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We propose a “minimal” fractional topological insulator (mFTI), motivated by the recent ex-
perimental report on the signatures of FTI at total filling factor νtot = 3 in a transition metal
dichalcogenide moiré system. The observed FTI at νtot = 3 is likely given by a topological state
living in a pair of half-filled conjugate Chern bands with Chern numbers C = ±1 on top of another
pair of fully-filled conjugate Chern bands. We propose the mFTI as a strong candidate topological
state in the half-filled conjugate Chern bands. The mFTI is characterized by the following features:
(1) It is a fully gapped topological order (TO) with 16 Abelian anyons if the electron is considered
trivial (32 including electrons); (2) the minimally-charged anyon carries electric charge e∗ = e/2,
together with the fractional quantum spin-Hall conductivity, implying the robustness of the mFTI’s
gapless edge state whenever time-reversal symmetry and charge conversation are present; (3) the
mFTI is “minimal” in the sense that it has the smallest total quantum dimension (a metric for the
TO’s complexity) within all the TOs that can potentially be realized at the same electron filling
and with the same Hall transports; the mFTI is also the unique one that respects time-reversal
symmetry. (4) the mFTI is the common descendant of multiple valley-decoupled “product TOs”
with larger quantum dimensions. It can also be viewed as the result of gauging multiple symmetry-
protected topological states. Similar mFTIs can be constructed for a pair of 1/q-filled conjugate
Chern bands. We classify the mFTIs via the stability of the gapless interfaces between them.

I. INTRODUCTION

The recent discovery of fractional Chern insulator1,2

and fractional quantum anomalous Hall insulator at zero
magnetic field3–7 have led to a new excitement on the
strongly correlated states of matter in the moiré systems.
Especially, the fractional topological insulator (FTI) re-
ported most recently in transition metal dichalcogenide
(TMD) homobilayer moiré heterostructure8, twisted bi-
layer MoTe2 to be more precise, represents a potentially
new topological state of matter which could be funda-
mentally different from the previously known fractional
quantum Hall state. In this TMD moiré system with
spin-valley locking, the electron bands relevant to the
experimental observations include two bands with Chern
number C = +1 at valley-1 (spin-up), and two bands
with opposite Chern number C = −1 at valley-2 (spin-
down).9 The observed FTI signal appears at the total
filling νtot = 3. If the system preserves the time-reversal
symmetry, and one ignores the fully occupied lower bands
in each valley, the most relevant bands are a pair of
time-reversal conjugate Chern bands with C = ±1, each
with electron filling factor ν = 1/2. The experiment8

on twisted bilayer MoTe2 observed a series of appealing
evidence that supports the existence of a certain type
of time-reversal-invariant FTI with fractionalized heli-
cal edge states and spin-Hall conductivity σsh = 1/2
(when we only consider the contribution from the half-
filled bands). The experimental evidence includes the
nonlocal transport signal, the quantization of the edge
conductance at fractional filling, and the suppression of
the edge conductance when the time-reversal symmetry is
explicitly broken by an in-plane magnetic field, analogous

to the quantum spin Hall insulator10. It is worth noting
that the relevant twisted bilayer MoTe2 system exhibits
an Sz spin quantum number conservation in addition to
the charge conservation and time-reversal symmetry.8

The experimental facts have not yet completely pinned
down the very nature of the reported FTI. A possiblity
is that the FTI is simply a product of a pair of time-
reversal conjugate topological orders (TO) in each val-
ley, like some of the FTIs considered theoretically in the
past11,12 (For a review of previous theoretical discussion
of FTI, please refer to Ref. 13. We also refer to the
seminal works Ref. 14 and 15 for general properties of
generic FTIs). In the context of the TMD moiré system,
the Chern band at valley-1 (valley-2) with Chern number
C = 1 (C = −1) can be viewed as a Landau level due to
the real space pseudo magnetic field16,17 (as illustrated in
the upper panel of Fig. 1). For a half-filled Landau level,
the candidate topological order of electrons could be the
nonabelian Pfaffian state18–20, anti-Pfaffian state21, PH-
Pfaffian state22, the Abelian U(1)8 state23, or the “331”
state24,25. Hence, the FTI could be the product of one
of the TOs mentioned above in one valley, and its time-
reversal conjugate in the other valley. In such product
TOs, the TOs from the two valleys essentially decouple.

In this work, we explore what kind of FTI is the “min-
imal” one, in the sense that it gives the desired experi-
mental signals (especially the spin-Hall conductivity) and
also has the minimal total quantum dimension (which is,
in simple terms, a metric for the topological order’s com-
plexity). We take charge conversation, spin-Sz conser-
vation, and time-reversal symmetry into account in the
search for the minimal FTI. It turns out that the mini-
mal FTI (mFTI) is unique, and it is NOT a simple prod-
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uct of a pair of conjugate TOs of electrons from the two
valleys, though it can be viewed as the common descen-
dant of multiple “product TOs” via anyon condensations.
Our mFTI also has a spin-Hall conductivity σsh = 1/2,
which is consistent with the experimental observation
once the fully filled bands are included. This spin-Hall
conductivity is also half of the value for the elementary
non-interacting quantum spin-Hall insulators26,27. The
minimally charged anyon of the mFTI carries an electric
charge e∗ = e/2. In contrast, all the product TOs with
the same response must have a minimal charge equal to or
smaller than e/4. Additionally, according to the criterion
established in Ref. 14, our mFTI has robust gapless edge
states that remain protected by time-reversal symmetry
and charge conservation even when Sz is not conserved.

If we only impose charge conservation, Sz conserva-
tion, and the Hall transport signals (but not time-reversal
symmetry) in the search, we find that the mFTI belongs
to a list of minimal TOs following an 8-fold classification.
4 of the 8 minimal TOs, albeit time-reversal broken, are
interesting non-Abelian TOs that exhibit quantized ther-
mal Hall effects in addition to the required Hall responses
associated with the charge and Sz quantum numbers.
We generalize the construction of mFTI (and the min-

imal TOs) to a pair of conjugate 1/q-filled Chern bands
(for positive integer q). Under the symmetry and Hall
transport constraints, mFTIs are found to be unique for
a general q. We classify all mFTIs via the stability of the
gapless interfaces between them.

II. CONSTRUCTION OF THE MFTI

The mFTI may be perceived and constructed in var-
ious ways. Let us first explore the most intuitive flux-
attachment picture of the mFTI, which is based on the
kinematics of both the inter-valley Cooper pair, and also
the inter-valley exciton. In the TMD system, the motion
of electrons in each valley is governed by a real-space
pseudo magnetic field. Hence, the physics of a Chern
band with Chern number C = +1 can be viewed as a
Landau level in a magnetic field16,17. More precisely, an
electron in valley-1(2) will see magnetic flux ±Φ0 = 2π
in each moiré unit cell. If one performs the standard flux
attachment to electrons (independently for each valley),
it is most natural to construct the conjugate compos-
ite Fermi liquid state discussed recently28–31, which is a
compressible state in the bulk. However, there is another
alternative flux attachment which naturally leads to an
incompressible FTI.

Let’s start by considering the bosonic objects of the
system: the inter-valley Cooper pairs and inter-valley
excitons. A spin singlet inter-valley Cooper pair (whose
annihilation operator is labeled as bc) carrying charge-2e
sees zero net magnetic fields from the two valleys. An
inter-valley exciton (labeled as bs) carrying zero charges

valley 1 valley 2

Composite bosons:

FIG. 1. Mutual flux attachment construction of the mFTI.
Upper panel: The pair of conjugate Chern bands with Chern
number C = ±1 are both half-filled. The green and yellow
arrows indicate their contribution to the effective magnetic
field seen by the inter-valley Cooper pair and the effective
spin-magnetic field seen by the inter-valley excitons. In total,
the Cooper pair sees no net magnetic field while the exciton
sees a spin flux Φs = 2Φ0 per moire unit cell. Lower panel:
The inter-valley Cooper pair (green ball) is attached with flux
−4Φ0 seen by the spin-1 inter-valley exciton (yellow ball),
forming a composite boson. Hence, the exciton sees a total
zero magnetic field when each valley has a filling factor ν =
1/2. The Cooper pair also sees the exciton as a −4Φ0 flux.
This flux attachment turns the exciton into another composite
boson. e1,2 and h1,2 stand for the electrons and holes in the
two valleys.

and spin-1 sees “spin” flux Φs = 2Φ0 in each moiré unit
cell. bs should be viewed as a bosonic rotor. It can have
both positive and negative density fluctuation but has
zero average density when the system is time-reversal in-
variant. At half-filling of the conjugate pair of Chern
bands, the density of bc is at 1/2 particle per moiré unit
cell. It is energetically favorable for each bc to be at-
tached with flux −4Φ0 seen by bs, such that bs sees zero
total spin flux. Likewise, bc will view each bs as −4Φ0

flux. Here, we note that since bs has zero average density,
bc still sees zero total flux. A schematic illustration of the
flux attachment is shown in Fig. 1. After the mutual flux
attachment, the “composite bosons”, formed by bc and
bs bound with fluxes, can condense. The condensate of
the composite bosons is an incompressible state without
any spontaneous symmetry breaking due to the attached
gauge fluxes.
The state constructed using the mutual flux attach-

ment picture described above is described by the follow-
ing Chern-Simons theory:

LCS =
4i

2π
asdac +

i

2π
Asdas +

2i

2π
Aedac. (1)

Here asdac is a short-handed notation for ϵµνρa
s
µ∂νa

c
ρ.

asµ and acµ are the “dual gauge field” of the current of

bs and bc respectively: Jc,sµ = 1
2π ϵµνρ∂νa

c,s
ρ . Aeµ and

Asµ are the background charge and “spin gauge fields”:
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Aeµ = (A1,µ + A2,µ)/2, A
s
µ = A1,µ − A2,µ. Here A1,2

are introduced as the background gauge fields of valley-1
(spin-up) and valley-2 (spin-down) electrons. They arise
from the conservation of electron number in each val-
ley/spin species. If we integrate out the dynamical gauge
fields ac and as from Eq. (1), the response theory for this
state is

Lres =
1

2

i

2π
AedAs =

1

2

i

4π
A1dA1 −

1

2

i

4π
A2dA2, (2)

indicating the desired spin-Hall conductivity σsh = 1/2.
Also, there are no “diagonal” Hall responses for the elec-
tric charge and Sz quantum numbers separately, which
is consistent with time-reversal symmetry.

The mutual Chern-Simons theory Eq. (1) implies that
the mFTI is actually a Z4 TO “enriched” by two U(1)
symmetries and time-reversal symmetry T , i.e. it is a
type of symmetry-enriched topological orders. Through-
out this work, we assume that T 2 = −1 when acting on
an electron or a hole, i.e. electrons/holes are Kramers
doublets. Within the Z4 TO, the “minimally-charged”
anyon e carries physical electric charge e/2, and the
“minimal-spin” anyon m carries a physical spin quan-
tum number Sz = ℏ/4. Both of these anyons are self-
bosons, but they see each other as a Φ0/4 flux, i.e. they
have mutual statistical angle π/2. The em bound state
carries an electric charge and a spin quantum number
(e/2, ℏ/4), and it is an anyon with self-statistical angle
π/2, i.e. its topological spin is θem = eiπ/2 = i. This Z4

TO also preserves the time-reversal symmetry T , which
keeps the anyon e invariant and maps the anyon m to
its anti-particle m3. Curiously, m2 is a Kramers doublet
under time reversal with T 2 = −1. This result can be
seen using both the edge theory in Sec. III and the gen-
eral arguments of Ref. 14, which we will elaborate more
in Sec. IV.

This Z4 TO have 16 anyons modulo the electrons (and
holes), which can be represented as composite states
epmq with p, q = 0, · · · 3. However, since this Z4 TO
is constructed with bosonic objects bc and bs, the back-
ground gapped electrons and holes were not yet taken
into account. Hence, there exist another 16 anyons,
which are bound states of epmq and the electron. Note
that the bound state of epmq and the electron has a dif-
ferent topological spin from epmq. Here, we’ve effectively
included the electron as a “transparent” Abelian anyon
(that braids trivially with all other anyons), which is a
convenient technical choice for showing the minimality
of this Z4 TO later. With the electrons and holes in-
cluded, the Z4 topological order has in total 32 Abelian
anyons, resulting in a squared total quantum dimension
D2 = 32. In Sec. IV, we will prove that D2 = 32 is
the minimal squared total quantum dimension compat-
ible with the given Hall transports associated with the
electric charge and spin quantum number Sz. If one views
electrons/holes as trivial anyons and identifies the anyons
differed only by an electron/hole, then the mFTI effec-

tively has a squared total quantum dimension D̃2 = 16.

In the Appendix, we further prove that the mFTI pro-
posed here is the unique mFTI compatible with charge
conservation, Sz conservation, time-reversal symmetry,
and the desired Hall responses.

III. EXPERIMENTAL SIGNATURES

Following the standard derivation of the edge states
from the bulk CS theory32,33, we obtain the Lagrangian
for the 1d edge based on the bulk CS theory Eq. 1

Ledge =
4

4π
i∂τϕ

c∂xϕ
s − 4

4π
i∂τϕ

s∂xϕ
c + · · · , (3)

where the “· · · ” is the kinetic energy that will be written
in a different basis below. ∂xϕ

s and ∂xϕ
c are respectively

the density of the Cooper pair bc and spin-1 exciton bs

at the boundary. We have the identification ei4ϕ
c ∼ bc

and ei4ϕ
s ∼ bs. Under the time-reversal symmetry T , the

Cooper pair bc we introduced is invariant, while the spin-
1 exciton operator bs shares the same behavior as the
lowering operator of a spin-1/2 object, i.e. T bsT −1 =
−bs†. Therefore, the time-reversal action on the edge
theory is given by T : ϕc → −ϕc, ϕs → ϕs + π/4.34 The
anyon m2 is identified with the field ei2ϕs , which implies
that m2 is a Kramers doublet under time reversal with
T 2 = −1.
If the spin Sz conservation is broken but time-reversal

symmetry is still preserved, an extra term cos(8ϕs) is
allowed in the edge theory Eq. 3. When this term is rel-
evant, it will lead to two-fold degenerate ground states
at the edge, which are characterized by nonzero expec-
tation values of gauge invariant and time-reversal odd
operator cos(4ϕs), or sin(4ϕs). Hence, the edge theory
remains gapless unless there is either spontaneous or ex-
plicit time-reversal symmetry breaking (assuming charge
is conserved). A different way to understand the stability
of the gapless edge using only the bulk data will be given
below.
By recombining ϕs and ϕc into ϕ1,2 = ϕs ± ϕc, we

obtain a pair of counter-propagating (or helical) modes

Ledge =
2

4π
i∂τϕ1∂xϕ1 −

2

4π
i∂τϕ2∂xϕ2 − VIJ∂xϕI∂xϕJ .(4)

The density ∂xϕ1 (or ∂xϕ2) carries charge e (or −e) and
spin ℏ/2. We have added the kinetic energy with the
velocity matrix VIJ in Eq. (4) which arises from the non-
topological part of the system. If VIJ is proportional to
Pauli matrix σz, the left and right counter-propagating
modes do not interact with each other, and this edge the-
ory would lead to a fractionally quantized 1d conductance
per edge:

G =
1

2

e2

h
. (5)

In a two-terminal measurement, the two-terminal con-
ductance receives contributions from two edges connect-
ing the two leads. At the total filling factor νtot = 3,
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there are two completely filled bands with C = ±1 in
addition to the mFTI state in the half-filled conjugate
Chern bands. Therefore, the total two-terminal conduc-
tance should be G = 3e2/h, which was observed experi-
mentally in the twisted bilayer MoTe2 at νtot = 3.8

To give a full analysis of the 1d edge conductance with
counter-propagating fractionalized modes, one needs
careful analysis of the physics in the 1d channel as well
as in the metallic lead and the contact35–37. We expect
the full analysis to be more involved than the edge state
of the quantum spin-Hall insulator without fractionaliza-
tion38,39, and we defer the systematic study to the future.

Our mFTI is essentially a bosonic symmetry-enriched
TO in the sense that although the system is made of cor-
related electrons/holes, a single electron/hole is always
gapped in the bulk and the boundary. Hence, there is
always a single particle gap in the system, despite the
existence of the gapless charge modes at the edge, con-
trary to most fractional quantum Hall states. This effect
is analogous to the bosonic SPT state proposed to be
realized in the bilayer graphene40.

The smallest electric charge carried by the anyons of
the mFTI is e∗ = e/2. The odd value of σsh/e∗ = 1 in
the mFTI guarantees the gaplessness of the edge when-
ever time-reversal symmetry and charge conversation are
present (even without the Sz conservation).14 In con-
trast, using similar arguments as Ref. 14, one can show
that, given the spin-Hall conductivity σsh = 1/2 (and the
vanishing “diagonal” Hall responses associated with the
charge and spin quantum numbers), any TO that is a
product of two decoupled TOs from the two valleys must
have excitations with fractional electric charges equal to
or smaller than e/4. Therefore, the mFTI and the prod-
uct TOs from the two valleys can be experimentally dis-
tinguished by probing the electric charge fractionaliza-
tion. Examples of such probes include the shot noise
of quantum point contacts41, local capacitance probe of
localized charge states42, and Coulomb oscillations in
antidots43.

IV. BOOTSTRAPPING THE MINIMAL FTI

In this section, we bootstrap the minimal topologi-
cal order (TO) allowed by the Hall responses under the
charge and the Sz-spin U(1) symmetries and show that
D2 = 32 is the minimal squared total quantum dimen-
sion compatible with a spin-Hall conductivity σsh = 1/2,
zero electric Hall responses, and zero Hall response with
respect to the spin Sz quantum number. The vanish-
ing of the diagonal Hall responses associated with either
the electric charge or Sz is required by the time-reversal
symmetry.

For technical convenience, we prefer to re-organize the
charge and spin U(1) symmetries into U(1)↑× U(1)↓,
where U(1)↑,↓ are associated with the charge conversa-
tion within each of the valleys 1 and 2 (which are locked
to electron spins ↑ and ↓). The Hall responses we focus

on in this paper are equivalent to the combination of (1)
U(1)↑-Hall conductivity σh

1 = 1/2, (2) U(1)↓-Hall con-
ductivity σh

2 = −1/2, and (3) zero mixed U(1)↑ × U(1)↓
response. For an anyon x, we denote its fractional charge
under U(1)↑ × U(1)↓ as qx = (qx,1, qx,2), which is de-
fined modulo the charge of local bosonic objects, i.e.
qx ∼ qx+(n,m) for n,m ∈ Z with m+n even. The frac-
tional electric charge and Sz-spin of the anyon x is then
given by (qx,1+qx,2)e and (qx,1−qx,2)ℏ/2. In the TO, the
electrons and holes are all identified as the transparent
fermionic particle f with qf = (±1, 0) ∼ (0,±1). Two
such f particles fuse into a trivial anyon 1, i.e. f ×f = 1
To bootstrap the minimal TO, we start by consider-

ing the anyons v1,2 created by the adiabatic insertion of
the 2π flux of U(1)↑,↓. They must be Abelian anyons44.
Their fractional charges are given by the Hall conductivi-
ties σh

1,2: qv1 = (1/2, 0) and qv2 = (0,−1/2). Their topo-

logical spins are θv1 = eiπσ
h
1 = i and θv2 = eiπσ

h
2 = −i,

which are the consequences of the Aharonov-Bohm (AB)
phase between charge and flux. Based on the AB effect,
the mutual statistics between v1 and v2 must be triv-
ial because v1 (v2) does not carry any fractional U(1)↓-
charge (U(1)↑-charge). The anyons v21,2 are associated
with the 4π flux of U(1)↑,↓. They are both self-bosons,
i.e. θv21 = θ4v1 = 1 and θv22 = θ4v2 = 1. They have charges

qv21 = (1, 0) and qv22 = (0,−1), which is non-trivial com-

pared to local bosonic objects. Hence, v21 and v22 are
non-trivial anyons. Since θv21 = θv22 and qv21 ∼ qv22 , there

are two scenarios: (1) v21 and v22 belongs to the same
anyon type, and (2) v21 and v22 are different anyons.

For the second scenario with v21 ̸= v22 , there are
at least 32 different anyons of the form vn1 v

m
2 f

k with
n,m = 0, 1, 2, 3 and k = 0, 1. They can be distinguished
from each other based on their topological spins, frac-
tional charges, and the assumption that v21 ̸= v22 . More-
over, based on the AB-phase, v22 and v21 braids trivially
with any of the 32 anyons listed above. For a TO to
be “complete”45, there must be some extra anyons that
braid non-trivially v21 and v22 . Consequently, the squared
total quantum dimension must be larger than 32 in this
scenario. Therefore, to search for the minimal TO, we
only need to focus on the first scenario.

For the first scenario with v21 = v22 , we show below
that the minimal squared total quantum dimension is
exactly D2 = 32. Let s denote the minimal (positive)
integer s such that v2s1 = v2s2 equals the trivial anyon 1.
Given that v21 = v22 is non-trivial, s ≥ 2. In the spirit
of bootstrapping the minimal TO, we should focus on
the case with s = 2. Similar arguments as below, when
applied to the cases with s ≥ 3, will lead to a squared
total quantum dimension larger than 32.

From now on, we focus on the first scenario with s = 2.
A list of 8 distinct Abelian anyons purely consists of 2πZ
fluxes of U(1)↑,↓ is given by

V = {1, v1, v21 , v31 , v2, v32 , v1v2, v31v2}. (6)

By including the transparent fermion f , one finds 16 dif-
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ferent Abelian anyons {1, f} × V . They can be distin-
guished by their topological spins and fractional charges.
Note that v21 braids trivially with all anyons in {1, f}×V .
Therefore, there must be an extra anyon, called it y, that
braids non-trivially with v21 = v22 . However, it must braid
trivially with v41 = v42 = 1. Using the AB-phase interpre-
tation of the braiding with vn1 and vm2 , we conclude that
the fractional charge of y must be qy = (1/4+Z, 1/4+Z).
Without loss of generality, we can pick

qy = (1/4, 1/4). (7)

For other choices of qy, we can find another anyon with
the fractional charge (1/4, 1/4) by fusing y with one of
the Abelian anyons in {1, f} × V . From the AB effect,
we can obtain mutual statistics between y and vn1 v

m
2 f

k:

My,vn1 v
m
2 f

k = ei
2π
4 (n+m). (8)

Therefore, the topological spins of the anyons yvn1 v
m
2 f

k

are all related to the topological spin of y via

θyvn1 vm2 fk = θy × (i)n
2

(−i)m
2

ei
2π
4 (n+m)(−1)k. (9)

Using this result of the topological spins (and fractional
charges), we can examine the set of anyons {1, y} ×
{1, f} × V . This set may have redundancy because y
and yv21f share the same topological spin and fractional
charge. As a result, there are two types, type-I and type-
II, of minimal TOs.

For type-I minimal TOs, y and yv21f are distinct. Con-
sequently, there are 32 different anyons in

CI = {1, y} × {1, f} × V. (10)

For minimality, CI should be the entire set of anyons, and
each anyon should be Abelian, which yields a squared
total quantum dimension D2 = 32. The Z4 FTI con-
structed in Sec. II provides an example of such type-I
minimal TOs. v1, v2, and y correspond to the anyons
em and e3m, e respectively. Note that the Z4 FTI not
only has the desired Hall responses but also preserves
the time-reversal symmetry. Moreover, m2, which cor-
responds to v1v2, is the anyon generated by the inser-
tion of a 2π flux in each valley. Its time-reversal conju-
gate should be associated with a −2π flux in each valley,
which still belongs to the same anyon type m2 given that
v21v

2
2 ∼ 1. Knowing thatm2 is related to its time-reversal

partner by a 4π flux in each valley and that the spin Hall
conductivity is σsh = 1/2, m2 must be a Kramers dou-
blet under time reversal14, which is consistent with the
analysis in Sec. III. This statement has used the fact
that the system is ultimately built out of the electron
and holes that are Kramers doublets with T 2 = −1.
For type-II minimal TOs, y and yv21f are identical.

In other words, the fusion of y and v21f , a self-fermion,
yields y. Consequently, y is a non-Abelian anyon whose
quantum dimension of y is at least

√
2. Now, there are

mFTI

condensation

gauging

FIG. 2. The mFTI we propose is the common descendant of
multiple product TOs with larger quantum dimensions. “Pf”
stands for Pfaffian. It can also be viewed as a symmetry-
enriched TO promoted from multiple bosonic SPTs by “gaug-
ing” the discrete subgroup of the symmetries.

24 distinct anyons (or 12 if one treats the electron/hole
f as a trivial anyon):

CII = ({1, f} × V ) ∪ (y × V ). (11)

For minimality, CII should be the entire set of anyons, and
the quantum dimension of each anyon in y × V should
be exactly

√
2, which again yields a squared total quan-

tum dimension of D2 = 32. Note that all the anyons in
y×V share the same quantum dimension because of the
Abelian nature of anyons in V . Such type-II minimal
TOs must be non-Abelian. They also require non-trivial
couplings between the two valleys. More importantly, it
turns out that they must break the time-reversal symme-
try T , as we showed in the Appendix (where a full 8-fold
classification of all minimal TOs is also given). In the
next section, we briefly discuss examples of such type-II
minimal TO.
We emphasize that the bootstrap of type-I and type-

II minimal TOs only uses charge conservation, spin-Sz
conservation, and the Hall transport signals. In the Ap-
pendix, we further show that once time-reversal symme-
try T is considered, the Z4 FTI constructed in Sec. II
is the unique mFTI with the minimal total quantum di-
mension.

V. ALTERNATIVE CONSTRUCTIONS OF THE
MFTI

A. Descending from larger topological orders

In this section, we present other constructions of the
same Z4 mFTI. The mFTI can be constructed through a
“top-down” approach by descending from “larger” TOs,
such as a product of two separate TOs in each valley. The
simplest example of such TO, which can be realized at the
ν = 1/2 filling of both valleys, is the U(1)8×U(1)−8 state.
The U(1)8 TO realized in a half-filled Landau level can be
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viewed as a νb = 1/8 bosonic Laughlin state for Cooper
pairs23, described by a level-8 Chern-Simons theory for
a dynamical U(1) gauge field a, whose flux is dual to the
density of the intra-valley Cooper pair. The anyons of
the U(1)8×U(1)−8 state correspond to the gauge charges
(n1, n2) of the two gauge fields, whose topological spins

are given by eiπ(n
2
1−n

2
2)/8. This anyon also carries electric

charge (n1 − n2)e/4, and spin Sz = (n1 + n2)ℏ/8.

The anyon (4, 4) is obviously a self-boson, hence it can
condense. The anyon (4, 4) can be created by adiabati-
cally inserting 4π fluxes of U(1)↑ and U(1)↓ in both val-
leys. It carries spin Sz = ℏ. To avoid spontaneously
breaking the spin Sz symmetry in the condensate, we
bind the (4, 4) anyon with the physical inter-valley exci-
ton bs with Sz = −ℏ to neutralize its Sz spin. The mu-
tual braiding statistical between the neutralized bosonic
anyon (4, 4) and a general anyon (n1, n2) is eiπ(n1−n2).
Hence, the condensate of (4, 4) would confine all the
anyons whose n1 and n2 have opposite parity. The con-
densate also identifies anyons (n1, n2) and (n1+4, n2+4).
Consequently, there are, in total, 16 anyons left (before
including the electrons/holes), the same as the mFTI.
Using the notation of Sec. IV, the anyon v1 and v2 cor-
respond to (2, 0), and (0, 2). One of the most elementary
deconfined anyons is (1, 1), which is a self-boson with
electric charge 0 and spin Sz = ℏ/4. Hence, (1, 1) is
identified with the anyon m of the mFTI. Similarly, the
anyon (1,−1) can be identified as anyon e of the mFTI.
The anyons (1, 1) and (1,−1) also have the desired mu-
tual braiding statistics eiπ/2. At this point, we can con-
firm that the condensate of the neutralized anyon (4, 4) is
the mFTI with Z4 TO. As an alternative approach, how
the U(1)8 ×U(1)−8 TO descends, via the anyon conden-
sation of (4,4), to the desired mFTI can also be shown
explicitly using the K-matrix formalism.

In fact, one can show that if we start with the other
obvious product TOs, such as the Pfaffian × Pfaffian,
331× 331, anti-Pfaffian× anti-Pfaffian, or PH-Pfaffian×
PH-Pfaffian, there is always a self-bosonic anyon created
by inserting 4π fluxes in both valleys. Then, condensing
this anyon after neutralizing its Sz spin will always lead
to the same mFTI state.

As an aside, we can perform a similar “descending”
construction starting from a product TO with different
Abelian TOs in the two valleys, such as 331 × U(1)−8.
A similar anyon condensation in 331×U(1)−8 results in
a type-I minimal TO that breaks time-reversal symme-
try (manifested by its net chiral central charge c = 1).
Hence, the so-constructed type-I minimal TO is not a
candidate for mFTI even though they share the same
Hall responses with respect to the electric charge and
the Sz quantum number. All such type-I minimal TOs
are classified in the Appendix.

B. “Promoting” SPT states

As we remarked earlier, the mFTI is a symmetry-
enriched topological (SET) order. The subject of SET
has attracted enormous theoretical interest in the past
decade46–49. One very general way to construct nontriv-
ial SET states is by “gauging” a part of the discrete
symmetries of symmetry-protected topological (SPT)
states50,51, i.e. by “promoting” a part of the discrete
global symmetries to local gauge invariance, and coupling
the state to the gauge fields accordingly.
In our current case, the mFTI can be constructed

through the same procedure. The SPT state we start
with could be constructed by the inter-valley exciton op-
erator bs, and “one quarter” of the inter-valley Cooper
pair bc. In other words, we formally fractionalize bc

into four bosonic partons each carrying charge-e/2: bc =

(b̃c)4. Then, b̃c must coupled to a Z4 gauge field. Now,
we construct a minimal level-1 bosonic SPT state be-
tween bs and b̃c

52, which can be described in various for-
mulations, including the Chern-Simons theory53, or the
nonlinear sigma model52,54. The most convenient formu-
lation for our current purpose is the Chern-Simons theory
developed in Ref. 53. The Chern-Simons theory for many
(2 + 1)d bosonic SPT states takes a universal form:

Lspt,1 =
i

2π
ãcdas +

i

2π
Asdas +

1

2

i

2π
Aedãc, (12)

where ãcµ and asµ are the dual of the currents of b̃c and

bs. Now, we need to gauge this SPT by coupling b̃c to
a Z4 gauge field, which can be captured by adding the
following terms

Lg,1 =
i

2π
c1dã

c +
4i

2π
c1dc2. (13)

The gauge fields c1,µ and c2,µ are introduced as auxil-
iary dynamical gauge fields that describe the Z4 gauge
field through the last mutual Chern-Simons term. The
coupling i

2π c1dã
c is the minimal coupling between the

Z4 gauge field and the current of b̃c. Combining
the Lagrangians of Eq. (12) and Eq. (13), the Chern-
Simons couplings of all the dynamical gauge fields aI =
(ãc, as, c1, c2) can be organized into a K-matrix theory

Lcs,1 =
i

4π
KIJ

1 aIdaJ , K1 =

0 1 1 0
1 0 0 0
1 0 0 4
0 0 4 0

 . (14)

The charge-1 particle of the gauge field c1 is the mini-
mal e anyon of the Z4 gauge field, it carries a 2π flux of
ãc, which carries physical electric charge e/2, as expected.
The charge-1 particle of gauge field c2 carries π/2 flux
of c1, which is equivalent to π/2 flux of as through the
equation of motion of the gauge fields. The π/2 flux of as

carries Sz-spin ℏ/4, hence the charge-1 of c2 corresponds
to the anyon m of our mFTI.
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To make a direct connection to the original CS theory
Eq. (1), we note that the 2 × 2 block of the K-matrix
associated with (ãc, as) has determinant −1. Hence, ãc

and as can be integrated out safely without compromis-
ing the nature of the TO. After integrating out (ãc, as),
and shifting c1 +

1
2A

e → c1, the theory Eq. 14 returns to
the form of Eq. (1), except now (c1, c2) plays the role of
(as, ac).

Another way of constructing the same mFTI state is by
introducing the “half-partons” for both bc and bs: bc ∼
(b̃c)2, and bs ∼ (b̃s)2. Now, b̃c and b̃s carry electric charge
e and quantum number Sz = ℏ/2, respectively. And,
they are both coupled to their own Z2 gauge fields. We
can make b̃c and b̃s form a level-1 bosonic SPT state.
The entire theory now reads

Lcs,2 =
i

2π
ãcdãs +

i

2π
(Ae + c1)dã

c +
2i

2π
c1dc2

+
i

2π
(
1

2
As + c′1)dã

s +
2i

2π
c′1dc

′
2. (15)

Again, ãc and ãs are dual to the currents of b̃c and b̃s

respectively, and they can be integrated out safely. After
integrating out ãc and ãs, the Lcs,2 reduces to a CS theory
for (c1, c2, c

′
1, c

′
2) with K-matrix

K2 =

0 2 1 0
2 0 0 0
1 0 0 2
0 0 2 0

 ≃ K ′
2 =

0 1 0 0
1 0 0 0
0 0 0 4
0 0 4 0

 . (16)

One can show that theK2 matrix is equivalent to theK ′
2-

matrix up to an SL(4,Z) transformation, and K ′
2 again

describes a Z4 gauge field. The last two components of
gauge fields of theK ′

2-matrix couple to the external gauge
field Ae and As in the same way as ac and as in Eq. (1).

C. Example of type-II minimal TO

The non-Abelian “type-II minimal TO” discussed in
Sec. IV can be obtained as descendants of the product
TOs (with larger total quantum dimensions). As an ex-
ample, We start from the product TO Pfaffian×U(1)−8.
The anyons of the Pfaffian TO is a subset of the topo-
logical order Ising × U(1)8. Here, “Ising” stands for
the Ising TO, which has three anyons {1, σ, ψ} with 1
the trivial anyon, σ the Ising anyon with quantum di-
mension

√
2, and ψ the self fermion. Their topological

spins are θ1 = 1, θσ = ei2π/16, and θψ = −1 respec-
tively. For the U(1)8×U(1)−8 sector of Pfaffian×U(1)−8,
we can still use the charge (n1, n2) of the gauge fields
of the U(1)8 × U(1)−8 Chern-Simons theory as a part
of the anyon label. The contribution to the topologi-
cal spins from the gauge charge (n1, n2) is θ(n1,n2) =

ei2π(n
2
1−n

2
2)/16. The full set of anyons of Pfaffian×U(1)−8

is given by

(1, n1, n2) with n1 = 0, 2, 4, 6 and n2 = 0, 1, ..., 7,

(ψ, n1, n2) with n1 = 0, 2, 4, 6 and n2 = 0, 1, ..., 7,

(σ, n1, n2) with n1 = 1, 3, 5, 7 and n2 = 0, 1, ..., 7,
(17)

where (ψ, 4, 0) is identified as the transparent fermion f ,
i.e. the electron or the hole. The electric charge and
Sz quantum numbers of these anyons are given by (n1 −
n2)e/4 and (n1+n2)ℏ/8. Note that (1, 4, 4) is self-boson
without electric charge. Its Sz quantum number can be
neutralized by adding a local boson, i.e. an intervalley
exciton.

By condensing the neutralized version of (1, 4, 4) in
Pfaffian×U(1)−8, we obtain a type-II minimal TO with
24 deconfined anyons. Using the notation of Sec. IV, the
16 Abelian anyons in {1, f} × V are given by

(1, n1, n2) and (ψ, n1, n2) with n1,2 = 0, 2, 4, 6 (18)

with the identification (1/ψ, n1, n2) ∼ (1/ψ, n1 +4, n2 +
4).55 In particular, we can identify v1 = (1, 2, 0) and
v2 = (1, 0, 2). The 8 non-Abelian quantum-dimension-√
2 anyons are given by

(σ, n1, n2) with n1,2 = 1, 3, 5, 7 (19)

with the identification (σ, n1, n2) ∼ (σ, n1+4, n2+4). In
particular, we have y = (σ, 1, 7).
This non-Abelian TO, described by the condensate of

(1, 4, 4), is one of the type-II minimal TO that can be
realized in a pair of half-filled conjugate Chern bands.
It has the same Hall responses with respect to the elec-
tric charge and the Sz quantum number as the mFTI.
However, this state breaks the time-reversal symmetry
because it has the same chiral central charge c = 1/2
as the original Pfaffian×U(1)−8 TO. Consequently, this
type-II minimal TO also has a quantized thermal-Hall
response.
More examples of type-II minimal TOs can be con-

structed as the descendants of other combinations of a
non-Abelian TO (which could be the Pfaffian TO, the
anti-Pfaffian TO, the PH-Pfaffian TO, and their conju-
gates) in one valley and an Abelian TO (which could be
U(1)8, the 331 state, and their conjugates) in the other
valley. A systematic construction of all the type-II mini-
mal TOs is given in the Appendix. All four of them break
time-reversal symmetry.

D. mFTIs with σsh = 1
q
: bootstrap and classification

Now, we generalize the study of mFTI to a pair of
conjugate Chern bands with 1/q electron filling in each
band. Here, q is a positive integer. It is natural to expect
such a mFTI to have a fractional spin-Hall conductivity
σsh = 1/q and vanishing diagonal Hall responses for the
electric charge and the spin-Sz quantum number. The



8

symmetry of such a mFTI includes the charge conser-
vation, Sz conservation, and time-reversal symmetry T .
Per our definition, the mFTI is minimal in the sense that
it has the smallest total quantum dimension among all
the TOs with the required symmetries and Hall trans-
port signals with the given q. We will separately discuss
the mFTIs with even and odd q’s. And we will provide
a classification of them.

For even q, by generalizing Sec. IV, we can show
that there is a list of, in total, eight different minimal
TOs compatible with charge conversation, Sz conserva-
tion, and the Hall transports described above. The de-
tails are given in the Appendix. After further impos-
ing time-reversal symmetry T , the list narrows down to
a unique mFTI, which has the Z2q TO, the same TO
as the Z2q toric code. The squared total quantum di-
mension (with the electron included) is D2 = 8q2. The
minimally-charged anyon has an electric charge e∗ = e/q,
and the minimal-Sz anyon has the Sz quantum number
ℏ/2q. Such an mFTI is not a valley-decoupled product
TO. Since σsh/e∗ is odd, based on the result of Ref. 14,
the gapless edge state of the mFTI is protected by charge
conservation and time-reversal symmetry (even when Sz
is not conserved). The edge theory is a straightforward
generalization of Eq. (3)

Ledge =
2q

4π
i∂τϕ

c∂xϕ
s − 2q

4π
i∂τϕ

s∂xϕ
c + · · · , (20)

Again, ei2qϕ
c

is the annihilation operator of the charge-2e
Cooper pair, while ei2qϕ

s

is that of an intervalley exciton
with the Sz quantum number ℏ. Under time-reversal
symmetry, the edge modes transform as

T ϕcT −1 = −ϕc, T ϕsT −1 = ϕs +
π

2q
. (21)

For odd q, we find that the unique mFTI is given by the
product of the 1/q Laughlin state and its time-reversal
conjugate. The minimally-charged anyon has an electric
charge e∗ = e/q. The squared total quantum dimension
is D2 = 2q2.
It is also interesting to consider the stability of the

gapless states at the interface between different mFTIs,
based on which one can deduce a full classification of all
the mFTIs with σsh = 1

q . For convenience, we denote the

mFTI with σsh = 1
q as mFTIq. For our classification, if

mFTIq and mFTIq′ can admit a gapped interface that re-
spects charge conservation and time-reversal symmetry,
we consider them as equivalent, i.e. mFTIq ∼ mFTIq′ .
Note that we allow the breaking of the Sz conversation
on the interface as far as this equivalence relation is con-
cerned. Asking whether mFTIq and mFTIq′ have a stable
gapless interface is equivalent to asking whether a system
obtained from stacking mFTIq and mFTIq′ has a stable
gapless edge state. It is helpful to write q = 2kp with
k = 0, 1, 2, 3, ... and p odd. It turns out that each k cor-
responds to a distinct class of mFTIs, which we show in
the following.

Consider mFTIq1 and mFTIq2 with q1 = 2k1p1 and
q2 = 2k2p2, where p1 and p2 are odd integers. Without
loss of generality, let us assume k1 ≥ k2. When we stack
mFTIq1 and mFTIq2 , the total spin-Hall conductance is

σsh
tot =

1

q2
+

1

q2
=

2k1−k2p1 + p2
2k1p1p2

. (22)

mFTIq1 (mFTIq2) by itself has anyon with the minimal
electric charge e

2k1p1
( e
2k2p2

). Hence, the stacked system

admits a minimal charge of

e∗ =
gcd(2k1−k2p1, p2)

2k1p1p2
e =

gcd(p1, p2)

2k1p1p2
e. (23)

Knowing that p1,2 are odd, we can conclude that σsh
tot/e

∗

is odd when k1 ̸= k2 and even when k1 = k2. By the
criteria obtained in Ref. 14, when σsh

tot/e
∗ is odd, i.e.

k1 ̸= k2, the stacked system has a stable gapless edge pro-
tected by charge conservation and time-reversal symme-
try. When σsh

tot/e
∗ is even, i.e. k1 = k2, the stacked sys-

tem admits a charge-conserving, time-reversal-symmetric
gapped edge15. Therefore, the mFTIq with q = 2kp is
classified by the non-negative integer k according to the
equivalence relation defined above. For each class, we
can choose the state mFTIq=2k as the representative.

VI. SUMMARY

Motivated by a recent experiment8, in this work, we
proposed a minimal fractional topological insulator that
can potentially be realized in a pair of conjugate Chern
bands, both with electron filling ν = 1/2. The mFTI
we proposed has the minimal total quantum dimension
amongst all the topological orders that can be poten-
tially realized in the same setting (especially with the
same symmetry and the same experimentally observed
fractionally quantized transport signal). We caution
that a more thorough analysis, similar to that for the
ν = 2/3 fractional quantum state35–37, is required to un-
derstand the transport quantization. We found that the
minimally-charged anyon in mFTI has a fractional charge
e∗ = e/2, which is different from all product TOs. The
gapless edge state of this mFTI is protected by charge
conservation and time-reversal symmetry even when Sz is
not conserved. We also showed that the mFTI is the com-
mon descendant of various product TOs of the two val-
leys, which have larger quantum dimensions. The mFTI
is also the common symmetry-enriched TO that can be
promoted from different bosonic SPT states by gauging
the discrete subgroup of their symmetries.
If the constraint on time-reversal symmetry is released

(while maintaining the Hall transports requirements as-
sociated with the electric charge and Sz), we find mFTI
belonging to an 8-fold classified list of minimal TOs. Four
of them, albeit time-reversal broken, are non-Abelian
TOs that exhibit quantized thermal Hall effects in ad-
dition to the required Hall responses associated with the
charge and Sz quantum numbers.
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We generalize the construction of mFTI (and the min-
imal TOs) to a pair of conjugate 1/q-filled Chern bands
(for positive integer q). We classify all the mFTIs via the
stability of the gapless interfaces between them.

The authors thank Leon Balents and Matthew Fisher
for very helpful discussions. C.X. is supported by the
Simons foundation through the Simons investigator pro-
gram. M.C. acknowledges support from NSF under
award number DMR-1846109. C.-M.J. is supported by
a faculty startup grant at Cornell University. While fin-
ishing this paper, we became aware of another indepen-
dent work56 studying the edge state of FTIs that are a
product of conjugate TOs from two valleys, which, as we
discussed, should have a larger quantum dimension than
the mFTI constructed in this paper.

Appendix A: Classifying minimal TOs with or
without time-reversal symmetry

In this appendix, we perform a systematic classification
of minimal TOs for gapped topological states of electrons
with fractional spin-Hall conductivity σsh = 1

q (with pos-

itive integer q), but no diagonal charge or spin quantum
Hall effect (i.e. no transverse spin current responding
to spin gauge field). This classification of minimal TOs
only assumes the charge and the spin-Sz conservations.
Then, we identify the mFTIs by further imposing the
time-reversal symmetry T . It turns out that there is
a unique mFTI for each q. We separately discuss the
cases with even and odd q’s. For even q, we find that
there are exactly eight minimal TOs, all with squared
total quantum dimension D2 = 8q2. One of them is the
Z2q TO, the same TO as the Z2q toric code. Further
imposing time-reversal symmetry, we find that this Z2q

TO is singled out as the unique mFTI that satisfies all
the symmetry and transport requirements. For odd q,
there is a unique minimal TO given by a product TO
U(1)q⊠U(1)−q, which can also be compatible with time-
reversal symmetry.

1. Minimal TOs without assuming time-reversal
symmetry

Let’s first discuss the case with even q. Following the
notations in the main text, define v1,2 as the anyons gen-
erated by the 2π fluxes of U(1)↑,↓. We denote the U(1)↑,↓-
charges of an anyon x by qx = (qx,1, qx,2). The charge
and spin Hall responses translate into the following con-
ditions on the self and mutual statistics of v1,2:

θv1 = e
iπ
q , θv2 = e−

iπ
q ,Mv1,v2 = 1. (A1)

Note that v1 has charge qv1 = (1q , 0) and v2 has qv2 =

(0,− 1
q ).

We see that vq1v
q
2 is a boson carrying charge (1,−1).

Similarly, the boson v2q1 (v2q2 ) has charge (2, 0) ((0, 2)).

Their charges can be neutralized by attaching physical
bosons (Cooper pairs or excitons). Thus, we can al-

ways condense vq1v
q
2, v

2q
1 and v2q2 to reduce the TO, with-

out breaking the U(1)↑ × U(1)↓ symmetry. After the
condensation, we find that the TO contains the sub-
category C0 generated by v1, v2 subject to the relations
vq1 = vq2 = b, b2 = 1. Here, we’ve introduced the nota-
tion b, which labels a self-boson with a Z2 fusion rule. In
addition, we have

Mb,v1 =Mvq1 ,v1
= θ2qv1 = 1,Mb,v2 =Mvq2 ,v2

= θ2qv2 = 1.

If we further condense vq1 and vq2, the resulting TO is the
product of the U(1)q TO generated by v1 and the U(1)−q
TO generated by v2. Therefore, we conclude that C0
describes the “symmetrization” (or “equivariantization”)
of the U(1)q ⊠ U(1)−q TO enriched by a Z2 symmetry.
The b = vq1 = vq2 anyon is identified as the Z2 charge. We
infer from the fusion rule that both v1 and v2 carry “1/q
charge” under this Z2 symmetry.

To find the minimal TO, we use the fact that the TO is
a (fermionic) modular extension of C0. Using a theorem
in Ref. 57 (Proposition 5.1), the total quantum dimen-
sion of any modular extension satisfies D2 ≥ 8q2 (count-
ing the electron as a nontrivial anyon type). In this case,
because C0 has a Z2 transparent center (generated by b),
all minimal modular extensions are obtained from gaug-
ing the Z2 symmetry. One of the modular extensions is
just the Z2q toric code D(Z2q). However, when gaug-
ing the Z2 symmetry, one also has additional freedom in
choosing a topological term for the Z2 gauge field, or in
other words, stacking a Z2 SPT state. Notice that we
are considering a fermionic system. So, more precisely,

the stacked SPT state should be a Z2 × Z
f
2 fermionic

SPT state, which is classified by Z8. Hence, all possible
fermionic modular extensions of C0 can be represented as
follows:

Mn =
D(Z2q)⊠ Spin(n)1

(eqmq, ψ, f)
, n = 0, 1, . . . , 7. (A2)

Here, Spin(n)1 denotes the TO of the level-1 Spin(n)
Chern-Simons theory, ψ is the neutral fermion in
Spin(n)1, and f represents the physical electron/hole. e
and m are the two elementary anyons in the Z2q toric
code D(Z2q). The quotient means condensing the bound
state of eqmq, ψ, and f .
One can check that all the eight theories above are

distinct from each other. Without further conditions,
we have found all possible minimal TOs. Notice that
even (odd) n’s corresponds to the type-I (type-II) min-
imal TOs. For example, the TO discussed in Sec. VC
corresponds to M1.
For q odd, we note that vq1 is actually a fermion car-

rying charges (1, 0). We can thus identify it with the
spin-up electron. Similarly, we can identify vq2 with the
spin-down hole. With this identification, we obtain the
minimal TO U(1)q ⊠U(1)−q, which has same TO as the
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Zq toric code (in a fermionic system). This state is noth-
ing but the simple fractional QSH state discussed in Ref.
14 whose K-matrix and charge vectors are given by

K =

(
q 0
0 −q

)
, t↑ =

(
1
0

)
, t↓ =

(
0
1

)
. (A3)

This TO has the minimal squared total quantum dimen-
sion D2 = 2q2. When q = 1, this K-matrix theory above
reduces to the theory of the non-interacting topological
insulator.

2. Imposing time-reversal symmetry

For odd q, the unique minimal TO is compatible with
time-reversal symmetry. Hence, the unique minimal TO
U(1)q ⊠U(1)−q is the unique mFTI.
For the rest of the discussion, we focus on even q.

Among Mn=0,1,...,7 in Eq. (A2), the odd n theories all
have non-zero chiral central charge and exhibit thermal
Hall effect, breaking the time-reversal symmetry. So let
us consider the even n theories. The theory M0 is the
mFTI discussed in Sec. II and Sec. VD. As we will see in
the following, any other theories Mn ̸=0 cannot be made
compatible with time-reversal symmetry.

For even n, Mn is an Abelian TO and can be de-
scribed by a K-matrix theory. First, recall that the
U(1)q ⊠ U(1)−q theory is described by the following
Chern-Simons theory:

L =
iq

4π
a1da1 −

iq

4π
a2da2 +

i

2π
Ad(a1 + a2). (A4)

v1 (v2) carries a unit gauge charge under a1(a2). To de-
scribe the Z2 symmetry enrichment, it is convenient to
first enlarge the Z2 symmetry to U(1), under which v1
and v2 both carry charge 1/q. A in Eq. (A4) denotes
the background gauge field for the enlarged U(1) sym-
metry. Then, we Higgs the U(1) to Z2, which can be
implemented by the BF term 1

πBdA with a U(1) gauge
field B. We can then promote both A and B to dy-
namical gauge fields to gauge the symmetry. The SPT
layer can be accounted for by adding a Chern-Simons
term − n

8πAdA for A. All together, we have found the
following K-matrix (gauge fields ordered as a1, a2, A,B):

KMn
=

q 0 1 0
0 −q 1 0
1 1 −n/2 2
0 0 2 0

 . (A5)

Evidently, we have the following identification: v1 =
(1, 0, 0, 0), v2 = (0, 1, 0, 0). In addition, m = (0, 0, 0,−1)
represents a Z2 gauge flux anyon. The fusion rule of the
Abelian anyons in this theory is given by the anyon group
Z2q×Z2q, the same as the Z2q toric code. The two gener-
ators of the anyon group can be chosen as v1 = (1, 0, 0, 0)

and m = (0, 0, 0,−1). And we have v2 = v
−1+nq/2
1 m2.

The self and mutual statistics of these generators are
given by

θv1 = e
iπ
q , θm = e

iπn
8 , Mv1,m = e

iπ
q . (A6)

We now determine the time-reversal transformations
of anyons. First, since v1 and v2 are generated by 2π
fluxes of U(1)↑,↓, they should have the following trans-
formations:

T (v1) = v−1
2 = v

1−nq/2
1 m−2, T (v2) = v−1

1 . (A7)

We can then use the exchange and braiding statistics to
fix the transformation of m. In general, we may write

T (m) = mavb1f
c with a, b, c ∈ Z. MT (m),T (v1) = e−

iπ
q

yields a = −1. Then, the requirement θT (m) = θ∗m yields

θT (m) = eiπ(
n
8 +

b(b−1)
q )(−1)c = e−

iπn
8 = θ∗m. (A8)

There are extra constraints coming from the compat-
ibility between time-reversal symmetry and the U(1)↑ ×
U(1)↓ symmetry. More specifically, the U(1)↑,↓ charges
should be inter-changed under T . That means the
time-reversal partner T (x) of the anyon x should carry
charges:

qT (x) = (qx,2 , qx,1) + (n1, n2) (A9)

Here, (n1, n2) represents the charge of local bosons, i.e.
n1,2 ∈ Z, and n1 + n2 ≡ 0 mod 2.

Combining T (m) = m−1vb1f
c with the constrain Eq.

(A9), we have

− qm,1 +
b

q
+ c = qm,2 + n1,

− qm,2 = qm,1 + n2,

(A10)

which leads to

−qm,1 − qm,2 = n1 −
b

q
− c = n2. (A11)

Therefore, b must be an integer multiple of q. Since b
is defined modulo 2q, we only have the options b = 0 or
b = q.
For b = 0, we find n = 0 or 4 are the only possibilities

compatible with Eq. (A8). For n = 4, it follows that
c = 1 and T (m) = m−1f .
For b = q, we again find n = 0 or 4 to be the only

possibilities compatible with Eq. (A8). For n = 4, it
follows that c = 0, and we have T (m) = m−1vq1.
At this point, we only need to examine M4. With

n = 4, for both b = 0 and b = q, we find n1 − n2 =
b
q + c = 1, contradicting the requirement that n1 + n2
is even. We conclude that it is impossible for the theory
M4 to have a charge assignment under U(1)↑×U(1)↓ that
is compatible with the time-reversal symmetry. Hence,
M0 is the unique minimal TO that is consistent with
time-reversal symmetry. Hence, it is the unique mFTI.
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