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Abstract

The effectiveness of Evolutionary Neural Archi-
tecture Search (ENAS) is influenced by the de-
sign of the search space. Nevertheless, common
methods including the global search space, scalable
search space and hierarchical search space have
certain limitations. Specifically, the global search
space requires a significant amount of computa-
tional resources and time, the scalable search space
sacrifices the diversity of network structures and
the hierarchical search space increases the search
cost in exchange for network diversity. To address
above limitation, we propose a novel paradigm of
searching neural network architectures and design
the Multiple Population Alternate Evolution Neu-
ral Architecture Search (MPAE), which can achieve
module diversity with a smaller search cost. MPAE
converts the search space into L interconnected
units and sequentially searches the units, then the
above search of the entire network be cycled sev-
eral times to reduce the impact of previous units
on subsequent units. To accelerate the population
evolution process, we also propose the the popu-
lation migration mechanism establishes an excel-
lent migration archive and transfers the excellent
knowledge and experience in the migration archive
to new populations. The proposed method requires
only 0.3 GPU days to search a neural network on
the CIFAR dataset and achieves the state-of-the-art
results.

1 Introduction
Neural Architecture Search (NAS) is a method that utilizes
machine learning techniques to automatically search and op-
timize neural network architectures. The goal of NAS is to
improve the efficiency or performance of deep learning mod-
els by searching a smaller or better neural network. NAS typ-
ically employs various techniques, including reinforcement
learning [Zoph and Le, 2016], gradient descent [Liu et al.,
2018b] and evolutionary computation [Xie and Yuille, 2017],
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to discover optimal neural network architectures that yield su-
perior performance. This method has been widely used in im-
age classification [Sun et al., 2019c], object detection [Liang
et al., 2021] and natural language processing [Klyuchnikov
et al., 2022].

In evolution-based NAS, the performance of the model
depends on the design of the search space. Nevertheless,
common methods including the global search space, scal-
able search space and hierarchical search space have certain
limitations. A widely adopted concept is the global search
space that directly search the entire structure of the neural
network to identify the most optimal configuration [Zhang et
al., 2022]. However, this approach demands significant com-
putational resources and time due to the expansive nature of
the search space. The second strategy involves dividing the
network into fundamental cells and constructing a more in-
tricate network by stacking these cells together. The typical
approach is cell-based NAS [Zoph et al., 2018], which first
explores cells and then combines the cells by stacking and
splicing the searched cells to create a complete network. The
cell-based NAS reduces the search complexity and enhances
the adaptability of the structure. However, [Tan et al., 2019]
point out that the cell-based stacking structure compromises
the diversity of network structures and does not fully take into
account the characteristics and limitations of various parts
of the entire network. Thirdly, [Tan et al., 2019] proposed
a hierarchical search space with a fixed macro structure, it
allows different layers to utilize different resolution blocks
within the network structure. However, this approach incurs
additional costs when searching for different layer structures.
In order to balance the diversity of network structures with
search costs, we introduce an alternate search approach. In a
network formed by stacking N cells, We transform the search
space into a space of L interconnected cells, and search the
N cell spaces sequentially. This approach revisits the neural
architecture search paradigm from a split perspective. The
alternate search method splits a global search space into mul-
tiple small global search spaces to divide and conquer, greatly
simplifying the complexity of the problem and improving
search efficiency.

To address the challenges posed by a larger search
space and the issue of lengthy network encoding [Zhang et
al., 2022] in the application of evolutionary algorithms to
NAS, We propose a multi-population alternate evolutionary
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(MPAE) framework based on alternate search. Unlike other
methods [Tian et al., 2020] that utilize multiple populations
to explore various equivalent Pareto-optimal solutions, the
MPAE employs multiple populations to partition the exten-
sive search space into subsets based on the network structure.
Each population then samples from a different search space
subset. This approach not only ensures an equal distribution
of the lengthy network encoding across each population but
also simplifies the search space that each individual popula-
tion needs to explore.

To leverage the knowledge accumulated during the opti-
mization process of each network module, we investigate the
impact of inter-module migration within the network. Draw-
ing inspiration from the repetitive structures commonly found
in CNNs (e.g. the repetitive modules in Inception [Szegedy et
al., 2017], ResNet [He et al., 2016] and NASNet [Zoph et al.,
2018]), we observe that there exists a similarity in the excel-
lent network structures of adjacent layers. Building upon this
insight, we introduce the population migration mechanism,
which harnesses the retained knowledge and experience of
each population to expedite the evolutionary process. The
population migration process includes three aspects: main-
taining the migration archive, determining the number of mi-
grating individuals for each population and selecting the mi-
grating individuals. These migration archives are not solely
selected based on accuracy, but also include potential excel-
lent architectures based on the Pareto frontier. Based on the
phenomenon that structural differences in network modules
increase with distance, the populations choose different num-
bers of migrating individuals from the migration archive set
of other populations based on their proximity. To ensure pop-
ulation diversity, the selection of migrating individuals is de-
termined by the similarity values between individuals and the
migrating population.

In summary, our contributions are as follows:
• Multiple Populations Alternate Evolution Frame-

work: We proposed Multiple Populations Alternate
Evolution (MPAE) framework to simplify the search
space and meet the diversification needs of modules with
a small search cost. MPAE uses multiple populations
to split a global search space into multiple small global
search spaces to divide and conquer, which greatly re-
duces the complexity of a single population to search.

• Migration Mechanism: we explore the effects caused
by the migration of each module of the network to each
other, and propose the population migration mechanism.
The population migration mechanism constructs a mi-
gration archive set, and uses the Euclidean distance and
similarity between network modules as indicators to se-
lect migrating individuals. This mechanism not only en-
sures the diversity of the population, but also makes full
use of the knowledge retained in the optimization pro-
cess of each network module to assist the search.

2 Related Work
The influence of the NAS search space on search out-
comes [Yu et al., 2019; Zhang et al., 2020] has been found
to be substantial. As NAS algorithms have evolved, the

design of the search space has also evolved. Initially, in
the early stages of NAS development, the common prac-
tice [Xie and Yuille, 2017; Sun et al., 2019c; Real et al.,
2017] was to directly search the entire structure of the neural
network. However, this global search approach proved to be
resource-intensive and time-consuming. To improve search
efficiency, scalable network architectures [Zoph et al., 2018;
Liu et al., 2018b; Pham et al., 2018; Yang et al., 2020]
were introduced. This approach involves constructing net-
works by repetitively stacking identical components, allow-
ing for the extension of network components that were
searched on smaller datasets to larger ones, but the scalable
network architecture has sacrificed consequently the diver-
sity of the network. And the studies [Girish et al., 2019;
Zeiler and Fergus, 2014] have highlighted that convolutional
networks learn distinct features at different layers. This real-
ization emphasized the importance of block diversity in influ-
encing the performance of network models. Consequently, a
hierarchical search space [Cai et al., 2019; Tan et al., 2019;
Wu et al., 2019] with a fixed macrostructure was adopted, it
enabling different layers to utilize different resolution blocks
within the network structure. However, these algorithms in-
curred an additional cost when searching for different layer
structures. In contrast, our alternation evolution paradigm not
only benefits from the scalable network structure but also al-
lows for the search of different layer structures without incur-
ring additional costs.

3 Method
3.1 Overview
We develop a multi-population alternate evolution strategy to
search for neural architectures, i.e. MPAE. The search phase
of MPAE consists of four parts, as depicted in Figure 1. The
pipeline of the MPAE scheme is as follows:
Initialization: Initially, according to the L-layer structure
of the neural network, the search spaceA is divided into sub-
sets Al. Then N candidate sub-networks are randomly se-
lected from the search space Al to form the population popl.
In practice, the subset Al of the search space is much smaller
than the whole set A, and we believe that such limited-sized
subsets of the search space are naturally easier for search
algorithms to handle to avoid the dilemma of large search
spaces.
Population Conbination: After selecting the current evo-
lutionary population P t

i , the population P t
i generates the off-

spring population Qt
i through genetic operations. Then the

two populations and the migration population M t
i generated

through the population migration mechanism (section 3.4) are
merged into the combined population Ct

i .
Population and Migration Archive Update: All individ-
uals in the combined population Ct

i are decoded into corre-
sponding neural structures, inherit the supernet weights and
undergo training evaluation. Then multi-objective environ-
mental selection is used to select outstanding individuals on
the Pareto front from the combined population Ct

i , and gener-
ate the next parent population P t+1

i and the migration archive
set M t+1

i .



Figure 1: Overall process of MPAE. Step 1 of the algorithm is to initialize multiple populations and immigrant archives. Step 2 is to generate
offspring populations and merge them with parent populations and migrating populations. Step 3 involves select the parent populations for
the next generation through multi-objective environmental selection and updating the immigrant archives. Step 4 is when the populations
inherit the weights of the super network during evolution and update the weights of the super network after training for a few epochs. Finally,
the optimal network is obtained through the search process.

SuperNet Update: The supernet parameter is warmed up
for m epochs before starting the search. In the search phase,
supernet training and population evolution are carried out
alternately, and supernet will sample candidate individuals
from the population to participate in training and update su-
pernet parameters.

3.2 Initialization
The Multi-Populations Initialization is shown in Figure 2.
Since neural architectures typically use feedforward struc-
tures, we represent the entire search space pool A containing
L layer blocks as a directed acyclic graph (DAG). Assuming
that the number of possible operation combinations in each
block is N , the total number of operations contained in the
entire search space pool is NL. In order to simplify the com-
plexity of the problem, we divide the entire search space pool
A into L subsets Al and use L populations to represent these
sub-search space pools,

∑L
l=1Al. The total number of op-

erations included in the simplified L-layer neural network is
N × L.

The initialization of multiple populations is the process of
creating L populations respectively based on the number of
layers L of the complete network. Each population Pi ran-
domly generates Ni individuals and the generation of indi-
viduals corresponds to the network structure being encoded
into a binary genome. The blocks corresponding to each
layer in the search space we use are the same as the Cell in
DARTS [Liu et al., 2018b]. DARTS uses a cell-level search
space, where the cell uses four nodes to represent the sum of
feature maps and edges to represent operations. The differ-
ence from DARTS is that the network structure parameters

we define are {0, 1} binary encode.

3.3 Supernet Training
Subnetwork Sampling: Given L populations P1:L, sam-
pling a complete subnetwork si from a supernet S is achieved
by sample L individuals from the multipopulation P1:L.
Therefore, the sampling process of the subnetwork si can be
defined as follows:

si =
∑
l∈L

decode
(
pli
)

(1)

Where L represents the layer number index set of the L-layer
sub-network, and also represents L populations. Where pli
denotes the individual pi sampled from the lth population.
Weight Update: The weight WS of the supernet S is up-
dated by training on the sampling subnetwork si. It is worth
noting that the initial weight WS(si) of subnetwork si is ob-
tained by inheriting the weight WS of supernet S through
weight sharing. The optimization of weights WS can be ex-
pressed as follows:

WS = argmin
WS

∑
si∈S
Ltrain (M (si,WS(si))) (2)

where Ltrain(·) represents the cross-entropy loss function
on the training set, and M (si,WS(si)) denotes the model
with subnetwork structure si and weights WS(si). In the
subnetwork sampling stage, we sample every possible ar-
chitecture equally and jointly optimize the loss functions
of these architectures, so each individual is sampled with
pi ∼ Bernoulli(0.5).



Figure 2: Multi-Populations Initialization. Individual encode refers to the transformation of networks sampled from the search space into
a two-dimensional matrix through encode strategy. The initialization of population Pi is the process of generating Ni network individuals.
The initialization of multiple populations is the process of creating L populations based on the number of layers L in the complete network.
It is important to note that the L individuals sampled from multiple populations together constitute a complete network.

3.4 Multi-Populations Alternative Evolutionary
In the evolutionary search phase, instead of using individuals
in a single population to encode the global neural network,
we simplify the encoding of the global network structure by
multiple populations as a way to reduce the complexity of
the search problem. The algorithm uses populations to repre-
sent different modules of the global network and alternatively
optimizes each module. The details of the algorithm are de-
scribed in Algorithm 1.

Algorithm 1 Multi-Populations Alternative Evolutionary
Search Algorithm

Input: SuperNet S, network layers size L, population size
N , iterations size Eevo, archives size m, multi-objectives
{F1, ...,FM}.

1: P1:L ← Initialize multiple populations with the size N .
2: archives1:L ← Initialize immigration archive via select

m individuals from P1:L.
3: Warm up the SuperNet S for Ewarm epochs.
4: for t = 1, ..., Eevo do
5: for l = 1, ..., L do
6: Training the individuals in P l

t by using the sampled
training strategy on Dtrain

7: Ql
t ← Generate sub-population via genetic manipu-

lation
8: P l

t+1 ← Select N individuals from P l
t ∪ Ql

t ∪M l
t

through multi-objective environment selection
9: {F1, ...,FM} ← Evaluate the multi-objectives of

individuals in P l
t ∪Ql

t ∪M l
t

10: archivel ← Select x individuals from P l
t+1 through

multi-objective environment selection
11: end for
12: end for
Output: Architectures S =

{
s
(Eevo)
1 , . . . , s

(Eevo)
P

}
Algorithm 1 presents the framework of our proposed

MPAE approach. Initially, multiple populations are initial-
ized using the proposed genetic encoding strategy (line 1),
and immigration archives are initialized for each population.

Evolutionary processes commence after a warm-up period of
the supernet for a few epochs and continue until a predefined
termination criterion, such as reaching the maximum number
of generations. Finally, individuals on the Pareto front are
selected and decoded into their corresponding networks for
final training.

During the evolution process, all populations undergo an
alternate evolution in cycles. A multi-objective evaluation is
first performed on all individuals in the population based on
weight sharing. Subsequently, new offspring are generated
through our designed genetic manipulation. The immigrant
population is then generated using the proposed proximity
selection operation. Finally representatives are selected from
the existing individuals, newly generated offspring, and the
immigrant population to form the next generation population
and participate in subsequent evolution.

3.5 Migration Mechanism

Early research [Girish et al., 2019; Zeiler and Fergus, 2014]
shows that different layers of the network learn different fea-
tures, the optimal structure of different layers is not neces-
sarily the same. However, we consider that the structure of
excellent networks in adjacent layers is similar, and the re-
peated structures commonly used in CNNs (such as repeated
modules in Inception [Szegedy et al., 2017], ResNet [He
et al., 2016] and NASNet [Zoph et al., 2018]) also show
this phenomenon. Therefore, we add a population migration
mechanism to the algorithm, introduce excellent and poten-
tial individuals from other populations during the evolution
of the current population, and make full use of the knowledge
gained from the evolution of other populations to promote the
evolution of the current population.

The migration mechanism determines the number of in-
dividuals migrated according to the adjacent distance of each
population. The adjacent distance of the population is the dif-
ference between the corresponding network layer serial num-
bers of each population. At the same time, the migrating in-
dividuals of a population are selected based on the degree of
similarity between the individuals and the population. The
degree of similarity between individual Gena in population



Algorithm
CIFAR 10 CIFAR 100

Search spaceACC(%) # P(M) GDs ACC(%) # P(M) GDs

CNN-GA [Sun et al., 2020] 96.78 2.9 35 79.47 4.1 40 Global
SI-EvoNet [Zhang et al., 2021a] 97.31 1.84 0.458 79.16 0.99 0.813 Global

AE-CNN [Sun et al., 2019b] 95.3 2 27 77.6 5.4 36 Global
AE-CNN+E2EPP [Sun et al., 2019a] 94.7 4.3 7 77.98 20.9 10 Global

EPCNAS-C [Huang et al., 2023] 96.93 1.2 1.1 81.67 1.29 1.1 Global

AmoebaNet-A [Real et al., 2019] 96.66±0.06 3.1 3150 81.07 3.1 3150 Scalable
NASNet-A [Zoph et al., 2018] 97.35 3.2 1800 82.19 3.2 1800 Scalable

BlockQNN-S [Zhong et al., 2020] 96.7 6.1 90 82.95 6.1 90 Scalable
PNAS [Liu et al., 2018a] 96.59±0.09 3.2 225 82.37 3.2 225 Scalable

MdeNAS [Zheng et al., 2019] 97.45 3.8 0.16 82.39 3.8 0.16 Scalable
RENAS [Chen et al., 2019b] 97.12±0.02 3.5 6 - - - Scalable

GDAS-NSAS [Zhang et al., 2021b] 97.25±0.08 3.5 0.4 81.98±0.05 3.5 0.4 Scalable
ENAS [Pham et al., 2018] 97.11 4.6 0.5 81.09 4.6 0.5 Scalable

WPL [Benyahia et al., 2019] 96.19 - - - - - Scalable
Random (F=64) [Bender et al., 2018] 95.6 6.7 - - - - Scalable

SNAS [Xie et al., 2019] 97.15±0.02 2.8 1.5 79.91 2.8 1.5 Scalable
PC-DARTS [Xu et al., 2021] 97.43±0.07 3.6 0.1 82.89 3.6 0.1 Scalable
DARTS [Liu et al., 2018b] 97.00±0.14 3.3 1 82.46 3.3 1 Scalable
CARS [Yang et al., 2020] 97.38 3.6 0.4 82.72 3.6 0.4 Scalable

PDARTS [Chen et al., 2019a] 97.5 3.4 0.3 84.08 3.6 0.3 Scalable
NSGANetV1-A3 [Lu et al., 2020] 97.78 2.2 27 82.77 2.2 27 Scalable

TS-ENAS [Zou et al., 2023] 97.57 2.98 0.9 82.69 3.35 0.9 Hierarchical
Proxyless NAS [Cai et al., 2019] 97.92 5.7 1500 - - - Hierarchical

MPAE-A 97.35 2.8 0.3 82.74 2.9 0.3 Our
MPAE-B 97.39 3.2 0.3 83.45 3.3 0.3 Our
MPAE-C 97.51 3.7 0.3 84.12 3.6 0.3 Our

Table 1: Comparison of MPAE with other NAS and OSNAS methods in terms of testing classification accuracy (ACC), number of parameters
(P ), and search cost (in terms of GPU Days, GDs) on CIFAR10 and CIFAR100 benchmark datasets. Symbol “–” indicates that no results
have been reported on the dataset in the original paper.

Pa and population Pb is expressed by the following equation:

sim (Gena,Pb) =
Gena×

∑D
i=1 Genib

D · Len (Gen)
(3)

where
∑D

i=1 Genib represents the first D best individual gene
codes (the sum of each target value is the smallest) in the
population Pb. The smaller the value of sim (Gena,Pb), the
less similar the migration individual Gena selected in popu-
lation Pa is to population Pb, with the aim of increasing the
diversity of population Pb while ensuring individual fitness.

4 Experiment
In this section, we present the experimental results of our
proposed algorithm compared to other competitors on bench-
mark classification datasets, CIFAR and ImageNet. The re-
sults include accuracy (%), parameter count (M), and search
time (GDs). GDs refers to the number of days required to
search for the specified neural network on a single GPU. Ad-
ditionally, we categorize the other competitors into three cat-
egories based on the search space: Scalable, Global, and Hi-
erarchical. The Scalable category primarily constructs net-
works by stacking the best-performing blocks obtained from
the search. The Global category directly searches for com-
plete networks on the dataset without the need for repeated
block proxies. The Hierarchical category can be regarded as
a special type of Global category, which searches each net-

work block separately, allowing network blocks with differ-
ent structures to construct the complete network.

Evolution Details. To demonstrate the effectiveness of
our method, we adopt the same cell-level search space as
DARTS [Liu et al., 2018b]. MPAE builds an L layer su-
pernet to assist evolution and adopts alternate search to ex-
plore L different cell structures of the supernet. We set the
supernet layers and populations size to 20 and the individuals
size of population to 64. During the evolutionary search, the
crossover and mutation rate were both set to 0.25. During the
genetic manipulation, each node has a 0.25 probability of un-
dergoing connection crossover and has a 0.25 probability of
being randomly reassigned.

4.1 Image Classification on CIFAR
Search on CIFAR. We split the CIFAR-10 and CIFAR-
100 train set into two parts, i.e., 25,000 images for updating
network parameters and 25,000 for verification architectures.
The split strategy is the same as DARTS [Liu et al., 2018b].
We search for 500 epochs in total, and the parameter warmup
stage lasts for the first 10% epochs (50). After that, we initial-
ize the population, which maintains 64 different architectures
and gradually evolve them using proposed MPAE. We use
MPAE to update architectures after the network parameters
are updated for ten epochs.

Evaluate on CIFAR. After the MPAE search phase, we
retrained the searched architectures on the CIFAR-10 and



Algorithm
ImageNet test accuracy (%)

# Params(M) Search Cost
(GPU-days)

Search
dataset Search spaceTop-1 Top-5

SI-EvoNAS [Zhang et al., 2021a] 75.8 92.59 4.7 0.458 CIFAR10 Global
AmoebaNet [Real et al., 2019] 75.7 92.4 6.4 3150 CIFAR10 Scalable

DARTS [Liu et al., 2018b] 73.3 91.3 4.7 4 CIFAR10 Scalable
NASNet-A [Zoph et al., 2018] 74 91.6 5.3 1800 CIFAR10 Scalable

PNAS [Liu et al., 2018a] 74.2 91.9 5.1 225 CIFAR10 Scalable
MdeNAS [Zheng et al., 2019] 73.2 – 6.1 0.16 CIFAR10 Scalable
RENAS [Chen et al., 2019b] 75.7 92.6 5.36 1.5 CIFAR10 Scalable
CARS-C [Yang et al., 2020] 75.2 92.5 5.1 0.4 CIFAR10 Scalable

GDAS-NSAS-C [Zhang et al., 2021b] 74.1 – 5.2 0.4 CIFAR10 Scalable
BayesNAS [Zhou et al., 2019] 73.5 91.1 3.9 0.2 CIFAR10 Scalable
SETN [Dong and Yang, 2019] 74.3 92 5.4 1.8 CIFAR10 Scalable

RandomNAS-NSAS-C [Zhang et al., 2021c] 74.5 – 5.4 0.7 CIFAR10 Scalable
SNAS(mild) [Xie et al., 2019] 72.7 90.8 4.3 1.5 CIFAR10 Scalable
PDARTS [Chen et al., 2019a] 75.3 92.5 5.1 0.3 CIFAR100 Scalable

NSGANetV1-A3 [Lu et al., 2020] 76.2 93.0 5 27 CIFAR100 Scalable
TS-ENAS [Zou et al., 2023] 75.6 - 3.6 0.9 CIFAR10 Hierarchical

EPCNAS-C [Huang et al., 2023] 72.9† 91.5 3.02 1.17 ImageNet Global
FairNAS [Zhang et al., 2021b] 75.3† – 4.6 12 ImageNet Global
PC-DARTS [Xu et al., 2021] 75.8† 92.7 5.3 3.8 ImageNet Scalable

Proxyless NAS(GPU) [Cai et al., 2019] 75.1† 92.5 7.1 8.3 ImageNet Hierarchical
MnasNet-A3 [Tan et al., 2019] 76.7† 93.3 5.2 1600 ImageNet Hierarchical
MixNet-M [Tan and Le, 2019] 77† 93.3 5 1600 ImageNet Hierarchical

MPAE-A 74.1 91.9 4.2 0.3 CIFAR10 Our
MPAE-B 75.1 92.5 4.8 0.3 CIFAR10 Our
MPAE-C 75.7 92.7 5.2 0.3 CIFAR10 Our

Table 2: Overall comparison of MPAE with other NAS and OSNAS methods on the ILSVRC2012 dataset. The MPAE model is a architecture
searched on the CIFAR-10 dataset. The symbol “†” in Table 2 indicates that the network was directly searched on ImageNet. The term
“search dataset” refers to the dataset used for the neural architecture search and evaluation process.

CIFAR-100 datasets with all the same training parameters as
DARTS [Liu et al., 2018b]. As shown in Table I, on CIFAR-
10 and CIFAR-100, MPAE outperforms most of its competi-
tors in the Scalable category with similar parameters and a
search cost of only 0.3 GDs. On the CIFAR-10 dataset, al-
though NSGANetV1-A3 shows better classification accuracy
than MPAE, the search cost of MPAE is much lower (only
0.3 GDs, much lower than 27 GDs). On CIFAR100, MPAE
achieved a classification accuracy of 84.12%, surpassing its
peer competitors in all Scalable categories considered in the
experiment. Compared with peer competitors in the Global
and Hierarchical categories, MPAE achieved competitive re-
sults on both CIFAR10 and CIFAR100 with lower search
costs. Although the classification accuracy of Proxyless NAS
is higher than MPAE-C on CIFAR10, MPAE-C has fewer pa-
rameters (3.7M < 5.7M) and lower search cost (only 0.3 GDs,
much lower than 1500 GDs). On CIFAR100, MPAE sur-
passed all Global and Hierarchical competitors considered in
the experiment in both accuracy (%) and search time (GDs).

4.2 Image Classification on ImageNet

Training Details. We evaluate the transferability of the ar-
chitectures obtained from the CIFAR-10 dataset by training
them on the ImageNet dataset. We use Nvidia A100 to train
the models, and the batch size is 256. We train 250 epochs in
total. The learning rate is 0.1 with a linear decay scheduler.
Momentum is 0.9, and weight decay is 3e-5. Label smooth is
also used with a smooth ratio of 0.1.

Evaluate on ImageNet. Table 2 summarizes the results of
our model and other automated search networks on the Ima-
geNet validation set. We categorize other search algorithms
into two groups based on whether the search dataset is Ima-
geNet or not. “Non-ImageNet” search dataset refers to meth-
ods that search for networks on small datasets and then trans-
fer them to larger datasets. In comparison to other non-
ImageNet datasets, the MPAE model exhibits significant ad-
vantages. Only the NSGANetV1-A3 [Lu et al., 2020] model
has a slightly higher accuracy (0.5%) than MPAE, but its
search cost is 90 times more than MPAE. Methods that re-
quire searching on the ImageNet dataset demand even more
search time or computational resources. For example, al-
though MixNet-M [Tan and Le, 2019] and MnasNet-A3 [Tan
et al., 2019] models have higher accuracy than MPAE, they
consume far more GPU-days than our approach (1600 GDs
>> 0.3 GDs). While other methods using ImageNet as the
search dataset have a search cost of around 10 GDs, their per-
formance is similar to or lower than MPAE. Therefore, MPAE
remains effective in this regard, and it ensures module diver-
sity with a smaller search cost, thereby guaranteeing model
performance.

5 Ablation Study
Effectiveness of Multi-Populations Alternate Evolution:
Comparing the contributions of different NAS algorithms in
terms of the search stage can be challenging and ambiguous
due to the significant differences in the search space and train-



(a) (b)

Figure 3: Search efficiency comparison between MPAE and other baselines in terms of (a) validation accuracy and (b) required compute time
in GPU-Days. The search cost is measured on CIFAR-10 for most methods, except Block-QNN, where the CIFAR-100 dataset is used for.

(a) 100 Epoch (b) 200 Epoch

(c) 300 Epoch (d) 400 Epoch

Figure 4: Comparison graph of migrated individuals and offspring
individuals at various stages of the MPAE evolutionary process.

ing procedures used during the search process. Therefore,
we use multi-population coevolution and single-population
global search as comparisons with our MPAE algorithm to
demonstrate the efficiency of the search stage in MPAE. All
three methods utilize the same search space and performance
estimation strategy. The results shown in Figure 3(a) indi-
cate that MPAE is capable of finding more accurate architec-
tures compared to multi-population coevolution and single-
population global search. In addition to accuracy metrics, an-
other important aspect of demonstrating NAS efficiency is the
computational complexity of the methods. Since performing
a theoretical analysis of the computational complexity for dif-
ferent NAS methods is challenging, we compare the compu-

tational time (GPU-days) spent by each method on the GPU
to derive the reported architectures. Running MPAE once on
the CIFAR-10 dataset takes approximately 0.3 GPU-days to
complete (average of five runs). From the search cost com-
parison in Figure 3(b), we observe that our proposed algo-
rithm is faster in identifying a set of architectures compared
to many other methods and the obtained architecture set ex-
hibits higher performance.

Effectiveness of Migration Mechanism: To demonstrate
the effectiveness of the proposed population migration mech-
anism, we compare individuals sampled uniformly from four
stages (100, 200, 300, 400 epochs) of the population evo-
lution process. Figure 4 displays the results of comparing
individuals migrated from other populations with individuals
generated through population crossover and mutation at each
stage. It can be observed that the migrated individuals exhibit
higher generalization accuracy, while the offspring individu-
als have a wider search range. MPAE improves population
convergence through migrated individuals, while it enhances
population diversity through offspring individuals.

6 Conclusion
This paper proposed the multiple population alternate evo-
lution framework that mitigated the conflict between search
costs and module diversity by achieving module diversifica-
tion with lower search costs. We first simplify the search
space into multiple search subspaces and then use multiple
populations to alternately search within these subspaces. This
significantly reduces the complexity of the problem and im-
proves search efficiency. We also introduce a population mi-
gration mechanism, which aims to accelerate the evolution
process by utilizing the knowledge and experience retained
by each population. Furthermore, our experiments demon-
strate that the performance of migrated individuals generally
surpasses that of offspring generated by the populations. Our
MPAE algorithm achieves state-of-the-art results with only
0.3 GPU days of search, it demonstrates outstanding perfor-
mance in both search speed and search efficiency.
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