically

employ 32-bit or 64-bit floating-point numbers to repre-
sent weights and activation values, which incurs substan-
tial memory usage and high computational costs. Low-
precision quantization is a computational optimization tech-
nique which can apply to deep learning, aiming at diminish-
ing model storage requirements and computational expenses
while preserving model performance.

Tensors, as a high-dimensional generalization of matri-
ces, have become a pivotal data structure in intelligent appli-
cations such as deep learning [1]. As deep neural networks
are increasingly deployed, various types of tensor-specific
hardware have been introduced to enhance the performance
and energy efficiency of tensor computations. Prominent
among these heterogeneous platforms are Google’s Tensor
Processing Unit (TPU) [2], Intel’s Neural Network Processor
(NNP), Neural Processing Units (NPU) [3; 4], and NVIDIA
GPU [5]. These computing devices incorporate dedicated
tensor units known as tensor cores[6]. For instance, the
Nvidia A100 introduces a potent third-generation tensor
core, exhibiting significantly higher throughput than the
V100. It also features comprehensive support for DL and
HPC data types, along with new sparsity capabilities, result-
ing in doubled throughput.

Nvidia’s architectures, including Tesla and Ampere, fea-
ture tensor cores that support low-precision numerical com-
putations. This involves utilizing different precision values
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Table 1
Low-precision computing types and performance supported by
tensorcore on different GPU computing platforms

Arch and Model Compute-Accumulator Performance

Volta V100 FP16-FP32 125 TFLOPS

Tesla T4

FP16-FP32 65 TFLOPS

INT8-INT32 130 TOPS

INT4-INT32 260 TOPS

Ampare A100

FP16-FP32 312 TFLOPS

INT8-INT32 624 TOPS

INT4-INT32 1248 TOPS

INT1-INT32 4992 TOPS

for input and output in mixed-precision calculations. Com-
putational operations are performed using low precision,
with the final results stored in high precision. This approach
enhances speed through low-precision calculations while en-
suring that the results do not suffer from numerical overflow.

For FP16/FP32 mixed-precision DL, A100 Tensor Core
performance is 2.5 times that of V100, increasing to 5
times with added sparsity. Furthermore, the acceleration
of INT8, INT4, and binary Tensor Core implementations
supports deep learning inference. Table 1 shows the speed
support for different low-precision tensor core calculations
across Nvidia architectures, as indicated by official Nvidia
evaluations[7; 8; 9].
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Besides, CPUS are starting to support more high per-
formance low-precision operations. Intel ® Xeon ® scal-
able processors are capable of using low-precision arith-
metic operations (INT8) in 8-bit integer format. The method
achieves lower latency than 32-bit single-precision floating-
point arithmetic (FP32) workloads while maintaining high
accuracy. The built-in Intel ® Advanced Vector Extension
512 (Intel ® AVX-512) and Vector Neural Network Instruc-
tions (VNNI) further improve INT8 inference performance
[43].

In the next generation of tensor core computing de-
vices, low-precision operations based on tensors have gained
widespread support. Tensor-specific hardware enables the
execution of tensor computations in a single operation, sig-
nificantly boosting the throughput and efficiency of linear
algebra operations, such as matrix multiplication. To lever-
age the efficient computational capabilities of low precision,
quantization methods are employed [10; 28]. Low-precision
quantization reduces the number of bits required to represent
weights and activation values, thereby substantially decreas-
ing model storage requirements and computational costs.
Typically, low-precision quantization involves converting
floating-point representations to fixed-point or integer repre-
sentations, such as using 8-bit integers or fewer bits. While
this conversion introduces some precision loss, in many
cases, this loss can be compensated for through various
techniques to maintain model performance.

Low-precision quantization is particularly useful in resource-
constrained environments such as hardware accelerators,
edge devices, and mobile devices, as it significantly reduces
the storage and computational overhead of models, making
them more suitable for deployment on these devices. Beyond
the field of machine learning, there is a growing recognition
that low precision can also accelerate traditional high-
performance applications [11].

This paper revolves around the following question: How
can we take advantage of the high computational perfor-
mance of low precision while ensuring that the error of the
result is acceptable? Based on this problem, the contribu-
tions made in this paper are as follows:

• The residual error repair method is analyzed, and
a method to control the calculation amount of low-
precision matrix multiplication by threshold value is
given.

• Sparse matrix is introduced in the calculation process,
and the calculation amount is reduced by sparse ma-
trix multiplication within the range of error threshold.

• Designed a high-performance low-precision quantiza-
tion algorithm by Cutlass and Cusparse on GPU, and
proved the effectiveness of the algorithm through a
series of experiments on Nvidia-A100.

2. Motivation
Leveraging tensor hardware for optimizing tensor com-

putations will be a key factor in enhancing application com-
putational performance. In linear algebra, matrix multipli-
cation is a common operation, and tensors are widely used
to represent multidimensional data. In deep learning, the
majority of computations arise from tensor operations, with
tensor multiplication constituting the majority of these com-
putations (convolution operations can be transformed into
matrix multiplication through techniques like im2col[12]).
There exists a close relationship between tensor computa-
tions and matrix multiplication, where matrix multiplica-
tion is a special case of tensor multiplication. In matrix
multiplication, the result of multiplying two matrices is a
new matrix. Similarly, in tensor multiplication, applicable to
higher-order tensors, the result of multiplying two tensors is
a new tensor, with elements representing combinations of
elements from the original tensors. Therefore, optimizing
matrix multiplication through tensor cores can accelerate
tensor computation applications.

In Section 2.1, we will explore the performance of low-
precision operations on advanced computing devices and
the acceleration effects brought about by sparse matrices. In
Section 2.2, we will delve into the process of low-precision
quantization and dequantization for matrices, demonstrating
the use of quantization in the low-precision execution of
matrix multiplication 𝐶 = 𝐴 ∗ 𝐵. Then using cuBlas[23]
and CuSparse[25] libraries as examples, we will present a
performance comparison of low-precision matrix multipli-
cation. In Section 2.3, we will introduce existing research on
low-precision quantized matrix multiplication, introducing
its advantages and limitations.
2.1. Low precision computation and sparse matrix

acceleration
A. Low precision GEMM

Due to the high computational performance of low-
precision calculations, current computing acceleration hard-
ware is gradually supporting a wider range of low-precision
data types for tensor computations. The A100, for instance,
introduces new low-precision calculation types, including
int8, int4, int1(equivalent to bool). Additionally, Tensor
Cores on NVIDIA GPUs support low-precision-mixed pre-
cision computation. This method involves using different
precisions for input and output, typically producing high-
precision output to prevent potential data overflow issues
arising from low-precision calculations.

Cublas and Cutlass[23; 24] are mainstream mathemat-
ical libraries for performing general matrix-multiplication
(GEMM) calculations on Nvidia GPUs. Cutlass, in compari-
son to Cublas, supports a broader range of low-precision data
types and matrix operator designs, including int1, int4, int8,
float16, and bfloat16. This paper focuses on the acceleration
of matrix calculation by low precision shaping. The Fig.1(a)
below shows the execution speeds of GEMM (Matrix mul-
tiplication) with different precision for integers numbers on
the Nvidia A100-40GB.
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Figure 1: Figures(a) includes the efficiency of (int8-int32),
and (int4-int32) executions. Here, ’cb’ represents Cublas, ’ct’
represents Cutlass, and ’tc’ denotes the use of Tensor Cores.
Figures(c) show the execution time of GEMM with different
precision in different math libraries under Intel(R) Xeon(R)
Platinum 8163. Where E stands for EIGEN mathematical
library and M stands for MKL mathematical library. I8 stands
for int8 as the calculation accuracy and int32 as the result
accuracy(Eigen does not support the calculation). Figures(b)
and Figures(d) shows the acceleration of sparse matrix multi-
plication (SPMM) over dense matrix multiplication (GEMM)
on GPU/CPU. 𝜂 indicates the density of SPMM with the same
speed as GEMM.

The Intel MKL Math Core Library[44] is a highly op-
timized and extensively threaded set of math routines that
currently support integer matrix multiplication down to int8.
And Eigen[45] is a high-level C ++ library that effec-
tively supports linear algebra, matrix and vector opera-
tions, numerical analysis and their related algorithms. 1(c)
shows the execution speeds of GEMM (Matrix multiplica-
tion) with different precision for integers numbers on the In-
tel(R) Xeon(R) Platinum 8163 CPU. The low-precision int8
matrix multiplications shown in the figure can achieve up
to 8 times faster than single-precision floating-point matrix
multiplications

In the presented results, it is evident that the computa-
tional efficiency of GEMM operations at low precision is
significantly enhanced in both GPU and CPU.
B. Sparse matrix acceleration

In matrix computations, employing sparse matrices for
matrices predominantly composed of zero elements proves
to be a more efficient strategy. Sparse matrices, in contrast to
dense matrices where the majority of elements are non-zero,
offer notable advantages in terms of storage and computa-
tion. The presence of numerous zero elements within sparse
matrices allows for skipping these elements during com-
putations, thereby reducing computational complexity. This
attribute results in significant performance improvements,
particularly in numerical computations and linear algebra

operations such as matrix multiplication. Sparse matrices
demonstrate enhanced efficiency and reduced resource con-
sumption when handling large-scale, high-dimensional data
characterized by evident sparsity. Consequently, they find
widespread application in various scientific, engineering,
and computational domains.

Taking int8-int32 GEMM (dense matrix multiplication)
as a benchmark, the Fig.3 below shows the acceleration
ratios of SPMM (sparse matrix multiplication) at varying
levels of sparsity.The matrices entered for the above two ex-
periments are randomly generated matrices using the Curand
library.

From the experimental results, it is evident that, with
sufficiently high sparsity, sparse matrix multiplication can
achieve notably superior acceleration ratios.
2.2. Quantization and Dequantization

In accordance with the definition provided by the IEEE
754 standard[13], floating-point numbers consist of three
components: the sign bit, the exponent bits, and the fraction
bits. For an FP32, or single-precision floating-point number,
this entails 1 sign bit, 8 exponent bits, and 23 fraction bits.
Similarly, an FP16, or half-precision floating-point number,
is comprised of 1 sign bit, 5 exponent bits, and 10 fraction
bits. Regarding the quantization of FP16, given that both are
represented by floating-point numbers, a direct conversion
from high precision to low precision floating-point represen-
tation is feasible——(𝑎𝑓𝑝16 = 𝑇 𝑦𝑝𝑒𝐶𝑎𝑠𝑡(𝑎𝑓𝑝32, 𝐹 𝑙𝑜𝑎𝑡16)).

However, quantization for integer types is not as straight-
forward. Due to the inherent structure of floating-point num-
bers, they are not uniformly distributed along the number
line but rather denser near zero. In contrast, integers are
uniformly distributed along the number line and typically
represent a much smaller range than floating-point num-
bers. Directly rounding floating-point numbers and repre-
senting them as integers is not a reasonable approach, as it
would result in the loss of all values near the zero point.
Therefore, it is necessary to apply mathematical transfor-
mations to floating-point numbers before converting them
to integers. This can be achieved, for instance, through
clustering[14] and scaling[15; 29] to quantize floating-point
values into integer values. Alternatively, methods such as
using KL divergence[16; 17] involve truncating a portion of
the original information before mapping, creating a symmet-
ric and well-distributed truncated information, which is then
mapped to the integer domain.

Considering a input matrix, it can be abstracted as a
one-dimensional array of numbers arranged from smallest
to largest along the number line. The goal of quantization is
to map the numerical values from the floating-point domain
onto the number line in the integer domain. Different quanti-
zation methods offer various advantages, but for matrix mul-
tiplication, larger absolute values in the original matrix have
a more significant impact on the resulting matrix, and errors
in vector multiplication accumulate in a specific element of
result matrix. If the method of quantization involves trun-
cating larger values using KL divergence, it may introduce
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Figure 2: Representation of integer quantization

considerable errors into the resulting matrix.Moreover, due
to the nature of matrix multiplication, results generated from
clustering quantization methods[27] utilizing exponential
functions cannot be easily restored to the original precision.

We abbreviated quantization as𝑄(𝐴) and dequantization
as 𝑄(𝐴). To leverage the efficiency of low precision while
facilitating the restoration of result precision, we employ a
symmetric linear quantization function. Assume the repre-
sentation with N bits of integers is used,𝑎𝑚𝑎𝑥 is the largest
number of matrix A.

𝑎𝑖𝑛𝑡 = 𝑄(𝑎𝑓𝑝, 𝜆) = 𝑇 𝑦𝑝𝑒𝐶𝑎𝑠𝑡(𝜆 ∗ 𝑎𝑓𝑝, 𝑖𝑛𝑡𝑁) (1)
This function uses the absolute value of the maximum

as a threshold, directly mapping this range proportionally to
the range of positive and negative integers. Where

𝜆 = (2𝑁 − 1)∕𝑎𝑚𝑎𝑥 (2)
As for the process of dequantization, which is the inverse

of quantization, it involves restoring the results represented
in integers back to floating-point numbers:

𝑎𝑓𝑝 = ̃𝑄(𝑎𝑖𝑛𝑡, 𝜆) = 𝑇 𝑦𝑝𝑒𝐶𝑎𝑠𝑡(𝑎𝑖𝑛𝑡∕𝜆, 𝑓 𝑙𝑜𝑎𝑡𝑁) (3)
2.3. Quantized GEMM and residual-based

refinement method
For GEMM(general matrix multiplication):𝐷 = 𝛼𝐴𝐵 +

𝛽𝐶 . For the main part of the calculation, denote𝑀 = 𝐴𝐵.
To complete matrix multiplication with low precision, it can
be expressed as

𝑀𝑓𝑝32 = 𝐴𝑓𝑝32 ∗ 𝐵𝑓𝑝32 =
𝐴𝑖𝑛𝑡
𝜆𝐴

∗
𝐵𝑖𝑛𝑡
𝜆𝐵

=
𝐴𝑖𝑛𝑡 ∗ 𝐵𝑖𝑛𝑡

𝜆𝑀
= ̃𝑄(𝐴𝑖𝑛𝑡 ∗ 𝐵𝑖𝑛𝑡, 𝜆𝑀 ) (4)

Where 𝜆𝑀 = 𝜆𝐴 ∗ 𝜆𝐵 . Therefore, we can obtain
the original precision matrix by one inverse quantization
operation of the low precision M matrix

In modern applications (eg. machine learning, numerical
computing), the input and output are generally normal pre-
cision, and the calculation intensive modules in the program
(such as matrix multiplication, convolution operations, etc.)
generally account for more than 90% of the total time of the
program. Therefore, the acceleration of compute-intensive

Figure 3: Normal precision acceleration (a), and low precision
quantization acceleration processes(b)

modules with low precision can achieve good results. Fig.3
shows the flow of computation acceleration using common
method and low-precision quantization method.

Compared to the normal precision computing strategy
of direct acceleration using computing hardware. Low-
precision quantization acceleration first requires quantiz-
ing and de-quantizing the inputs, and then using special
computing hardware such as tensor core for more efficient
computation acceleration.

Low-precision quantization methods can achieve signif-
icant speedup, but the rounding errors introduced by low
precision often have a substantial impact on the compu-
tation results. Some recent research has employed vari-
ous techniques to enhance low-precision quantization pre-
cision(Fig.3 Method 1, Method 2).

The improvements in low-precision matrix multiplica-
tion can be broadly categorized into the following two ap-
proaches:
Quantization methods of the input matrix The first
approach is to use a different method (Fig.3 Method 1) to
change the quantization method before the Count(computationally
intensive operation) to improve the accuracy or reduce the
calculation time, including the following methods.

1. Row and Column wise Quantization[18]: This method
involves applying different scaling factors 𝜆 to each
row of matrix A and each column of matrix B. The
goal is to reduce the variance of the input data, min-
imizing the difference between the maximum and
minimum values and thereby enhancing quantization
precision.

2. Improved Bit Quantization[19; 20]: This approach
leverages the bitwise matrix operations supported by
the latest GPUs. It enables quantization of inputs
with varying bit precision, adapting to different input
matrices to enhance quantization precision.
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3. Matrix Reordering[21]: This method involves rear-
ranging the input matrix, expanding matrix B along
the rows to transform matrix multiplication into inner
products followed by summation. This enables the
use of instruction-level algorithms supporting quan-
tization under low precision after the data has been
reordered.

The transformation of input matrices can improve quantiza-
tion precision to some extent, and it does not introduce a
significant increase in computational complexity compared
to direct quantization. However, it often requires the pre-
determination of the quantization bit-width in advance to
decide on the computational load, with further fine-tuning
based on different inputs. Alternatively, it may only be
effective for specific matrix specifications and may perform
poorly on matrices with particular characteristics, especially
those with large singular values.
Error compensating in output matrix The second method
(Fig.3 Method 2) is to compensate the error after the end of
the first low-precision calculation, which often requires ad-
ditional low-precision calculation steps to obtain a consider-
able accuracy improvement compared with the first method.
The exploration on the improvement of low-precision ma-
trix multiplication mainly focuses on different quantization
methods for input matrix(Method 1), and there are not many
researches on the error compensation of quantized matrix
(Method 2). At present, the residual matrix method is mainly
used for error compensation[22], and the following is the
introduction of this method.

In the aforementioned matrix multiplication quantiza-
tion, due to 𝜆 = (2𝑁−1−1)∕𝑎𝑚𝑎𝑥 being a floating-point num-
ber generated through floating-point computations, this step
introduces only minor high-precision floating-point calcula-
tion errors which is negligible. Therefore, the quantization
operation’s error originates solely from the rounding opera-
tion in Equation(1) , which involves mapping a floating-point
number to the integer axis with an offset from its original
value.

On the other hand, dequantization, which is the inverse
operation of quantization in Equation(3), does not involve
rounding when converting an integer to a floating-point
number. Therefore, the error incurred in this process is
solely due to the inherent error of the floating-point number
and can be considered negligible. It can be asserted that
dequantization is accurate, and the error exists only in the
forward quantization process.

Here’s an example: V = [1, 2.5, 4]. If we want to quantify
it using Int8:

Then 𝜆 = (27 − 1)∕𝑚𝑎𝑥𝑉 = 31.75. To number 2.5:
2.5𝐼𝑛𝑡 = 𝑇 𝑜𝐼𝑛𝑡(𝜆 ∗ 𝑎𝑓𝑙𝑜𝑎𝑡) = ⌊31.75 ∗ 2.5⌋ = 79

And then we do the dequantization of 79:

𝑎𝐹 𝑙𝑜𝑎𝑡 = 𝑇 𝑜𝐹 𝑙𝑜𝑎𝑡( 79
31.75

) = 2.4882

Then the error of 𝑄𝑢𝑎𝑛𝑡(2.5, 𝑖𝑛𝑡4) is 2.5 − 2.4882 =
0.0118. Therefore, for the 8-bit quantization of 2.5, the error
is given by the discrepancy caused by ⌊79.375⌋.

Performing error calculations for other numbers yields
results of [0.0236, 0.0118, 0]. We can conceptualize the
quantization operation as adding a difference to the original
floating-point number, aligning it with the nearest represen-
tation on the integer axis. The resulting vector represents the
residual vector after int8 quantization of the original vector.

For the low-precision quantization of matrix-matrix mul-
tiplication 𝐴 ⋅ 𝐵 = 𝐶 , we can employ a similar procedure,
ultimately obtaining the residual matrix resulting from low-
precision quantization. Therefore, the quantization operation
for matrix A can be expressed as

𝐴𝐹𝑝 = 𝐴𝐹𝑝′ + 𝑅𝐴𝐹𝑝 (5)
Where the 𝐴𝐹𝑝′ matrix represents the floating-point matrix
resulting from the reverse quantization of the integer matrix
after quantization, with an offset of 𝑅𝐴𝐹𝑝 from the original
matrix values.

Applying the same procedure to matrix B, the matrix
operation 𝐴 ⋅ 𝐵 = 𝐶 can be represented as:

𝐴𝐹𝑝 ⋅ 𝐵𝐹𝑝 = (𝐴
′𝐹𝑝 + 𝑅𝐴𝐹𝑝) ∗ (𝐵

′𝐹𝑝 + 𝑅𝐵𝐹𝑝) (6)
The product of two floating-point matrices can be ex-

pressed as the multiplication of the quantized integer matri-
ces by the scaling values 𝜆 of the two matrices.

𝑎𝐹𝑝
𝑖𝑗 ∗ 𝑏𝐹𝑝

𝑖𝑗 =
𝑎𝐼𝑛𝑡𝑖𝑗

𝜆𝑎
∗
𝑏𝐼𝑛𝑡𝑖𝑗

𝜆𝑏
Therefore, the original matrix multiplication can be ob-

tained by summing up the results of four matrix multiplica-
tions:

𝐴𝐹𝑝 ∗ 𝐵𝐹𝑝 = 𝐴𝐼𝑛𝑡 ⋅ 𝐵𝐼𝑛𝑡

𝜆𝑎 ∗ 𝜆𝑏
+

𝐴𝐼𝑛𝑡 ⋅ 𝑅𝐼𝑛𝑡
𝐵

𝜆𝑎 ∗ 𝜆𝑅𝑏

+
𝑅𝐼𝑛𝑡
𝐴 ⋅ 𝐵𝐼𝑛𝑡

𝜆𝑅𝑎 ∗ 𝜆𝑏
+

𝑅𝐼𝑛𝑡
𝐴 ⋅ 𝑅𝐼𝑛𝑡

𝐵
𝜆𝑅𝑎 ∗ 𝜆𝑅𝑏

= 𝐶𝐹𝑝

(7)

This is also a way of precision compensation by using
the residual matrix directly. Note that the last term, due
to the multiplication of residual matrices, is numerically
small compared to the first three terms and can be neglected
under certain conditions. We sum up the first three terms to
form the low-precision quantized matrix multiplication with
residual correction.

Through this method, the error of direct quantized matrix
multiplication can be significantly reduced. However, this
introduces two new matrix multiplication operations. If the
acceleration ratio of direct low-precision quantization is 9,
then the theoretical upper limit of the acceleration ratio
for residual-corrected low-precision quantization is only 3
or less(because there are other quantitative operations in-
volved), often leading to less satisfactory acceleration re-
sults.
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3. Sparse quant
Through the introduction in Section 2.3, there are two

quantization methods to reduce errors, with the second
method introducing a considerable amount of additional
computation while reducing errors. Is there a way to min-
imize additional computation while reducing errors? In this
section, we will introduce a method that introduces sparsity
during the residual error correction process to reduce the
overall computational load.
3.1. Sparse residual error compensation algorithm
A. Methods to obtain sparsity

From previous derivation , the residuals of 𝑐𝑖𝑗 in the
Equation(7) result matrix 𝐶 can be expressed as (omits the
multiplication terms of residuals with small values) :

𝑟𝑐𝑖𝑗 =
∑

𝑘
((𝑎𝑖𝑘 + 𝑅𝑎𝑖𝑘)((𝑏𝑘𝑗 + 𝑅𝑏𝑘𝑗)) − 𝑎𝑖𝑘𝑏𝑘𝑗)

≈
∑

𝑘
(𝑟𝑎𝑖𝑘 ∗ 𝑏𝑘𝑗) +

∑

𝑘
(𝑎𝑖𝑘 ∗ 𝑟𝑏𝑘𝑗)

(8)

The relative error of 𝛿𝑐𝑖𝑗for each term of the result matrix
𝛿𝑐𝑖𝑗can be expressed as:

𝛿𝑐𝑖𝑗 ≈
∑

𝑘
𝑟𝑎𝑖𝑘 ∗ 𝑏𝑘𝑗∕𝑐𝑖𝑗 +

∑

𝑘
𝑎𝑖𝑘𝑟𝑏𝑘𝑗∕𝑐𝑖𝑗

Noticed that when performing low precision quantiza-
tion:

𝑎𝐼𝑛𝑡𝑖𝑗 = 𝑇 𝑜𝐼𝑛𝑡(𝜆 ∗ 𝑎𝐹𝑝
𝑖𝑗 ) = ⌊𝜆 ∗ 𝑎𝐹𝑝

𝑖𝑗 ⌋ (9)
⌊.⌋is the integer operation(We use downward rounding in

our formulas to make it easier to understand). The multipli-
cation operation is performed at the original floating point
precision, so the error in this part is caused by the integer
operation in Equation(10).

𝑅𝑎𝐼𝑛𝑡𝑖𝑗 = ⌊𝜆 ∗ 𝑎𝐹𝑝
𝑖𝑗 ⌋ − 𝜆 ∗ 𝑎𝐹𝑝

𝑖𝑗 (10)
The transmission of this part of the error causes the final

error of 𝑎𝑖𝑗 low-precision quantization, that is, the residual of
𝑎𝑖𝑗 , which can be expressed as:

𝑟𝑎𝐹𝑝
𝑖𝑗 = 𝑇 𝑦𝑝𝑒𝐶𝑎𝑠𝑡(𝜆−1 ∗ 𝑎𝐼𝑛𝑡𝑖𝑗 , 𝐹 𝑙𝑜𝑎𝑡) − 𝑎𝐹𝑝

= 𝑇 𝑦𝑝𝑒𝐶𝑎𝑠𝑡((⌊𝜆 ∗ 𝑎𝐹𝑝
𝑖𝑗 ⌋ − 𝜆 ∗ 𝑎𝐹𝑝

𝑖𝑗 ) ∗ 𝜆−1, 𝐹 𝑙𝑜𝑎𝑡)

= 𝑇 𝑦𝑝𝑒𝐶𝑎𝑠𝑡((𝑅𝑎𝐼𝑛𝑡𝑖𝑗 ∗ 𝜆−1, 𝐹 𝑙𝑜𝑎𝑡) (11)
Since𝑅𝑎𝐼𝑛𝑡𝑖𝑗 ≤ 1(Due to the rounding operation, the error

will not exceed 1). Thus

𝑟𝑎𝐹𝑝
𝑖𝑗 = 𝑇 𝑦𝑝𝑒𝐶𝑎𝑠𝑡((𝑅𝑎𝐼𝑛𝑡𝑖𝑗 ∗ 𝜆−1, 𝐹 𝑙𝑜𝑎𝑡) ≤ 𝜆−1 (12)

Since Equation(12), 𝑟𝑎𝑖𝑘, 𝑟𝑏𝑘𝑗 is a number with a fixed
range. Therefore, the impact on the entire 𝑐𝑖𝑗 error mainly
depends on the two terms 𝑎𝑖𝑘, and 𝑏𝑘𝑗 :

𝛿𝑐𝑖𝑗 ≤ (
∑

𝑘
𝜆−1𝑎 𝑏𝑘𝑗∕𝑐𝑖𝑗 +

∑

𝑘
𝜆−1𝑏 𝑎𝑖𝑘∕𝑐𝑖𝑗)

That is, the relative error of the resulting matrix C is
accumulated from the quantization exponents 𝜆𝑎,𝜆𝑏and the
original matrices A, B. That is to say, the numbers with larger
values in A,B tend to have a larger impact on the residual
matrix multiplication, while the relatively small numbers in
the two matrices have a relatively small impact on the error
of the resulting matrix C. Consider the absolute value of the
numbers in the original matrix as the weights, that is, we only
need to focus on the numbers with relatively large weights in
the residual repair calculation to reduce the overall amount
of calculation.

A simple way to do this is to set a threshold to remove
the smaller values of the A and B matrices during the
residual matrix multiplication, thus reducing the amount of
computation. So how to measure the threshold? Assume that
we expect the relative error caused by matrix multiplication
to the result 𝑐𝑖𝑗 to be at most 2M

𝛿𝑐𝑖𝑗 ≤ (
∑

𝑘
𝜆−1𝑎 𝑏𝑘𝑗∕𝑐𝑖𝑗 +

∑

𝑘
𝜆−1𝑏 𝑎𝑖𝑘∕𝑐𝑖𝑗) ≤ 2𝑀

Each of the terms satisfied:

𝜆−1𝑎
∑

𝑘
𝑏𝑘𝑗∕𝑐𝑖𝑗 ≤ 𝑀,𝜆−1𝑏

∑

𝑘
𝑎𝑖𝑘∕𝑐𝑖𝑗 ≤ 𝑀

For each term in the summation:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎𝑖𝑘 ≤ 𝑀 ∗ 𝜆𝑏 ∗ (𝑎𝑏𝑠(𝑐𝑖1)∕𝑘)
𝑎𝑖𝑘 ≤ 𝑀 ∗ 𝜆𝑏 ∗ (𝑎𝑏𝑠(𝑐𝑖2)∕𝑘)
...
𝑎𝑖𝑘 ≤ 𝑀 ∗ 𝜆𝑏 ∗ (𝑎𝑏𝑠(𝑐𝑖𝑛)∕𝑘)

(13)

Summarizing, A total of B.cols inequalities are satisfied:
𝜆−1𝑏

∑

𝑘
𝑎𝑖𝑘∕𝑚𝑖𝑛(𝑎𝑏𝑠(𝑐𝑖∗)) ≤ 𝑀

Then, due to 𝑐𝑖𝑗

𝑎𝑖𝑘 ≤ 𝑀 ∗ 𝜆𝑏 ∗ (𝑚𝑖𝑛(𝑎𝑏𝑠(𝑐𝑖∗))∕𝑘)

The elements of the A matrix satisfying this condition
are put into the matrix 𝐴′ and multiplied with the residual
matrix 𝑅𝐵 of 𝐵 to obtain the error compensation matrix,
and the quantization result after the residual repair can be
obtained

However, in practical experiments, it was observed that
the scaling factor in the above formula was too large. By
summing up the inequalities in Equation(13), the following
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scaling approach can result in a sparser matrix without
significantly increasing the error.

𝑎𝑖𝑘 ≤ 𝑀 ∗ (𝑎𝑣𝑔(𝑎𝑏𝑠(𝑐𝑖1))) (14)
where 𝑐𝑖∗ can be estimated from the first quantized

matrix multiplication result, without introducing additional
computational overhead.

Through this formula, we can reduce the matrix A and
B, and get the sparse matrix 𝐴′ , 𝐵′ , and then reducing the
calculation amount of low-precision residual compensation
matrix multiplication.

Below is an example using the improved quantization
method described above, adopting 8-bit quantization with
𝑁 = 8

B. Example
For input matrices A and B:

𝐴𝑓𝑝32 =
⎡

⎢

⎢

⎣

0.2735 −0.1588 0.1218
0.0953 1.5801 −0.4861
−0.2394 0.1602 0.4294

⎤

⎥

⎥

⎦

𝐵𝑓𝑝32 =
⎡

⎢

⎢

⎣

3.9284 −0.0195 −0.3836
−0.3288 2.2353 −0.1895
−0.1376 0.0545 −0.3641

⎤

⎥

⎥

⎦

The result matrix C for single-precision floating-point
arithmetic is:

𝐶𝑓𝑝32 =
⎡

⎢

⎢

⎣

1.1100 −0.3538 −0.1192
−0.0783 3.5038 −0.1590
−1.0521 0.3861 −0.0949

⎤

⎥

⎥

⎦

Compute the maximum values of matrices A and B,
and determine the values of 𝜆𝐴, 𝜆𝐵 using Equation(2) with
𝑚𝑎𝑥𝐴 = 1.58014, 𝑚𝑎𝑥𝐵 = 3.9284, then, 𝜆𝐴 = 40.5027 𝜆𝐵
= 16.2916

And compute the 8-bit quantized versions of matrices A
and B:

𝐴𝑖𝑛𝑡8 =
⎡

⎢

⎢

⎣

11 −6 4
3 64 −19
−9 6 17

⎤

⎥

⎥

⎦

, 𝐵𝑖𝑛𝑡8 =
⎡

⎢

⎢

⎣

63 0 −6
−5 36 −3
−2 0 −5

⎤

⎥

⎥

⎦

Compute matrix 𝐶𝑞𝑢𝑎𝑛𝑡 by directly quantizing the result of
low precision: 𝐶𝑞𝑢𝑎𝑛𝑡 = (𝐴𝑖𝑛𝑡8 ∗ 𝐵𝑖𝑛𝑡8)∕(𝜆𝐴 ∗ 𝜆𝐵)

𝐶𝑞𝑢𝑎𝑛𝑡 =
⎡

⎢

⎢

⎣

1.0836 −0.3273 −0.1031
−0.1409 3.4917 −0.1743
−0.9563 0.3273 −0.0743

⎤

⎥

⎥

⎦

Calculate the average values for each row and column of
matrix 𝐶𝑞𝑢𝑎𝑛𝑡

𝐶𝑟𝑜𝑤 =
⎡

⎢

⎢

⎣

0.5047
1.2690
0.4526

⎤

⎥

⎥

⎦

, 𝐶𝑇
𝑐𝑜𝑙 =

⎡

⎢

⎢

⎣

0.7269
1.3821
0.1172

⎤

⎥

⎥

⎦

Dequantizing matrices 𝐴,𝐵 and get 𝐴′ , 𝐵′

𝐴′ =
⎡

⎢

⎢

⎣

0.2716 −0.1481 0.0988
0.0741 1.5801 −0.4691
−0.2222 0.1481 0.4197

⎤

⎥

⎥

⎦

𝐵′ =
⎡

⎢

⎢

⎣

3.8670 0.0000 −0.3683
−0.3069 2.2097 −0.1841
−0.1228 0.0000 −0.3069

⎤

⎥

⎥

⎦

Computing the residual matrix 𝑅𝐴,𝑅𝐵 of matrix 𝐴 and
𝐵.

𝑅𝐴 =
⎡

⎢

⎢

⎣

0.0020 −0.0107 0.0231
0.0212 0.0000 −0.0170
−0.0172 0.0120 0.0097

⎤

⎥

⎥

⎦

𝑅𝑏 =
⎡

⎢

⎢

⎣

0.0614 −0.0195 −0.0153
−0.0219 0.0256 −0.0053
−0.0148 0.0545 −0.0572

⎤

⎥

⎥

⎦

By Equation(14) compute the reducing matrix 𝐴𝑟, 𝐵𝑟

from matrix 𝐴 and 𝐵.

𝐴𝑟 =
⎡

⎢

⎢

⎣

0.2735 0.0000 0.0000
0.0000 1.5801 0.0000
0.0000 0.1602 0.4294

⎤

⎥

⎥

⎦

𝐵𝑟 =
⎡

⎢

⎢

⎣

3.9284 0.0000 0.0000
0.0000 2.2353 0.0000
0.0000 0.0000 0.0000

⎤

⎥

⎥

⎦

Quantize the matrices 𝐴′ , 𝐵′ in the same way to obtain their
low-precision matrix:

𝐴
′

𝑖𝑛𝑡 =
⎡

⎢

⎢

⎣

11 0 0
0 64 0
0 6 17

⎤

⎥

⎥

⎦

, 𝐵
′

𝑖𝑛𝑡 =
⎡

⎢

⎢

⎣

63 0 0
0 36 0
0 0 0

⎤

⎥

⎥

⎦

Multiply the reduced matrices 𝐴′ , 𝐵′ with 𝑅𝐵,𝑅𝐴 re-
spectively. Add the results to 𝐶𝑞𝑢𝑎𝑛𝑡 to obtain the matrix
𝐶 ′
𝑞𝑢𝑎𝑛𝑡 after residual error correction: 𝐶 ′

𝑞𝑢𝑎𝑛𝑡 = 𝐶𝑞 + 𝐴′ ∗
𝑅𝐵 + 𝐵′ ∗ 𝑅𝐴

𝐶
′

𝑞𝑢𝑎𝑛𝑡 =
⎡

⎢

⎢

⎣

1.1077 −0.3573 −0.1070
−0.0878 3.5311 −0.1819
−1.0356 0.3817 −0.0987

⎤

⎥

⎥

⎦

Adopt the Frobenius norm of the matrix to estimate
the absolute and relative errors of the result matrix. 𝐸𝑟 =
‖𝑋 −𝑋∗

‖𝐹 , 𝐸𝛿 = 𝐸𝑟
‖𝑋‖𝐹

The quantization errors and direct
quantization errors improved by the above algorithm are
show in Table.2:
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Table 2
Errors of example

Int8 quantization method 𝐸𝑟 𝐸𝛿

Residual improvement 0.144 0.011

Direct quantization 0.799 0.035

C. Algorithm
A simple example of a residual improvement algorithm

is shown in the previous section. Besides,in practical exe-
cution, since the magnitude of sparsity s significantly im-
pacts the execution speed of sparse matrix multiplication, in
cases where the sparsity is not small enough, dense matrix
multiplication exhibits faster execution speed. As shown
in Fig.1(b), we can introduce a parameter 𝜂 (gemm has
the same speed as spmm at 𝜂 sparsity) representing the
acceleration ratio of sparse matrix multiplication to dense
matrix multiplication at sparsity s.

Only when 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 < 𝜂, should the reduced matrix be
used for sparse matrix multiplication. When 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝜂, it
indicates that sparse matrix multiplication does not achieve
significant acceleration within the given precision threshold.
In such cases, the complete residual matrix multiplication is
performed using the matrix before reduction. This ensures
an optimal trade-off between maximizing quantization pre-
cision and minimizing computation time.

Algorithm.?? summarizes the flow of the improved
residual compensation algorithm. Firstly, the low precision
matrix 𝐷𝑖𝑛𝑡 under N integer is calculated by direct quan-
tization operation, and the original precision result 𝐷𝐹 is
obtained by inverse quantization operation(line 1-3). Then
the residual matrix 𝑅𝐴,𝑅𝐵 of 𝐴 and 𝐵 is calculated by
inverse quantization operation(line 4-6). And calculate D
matrix for reduce matrix vector Drows, Dcols(line 7). The
error threshold is used to obtain the possible sparse matrix
𝐴′ , 𝐵′ of matrix 𝐴 and 𝐵(line 8-10). And then select the
appropriate matrix operation (GEMM,SPMM) under the
sparsity of 𝐴′ , 𝐵′ , and calculate the error compensation
matrix D1,D2 of matrix 𝐷(line 11-15). Finally, 𝑅𝐷1 and
𝑅𝐷2 were used to compensate the error of the original
quantization result matrix D and complete the remaining
steps of GEMM(line 16-18).
3.2. Vector-wise Quantization

Through the above algorithm analysis, the error caused
by the proposed method to the final structure consists of
three parts 𝐸𝑟𝑠𝑢𝑚 = 𝐸𝑟+𝐸𝑠+𝐸𝑞: Where 𝐸𝑟𝑚𝑢𝑙 = 𝐴𝑟 ∗ 𝐵𝑟

is the omitted residual multiplication term; Multiplication
of sparse omitted item 𝐸𝑠 =

∑

𝑘 𝑟𝑎𝑖𝑘 ∗ 𝑏𝑘𝑗 +
∑

𝑘 𝑎𝑖𝑘 ∗ 𝑟𝑏𝑘𝑗(for 𝑎𝑖𝑘, 𝑏𝑘𝑗 satisfy reduce conditions); Error 𝐸𝑞caused by
quantizing the residual term.

For these three error terms, improving the quantization-
induced error in the third term by applying iterative resid-
ual compensation can enhance the accuracy. However, this
approach introduces greater computational complexity, and
the resulting precision improvement may not justify the costs

Algorithm 1: Algorithms of compute GEMM𝐷 =
𝛼𝐴 ⋅ 𝐵 + 𝛽𝐶 in Int-quantization

Data: 𝐴,𝐵, 𝐶(Intputmatrix);𝛼,𝛽(Scalar);
𝜃(Threshold);𝑠(Limit sparsity);
N(Quant bit),𝑇𝐹 (Origin precision )

Result: matrix D
/* Computes low-precision quantized matrix

multiplication */

1 {𝐴𝑖𝑛𝑡, 𝐵𝑖𝑛𝑡} ← 𝑄𝑢𝑎𝑛𝑡({𝐴,𝐵}, 𝑁);
2 𝐷𝑖𝑛𝑡 = GEMM(𝐴𝑖𝑛𝑡, 𝐵𝑖𝑛𝑡);
/* compute 𝐷 = 𝐴𝑖𝑛𝑡 ⋅ 𝐵𝑖𝑛𝑡 */

3 𝐷𝐹 ← 𝐷𝑒𝑞𝑢𝑎𝑛𝑡(𝐷𝑖𝑛𝑡, 𝑇𝐹 );
/* Calculate the residual matrix */

4 {𝐴𝐹 , 𝐵𝐹 } ← 𝐷𝑒𝑞𝑢𝑎𝑛𝑡({𝐴𝑖𝑛𝑡, 𝐵𝑖𝑛𝑡}, 𝑇𝐹 );
5 {𝑅𝐴,𝑅𝐵} ← {𝐴,𝐵} − {𝐴𝐹 , 𝐵𝐹 };
6 {𝑅𝐴𝑖𝑛𝑡, 𝑅𝐵𝑖𝑛𝑡} ← 𝑄𝑢𝑎𝑛𝑡({𝑅𝐴,𝑅𝐵}, 𝑁);
/* Reduce sparse matrix */

7 {𝐷𝑟𝑜𝑤, 𝐷𝑐𝑜𝑙} = 𝐺𝑒𝑡𝐴𝑣𝑔𝑉 𝑒𝑐(𝐷𝐹 , {𝑟𝑜𝑤, 𝑐𝑜𝑙}) ;
// compute avg vector of cols and rows from 𝐷𝐹

8 {𝐴′ , 𝐵′} ← 𝑅𝑒𝑑𝑢𝑐𝑒({𝐴,𝐵}, {𝐷𝑟𝑜𝑤, 𝐷𝑐𝑜𝑙}, 𝜃) ;
// reduce sparse matrix from A and B

9 {𝑠𝑝𝐴, 𝑠𝑝𝐵} = 𝑔𝑒𝑡𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦({𝐴′ , 𝐵′}) ;
10 {𝐴′

𝑖𝑛𝑡, 𝐵
′

𝑖𝑛𝑡} ← 𝑄𝑢𝑎𝑛𝑡({𝐴′ , 𝐵′}, 𝑁);
/* Computes residual matrix multiplication */

11 if {𝑠𝑝𝐴, 𝑠𝑝𝐵} < 𝑠 then
12 {𝐷𝑅1

𝑖𝑛𝑡, 𝐷𝑅2
𝑖𝑛𝑡}=SPMM({𝐴′ , 𝐵′}, {𝑅𝐵,𝑅𝐴});

13 else
14 {𝐷𝑅1

𝑖𝑛𝑡, 𝐷𝑅2
𝑖𝑛𝑡} = GEMM({𝐴,𝐵}, {𝑅𝐵,𝑅𝐴});

15 end
/* Error compensation */

16 {𝑅𝐷1
𝐹 , 𝑅𝐷

2
𝐹 } ← 𝐷𝑒𝑞𝑢𝑎𝑛𝑡({𝑅𝐷1

𝑖𝑛𝑡, 𝑅𝐷
2
𝑖𝑛𝑡}, 𝑇𝐹 );

17 𝐷𝐹 = 𝐷𝐹 + 𝑅𝐷1
𝐹 + 𝑅𝐷2

𝐹 ;
18 return 𝐷𝐹 = 𝛼 ∗ 𝐷𝐹 + 𝛽𝐶;

[31]. In contrast, the first two error terms, if minimized
due to the quantization-induced error being smaller, lead
to a smaller value for 𝐴𝑟 ∗ 𝐵𝑟. Consequently, the error
introduced to the result is also smaller.

As shown in Figure.4. When the scale of matrix multipli-
cation is larger, the values within the matrix exhibit a broader
range of variations, making quantization susceptible to the
influence of extreme values and causing significant errors.
In contrast, the range of variations for each row and column
within the matrix is smaller. Therefore, a natural approach to
reduce errors is to introduce a method based on row-wise and
column-wise quantization. By selecting the maximum value
relative to each row and column, the error is minimized.
This method balances the difficulty of quantization for both
matrices.

The quantization process using this method follows these
steps: first, instead of globally selecting the absolute max-
imum value for the entire matrix, the absolute maximum
value is chosen for each row of matrix A and each column
of matrix B. Then, the corresponding 𝜆 values for each row
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Figure 4: Comparison of the effect of different quantization methods

and column of A and B are calculated using the formula.
Subsequently, the quantization process is applied. Finally,
during the dequantization of the computed low-precision
matrix 𝐶𝑓𝑝 =

𝐶𝑖𝑛𝑡
𝜆𝑎𝑖×𝜆𝑏𝑗

.

3.3. Estimation of Algorithm Execution Flow
Time Complexity

In this section, we delve into the time complexity es-
timation of the proposed algorithm’s execution flow. By
analyzing the key steps and operations involved, we aim
to provide insights into the computational efficiency of our
approach.

The execution flow of the improved residual repair algo-
rithm is as follows, which can be represented in Figure 6:

In order to show the superiority of the algorithm, we
take the size of the data into consideration in the calculation
of time complexity, assuming that the original precision
is P bit, and the low precision quantization is Q bit. The
input and output matrices are both of size 𝑁 ∗ 𝑁 . The
improved residual repair matrix multiplication has three
parts: normal low-precision quantized matrix multiplication,
sparse reduction, and residual matrix multiplication

1. Normal low-precision quantized matrix multiplica-
tion: The initial stage involves quantizing and dequan-
tizing matrices A and B and GEMM computing.

• Firstly, 𝐴 and 𝐵 matrices are vector-wise quan-
tized, and the quantized matrix 𝐴𝑖𝑛𝑡,𝐵𝑖𝑛𝑡 - 𝑂(2 ∗
(𝑃𝑁)2)

• And then through 𝐴𝑖𝑛𝑡, 𝐴𝑖𝑛𝑡 matrix multiplica-
tion to get the quantized result matrix -𝑂((𝑄𝑁)3)

• Deuantization of the vector-wise quantization
result matrix Cint is performed to obtain the
calculation result - 𝑂((𝑃𝑁)2)

2. Sparse reduction: In this step, the residual matrix
quantified in the previous step is calculated and the
sparse residual matrix is obtained by removing the
numbers with less weight using the reduction formula.

• The residual matrix 𝐴𝑅, 𝐵𝑅 is obtained by
inverse quantization of the quantization matrix
𝐴𝑖𝑛𝑡,𝐵𝑖𝑛𝑡 - 𝑂(2 ∗ (𝑃𝑁)2)

• The residual matrix is quantized to get ARint,
BRint - 𝑂(2 ∗ (𝑃𝑁)2)

• A and B matrices are reduced by using the above
results, and A possible sparse matrix 𝐴′, 𝐵′ is
obtained - 𝑂(2 ∗ (𝑃𝑁)2)

3. Residual matrix multiplication: In this step, the re-
duced sparse matrix multiplication is performed and
the result is inversely quantized and added to the
original quantization result.

• A’, B’ is multiplied by the residual matrix,
and calculated 𝐶𝑅𝑖𝑛𝑡 .The time complexity for
sparse matrix multiplication can be approxi-
mated as 𝑂(2𝑆 ∗ (𝑄𝑁)3), where S represents
the spmm acceleration ratio.

• Dequantization of 𝐶𝑅𝑖𝑛𝑡 is performed to obtain
the residual error compensation matrix CR, and
the time complexity is𝑂((𝑃𝑁)2)

• Use 𝐶 = 𝐶 +𝐶𝑅+𝐶𝑅2for error compensation
- 𝑂((𝑃𝑁)2)

In addition, the total time complexity of the improved
algorithm is: 11 ∗ 𝑂((𝑃𝑁)2) + (1 + 2𝑆) ∗ 𝑂((𝑄𝑁)3)

The total time complexity of the original low precision
quantization algorithm is: 3 ∗ 𝑂((32𝑛)2) + 𝑂((16𝑛)3)

If fullsize’s residual matrix repair method is used, the
Sparse reduction in step 2 is not required, but the time
complexity of the residual matrix multiplication is 𝑂(2 ∗
(𝑄𝑁)3). The total time complexity of the algorithm is: 9 ∗
𝑂((𝑃𝑁)2) + 3 ∗ 𝑂((𝑄𝑁)3)

To sum up, compared with fullsize’s residual matrix
repair method, there is a significant reduction about three
times in the calculation of the cubic time complexity if the
reduce matrix sparsity is high enough.

4. Evaluation
The experimental setup involved the following comput-

ing devices:
CPU:

• Model: Intel(R) Xeon(R) Platinum 8163 CPU
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Figure 5: Workflow of Algorithm

• Compilation: -O3 -mavx,-mfma,-march=native

• Operating System: Ubuntu 11.4.0-1ubuntu1 22.04
GPU:
• Model: NVIDIA A100-PCIE-40GB
• Compilation: nvcc with options -O3, -gencode

arch=compute_80, code=sm_80

The algorithm implementation, as described in Section
3.3 , consists of three main components:

• Dense Low-Precision Matrix Multiplication: CUTLASS
(version 3.3) on GPU and MKL on CPU was utilized
to construct the matrix multiplication kernel.

• Sparse Low-Precision Multiplication: The cusparse

SpMM function on GPU and MKL on CPU was employed
for sparse matrix multiplication. (Since MKL does not
support sparse matrix operations that precision below
Int32, and we did not find a high-performance low-
precision sparse math library on the CPU. Instead,
Int32 SPMM is used for this part, and speed estimates
are estimated by Int8 GEMM in MKL.)

• Matrix Quantization and Reduction Operations:
Developed using the CUDA toolkit (version 12.3) on
GPU and OpenMP on CPU for matrix quantization and
reduce operations.

4.1. GEMM Effectiveness
Through three distinct evaluations, we assess the effec-

tiveness of the improved residual error compensation algo-
rithm in comparison to matrix multiplication. These evalua-
tions encompass precision testing under varying thresholds
and matrix sizes, runtime testing at different sparsity levels,
and an analysis of the contribution of quantization strategies
throughout the algorithm.

A. Precision Testing
Precision testtest is carried out using single precision

SGEMM as reference. The error metric 𝐸𝑟, introduced ear-
lier, was utilized for assessment. The error results obtained
using this method for matrix multiplication with different
distributions are presented in the following Fig.6

Figure observations indicate that the algorithm employ-
ing a hybrid strategy can achieve considerable computational
precision below a certain threshold level. Compared to the
full residual quantization approach, our hybrid strategy al-
gorithm typically attains higher accuracy at lower threshold
values. Moreover, our hybrid quantization approach yields a
substantial precision increase when benchmarked against the
traditional direct quantization method, achieving at least an
80% reduction in relative error under int8 quantization with
a chi-squared distribution.

Moreover, due to the incorporation of the vector-wise
method, our algorithm still demonstrates significant advan-
tages under int4. As shown in Fig.6(a,c), Compared with the
fully residual quantization method, the improved algorithm
can obtain higher accuracy than the complete residual quan-
tization method at a higher threshold (th=0.5).

It is noteworthy that the results of the hybrid strategy
at lower precisions (int4) do not vary with the threshold
when assessing exponential and chi-squared distributions
because the preponderance of data is clustered near smaller
magnitudes with rarified instances of markedly larger val-
ues. Hence, increasing the threshold invariably preserves
these exceptional values within the sparse matrix reduc-
tion step, maintaining consistent relative errors. Simultane-
ously, precision improves more significantly as the threshold
decreases. The hybrid strategy, even at reduced precision
levels, can surpass the computational accuracy of the full
residual method by nearly 10% under certain distributions,
achieving better computational precision at elevated thresh-
old levels (e.g. Th=0.2).

Under int8 quantization, the algorithm can still achieve
good calculation accuracy. With the reduction of the thresh-
old, the calculation accuracy will also be significantly im-
proved, and eventually achieve full residual quantization,
and even higher accuracy. Especially in the Chi-square dis-
tribution, the improved algorithm can achieve at least 5
times the accuracy improvement of the original quantization
method, and can achieve similar accuracy to the full residual
method under a fairly high threshold (th=1)
B. Quantization Strategy Testing

Figure.7 illustrates the time distribution of various quan-
tization steps for different matrix sizes on diverse computing
platforms. The algorithm prioritizes operations with lower
relative execution times (spmm/gemm) during residual error
compensation. The steps include quantization/unquantization
(quant), low-precision matrix multiplication (xxmm), sparse
matrix reduction (reduce), and the time consumed by resid-
ual matrix error compensation and other components (pack-
age). The analysis assumes worst-case scenario conditions
where the algorithm operates under the premise that the total
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Figure 6: Precision test of Algorithms(int4/int8,size=1024),
where ’Full’ represents residual quantization matrix multipli-
cation, and ’origin’ represents the original method of direct
quantization and ’Th’ denotes the hyperparameter of the
sparse quantization algorithm mentioned earlier—threshold.
Where ’uniform’ is a standard random distribution of 0 to 1.
’Normal’ is a normal distribution with a mean of 10 and a
variance of 3. ’Esp’ is the exponential distribution of 𝜆 = 4.
’Poison’ is the Poisson distribution of 𝜆 = 10. ’Kar’ is a chi-
square distribution of n=1.
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Figure 7: Time proportion of different parts of the algorithm

time for quantization equals that of gemm. Fig.7 indicates
that, with increasing matrix size, gemm/spmm occupy a
larger share of the total time (approximately 90%). The
additional computation introduced by quantization strategies
remains acceptable.
C. Speed Testing

In light of the considerable efficiency discrepancy be-
tween Nvidia-cuSparse and cublas on Nvidia A100 for
Sparse Matrix-Matrix Multiplication (SPMM) and General
Matrix-Matrix Multiplication (GEMM), it is observed that
the performance of sparse matrix multiplication only sur-
passes the predefined threshold 𝜂 (approximately 0.001),
indicating that the enhanced algorithm resorts to SPMM
exclusively when the matrix density falls below 0.001. Con-
sequently, the velocity of the advanced quantized residual
algorithm is assessed on the Nvidia A100, using int8 low-
precision multiplication, across the density spectrum of
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Figure 8: The reduced matrix density of matrices generated by
different random methods.

0.001 to 0.00005. But on the CPU platform, sparse matrix
can achieve a high acceleration, 𝜂(approximately 0.3), so
the matrix density used in the experiment ranges from
0.3 to 0.01.The execution employs matrices constituted of
uniformly distributed random values ranging from 0 to 1.
Table 3 and Table 4 presents the architecture of the improved
algorithm’s integer-floating point computational speed in
contrast with two benchmark methods on GPU and CPU.

The tabulated data reveals an appreciable acceleration
effect by the refined residual patching technique as matrix
density diminishes. On the two computing devices, the en-
hanced approach attains an acceleration rate approximately
2.5 times greater than the complete residual as sparsity
increases. This underscores the efficacy of the refined algo-
rithm.
D. Comparison and Conclusion

Through the experiments of the above three parts, we
understand the improved low precision quantization algo-
rithm respectively from the three aspects of speed, algorithm
structure and accuracy. In order to further understand the
effectiveness and limitations of the algorithm, we present the
Fig.8 of test matrix density with different distributions used
in the experiment along with the threshold value.

Since the sparse matrix execution efficiency of GPU is
generally low, the improved algorithm is difficult to show
enough reduce sparsity in the naturally randomly generated
matrix to obtain good acceleration effect. We will analyze
the performance test structure on the CPU platform.

In Fig.1, it shows that 𝜂 is about 0.3 on the CPU platform.
Combined with Fig.8. Then it can derive the thresholds
at which the acceleration effect can occur under different
distributions: In Esp(4),Normal(10,3) and Poison(10), it is
about 0.6; In Kar(1) is about 0.5. In Uniform(0,1) is about
0.7. In other words, under these distributions, only when
the threshold value is greater than these values can sparse
computation be accelerated.
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Table 3
TOPS of algorithm at different densities on Nvidia-A100

Size
TOPS to density on GPU

Baseline methods0.001 0.0005 0.00025 0.0001 0.00005

1024 3.21 3.61 4.22 5.31 5.62
3.35 Full

9.06 Origin

4096 25.19 32.36 44.13 53.13 68.12
27.96 Full

83.97 Origin

8192 40.33 49.9 67.72 74.48 97.35
44.05 Full

125.06 Origin

16384 49.82 60.12 77.73 100.41 128.96
50.32 Full

145.20 Origin

Table 4
GOPS of algorithm at different densities on Intel(R) Xeon(R) Platinum 8163 CPU

Size
GOPS to density on CPU

Baseline methods0.30 0.20 0.10 0.05 0.01

512 7.84 7.87 7.89 7.92 7.92
9.19 Full

23.39 Origin

1024 67.28 70.05 71.32 71.91 72.24
73.56 Full

175.76 Origin

4096 290.44 354.21 443.84 513.31 582.08
277.40 Full

799.11 Origin

8192 335.83 469.07 572.40 717.81 926.42
379.75 Full

1122.17 Origin

As shown in Fig.6, in the data of int4, combined with the
analysis of the previous paragraph, the uniform distribution
can be obtained at TH=0.8, and the calculation acceleration
of sparse matrix can be obtained at 1. When TH=0.8, the
matrix density is about 0.2. Combined with Table.4, the
calculation acceleration of about 1.2 times can be obtained
at this density compared with the complete residual quanti-
zation method. Using this method, the parts of the algorithm
that generate sparsity acceleration are analyzed, and the
complete residual quantization method is compared. The
results obtained are shown in table.5, where the green part
indicates that both accuracy and speed have been improved,
the black part indicates that the accuracy has only been
accelerated without accuracy improvement, and the blue
part indicates that the accuracy has hardly changed, but the
performance has been improved. The red part indicates that
the sparsity of the threshold value is not enough to call
SPMM for acceleration.

The algorithm can achieve significant results in some
distributions, and the algorithm can achieve performance
improvements of up to 15% and 45% in esp distributions
under int4. In the case of int8, the algorithm can achieve a
similar accuracy to the full residual with a threshold value

of 0.8 under the kar square distribution, but the speed is
increased by 28%.

In other cases, although the accuracy of the algorithm
is not as good as that of the complete residual, compared
with the direct quantization method, the efficiency of the
improved algorithm can be close to that of the direct quan-
tization method when the reduce matrix is sparse enough.
In conclusion, the improved algorithm is an intermediate
method that can measure efficiency by threshold value.

The comprehensive testing above reveals that the ef-
ficiency of low-precision matrix operations, coupled with
precision control through error thresholds and the judicious
selection of computational methods, ensures effective low-
precision acceleration while maintaining required precision
levels. Moreover, the adopted quantization optimization ex-
hibits a decreasing contribution to the overall computation
time as matrix size increases, affirming the effectiveness of
the quantization strategy and the superiority of the overall
algorithm.
4.2. QR decomposition

In the QR decomposition routine employing House-
holder decomposition, the application of the orthogonal
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Table 5
Improved accuracy and speedup under different thresholds on CPU

percision enhancement and Spedup at threadhoud

Quant type
random type Th = 1 Th = 0.8 Th = 0.5

acc up speedup acc up speedup acc up speedup

xigemm-int8

uniform -41.63 2.10 -26.41 1.28 density insufficient

normal -31.23 2.10 -23.50 1.85 density insufficient

kar -0.49 1.38 -0.03 1.28 0.08 1.05

esp -4.63 1.46 -2.25 1.24 density insufficient

poison -31.76 2.10 -29.48 1.95 density insufficient

xigemm-int4

uniform -1.79 2.10 -0.30 1.28 density insufficient

normal -1.14 2.10 -0.36 1.85 density insufficient

kar 0.12 1.38 0.11 1.28 0.13 1.05

esp 0.15 1.46 0.10 1.24 density insufficient

poison -1.12 2.10 -0.43 1.95 density insufficient

matrix to the upper triangular result matrix can be substi-
tuted with the improved sparse matrix quantized multiplica-
tion.In the presented analysis, the relative error of standard
multiplication is defined as the relative error between the
matrix A’ obtained by direct single-precision floating-point
multiplication (A’ = Q * R) and the original matrix A.
The subsequent three cases involve different quantization
methods, each compared in terms of relative error against
the standard A matrix.The results are shown in Table 6.

It is evident that employing sparse matrix precision
compensation yields a noticeable improvement in accuracy
compared to direct quantization. The matrices exhibit a
considerable level of sparsity, which is notably influenced
by quantization thresholds, bit precision, and the original
matrix shape. As the matrix size increases, the step involving
the multiplication of orthogonal matrices in the Householder
transformation results in a markedly sparse matrix (with
sparsity around 1e-3 under conditions of M=N=K, threshold
of 1e-4, and 16-bit quantization). When utilizing the Frobe-
nius norm of the matrix as the relative error metric, defined
as 𝐸𝑟 = ‖𝑋 − 𝑋∗

‖𝐹 ∕‖𝑋‖𝐹 the errors are as follows for
matrices generated from a normal distribution:

In the provided context, FP32 represents the result of
single-precision floating-point arithmetic. Quan-ori, Quan-
res, and Quan-spres respectively denote the original single-
precision matrix multiplication, the complete residual error
compensation algorithm, and the improved sparse residual
error compensation algorithm.

The table clearly indicates that the improved residual
error compensation algorithm achieves a comparable error
magnitude to dense quantization while simultaneously re-
ducing computational complexity.
4.3. Convolutional neural network

LeNet-5 is a convolutional neural network consisting
of 3 convolutional layers, 2 pooling layers, and 3 fully

Table 6
Different mixing precision methods in QR decomposition

matrix type method
int4 int8

ER ER

kar

origin 0.945681 0.650822

full 0.933172 0.121827

xigemm 0.930159 0.150565

uniform

origin 0.979227 0.819087

full 0.97261 0.139795

xigemm 0.96432 0.141484

normal

origin 0.995767 0.835512

full 0.99078 0.124808

xigemm 0.993823 0.146129

esp

origin 0.938367 0.669409

full 0.932157 0.121116

xigemm 0.926652 0.149053

connected layers. In this experiment, a modified version of
LeNet-5 with reduced layers is employed, containing one
convolutional layer and two fully connected layers. Various
quantized matrix multiplication techniques proposed in this
study are applied specifically in the fully connected lay-
ers. The convolutional operation is processed using im2col,
while the fully connected layers are transformed into matrix
multiplication through concatenation.

The experimental results are presented below, where
’n’ represents the quantization bit width, and ’th’ denotes
the hyperparameter of the sparse quantization algorithm
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Table 7
The acceleration effect of the algorithm in the neural network

Lenet-5

int4

th 1 0.1 0.01 0

acc 0.4294 0.5793 0.671 0.7023

speedup 10.13x 6.62x 5.14x 3.55x

int8

th 1 0.1 0.01 0

acc 0.8403 0.8486 0.8512 0.8518

speedup 2.32x 1.96x 1.42x 1.42x

float acc 0.8518

mentioned earlier—threshold. The dataset utilized is Fash-
ionMNIST, comprising 10,000 images, with a batch size of
10,000.

The precision and speedup ratios obtained with different
quantization thresholds are detailed in the table below, which
is evident that the improved algorithm achieves a substantial
speedup.

5. Discussion
5.1. Performance evaluation

The efficiency of the proposed algorithm depends on two
main aspects:

Efficiency of Low-Precision Operations: Performing
tensor computations with low-precision integer types not
only achieves computational acceleration with acceptable
loss but also significantly saves energy.

Calculation Efficiency of Sparse Matrix Multiplica-
tion compared to Dense Matrix Multiplication : The
efficiency of sparse matrix operations varies depending on
the form of sparsity. In this work, the sparse matrix is
represented in Compressed Sparse Row (CSR) format. It’s
worth noting that different sparse matrix formats, such as
Block Sparse Row (BSR) format for block sparse matrices,
might exhibit better performance, especially when utilizing
tensor cores. This aspect, however, is not explored further
in this paper. Sparse matrices, especially when dealing with
matrices containing a low number of non-zero elements,
demonstrate significant performance improvements in ma-
trix computations. Additionally, the sparsity of the generated
sparse matrix is determined by the error threshold and the
structure of the input matrix. When the input matrix contains
larger values, the resulting residual correction matrix tends
to be sparser.

Besides, Nvidia supports dense matrix multiplication
with sparsity starting with the Ampare architecture (using
mma as the multiplication core instruction). In the future,
we can explore the possibility of using sparse dense matrix
multiplication instead of Spmm when sparsity is large to
obtain a good acceleration ratio.

In summary, compared to fully residual correction meth-
ods, the proposed approach yields performance improve-
ments when the sparsity is sufficiently high.

5.2. Hyperparameter fine-tuning
The algorithm proposed in this paper involves two hy-

perparameters: the error threshold 𝑀 and the ratio of the
execution speeds of GEMM (General Matrix Multiply) to
SPMM (Sparse Matrix Multiply). The latter is a constant
value specific to each computing device and can be deter-
mined before the algorithm starts.

The error threshold represents an expected value for
the residual correction error in most cases, serving as an
upper limit for residual correction errors. However, due to
the scaling of the mean, the error may exceed the threshold
in the presence of some singular values (extremely large
or small values). Additionally, considering the limitations
of low precision, the minimum error achievable with the
residual compensation method will not surpass the error
of the fully residual compensation method. The practical
minimum error for the error threshold corresponds to the
error of the fully residual compensation method.

To strike a suitable balance between performance and
accuracy for application implementation, a functionality for
automatically adjusting the error threshold will be devel-
oped. This will allow fine-tuning the error threshold to
achieve the desired trade-off between precision and perfor-
mance.
5.3. Possible application

Low-precision quantization has gained widespread ap-
plication in the field of machine learning. The proposed
improved residual compensation in this paper demonstrates
significant accuracy improvements with minimal computa-
tional cost in certain scenarios. In numerical computing,
where algorithms are sensitive to errors, the residual com-
pensation method presented in this paper achieves substan-
tial error reduction in low precision. However, the error mag-
nitudes still fall short of meeting mathematical requirements,
posing a significant challenge for low-precision applications
in traditional High-Performance Computing (HPC).

The GMRES-IR method for solving LU equations using
iterative techniques introduces low-precision gemm in the
getrs-trsm iterations. This doesn’t directly introduce errors
into the results but may increase the number of iterations
needed for convergence. The effectiveness of low-precision
quantization methods can be established if the additional
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time introduced by low-precision int quantization is less than
that of using fp32/fp16 when considering the time added by
the increased number of iterations until convergence.
5.4. Advantages

Based on our research, the current low-precision quanti-
zation solutions are limited to using a single computation
method throughout, lacking the ability to balance errors
and performance. This paper introduces sparsity for the first
time in low-precision dense matrix computations to reduce
computational costs.

Besides, the core residual compensation method is car-
ried out after quantization, except for the row-by-column
quantization method used in this article. It is also convenient
to adopt quantization strategy according to different shapes
of input matrix to obtain lower calculation error

The algorithm is not only applicable to Nvidia-GPU
but is also easily extendable to other computing devices.
It performs well on CPUs and edge computing devices.
Additionally, due to the error threshold, the algorithm’s
computational cost is related to the chosen error thresh-
old. An appropriate threshold within the quantization error
range can be selected to meet different error requirements.
Moreover, the algorithm automatically chooses the faster
execution between sparse matrix multiplication and dense
matrix multiplication, avoiding unnecessary computational
overhead.
5.5. Limitation

Sparse matrices often exhibit significant acceleration
only at higher sparsity levels. In some cases, the sparsity
obtained through error threshold reduction may not be suf-
ficient to invoke sparse matrix multiplication. As a result,
the algorithm continues to execute the complete residual
compensation algorithm. Additionally, due to the constraints
of low precision, there are still some challenges in applying
the algorithm directly to numerical computing tasks.

6. Related works
In machine learning:Jung et al. [40] proposed quantized

pre-training networks in the field of machine learning, while
Y. Chen et al. [39] employed residual vector quantization
to accelerate the nearest neighbor search process. Lee et
al. [41] utilized residual quantization in AR modeling for
image processing. Guang Li et al. [31] introduced the use of
multiple quantized residuals for error compensation, achiev-
ing a noticeable improvement in accuracy at a considerable
computational cost (1 to 11 times that of direct quantization).
Boyuan Feng et al. [32] implemented arbitrary-length low-
precision matrix computations using int1 matrix bitwise
operations supported by the Nvidia Ampere architecture,
providing support for convolutional neural networks.

In traditional numerical computing:low-precision cal-
culations have found widespread application. A. Haidar et

al. [11; 33] conducted a series of investigations into low-
precision mathematical functions, demonstrating the fea-
sibility of mixed precision in high-performance numeri-
cal computing. Li, Xiaoye S, Abdelfattah et al. [34; 35]
conducted research on low-precision matrix mathematical
libraries. Notably, Y. Saad et al. introduced an iterative
method using GMRES for solving linear systems, mini-
mizing the norm of the residual vector on the Krylov sub-
space at each step [36; 37]. Additionally, Zhao, Yuwen
et al. [38]explored a novel mixed-precision optimization
technique, employing a "high-precision computation, low-
precision communication" strategy, in the context of apply-
ing mixed precision to the fast Fourier transform.

7. Conclusion
This paper introduces an error improvement algorithm

for quantizing matrix multiplication under low-precision
integer data. The algorithm leverages the additional com-
putational efficiency gained from optimizing residual error
compensation using sparse matrices generated by an error
threshold, and calculation accuracy is improved by combin-
ing vector-wise method. Experimental results demonstrate
significant acceleration and precision improvement under
specific error thresholds, showcasing promising applications
in both traditional machine learning and numerical comput-
ing domains. Future research will explore the acceleration
effects of generating various sparse matrix formats and
automatic tuning techniques for different applications based
on error threshold values.
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