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Abstract

It is well known that the relationship between variables at the individual level can be different

from the relationship between those same variables aggregated over individuals. This problem of

aggregation becomes relevant when the researcher wants to learn individual-level relationships

but only has access to data that has been aggregated. In this paper, I develop a methodology to

partially identify linear combinations of conditional average outcomes from aggregate data when

the outcome of interest is binary while imposing very few restrictions on the underlying data

generating process. I construct identified sets using an optimization program that allows for

researchers to impose additional shape and data restrictions. I also provide consistency results

and construct an inference procedure that is valid with aggregate data, which only provides

marginal information about each variable. I apply the methodology to simulated and real-world

data sets and find that the estimated identified sets are too wide to be useful, but become

narrower as more assumptions are imposed and data aggregated at a finer level is available.

This suggests that to obtain useful information from aggregate data sets about individual-level

relationships, researchers must impose further assumptions that are carefully justified or seek

out data aggregated at the finest level possible.
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outcome, ecological fallacy
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1 Introduction

Researchers frequently use publicly available data in policy analysis, which is usually provided at

the aggregate level due to individual privacy concerns. For example, statewide standardized exam

results are reported in the form of school-wide or school district-wide pass rates, as opposed to pass

result and demographic information (e.g. gender, race, family income) for each individual student.

Election data is available as vote shares and voter demographics over voting districts, as opposed

to the vote and demographics information for each individual voter.

Many researchers use aggregate data to run analyses where the outcome of interest is at the in-

dividual level. One example is the literature on the relationship between religion and suicide, which

often uses suicide rates and religion prevalence rates (Neeleman et al., 1997; Dervic et al., 2004;

Becker and Woessmann, 2018). Jack et al. (2023) looks at the relationship between virtual learn-

ing during the COVID-19 pandemic and student performance in grade school using standardized

exam pass rates and district demographic information. Alter et al. (1999) looks at the relationship

between median neighborhood income, rate of use of cardiac procedures, and mortality rates after

a heart attack to determine the relationship between patient income and treatment outcomes. Ex-

amples of aggregate data used in political science analyses of individual voting behavior are given

in Freedman et al. (1998) and Kousser (2001). Another large literature studies the relationship

between mortality and economic conditions and often utilizes aggregate data in the form of mor-

tality rates and unemployment rates (Ruhm, 2000; Neumayer, 2004; Gerdtham and Ruhm, 2006;

Svensson, 2007; Lindo, 2015).

It is well known that aggregate variables can be related in ways that are different from the same

variables at the individual level,1 a problem known as an ecological fallacy.2 The ecological fallacy

has been studied across many fields over the past several decades, beginning with the seminal work

of Robinson (1950); Duncan and Davis (1953), and Theil (1954). These earlier papers demonstrated

issues with interpreting parameters from regressions with aggregate data as individual-level effects,

and provided simple bounds on individual-level effects with a binary outcome and single binary

covariate. Since then, studies like Shiveley (1974); Kramer (1983); Greenland and Robins (1994);

Gravelle et al. (2002); Hsiao et al. (2005), and Lindo (2015) have continued to demonstrate that

results on individual-level effects are sensitive to the level of data aggregation and other imposed

assumptions like functional form.

While the ecological fallacy has been acknowledged as an issue by the literature, to the best

of my knowledge much of the recent literature is concerned with point identification of individual-

level parameters (King et al., 1999; Rosen et al., 2001).3 When only aggregate information is

available, knowledge about parameters at the individual level is limited, and point identification is

1Firebaugh (1978) notes that “aggregate” and “individual” are relative terms, as individual variables correspond
to the individual unit of analysis and need not correspond to an individual person. In the econometrics literature,
the terms “macro” and “micro” are also often used.

2This problem has also been referred to as the problem of aggregation (Stoker, 1984).
3One exception is Jiang et al. (2020), who develop partial identification techniques in a setting with two binary

covariates, imposing linear individual-level relationships.
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often not achieved without further assumptions. Imposing more assumptions may allow for precise

results, but such assumptions may be less plausible. For example, one popular method for analyzing

aggregate data is the ecological inference method (King, 1997), used often in political science studies

of elections (Burden and Kimball, 1998). This method relies on many assumptions, like assuming

the individual-level joint distributions and imposing no bias introduced by aggregation, that often

fail to hold in applied settings (Tam Cho, 1998; Cho and Gaines, 2004; Freedman et al., 1998;

Kousser, 2001).

Even without these strong assumptions, partial identification is still possible. The resulting

identified set is exactly the extent to which individual-level results are sensitive to assumptions. In

this paper I consider the problem of identifying linear combinations of conditional mean outcomes,

E[Yi|X1i, . . . , XLi], when individual-level outcome Yi is binary and the only data that is observed is

the marginal distribution of each individual-level variable over many groups, which I call aggregate

data. I develop a partial identification methodology that constructs sharp bounds by solving an

optimization problem that considers all underlying joint distributions of individual-level covariates

that are consistent with the observed marginal distributions. I show how further restrictions on

the underlying data generating process, like shape restrictions or additional data at a finer level

of aggregation, can be incorporated into the optimization problem to obtain sharp bounds. Since

I do not observe individual-level joint distributions, I develop valid inference procedures on the

identified set using marginal information only.

To demonstrate how informative these bounds can be, I apply this methodology to several

different simulated aggregate data sets calibrated to the Rhode Island standardized exam score

data set used in my empirical application. I find that bounds are relatively wide on marginal

effect parameters of interest. Imposing monotonicity shape restrictions in the empirical application

helps narrow bounds on test score gaps, and using additional data at a finer level of aggregation

makes bounds on test score gaps even narrower. This suggests that it is easier to obtain useful

individual-level results from aggregate data when the data is aggregated at a finer level and when

the researcher can impose more restrictive assumptions about the individual-level data generating

process.

Partial identification in various contexts has been widely studied in the econometrics literature,

especially over the last thirty years.4 Relevant to this paper is partial identification in data combi-

nation, since when combining two different data sets the joint distribution between the data sets is

sometimes unobserved (Cross and Manski, 2002; Molinari and Peski, 2006; Ridder and Moffitt, 2007;

Fan et al., 2014, 2016). However in the data combination literature the joint distribution within

each data set is observed; in the aggregate data setting the joint distribution between every combi-

nation of variables is unobserved. For example, in the setting I consider the method in Cross and

Manski (2002) applies only when we observe the joint distribution of covariates Xi = (X1i, . . . , XLi)

over groups. Aggregate data often does not fit this setting; for example aggregate data can pro-

4See Tamer (2010), Ho and Rosen (2015), Molinari (2020), and Kline and Tamer (2023) for detailed surveys of
partial identification in economics.
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vide ethnicity distributions, gender distributions, education distributions, and income distributions

but will not provide the joint distribution of all of these variables, often due to privacy concerns.

Bounds are narrower when we observe the joint distribution of covariates, as further discussed in

Appendix A.3. The intuition for this is that since individual-level effects usually depend on the joint

distribution of all variables, being able to pin down the joint distribution of most of the variables

will restrict the size of the identified set.

The rest of the paper proceeds as follows. Section 2 presents identified sets on the parame-

ters of interest under a few different assumptions. Section 3 develops consistent estimation and

inference procedures. Section 4 presents and discusses results from an empirical application using

standardized exam data and simulation exercises calibrated to the dataset. Section 5 concludes.

2 Identification

2.1 Identified set

Let (Yi, X1i, . . . , XLi, Gi), i = 1, . . . , n be a sequence of random variables. Suppose outcome Yi is

binary, with Yi ∈ {0, 1} and suppose Gi ∈ {1, . . . , G} denotes the group of individual i. Further

assume covariates Xi ≡ (X1i, . . . , XLi)
′ are discrete with known finite support {xk}Kk=1 ⊆ RL.5

The goal is to construct bounds on linear combinations of E[Yi|Xi = xk],
∑K

k=1 λkE[Yi|Xi = xk],

for given weights {λk}Kk=1. For example, if we are interested in the average marginal effect of

changing Xi from xk1 to xk2 on Yi, we can choose λk2 = 1, λk1 = −1, and λk = 0 for all other

k. I will construct identified sets using only expressions for E[Yi|Gi = g],P[Xℓi = xk,ℓ|Gi = g],

and P[Gi = g] for every ℓ = 1, . . . , L, k = 1, . . . ,K, g = 1, . . . , G; the sample equivalents of these

parameters are observed in aggregate data.

For example, in a data set of standardized exam results and demographics, Gi denotes student

i’s school district, Yi is an indicator for whether student i passed the exam or not, and Xi are

student i’s demographics. We observe (sample estimates of) the pass rate for every school district

E[Yi|Gi], demographics of every school district P[Xℓi = xk,ℓ|Gi = g], and the number of students

enrolled in each school district, with which we can obtain (sample estimates of) P[Gi = g].

In what follows I will maintain the following assumption:

Assumption 1. For random variables Yi, Gi, and L-dimensional random vector Xi, suppose

1. Yi is binary.

2. Gi is discrete with finite support {1, . . . , G}.

3. Xi is discrete with finite support {xk}Kk=1 ⊆ RL.

4. Gi is i.i.d. and (Yi, Xi)|Gi are i.i.d.6

5The case with multinomial or continuous outcome and continuous covariates is beyond the scope of this paper.
6I assume individual-level variables are (conditionally) i.i.d. for the sake of simplicity; this assumption can be

relaxed and the consistency and inference results of Section 3 will still hold.
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5. (Yi, Gi, Xi) are latent; instead, we observe (sample analogs of) E[Yi|Gi = g],P[Xℓi = xk,ℓ|Gi =

g], and P[Gi = g] for every ℓ = 1, . . . , L, k = 1, . . . ,K, g = 1, . . . , G.

Because Yi is binary, the law of total probability gives us

E[Yi|Xi = xk] =

G∑
g=1

P[Gi = g]E[Yi|Xi = xk|Gi = g],

E[Yi|Gi = g] =

K∑
k=1

E[Yi|Xi = xk, Gi = g]P[Xi = xk|Gi = g],

P[Xℓi = xk,ℓ|Gi = g] =
K∑
j=1

1{xj,ℓ = xk,ℓ}P[Xi = xj |Gi = g].

As in Cross and Manski (2002), these are the only relationships we can use to relate joint information

of interest to the observed marginal information in the data without any further assumptions.

Let δk ≡ E[Yi|Xi = xk], γkg ≡ E[Yi|Xi = xk, Gi = g], and πkg ≡ P[Xi = xk|Gi = g] denote the

unobserved parameters in the above equations. Then we can rewrite the equations as

δk =

G∑
g=1

P[Gi = g]γkg, (1)

E[Yi|Gi = g] =

K∑
k=1

γkgπkg (2)

P[Xℓi = xk,ℓ|Gi = g] =
K∑
j=1

1{xj,ℓ = xk,ℓ}πjg. (3)

Note that δk, γkg, πkg ∈ [0, 1] for all k, g. Combining this with equations (1), (2), and (3) above, we

can define the identified set for
∑K

k=1 λkE[Yi|Xi = xk]:

Lemma 1. Suppose Assumption 1 holds. Given {λk}Kk=1 ∈ RK , the sharp identified set for∑K
k=1 λkE[Yi|Xi = xk] is given by

D =

{
K∑
k=1

λkdk

∣∣∣∣ 0 ≤ dk ≤ 1 ∀k, and ∃ (p1g, . . . , pKg) ∈ [0, 1]K , (c1g, . . . , cKg) ∈ [0, 1]K ∀g

s.t. dk =

G∑
g=1

P[Gi = g]ckg ∀k, E[Yi|Gi = g] =

K∑
k=1

ckgpkg ∀g,

P[Xℓi = xk,ℓ|Gi = g] =

K∑
j=1

1{xj,ℓ = xk,ℓ}pjg ∀ℓ, k, g, and

K∑
k=1

pkg = 1 ∀g

}
. (4)

5



Proposition 1. D =
[∑G

g=1 P[Gi = g]Lg,
∑G

g=1 P[Gi = g]Ug

]
, where

Lg ≡ min
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. ∃{pkg} ∈ Pg with E[Yi|Gi = g] =

K∑
k=1

ckgpkg,

Ug ≡ max
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. ∃{pkg} ∈ Pg with E[Yi|Gi = g] =
K∑
k=1

ckgpkg, and

Pg ≡ argmin
{pkg}∈[0,1]K

LK∑
r=1

v+r + v−r s.t.

K∑
k=1

pkg = 1, pkg, v
+
r , v

−
r ≥ 0 ∀k, r, and

P[Xℓi = xk,ℓ|Gi = g]−
K∑
j=1

1{xj,ℓ = xk,ℓ}pjg = v+K(ℓ−1)+k − v−K(ℓ−1)+k ∀ℓ, k.

I defer all proofs to Appendix B. Proposition 1 states that we can equivalently express the

identified set D given by (4) as the weighted sum of solutions to bilevel optimization problems.

This formulation is helpful because it suggests how computation of the lower and upper bound

might be performed. In particular, solving for

min
{ckg}∈[0,1]K

(max)
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. E[Yi|Gi = g] =
K∑
k=1

ckgpkg (5)

given a particular {pkg} ∈ Pg is a linear program. Thus we can solve for Lg and Ug by searching

for the minimum and maximum respectively of the linear program (5) over all {pkg} ∈ Pg. This

optimization problem has a nonconvex objective; I suggest using existing derivative-free nonconvex

solvers with a coarse grid of starting points to solve the optimization problem.

Remark 1. I show in Appendix A.1 that the problem of solving the linear program (5) given any

particular {pkg} ∈ Pg has an analytical solution. While computing the analytical solution for each

given {pkg} is fast, computing the solution from the linear program formulation is also fast and

either method can be used.

Remark 2. If the parameter of interest is E[Yi|Xi = xk] instead of a linear combination, I demon-

strate in Appendix A.2 that there exists an analytical solution to the sharp bounds using Fréchet

inequalities.

Remark 3. Without further restrictions on the underlying data generating process, it will always

be the case that
∑G

g=1 P[Gi = g]
∑K

k=1 λkE[Yi|Gi = g] ∈ D. To see why, note that, inspecting the

optimization problems of Proposition 1, for any g and any {pkg} ∈ Pg, letting ckg = E[Yi|Gi = g]

for all k = 1, . . . ,K satisfies the constraint that E[Yi|Gi = g] =
∑K

k=1 ckgpkg because
∑K

k=1 pkg = 1.

This is relevant for average marginal effect parameters because the weights {λk} are such that∑K
k=1 λkE[Yi|Gi = g] = 0 for each g so 0 ∈ D, and we thus cannot rule out a zero average marginal

effect without further restrictions.
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2.2 Additional shape restrictions

There may be situations in which the researcher is willing to assume polyhedral shape restrictions on

the conditional expectation function over groups E[Yi|Xi, Gi]. Examples of such shape restrictions

include convexity, concavity, and monotonicity.7 I impose the shape constraints as an additional

assumption:

Assumption 2. For each g = 1, . . . , G,

SgYX,g ≤ ag,

where YX,g ≡ (E[Yi|Xi = x1, Gi = g], . . . ,E[Yi|Xi = xK , Gi = g])′, Sg ∈ Rsg×K are known fixed

matrices, and ag are known fixed vectors.

We can simply add this shape restriction to the constraints of the optimization problems solving

Lg and Ug in Proposition 1, as in Freyberger and Horowitz (2015), to obtain sharp bounds on∑K
k=1 λkE[Yi|Xi = xk]:

Proposition 2. Suppose Assumptions 1 and 2 hold. Given {λk}Kk=1 ∈ RK and Sg ∈ Rsg×K for

each g, the sharp identified set for
∑K

k=1 λkE[Yi|Xi = xk] is given by

D =

 G∑
g=1

P[Gi = g]Lg,
G∑

g=1

P[Gi = g]Ug

 ,

where, defining cg ≡ (c1g, . . . , cKg)
′,

Lg ≡ min
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. Sgcg ≤ ag and ∃{pkg} ∈ Pg with E[Yi|Gi = g] =
K∑
k=1

ckgpkg,

Ug ≡ max
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. Sgcg ≤ ag and ∃{pkg} ∈ Pg with E[Yi|Gi = g] =

K∑
k=1

ckgpkg,

Pg ≡ argmin
{pkg}∈[0,1]K

LK∑
r=1

v+r + v−r s.t.
K∑
k=1

pkg = 1, pkg, v
+
r , v

−
r ≥ 0 ∀k, r, and

P[Xℓi = xk,ℓ|Gi = g]−
K∑
j=1

1{xj,ℓ = xk,ℓ}pjg = v+K(ℓ−1)+k − v−K(ℓ−1)+k ∀ℓ, k.

Again, given a particular {pkg} ∈ Pg the solution to

min /max
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. Sgcg ≤ ag and ∃{pkg} ∈ Pg with E[Yi|Gi = g] =

K∑
k=1

ckgpkg (6)

7See the reviews written by Matzkin (1994) and Chetverikov et al. (2018) for other examples of shape restrictions
that have been used in econometric models.
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is a linear program. We can again solve for Lg and Ug by searching for the minimum and maximum

respectively of (6), which is fast to compute, over all {pkg} ∈ Pg. The suggested method of using

a nonconvex solver with a coarse grid of starting points to solve the problem is still valid.

2.3 Additional aggregate data at a finer level

In some situations the researcher has access to additional data that is aggregated at a finer level

than by groups Gi. In this section I consider the case when E[Yi|Xℓi = xk,ℓ, Gi = g] is observed

by the researcher. For example, in a data set of standardized exam results and demographics, the

researcher may have access to average pass results by race in some school districts.

Assumption 3. We observe (sample analogs of) E[Yi|Xℓi = xk,ℓ, Gi = g] for all (ℓ, k) ∈ Fg, where

for each group Gi = g, Fg is a (possibly empty) set of indices (ℓ, k).

By the definition of conditional probability and the law of total probability, for each (ℓ, k) ∈ Fg,

E[Yi|Xℓi = xk,ℓ, Gi = g]P[Xℓi = xk,ℓ|Gi = g]

= P[Yi = 1, Xℓi = xk,ℓ|Gi = g]

=
K∑
j=1

1{xj,ℓ = xk,ℓ}P[Yi = 1, Xi = xk|Gi = g]

=
K∑
j=1

1{xj,ℓ = xk,ℓ}E[Yi|Xi = xk, Gi = g]P[Xi = xk|Gi = g]

=

K∑
j=1

1{xj,ℓ = xk,ℓ}γkgπkg.

Again, we can easily add these restrictions to the constraints of the optimization problem solving

Lg and Ug in Proposition 1 to obtain sharp bounds on
∑K

k=1 λkE[Yi|Xi = xk]:

Proposition 3. Suppose Assumptions 1 and 3 hold. Given {λk}Kk=1 ∈ RK , the sharp identified set

for
∑K

k=1 λkE[Yi|Xi = xk] is given by

D =

 G∑
g=1

P[Gi = g]Lg,

G∑
g=1

P[Gi = g]Ug

 ,

where

Lg ≡ min
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. ∃{pkg} ∈ Pg with E[Yi|Gi = g] =

K∑
k=1

ckgpkg and

E[Yi|Xℓi = xk,ℓ, Gi = g]P[Xℓi = xk,ℓ|Gi = g] =

K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg,

8



Ug ≡ max
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. ∃{pkg} ∈ Pg with E[Yi|Gi = g] =

K∑
k=1

ckgpkg and

E[Yi|Xℓi = xk,ℓ, Gi = g]P[Xℓi = xk,ℓ|Gi = g] =
K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg,

Pg ≡ argmin
{pkg}∈[0,1]K

LK∑
r=1

v+r + v−r s.t.

K∑
k=1

pkg = 1, pkg, v
+
r , v

−
r ≥ 0 ∀k, r, and

P[Xℓi = xk,ℓ|Gi = g]−
K∑
j=1

1{xj,ℓ = xk,ℓ}pjg = v+K(ℓ−1)+k − v−K(ℓ−1)+k ∀ℓ, k.

Since the additional constraints are all linear constraints, the solution to Lg and Ug for a

particular {pkg} ∈ Pg is still a linear program. The previous discussion about how to compute the

identified set applies here.

Remark 4. The sharp identified set D under Assumptions 1, 2, and 3 is given by adding both of

the restrictions Sgcg ≤ ag and

E[Yi|Xℓi = xk,ℓ, Gi = g]P[Xℓi = xk,ℓ|Gi = g] =

K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg

to the optimization problems of Lg and Ug in Proposition 1.

Remark 5. This methodology is flexible and can easily be adjusted to accommodate further as-

sumptions beyond Assumptions 2 and 3 on the underlying individual-level model through additional

restrictions to the optimization problem. For example, if some of the covariances between covariates

can be estimated or bounded using a separate data set, this could be incorporated as polyhedral

restrictions on the joint support of the covariates in the Pg optimization problem. Restrictions on

the underlying distribution of Xi can also be incorporated through specification of the support.

Remark 6. If we impose the assumption that the Yi, X1i, . . . , XLi are mutually independent con-

ditional on Gi, we would obtain point identification of E[Yi|Xi = xk] and thus point identification

of
∑K

k=1 λkE[Yi|Xi = xk]. If we impose that the X1i, . . . , XLi are mutually independent conditional

on Gi, we would obtain point identification of the joint distribution of Xi|Gi. Sharp bounds on∑K
k=1 λkE[Yi|Xi = xk] would then follow from Cross and Manski (2002): we can consider the Lg

and Ug optimization problems but letting pkg be the joint distribution of Xi|Gi.

3 Estimation and Inference

3.1 Estimation

In practice we observe sample analogs of the population values E[Yi|Gi = g],P[Xℓi = xk,ℓ|Gi =

g],P[Gi = g] in the aggregate data set, along with sample analogs of E[Yi|Xℓi = xk,ℓ, Gi = g] if

9



available. For all ℓ = 1, . . . , L, j = 1, . . . ,K, g = 1, . . . , G, denote

Ȳg =

∑n
i=1 Yi1{Gi = g}∑n
i=1 1{Gi = g}

(7)

P̂ r[Xℓi = xj,ℓ|Gi = g] =

∑n
i=1 1{Xℓi = xj,ℓ}1{Gi = g}∑n

i=1 1{Gi = g}
(8)

P̂ r[Gi = g] =
1

n

n∑
i=1

1{Gi = g} (9)

Ȳg|Xℓi = xk,ℓ =

∑n
i=1 Yi1{Xℓi = xk,ℓ}1{Gi = g}∑n
i=1 1{Xℓi = xk,ℓ}1{Gi = g}

. (10)

Ȳg, P̂ r[Xℓi = xj,ℓ], P̂ r[Gi = g], and Ȳg|Xℓi = xk,ℓ all converge to the respective population values by

the law of large numbers and continuous mapping theorem, assuming group probabilities P[Gi = g]

and covariate probabilities P[Xℓi = xk,ℓ|Gi = g] are bounded away from 0. Thus we can construct

a plug-in estimator, denote D̂, for the sharp identified set by replacing all population values in

the optimization problems of Propositions 1, 2, 3, or Remark 4 with their sample estimates. For

example, the estimated sharp identified set discussed in Remark 4 looks like:

D̂ ≡
[
L̂, Û

]
≡

 G∑
g=1

P̂ r[Gi = g]L̂g,

G∑
g=1

P̂ r[Gi = g]Ûg

 ,

L̂g ≡ min
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. Sgcg ≤ ag ∀g and ∃{pkg} ∈ P̂g with Ȳg =
K∑
k=1

ckgpkg,

Ȳg|Xℓi = xk,ℓ × P̂ r[Xℓi = xj,ℓ|Gi = g] =

K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg,

Ûg ≡ max
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. Sgcg ≤ ag ∀g and ∃{pkg} ∈ P̂g with Ȳg =
K∑
k=1

ckgpkg,

Ȳg|Xℓi = xk,ℓ × P̂ r[Xℓi = xj,ℓ|Gi = g] =

K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg,

P̂g ≡ arg min
{pkg}

LK∑
r=1

v+r + v−r s.t.
K∑
k=1

pkg = 1; pkg, v
+
r , v

−
r ≥ 0 ∀k, r; and

P̂ r[Xℓi = xk,ℓ|Gi = g]−
K∑
j=1

1{xj,ℓ = xk,ℓ}pjg = v+K(ℓ−1)+k − v−K(ℓ−1)+k ∀ℓ, k.

The following proposition shows that the lower and upper bounds of the plug-in estimated set D̂

are consistent.

Proposition 4. Suppose Assumption 1 holds and that P̂ r[Xℓi = xk,ℓ|Gi = g] are valid marginal

distributions for Xi with respect to the assumed support. If Assumption 2 holds, define D̂ with

respect to Proposition 2; if Assumption 3 holds, define D̂ with respect to Proposition 3; and if

10



Assumptions 2 and 3 hold, define D̂ with respect to Remark 4.

Then conditional on D̂ being nonempty, L̂g
p−→ Lg and Ûg

p−→ Ug as n → ∞ for all g.

Furthermore, the lower and upper bounds of D̂ converge to the lower and upper bounds of D.

3.2 Inference

Existing inference methods for partially identified estimated sets usually require knowledge of the

joint distribution of the individual-level data to estimate a covariance matrix used in constructing

critical values or test statistics for valid coverage. However, in my setting I only observe marginal

distributions of each variable. I point out why existing methods cannot be applied for a few

examples, by no means representative, below:

Example. Horowitz and Manski (2000) derive analytic bounds on conditional mean outcomes and

point out that the delta method delivers asymptotic normality of the lower and upper bound

estimators. The paper bootstraps the asymptotic covariance matrix to obtain a confidence interval

that contains the identified set with correct asymptotic coverage. Putting aside that I do not have

analytic bounds in my setting, being able to derive the asymptotic covariance of bounds L̂g and

Ûg requires that I know the covariances between, for example, Yi and any Xℓi or any Xℓ1i and

Xℓ2i given Gi. However I only observe sample marginal distributions of each variable and thus

cannot hope to estimate the covariance matrix. Bootstrapping will also not be possible because I

do not observe the individual-level data and so cannot generate a bootstrap sample that reflects

the dependence between all of the variables.

Example. Imbens and Manski (2004) provide a method for constructing confidence intervals on the

parameter value of interest instead of on the entire identified set. This method chooses critical

values for correct coverage by again relying on joint asymptotic normality of the lower and upper

bound estimators, L̂g and Ûg in my setting. As discussed in the above example, I cannot hope to

estimate the variances of the lower and upper bounds with the marginal information observed in

aggregate data alone.

Example. Hsieh et al. (2022) construct confidence intervals for identified sets of solutions to convex

optimization programs, specifically linear and quadratic optimization programs with estimated

coefficients, exploiting the necessary and sufficient optimality conditions. Putting aside that the

optimization program is nonconvex in my setting, implementation of this inference method requires

the asymptotic covariance matrix of the estimated covariates of the optimization problem, which

in my setting rely on Ȳg, P̂ r[Xℓi = xj,ℓ|Gi = g], and P̂ r[Gi = g]. Thus I again need to know the

covariances between, for example, Yi and any Xℓi or any Xℓ1i and Xℓ2i given Gi.

Therefore in this setting I am forced to rely on inference methods that require only marginal

information of each variable. I choose to use the Bonferroni correction to make marginal confidence

intervals on each sample observation jointly valid across the whole sample. Since each aggregate

observation is the sample average of a binary random variable, as can be seen from equations (7),

(8), (9), and (10), I can use Clopper-Pearson intervals, which are finite-sample valid, for each sample
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observation instead of relying on normal approximations.8

Let M be the total number of observations in the aggregate data set, that is, the total number

of Ȳg, P̂ r[Xℓi = xk,ℓ|Gi = g], P̂ r[Gi = g], and Ȳg|Xℓi = xk,ℓ (if observed) observations in the data

sets across all groups g, support points k and covariates ℓ.

The inference procedure is as follows:

1. For every sample observation p̂, construct two-sided level 1− α
M Clopper-Pearson CIs, denoted

[p̂L, p̂U ]. For N the number of individuals in the conditioning set of the population analog of p̂

(i.e. for Ȳg, N =
∑n

i=1 1{Gi = g} and for Ȳg|Xℓi = xk,ℓ, N =
∑n

i=1 1{Xℓi = xk,ℓ}1{Gi = g})
and X = Np̂, the Clopper-Pearson CI is determined by quantiles of the beta distribution:

[p̂L, p̂U ] =

[
B

(
α

2M
,X,N −X + 1

)
, B

(
1− α

2M
,X + 1, N −X

)]

The resulting confidence intervals are
[
P̂ r[Xℓi = xk,ℓ|Gi = g]L, P̂ r[Xℓi = xk,ℓ|Gi = g]U

]
for

each P̂ r[Xℓi = xk,ℓ|Gi = g],
[
Ȳg,L, Ȳg,U

]
for each Ȳg,

[
P̂ r[Gi = g]L, P̂ r[Gi = g]U

]
for each

P̂ r[Gi = g], and (if observed)
[
Ȳg|Xℓi = xk,ℓL, Ȳg|Xℓi = xk,ℓU

]
for each Ȳg|Xℓi = xk,ℓ.

2. Solve the optimization programs of D̂ under the assumed assumptions for all values of sample

observations within the marginal confidence intervals constructed in step 1. For example,

under both Assumptions 1, 2, and 3, we solve:

a) P̂g,CI ≡ arg min
{pkg}

2LK∑
r=1

v+r + v−r s.t.
K∑
k=1

pkg = 1; pkg, v
+
r , v

−
r ≥ 0 ∀k, r;

P̂ r[Xℓi = xk,ℓ|Gi = g]L −
K∑
k=1

1{xj,ℓ = xk,ℓ}pjg ≤ v+K(ℓ−1)+k − v−K(ℓ−1)+k ∀ℓ, k, and

P̂ r[Xℓi = xk,ℓ|Gi = g]U −
K∑
k=1

1{xj,ℓ = xk,ℓ}pjg ≥ v+K(L+ℓ−1)+k − v−K(L+ℓ−1)+k ∀ℓ, k.

b) L̂g,CI ≡ min
{cgk}∈[0,1]K

K∑
k=1

λkcgk s.t. Sgcg ≤ ag ∀g and ∃{pgk} ∈ P̂g,CI

with Ȳg,L ≤
K∑
k=1

cgkpgk, Ȳg,U ≥
K∑
k=1

cgkpgk,

Ȳg|Xℓi = xk,ℓL × P̂ r[Xℓi = xj,ℓ|Gi = g]L ≤
K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg,

and Ȳg|Xℓi = xk,ℓU × P̂ r[Xℓi = xj,ℓ|Gi = g]U ≥
K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg

c) Ûg,CI ≡ max
{cgk}∈[0,1]K

K∑
k=1

λkcgk s.t. Sgcg ≤ 0 ∀g and ∃{pgk} ∈ P̂g,CI

8Note that any other binomial proportion confidence interval that obtains asymptotically nominal coverage will
provide asymptotically valid coverage; Clopper-Pearson has the advantage of being finite-sample valid.
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with Ȳg,L ≤
K∑
k=1

cgkpgk, Ȳg,U ≥
K∑
k=1

cgkpgk,

Ȳg|Xℓi = xk,ℓL × P̂ r[Xℓi = xj,ℓ|Gi = g]L ≤
K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg,

and Ȳg|Xℓi = xk,ℓU × P̂ r[Xℓi = xj,ℓ|Gi = g]U ≥
K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg.

3. The confidence interval is given by

D̂CI ≡

[
G∑

g=1

min
{
P̂ r[Gi = g]LL̂g,CI , P̂ r[Gi = g]U L̂g,CI

}
,

G∑
g=1

max
{
P̂ r[Gi = g]LÛg,CI , P̂ r[Gi = g]U Ûg,CI

}]
.

Proposition 5. Suppose Assumption 1 holds. If Assumption 2 holds, define D̂CI with respect to

Proposition 2; if Assumption 3 holds, define D̂CI with respect to Proposition 3; and if Assumptions

2 and 3 hold, define D̂CI with respect to Remark 4.

Suppose also that the P̂ r[Xℓi = xk,ℓ|Gi = g] are valid marginal distributions for Xi with respect

to the assumed support. Then P[D ⊆ D̂CI ] ≥ 1− α.

Since
∑K

k=1 λkE[Yi|Xi = xk] ∈ D, this means that P[
∑K

k=1 λkE[Yi|Xi = xk] ∈ D̂CI ] ≥ 1− α, as

discussed in Imbens and Manski (2004). Proposition 5 says that the confidence interval D̂CI has

correct coverage for the identified set and thus for the identified parameter.

4 Simulations and Empirical Application

One setting in which publicly available data is in aggregate form is standardized exam data. In

this section I will apply the methodology developed in the previous sections to construct bounds

on conditional exam pass rates. In this application I focus on exam pass rates for English and

math Rhode Island Comprehensive Assessment System (RICAS) exams and student demographic

information for the state of Rhode Island in spring of 2019 over all students in grades 3-8. Data is

obtained from the state of Rhode Island Department of Education website.

In my application I produce sharp bounds on the average pass rate conditional on three covari-

ates: race (indicator whitei for being white), economically disadvantaged status (indicator econi

for being economically disadvantaged, as defined by the Rhode Island Department of Education),

and English-language learner (ELL) status (indicator ELLi). In Section 4.1 I first explore what

causes the width of the bounds to vary in simulations calibrated to the Rhode Island aggregate

data. In Section 4.2 I then present the empirical application, where I estimate bounds with and

without monotonicity shape restrictions and additional pass rate data for subgroups.
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4.1 Simulations

I present three different simulation exercises. In all exercises I have three binary covariates

whitei, econi, and ELLi, and a binary outcome passi. There are 50 groups in each example,

where in the Rhode Island data a group is a school district, and in all simulation exercises I assume

there are 2000 individuals in each group.

In the first exercise, I choose a joint distribution such that the marginal distribution over groups

of each covariate approximately matches the marginal distribution over groups of each aggregate-

level covariate in the Rhode Island data, as plotted in Figure 1.

Figure 1: Distributions of aggregate variables in simulation exercise 1

I present results for 100 different aggregate data sets generated according to the joint distribu-

tion of exercise 1 in Figure 2. The parameters for which I produce bounds in this figure are average

conditional outcomes E[passi|whitei, econi, ELLi]. The 95% confidence intervals contain the pop-

ulation bounds for all 100 data sets and all parameters, suggesting that the confidence intervals

are conservative, as to be expected with the Bonferroni correction and Clopper-Pearson intervals.

The estimated bounds are very close to the population bounds for all parameters. Because of this

observation, I will sometimes focus on results for one particular simulated data set and only present

estimated bounds without corresponding confidence intervals.

Table 1 presents results from the first simulation exercise for one of the aggregate data sets

generated according to the joint distribution of exercise 1. Population bounds in Column 2 are

wide, with most of them uninformative (equal to [0, 1]). Estimated bounds in Column 3 are very

close to the population bounds in Column 2. The 95% confidence intervals in Column 4 are a bit

wider than the estimated bounds. The parameters for which I obtain informative bounds seem to be

those where the conditioning population is well-represented in the data: the simulated data is mostly

groups with a large fraction of white students and small fractions of econ and ELL students, and

the parameter with the tightest bounds is the average pass rate among white, not econonomically

disadvantaged, non-ELL students. Sharp bounds on the difference between parameters are the

Minkowski set difference between bounds on each of the parameters. In particular, as noted in

Remark 3, all bounds on the difference between parameters contain 0 as I do not impose additional
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Figure 2: Estimated bounds and 95% CIs over 100 draws in simulation exercise 1

assumptions.

Table 1: Estimated bounds on conditional pass rate in simulation exercise 1, example data set

True Population Estimated Estimated Bounds
Value Bounds Bounds 95% CI on Difference 95% CI

Parameter (1) (2) (3) (4) (5) (6)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

0.618 [0.167, 0.861] [0.167, 0.860] [0.125, 0.946]
[−0.833, 0.860] [−0.875, 0.946]E

[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

0.5 [0, 1] [0, 1] [0, 1]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

0.274 [0, 1] [0, 1] [0, 1]
[−0.953, 1] [−1, 1]E

[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

0.184 [0, 0.958] [0, 0.953] [0, 1]

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

0.460 [0, 1] [0, 1] [0, 1]
[−1, 1] [−1, 1]E

[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

0.345 [0, 1] [0, 1] [0, 1]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

0.159 [0, 1] [0, 1] [0, 1]
[−1, 1] [−1, 1]E

[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

0.097 [0, 1] [0, 1] [0, 1]

Notes: Table displays numbers for one of the aggregate data sets generated according to the joint distribution of
simulation exercise 1. 95% CIs in Column 4 are confidence intervals on the estimated bounds in Column 3. 95% CIs
in Column 6 are confidence intervals on the bounds on difference in Column 5. CIs are constructed using the method
from Section 3.2, taking P[Gi = g] as observed instead of P̂ r[Gi = g]. Bounds on the difference are sharp bounds on
the top minus the bottom parameter for which each set of bounds are reported.

To see if the estimated bounds could be narrower, in the second simulation exercise I choose

a joint distribution that produces the same true conditional average pass rates, but such that the

marginal distribution over groups of each covariate is even closer to either 0 or 1, as can be seen in

Figure 3. Results for 100 different aggregate data sets generated according to the joint distribution

are in Figure 4. Again, the 95% confidence intervals contain the population bounds for all 100 data

sets and the estimated bounds are very close to the population bounds.
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Figure 3: Distributions of aggregate variables in simulation exercise 2

Figure 4: Estimated bounds and 95% CIs over 100 draws in simulation exercise 2

Results for one aggregate data set generated according to the joint distribution of exercise 2 are

presented in Table 2. In Column 3, bounds on the parameter for which the conditioning population

is well-represented in the data are narrower and more informative than in the first exercise, but

bounds on all other parameters are uninformative, while in the first exercise some of the bounds on

other parameters were informative. However, bounds on the difference in the first row of Column

5 are still wide, even though they are narrower than in the first exercise. This is likely because

while there is more information about the first parameter, there is less information on the second

parameter so that bounds on the difference are still wide.
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Table 2: Estimated bounds on conditional pass rate in simulation exercise 2, example data set

True Population Estimated Bounds on
Value Bounds Bounds 95% CI Difference 95% CI

Parameter (1) (2) (3) (4) (5) (6)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

0.618 [0.561, 0.749] [0.562, 0.749] [0.500, 0.831]
[−0.438, 0.749] [−0.500, 0.831]E

[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

0.5 [0, 1] [0, 1] [0, 1]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

0.274 [0, 1] [0, 1] [0, 1]
[−1, 1] [−1, 1]E

[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

0.184 [0, 1] [0, 1] [0, 1]

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

0.460 [0, 1] [0, 1] [0, 1]
[−1, 1] [−1, 1]E

[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

0.345 [0, 1] [0, 1] [0, 1]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

0.159 [0, 1] [0, 1] [0, 1]
[−1, 1] [−1, 1]E

[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

0.097 [0, 1] [0, 1] [0, 1]

Notes: Table displays numbers for one of the aggregate data sets generated according to the joint distribution of
simulation exercise 2. 95% CIs in Column 4 are confidence intervals on the estimated bounds in Column 3. 95% CIs
in Column 6 are confidence intervals on the bounds on difference in Column 5. CIs are constructed using the method
from Section 3.2, taking P[Gi = g] as observed instead of P̂ r[Gi = g]. Bounds on the difference are sharp bounds on
the top minus the bottom parameter for which each set of bounds are reported.

This suggests that if the conditioning populations for the first two parameters were well-

represented, bounds on the difference might be narrower. In the third simulation exercise I choose

a joint distribution that produces the same true conditional average pass rates and marginal distri-

butions over groups for E[econi] and E[ELLi], but I let some groups have E[whitei] close to 0 and

others have E[whitei] close to 1, as can be seen in Figure 5. Results for 100 different aggregate data

sets generated according to this joint distribution are in Figure 6. As in the previous two exercises,

the 95% confidence intervals contain the population bounds for all 100 data sets and the estimated

bounds are very close to the population bounds.

Figure 5: Distributions of aggregate variables in simulation exercise 3

Results for one aggregate data set generated according to the joint distribution of exercise 3 are

presented in Table 3. As expected, bounds on each parameter in Column 3 are relatively narrow

on the parameters for which the conditioning population is well-represented in the data. Notably

relative to the second exercise, bounds on the first parameter are wider and bounds on the second

parameter are narrower. This suggests that there is a trade-off between obtaining narrow bounds

on a single parameter and obtaining narrow bounds on multiple parameters. Intuitively, the groups
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Figure 6: Estimated bounds and 95% CIs over 100 draws in simulation exercise 3

with E[whitei] close to 0 help to make bounds on the second parameter narrow but make bounds

on the first parameter wider.

Table 3: Estimated bounds on conditional pass rate in simulation exercise 3, example data set

True Population Estimated Bounds on
Value Bounds Bounds 95% CI Difference 95% CI

Parameter (1) (2) (3) (4) (5) (6)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

0.618 [0.328, 0.858] [0.328, 0.859] [0.295, 0.901]
[−0.215, 0.859] [−0.262, 0.901]E

[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

0.5 [0, 0.543] [0, 0.543] [0, 0.556]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

0.274 [0, 1] [0, 1] [0, 1]
[−1, 1] [−1, 1]E

[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

0.184 [0, 1] [0, 1] [0, 1]

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

0.460 [0, 1] [0, 1] [0, 1]
[−0.911, 1] [−0.981, 1]E

[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

0.345 [0, 0.917] [0, 0.911] [0, 0.966]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

0.159 [0, 1] [0, 1] [0, 1]
[−1, 1] [−1, 1]E

[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

0.097 [0, 1] [0, 1] [0, 1]

Notes: Table displays numbers for one of the aggregate data sets generated according to the joint distribution of
simulation exercise 3. 95% CIs in Column 4 are confidence intervals on the estimated bounds in Column 3. 95% CIs
in Column 6 are confidence intervals on the bounds on difference in Column 5. CIs are constructed using the method
from Section 3.2, taking P[Gi = g] as observed instead of P̂ r[Gi = g]. Bounds on the difference are sharp bounds on
the top minus the bottom parameter for which each set of bounds are reported.

The bounds on the difference in the first row of Column 5 are narrower than in the first or

the second exercise, but are still wide and, important to signing the parameter, contain 0. This

means that, from this simulated data set, it would not be possible to say whether the white/non-

white average pass rate gap among any group of economically disadvantaged/not economically
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disadvantaged and ELL/non-ELL students is positive or negative. This suggests that without

further restrictions, obtaining usefully informative bounds on average marginal effects is challenging.

4.2 Empirical application

The results of the simulation exercise suggest that bounds on white/non-white average pass rate

gaps will not be informative in the Rhode Island data. I thus consider imposing several additional

assumptions to see whether more restrictions and information can help make bounds narrower.

4.2.1 Monotonicity restrictions

I first consider imposing several monotonicity shape restrictions. Motivated by test score gaps that

have been documented between rich and poor students (Tavernise, 2012; Porter, 2015), I impose

that for each value of (whitei, ELLi) and each the average pass rate is lower for economically

disadvantaged students than for not economically disadvantaged students:

E[passi|econi = 1, whitei, ELLi, Gi = g]− E[passi|econi = 0, whitei, ELLi, Gi = g] ≤ 0. (11)

I first present estimated bounds on math exam white/non-white average pass rate gaps in Table 4.

As expected, sharp bounds on the white/non-white average pass rate gaps reported in Column 1

are wide and either uninformative or close to uninformative. Imposing the additional monotonicity

restriction (11) helps narrow the bounds for some parameters, reported in Column 2, but bounds

are still wide and contain 0. 95% confidence intervals are even wider than the estimated bounds,

as expected because the combination of the Bonferroni correction and Clopper-Pearson intervals

make these bounds conservative.

Table 4: Rhode Island white/non-white math exam pass rate differences

Bounds without Monotonicity Monotonicity Bounds

Parameter (1) (2)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

[−0.940, 0.885] [−0.868, 0.881]
−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

{−1, 1} {−0.997, 1}
E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

[−0.818, 0.987] [−0.713, 0.674]
−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

{−0.974, 1} {−0.866, 0.830}
E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

[−1, 1] [−1, 1]
−E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

{−1, 1} {−1, 1}
E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

[−0.948, 1] [−0.879, 1]
−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

{−1, 1} {−1, 1}
Notes: 95% CIs are below in brackets. Because bounds must be between −1 and 1, any values below −1 or above 1
were removed from calculated CIs. Bounds on difference impose no shape restrictions; monotonicity bounds impose
monotonicity restriction (11), as discussed in Section 4.2.

For English exams, I impose an additional monotonicity restriction that for each value of

(whitei, econi) the average pass rate is lower for English-language learner students than for non-
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English-language learner students:

E[passi|ELLi = 1, whitei, econi, Gi = g]− E[passi|ELLi = 0, whitei, econi, Gi = g] ≤ 0. (12)

I present estimated bounds on English exam white/non-white average pass rate gaps in Table 5.

Sharp bounds on the white/non-white average pass rate gaps reported in Column 1 are again

wide and either uninformative or close to uninformative. Imposing both additional monotonicity

restrictions of (11) and (12) helps to narrow the bounds on all parameters, reported in Column 2,

but all bounds are still wide and contain 0.

Table 5: Rhode Island white/non-white English exam pass rate differences

Bounds without Monotonicity Monotonicity Bounds

Parameter (1) (2)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

[−0.895, 0.950] [−0.799, 0.919]
−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

{−1, 1} 0.919, 1}
E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

[−0.860, 0.998] [−0.783, 0.765]
−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

{−1, 1} {−0.907, 0.927}
E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

[−1, 1] [−1, 0.941]
−E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

{−1, 1} {−1, 1}
E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

[−0.991, 1] [−0.721, 0.707]
−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

{−1, 1} {−0.836, 0.876}
Notes: 95% CIs are below in brackets. Because bounds must be between −1 and 1, any values below −1 or above 1
were removed from calculated CIs. Bounds on difference impose no shape restrictions; monotonicity bounds impose
monotonicity restrictions (11) and (12), as discussed in Section 4.2.

4.2.2 Additional pass rates among subgroups

Rhode Island makes available RICAS assessment results aggregated by student subgroup publicly

available on their data portal. In particular, exam pass rates at the district level for white students,

for not economically disadvantaged students, and for non-ELL students are available for almost all

school districts.

I present bounds using the additional subgroup data on the math exam white/non-white av-

erage pass rate gaps in Table 6. Bounds using the additional subgroup data on the English exam

white/non-white average pass rate gaps are presented in Table 7. I present bounds using the

additional data both without and with the monotonicity assumptions of Section 4.2.1.

Without the monotonicity assumptions, using the additional subgroup data makes the estimated

bounds slightly narrower than without the additional subgroup data, as we can see from comparing

Column 1 of Tables 4 and 6 and comparing Column 1 of Tables 5 and 7. Bounds under the

monotonicity assumptions are also narrower with the additional subgroup data than without, as

we can see from comparing Column 2 of Tables 4 and 6 and comparing Column 2 of Tables 5 and

7. We also see that comparing Columns 1 and 2 of each table, bounds with monotonicity and the

additional subgroup data are narrower than bounds without monotonicity but with the additional
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Table 6: Rhode Island white/non-white math exam pass rate differences, with subgroup data

Bounds without Monotonicity Monotonicity Bounds

Parameter (1) (2)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

[−0.822, 0.712] [−0.745, 0.432]
−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

{−1, 1} {−0.932, 0.969}
E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

[−0.665, 0.777] [−0.225, 0.475]
−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

{−0.943, 1} {−0.741, 0.726}
E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

[−1, 1] [−0.968, 0.972]
−E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

{−1, 1} {−1, 1}
E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

[−0.847, 0.988] [−0.799, 0.985]
−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

{−1, 1} {−0.948, 1}
Notes: 95% CIs are below in brackets. Because bounds must be between −1 and 1, any values below −1 or above
1 were removed from calculated CIs. Bounds on difference impose no shape restrictions but use additional pass rate
by subgroup data; monotonicity bounds impose monotonicity restriction (11) in additional to additional pass rate by
subgroup data. See Section 4.2 for more details.

subgroup data. Although all bounds still contain 0, these results seem to suggest that the value

of having additional information in the form of finer levels of aggregation goes some way towards

obtaining more information about marginal effect parameters of interest, especially in combination

with other shape restrictions.

Table 7: Rhode Island white/non-white English exam pass rate differences, with subgroup data

Bounds without Monotonicity Monotonicity Bounds

Parameter (1) (2)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

[−0.773, 0.761] [−0.588, 0.189]
−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

{−0.988, 1} {−0.780, 0.962}
E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

[−0.660, 0.799] [−0.135, 0.453]
−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

{−0.946, 1} {−0.811, 0.787}
E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

[−1, 1] [−0.534, 0.575]
−E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

{−1, 1} {−1, 1}
E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

[−0.872, 0.982] [−0.373, 0.335]
−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

{−1, 1} {−0.737, 0.581}
Notes: 95% CIs are below in brackets. Because bounds must be between −1 and 1, any values below −1 or above
1 were removed from calculated CIs. Bounds on difference impose no shape restrictions but use additional pass rate
by subgroup data; monotonicity bounds impose monotonicity restrictions (11) and (12) in additional to additional
pass rate by subgroup data. See Section 4.2 for more details.

5 Conclusion

In this paper I present sharp bounds on individual-level parameters of interest when the only

available data is aggregate data, and I develop a valid inference method relying only on the available

marginal information of each covariate. In simulations and an empirical application I show that

the sharp bounds are too wide to be useful with realistic aggregate data. Both additional shape

restrictions and using additional data at a finer level of aggregation help to make sharp bounds

21



narrower, but in my application sharp bounds are unable to pin down the signs of marginal effects.

These results suggest that it is difficult to obtain useful individual-level results from aggregate

data, but individual-level analyses using aggregate data are more precise when the aggregate data

is available at a finer level of aggregation and when there is more underlying structure known about

the individual-level data generating process.
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A Appendix: Additional Results

A.1 Closed-form solution for Lg and Ug problems

Not only is (5) a linear program, the following corollary shows (5) has a closed-form solution given

any {pkg} ∈ Pg:

Corollary A.1. For given weights λ1, . . . , λK and any fixed {pkg} ∈ Pg, relabel the indices k =

1, . . . ,K so that λ1
p1g

≥ · · · ≥ λK
pKg

, where if pkg = 0 we define λk
pgk

≡ +∞. Then

min
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. E[Yi|Gi = g] =

K∑
k=1

ckgpkg

is attained by letting

c1g =

max
{
0,

E[Yi|Gi=g]−1+p1g
p1g

}
p1g > 0

0 p1g = 0
,

ckg =


0

∑k
j=1 pjg ≤ 1− E[Yi|Gi = g]

E[Yi|Gi=g]−1+
∑k

j=1 pjg
pkg

∑k−1
j=1 pjg ≤ 1− E[Yi|Gi = g] <

∑k
j=1 pjg

1
∑k−1

j=1 pjg > 1− E[Yi|Gi = g]

,

and

max
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. E[Yi|Gi = g] =

K∑
k=1

ckgpkg

is attained by letting

c1g =

min
{
1, E[Yi|Gi=g]

p1g

}
p1g > 0

1 p1g = 0

ckg =


1

∑k
j=1 pjg ≤ E[Yi|Gi = g]

E[Yi|Gi=g]−
∑k−1

j=1 pjg
pkg

∑k−1
j=1 pjg ≤ E[Yi|Gi = g] <

∑k
j=1 pjg

0
∑k−1

j=1 pjg > E[Yi|Gi = g]

.

Proofs are collected in Appendix B.

A.2 Fréchet inequalities

In Section 2.1 I derived sharp bounds for a linear combination of E[Yi|Xi = xk], defined using the

solutions to optimization programs. In this section I show that if we are interested in obtaining

sharp bounds on each E[Yi|Xi = xk] parameter under Assumption 1 alone, we can obtain closed-

form bounds using Fréchet inequalities.
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The Fréchet inequalities, explicitly derived by Fréchet (1951), state that if there are N events

A1, . . . , AN , it holds that

max

{
1−N +

N∑
i=1

Pr[Ai], 0

}
≤ Pr

[
N⋂
i=1

Ai

]
≤ min {Pr[A1], . . . , P r[AN ]} . (A.1)

Therefore, for y in the support of Yi and xk in the support of Xi, it follows from the Fréchet

inequalities that

Lg(y, xk) ≡ max

{
P[Yi = y|Gi = g] +

L∑
ℓ=1

P[Xℓi = xk,ℓ|Gi = g]− L, 0

}
≤ P [Yi = y,Xi = xk|Gi = g]

≤ min {P[Yi = y|Gi = g],P[X1i = xk,1|Gi = g], . . . ,P[XLi = xk,L|Gi = g]}

≡ Ug(y, xk). (A.2)

Note that we only require knowledge of the marginal probabilities of each random variable in

order to be able to calculate the lower and upper bounds; joint probabilities are not needed. If

we are only given P[Yi = y|Gi = g],P[X1i = x1|Gi = g], . . . ,P[XLi = xL|Gi = g] and nothing else,

then it is well known that the Fréchet inequalities are sharp; that is, they are the tightest possible

bounds given the assumptions. Situations in which the Fréchet inequalities are not sharp include

those in which we know variables are independent or if the (known) support of the variables is such

that knowledge of a marginal probability provides knowledge of the joint probability.

For a given k we can define bounds on E[Yi|Xi = xk]:

Proposition A.1. Suppose Assumption 1 holds. Let

DF ≡

 G∑
g=1

P[Gi = g]LF
g ,

G∑
g=1

P[Gi = g]UF
g

 ,

where

LF
g ≡

K∑
k=1

λk
Lg(1, xk)

Lg(1, xk) + Ug(0, xk)
,

UF
g ≡

K∑
k=1

λk
Ug(1, xk)

Lg(0, xk) + Ug(1, xk)
.

Then D ⊆ DF , and if the Fréchet inequalities on P[Yi = y,Xi = xk|Gi = g] are sharp for all

y ∈ {0, 1}, k = 1, . . . ,K, g = 1, . . . , G then D = DF .

To construct an estimator of the identified set DF , the sample analogs of P[Yi = y|Gi =

g],P[X1i = x1|Gi = g], . . . ,P[XLi = xL|Gi = g] observed in the aggregate data can be plugged

into the formula given in Proposition A.1. These estimated lower and upper bounds will be consis-
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tent because they are numerically equivalent to the estimated bounds of Proposition 1, which are

consistent by Proposition 4.

To construct a valid confidence region for the identified set DF , a similar approach to that

of Section 3.2 can be used. If jointly valid marginal confidence intervals are constructed on each

sample observation, calculating the estimated bounds, plugging lower confidence interval bounds

into any lower bounds and upper confidence interval bounds into any upper bounds, will produce

a confidence interval with correct coverage.

A.3 Sharp bounds given the joint distribution

To investigate how different the estimated bounds can be if we know the joint distribution of

covariates P[Xi = xk|Gi = g], as assumed in Cross and Manski (2002), I use the data sets from the

three simulation exercises of Section 4.1 in Tables 1, 2, and 3. I calculated the lowest and highest

possible lower and upper bounds under all different joint distributions for simulation exercises 1, 2,

and 3 in Tables A.1, A.2, and A.3 respectively. In particular, I present the range of Lg and Ug over

all {pkg} ∈ Pg. The width of the range of possible lower and upper bounds tells us the extent to

which knowing the joint distribution of covariates helps to narrow the identified set. In particular,

the estimated bounds from my approach presented in Section 4.1 are exactly the lowest possible

value of the lower bound and the highest possible value of the upper bound.

Table A.1: Estimated bounds under different joint covariate distributions, simulation exercise 1

Range of Lower Bounds Range of Upper Bounds

Parameter (1) (2)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

[−0.833,−0.578] [0.524, 0.860]−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

[−0.953,−0.796] [0.790, 1]−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

[−1,−0.947] [0.948, 1]−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

[−1,−0.947] [0.948, 1]−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

Notes: See Section 4.1 for details about simulation exercise 1.

We see that knowing the joint distribution of the covariates helps make estimated bounds

(weakly) narrower for all parameters. Bounds on certain parameters can become a lot narrower

when we know the joint distribution, like the first parameter in simulation exercise 1. While

knowing the joint distribution of the covariates will not help in signing any of the marginal effect

parameters, these results suggests that bounds do look different when joint covariate information

is unavailable in the aggregate data.
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Table A.2: Estimated bounds under different joint covariate distributions, simulation exercise 2

Range of Lower Bounds Range of Upper Bounds

Parameter (1) (2)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

[−0.438,−0.380] [0.687, 0.749]−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

[−1,−0.999] [0.999, 1]−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

[−1,−0.979] [0.979, 1]−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

[−1,−0.999] [0.999, 1]−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

Notes: See Section 4.1 for details about simulation exercise 2.

Table A.3: Estimated bounds under different joint covariate distributions, simulation exercise 3

Range of Lower Bounds Range of Upper Bounds

Parameter (1) (2)

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 0
]

[−0.215,−0.220] [0.773, 0.859]−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 0
]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 0
]

[−1,−0.797] [0.981, 1]−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 0
]

E
[
passi

∣∣whitei = 1, econi = 0, ELLi = 1
]

[−0.911,−0.803] [0.985, 1]−E
[
passi

∣∣whitei = 0, econi = 0, ELLi = 1
]

E
[
passi

∣∣whitei = 1, econi = 1, ELLi = 1
]

[−1,−0.812] [0.971, 1]−E
[
passi

∣∣whitei = 0, econi = 1, ELLi = 1
]

Notes: See Section 4.1 for details about simulation exercise 3.
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B Appendix: Proofs

B.1 Proof of Lemma 1

Proof. As argued in the main text, the only information we have in addition to Assumption 1 are

equations (1), (2), (3), and that δk, γkg, πkg ∈ [0, 1] for all k, g. The set given by (4) imposes all of

these restrictions and nothing more, and finds the set of
∑K

k=1 λkδk such that the restrictions are

satisfied. Thus the set is sharp.

B.2 Proof of Proposition 1

Proof. For any g, given any {pkg}Kk=1 such that
∑K

k=1 pkg = 1 and pkg ≥ 0 ∀k, note that there

exists {ckg}Kk=1 ∈ [0, 1]K such that E[Yi|Gi = g] =
∑K

k=1 ckgpkg; namely ckg = E[Yi|Gi = g] ∀k.
Thus imposing the restriction E[Yi|Gi = g] =

∑K
k=1 ckgpkg does not further restrict the set of

possible {pkg}Kk=1 if the following restrictions already hold: P[Xℓi = xk,ℓ|Gi = g] =
∑K

j=1 1{xj,ℓ =
xk,ℓ}pjg,

∑K
k=1 pkg = 1 and pkg ≥ 0 ∀k. Finally note that all restrictions involving {pkg}Kk=1 only

involve pkg with the same index g. This means it is equivalent to write (4) as

D =

{ K∑
k=1

λkdk

∣∣∣∣ 0 ≤ dk ≤ 1 ∀k, and ∃ (p1g, . . . , pKg) ∈ Pg, (c1g, . . . , cKg) ∈ [0, 1]K ∀g

s.t. dk =
G∑

g=1

P[Gi = g]ckg ∀k, E[Yi|Gi = g] =
K∑
k=1

ckgpkg ∀g
}
, (B.1)

where

Pg =

{
(p1g, . . . , pKg) ∈ [0, 1]K

∣∣∣∣ P[Xℓi = xk,ℓ|Gi = g] =
K∑
j=1

1{xj,ℓ = xk,ℓ}pjg ∀ℓ, k, and
K∑
k=1

pkg = 1

}
.

(B.2)

If P[Gi = g], ckg ∈ [0, 1] for all k and g then because dk =
∑G

g=1 P[Gi = g]ckg we know dk ∈ [0, 1]

for all k. Then we can get rid of dk in (B.1) by plugging in one of the constraints like so:

D =

{ K∑
k=1

λk

G∑
g=1

P[Gi = g]ckg

∣∣∣∣ ∃ (p1g, . . . , pKg) ∈ Pg, (c1g, . . . , cKg) ∈ [0, 1]K ∀g

s.t. E[Yi|Gi = g] =
K∑
k=1

ckgpkg ∀g
}
. (B.3)

I next show thatD is an interval. For any given {pkg} ∈ Pg, we argued above that
∑K

k=1 λk
∑G

g=1 P[Gi =

g]E[Yi|Gi = g] ∈ D. For any g consider arbitary {ckg}, {c′kg} ∈ [0, 1]K with corresponding

{pkg}, {p′kg} ∈ Pg such that E[Yi|Gi = g] =
∑K

k=1 ckgpkg and E[Yi|Gi = g] =
∑K

k=1 c
′
kgp

′
kg. We know
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∑K
k=1 λk

∑G
g=1 P[Gi = g]ckg ∈ D and

∑K
k=1 λk

∑G
g=1 P[Gi = g]c′kg ∈ D. For arbitrary t ∈ [0, 1], let

c̃kg = tckg + (1− t)E[Yi|Gi = g]

for all k, g and let

c̃′kg = tc′kg + (1− t)E[Yi|Gi = g]

for all k, g. Then E[Yi|Gi = g] =
∑

k pkg c̃kg =
∑

k p
′
kg c̃

′
kg for all g and c̃kg, c̃

′
kg ∈ [0, 1] for all k, g.

Thus
∑K

k=1 λk
∑G

g=1 P[Gi = g]c̃kg ∈ D and
∑K

k=1 λk
∑G

g=1 P[Gi = g]c̃′kg ∈ D. Note

K∑
k=1

λk

G∑
g=1

P[Gi = g]c̃kg

= t

 K∑
k=1

λk

G∑
g=1

P[Gi = g]ckg

+ (1− t)

 K∑
k=1

λk

G∑
g=1

P[Gi = g]E[Yi|Gi = g]

 ,

K∑
k=1

λk

G∑
g=1

P[Gi = g]c̃′kg

= t

 K∑
k=1

λk

G∑
g=1

P[Gi = g]c′kg

+ (1− t)

 K∑
k=1

λk

G∑
g=1

P[Gi = g]E[Yi|Gi = g]

 .

Since t was arbitrary between 0 and 1, D contains any value between
∑K

k=1 λk
∑G

g=1 P[Gi = g]ckg

and
∑K

k=1 λk
∑G

g=1 P[Gi = g]E[Yi|Gi = g]. Similarly,D contains any value between
∑K

k=1 λk
∑G

g=1 P[Gi =

g]c′kg and
∑K

k=1 λk
∑G

g=1 P[Gi = g]E[Yi|Gi = g]. In particular, D contains any value between∑K
k=1 λk

∑G
g=1 P[Gi = g]ckg and

∑K
k=1 λk

∑G
g=1 P[Gi = g]c′kg. Thus D is an interval.

This means that we can equivalently express (B.3) and (B.2) as optimization problems as follows:

D = [L,U ], where

L ≡ min
{ckg}∈[0,1]K

K∑
k=1

G∑
g=1

P[Gi = g]λkckg s.t. ∃{pkg} ∈ Pg with E[Yi|Gi = g] =

K∑
k=1

ckgpkg,

U ≡ max
{ckg}∈[0,1]K

K∑
k=1

G∑
g=1

P[Gi = g]λkckg s.t. ∃{pkg} ∈ Pg with E[Yi|Gi = g] =

K∑
k=1

ckgpkg, and

Pg = argmin
{pkg}∈[0,1]K

LK∑
r=1

v+r + v−r s.t.

K∑
k=1

pkg = 1, pkg, v
+
r , v

−
r ≥ 0 ∀k, r, and

P[Xℓi = xk,ℓ|Gi = g]−
K∑
j=1

1{xj,ℓ = xk,ℓ}pjg = v+K(ℓ−1)+k − v−K(ℓ−1)+k ∀ℓ, k.

The slack variables in the Pg problem will all be equal to zero at optimum.

Finally, since the constraints in L and U are for each g, we can equivalently solve a program

for each group g and take a weighted sum of the solutions to get lower and upper bounds for D,
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like so: D =
[∑G

g=1 P[Gi = g]Lg,
∑G

g=1 P[Gi = g]Ug

]
, where

Lg ≡ min
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. ∃{pkg} ∈ Pg with E[Yi|Gi = g] =

K∑
k=1

ckgpkg,

Ug ≡ max
{ckg}∈[0,1]K

K∑
k=1

λkckg s.t. ∃{pkg} ∈ Pg with E[Yi|Gi = g] =
K∑
k=1

ckgpkg.

B.3 Proof of Proposition 2

Proof. To prove sharpness of the identified set, it is sufficient to show that the following set is an

interval: for cg ≡ (c1g, . . . , cKg)
′,

{ K∑
k=1

G∑
g=1

P[Gi = g]λkckg

∣∣∣∣ Sgcg ≤ ag ∀g and ∃ (p1g, . . . , pKg) ∈ Pg, (c1g, . . . , cKg) ∈ [0, 1]K ∀g

s.t. E[Yi|Gi = g] =
K∑
k=1

ckgpkg ∀g
}
. (B.4)

We know that the set of cg ∈ [0, 1]KG such that Sgcg ≤ ag for all g is a convex, closed, and bounded

set because it is the intersection of a closed, bounded, and convex set with a half-space. This means

the set of values of
∑

k λkckg such that Sgcg ≤ ag for all g is also a closed and bounded and convex

set.

In the proof of Proposition 1 I argued that for any cg, c
′
g ∈ [0, 1]K with corresponding {pkg}, {p′kg} ∈

Pg that satisfy

E[Yi|Gi = g] =
K∑
k=1

ckgpkg E[Yi|Gi = g] =
K∑
k=1

c′kgp
′
kg (B.5)

Sgcg ≤ ag Sgc
′
g ≤ ag, (B.6)

we know tckg+(1−t)E[Yi|Gi = g] and tc′kg+(1−t)E[Yi|Gi = g] also satisfy (B.5) in place of ckg and

c′kg respectively, for any t ∈ [0, 1]. Thus for any
∑K

k=1 λk c̃kg between
∑K

k=1 λkckg and
∑K

k=1 λkc
′
kg,

{c̃kg} satisfies E[Yi|Gi = g] =
∑K

k=1 c̃kgpkg. And that (B.6) holds implies Sg(tcg + (1 − t)c′g) ≤ ag

for any t ∈ [0, 1], meaning that for any
∑K

k=1 λk c̃kg between
∑K

k=1 λkckg and
∑K

k=1 λkc
′
kg, {c̃kg}

satisfies Sg c̃g ≤ ag.

Thus any
∑K

k=1

∑G
g=1 P[Gi = g]λk c̃kg between

∑K
k=1

∑G
g=1 P[Gi = g]λkckg and

∑K
k=1

∑G
g=1 P[Gi =

g]λkc
′
kg is in the set given by (B.4), meaning (B.4) is an interval. Thus the sharp identified set is

an interval. The rest of Proposition 2 can be proved following arguments similar to those used in

the proof of Proposition 1.

31



B.4 Proof of Proposition 3

Proof. To prove sharpness of the identified set, it is sufficient to show that the following set is an

interval:

{ K∑
k=1

G∑
g=1

P[Gi = g]λkckg

∣∣∣∣ ∃ {pkg} ∈ Pg, {ckg} ∈ [0, 1]K ∀g s.t. E[Yi|Gi = g] =
K∑
k=1

ckgpkg ∀g,

E[Yi|Xℓi = xk,ℓ, Gi = g]P[Xℓi = xk,ℓ|Gi = g] =
K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg,∀g
}
. (B.7)

Note that the set of {ckg} ∈ [0, 1]KG such that

E[Yi|Xℓi = xk,ℓ, Gi = g]P[Xℓi = xk,ℓ|Gi = g] =
K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg ∀(ℓ, k) ∈ Fg, ∀g (B.8)

is a convex, closed, and bounded set because it is the intersection of a closed, bounded, and convex

half-space. This means the set of values of
∑

k λkckg such that (B.8) holds is also a closed and

bounded and convex set.

In the proof of Proposition 1 I argued that for any {ckg}, {c′kg} ∈ [0, 1]K with corresponding

{pkg}, {p′kg} ∈ Pg that satisfy

E[Yi|Gi = g] =

K∑
k=1

ckgpkg, E[Yi|Gi = g] =

K∑
k=1

c′kgp
′
kg, (B.9)

E[Yi|Xℓi = xk,ℓ, Gi = g]P[Xℓi = xk,ℓ|Gi = g] =
K∑
j=1

1{xj,ℓ = xk,ℓ}ckgpkg, (B.10)

E[Yi|Xℓi = xk,ℓ, Gi = g]P[Xℓi = xk,ℓ|Gi = g] =

K∑
j=1

1{xj,ℓ = xk,ℓ}c′kgp′kg, (B.11)

we know tckg+(1−t)E[Yi|Gi = g] and tc′kg+(1−t)E[Yi|Gi = g] also satisfy (B.9) in place of ckg and

c′kg respectively, for any t ∈ [0, 1]. Thus for any
∑K

k=1 λk c̃kg between
∑K

k=1 λkckg and
∑K

k=1 λkc
′
kg,

{c̃kg} satisfies E[Yi|Gi = g] =
∑K

k=1 c̃kgpkg.

Note that, similar to the claim made in the proof of Proposition 1, since P[Xℓi = xk,ℓ|Gi =

g] =
∑K

j=1 1{xj,ℓ = xk,ℓ}pkg =
∑K

j=1 1{xj,ℓ = xk,ℓ}p′kg it follows that (B.10) still holds when letting

ckg = E[Yi|Xℓi = xk,ℓ, Gi = g] and (B.11) still holds when letting c′kg = E[Yi|Xℓi = xk,ℓ, Gi = g].

Thus tckg+(1−t)E[Yi|Xℓi = xk,ℓ, Gi = g] in place of ckg and tc′kg+(1−t)E[Yi|Xℓi = xk,ℓ, Gi = g]

in place of c′kg also satisfy (B.10) and (B.11) respectively for any t ∈ [0, 1]. So for any
∑K

k=1 λk c̃kg

between
∑K

k=1 λkckg and
∑K

k=1 λkc
′
kg, {c̃kg} in place of {ckg} satisfies (B.10).

Thus any
∑K

k=1

∑G
g=1 P[Gi = g]λk c̃kg between

∑K
k=1

∑G
g=1 P[Gi = g]λkckg and

∑K
k=1

∑G
g=1 P[Gi =

g]λkc
′
kg is in the set given by (B.7), meaning (B.7) is an interval. Thus the sharp identified set is

an interval. The rest of Proposition 3 can be proved following arguments similar to those used in
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the proof of Proposition 1.

B.5 Proof of Proposition 4

Proof. I prove the result for D̂ defined with respect to Proposition 1, then discuss the additional

restrictions implied by Assumptions 2 and 3.

The result follows from the Theorem of the Maximum for the following correspondence:

Γ (y, {gk,ℓ}k,ℓ) = argmax
{pk,ck}k

(
argmin
{pk,ck}k

){ K∑
k=1

λkck s.t. y =
K∑
k=1

ckpk,
K∑
k=1

pk = 1,

gk,ℓ =

K∑
j=1

1{xj,ℓ = xk,ℓ}pj , ck ∈ [0, 1] ∀k, pk ≥ 0 ∀k
}
.

Since the P̂ r[Xℓi = xk,ℓ|Gi = g] are valid marginal distributions for Xi with respect to the assumed

support, this correspondence is analogous to the set defined in Proposition 2; that is, the constraints

in Pg hold with v+r = v−r = 0.

To apply the Theorem of the Maximum, I must show Γ is a continuous and compact-valued

correspondence. That Γ is compact-valued follows because the constraints are intersections of non-

parallel planes with a curve (y =
∑K

k=1 ckpk) on a compact set (ck ∈ [0, 1], pk ≥ 0,
∑K

k=1 pk = 1).

Let (yn, {gnk,ℓ}k,ℓ) be an arbitrary sequence such that (yn, {gnk,ℓ}ℓ,j) → (y, {gk,ℓ}k,ℓ) as n → ∞
and all yn, y ∈ [0, 1] and {gnk,ℓ}k,ℓ are valid marginal distributions given the assumed support. Let

({pnk}, {cnk}) be an arbitrary sequence such that ({pnk}, {cnk}) → ({pk}, {ck}) as n → ∞ and for each

n, ({pnk}, {cnk}) ∈ Γ
(
(yn, {gnk,ℓ}k,ℓ)

)
. If we can show ({pk}, {ck}) ∈ Γ((y, {gk,ℓ}k,ℓ)) then Γ is upper

hemicontinuous.

Since
∑K

k=1 p
n
k = 1 for all n, pnk ≥ 0 for all k, n, and pnk → pk for all k, it follows that

∑K
k=1 pk = 1

and pk ≥ 0 for all k. Since cnk ∈ [0, 1] for all k, n and cnk → ck for all k, it follows that ck ∈ [0, 1] for

all k. Since yn =
∑K

k=1 p
n
kc

n
k for all k, n and yn → y, dnk → dk, p

n
k → pk for all k, n, it follows that

y =
∑

k pkdk. Since gnk,ℓ =
∑K

j=1 1{xj,ℓ = xk,ℓ}pnj for all k, ℓ, n and we have pnk → pk, g
n
k,ℓ → gk,ℓ for

all k, ℓ, it follows that gk,ℓ =
∑K

j=1 1{xj,ℓ = xk,ℓ}pj for all k, ℓ. Thus ({pk}, {ck}) ∈ Γ((y, {gk,ℓ}k,ℓ))
and thus Γ is upper hemicontinuous.

Let (yn, {gnk,ℓ}k,ℓ) be an arbitrary sequence such that (yn, {gnk,ℓ}ℓ,j) → (y, {gk,ℓ}k,ℓ) as n → ∞
and all yn, y ∈ [0, 1] and {gnk,ℓ}k,ℓ are valid marginal distributions given the assumed support. Let

({pk}, {ck}) ∈ Γ(y, {gk,ℓ}k,ℓ) be arbitrary. If we can show there exists a subsequence (ynt , {gnt
k,ℓ}k,ℓ)

and sequence ({ptk}, {ctk}) such that ({ptk}, {ctk}) → ({pk}, {ck}) as t → ∞ and ({ptk}, {ctk}) ∈
Γ(ynt , {gnt

k,ℓ}k,ℓ) for all t, then Γ is lower hemicontinuous.

We know that gk,ℓ =
∑K

j=1 1{xj,ℓ = xk,ℓ}pj and
∑K

k=1 pk = 1. Because we assume each {gk,ℓ}
is a valid marginal distribution of covariates there are strictly less than K unique noncollinear

equations in this system of equations. We can express these equations as a linear system Ap = g,

33



where p = {pk} and g = {gk,ℓ}k,ℓ, and all solutions are given by p = A+g+(I −A+A)w, where A+

is the Moore-Penrose inverse and w is any arbitrary vector of correct dimension.

Thus the solution {pk} to this system of linear equations is continuous in {gk,ℓ}k,ℓ. Therefore

for each t there exists nt large enough that we can find {ptk} arbitrarily close to {pk} such that

gnt
k,ℓ =

∑K
j=1 1{xj,ℓ = xk,ℓ}ptj and

∑K
k=1 p

t
k = 1. Such a solution exists because we assume D̂ is

always nonempty with a valid marginal distribution of covariates {gnt
k,ℓ}.

Recall each pk ≥ 0. In fact, the proposition imposes as an assumption that we only need

consider {pk} such that each pk > 0. Thus we can make ptk ≥ 0 for each k. Thus we can construct

a sequence {ptk} with corresponding subsequence {gnt
k,ℓ}k,ℓ such that gnt

k,ℓ =
∑K

j=1 1{xj,ℓ = xk,ℓ}ptj
for all t,

∑K
k=1 p

t
k = 1 for all t, ptk ≥ 0 for all k, and ptk → pk for all k as t → ∞.

Given this sequence {ptk}, we need to find a corresponding sequence {ctk} and subsequence

{ynt} such that ynt =
∑K

k=1 c
t
kp

t
k and ctk ∈ [0, 1] for all k, t. Note that we can write the equation

y =
∑K

k=1 ckpk as p′c = y and consider the Moore-Penrose representation of the set of all solutions

c. As a matrix algebra result, it is true that the Moore-Penrose inverse of p is continuous, that is

(pt)
+ → p+ as long as the rank of pt is the same as the rank of p for all t. Since the rank of pt and

p is always 1, it follows that the solution c to the equation is continuous in p and y.

Therefore for each t there exists nt large enough that we can find {c̃tk} arbitrarily close to {ck}
with ynt =

∑K
k=1 c̃

t
kp

t
k (with some relabeling of the {ptk} sequence indices as necessary). We know

ck ∈ [0, 1] for each k, but it may be the case that c̃tk /∈ [0, 1] for some k. However for those k we

will have c̃tk arbitrarily close to [0, 1]. As argued in the proof of Proposition 1 it also holds that

ynt =
∑K

k=1 y
ntptk (and we know yn,t ∈ [0, 1]), meaning there exists another feasible {ctk} between

{c̃tk} and (ynt , . . . , ynt) that is arbitrarily close to {c̃tk} but with ctk ∈ [0, 1] for all k.

Thus we have sequence ({ptk}, {ctk}) with corresponding subsequence (ynt , {gnt
k,ℓ}k,ℓ) such that

({ptk}, {ctk}) → ({pk}, {ck}) as t → ∞, and ({ptk}, {ctk}) ∈ Γ(ynt , {gnt
k,ℓ}k,ℓ). Therefore Γ is lower

hemicontinuous.

We have shown Γ is a continuous and compact-valued correspondence. This means that L̂g

and Ûg are continuous functions of Ȳg and all P̂ r[Xℓi = xk,ℓ|Gi = g]. We also know that the

population Lg and Ug is the same continuous function of E[Yi|Gi = g] and all P[Xℓi = xk,ℓ|Gi = g].

Because Ȳg and all P̂ r[Xℓi = xk,ℓ|Gi = g] are consistent by the law of large numbers together with

the continuous mapping theorem, the continuous mapping theorem gives us that L̂g
p→ Lg and

Ûg
p→ Ug as n → ∞ for all g.

The law of large numbers also gives us that P̂ r[Gi = g] is consistent, so that by continuous

mapping theorem again we have that the lower and upper bounds of D̂ converge to the lower and

upper bounds of D.

To accommodate the restriction that Sgc ≤ ag under Assumption 2 in correspondence Γ, note

that any sequence {cnk} → {ck} with ({pnk}, {cnk}) ∈ Γ
(
(yn, {gnk,ℓ}k,ℓ)

)
satisfies Sgc

n ≤ ag and thus

Sgc ≤ ag by continuity as well. So upper hemicontinuity is maintained.

The assumption that D̂ is nonempty and the observed marginals are valid with respect to
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the assumed support ensures that for (yn, {gnk,ℓ}k,ℓ) → (y, {gk,ℓ}k,ℓ) there exists ({pk}, {ck}) ∈
Γ(y, {gk,ℓ}k,ℓ) and that Γ(ynt , {gnt

k,ℓ}k,ℓ) is nonempty. Let ({ptk}, {ctk}) ∈ Γ(ynt , {gnt
k,ℓ}k,ℓ) be a se-

quence such that maxk{|ptk−pk|, |ctk−ck|} is minimized over ({ptk}, {ctk}) ∈ Γ(ynt , {gnt
k,ℓ}k,ℓ) for each

t.

I claim ({ptk}, {ctk}) → ({pk}, {ck}). From the restrictions that gnt
k,ℓ = 1{xj,ℓ = xk,ℓ}ptj we know

maxk
∑K

k=1 |ptk − pk| → 0 as discussed above with the Moore-Penrose inverse solution to the linear

system, so {ptk} → {pk}. And if maxk
∑K

k=1 |ctk−ck| ̸→ 0 then ctkp
t
k ̸→ ckpk, meaning the constraint

y =
∑K

k=1 ckpk cannot hold either as ynt → y. Thus it must be that {ctk} → {ck} and so lower

hemicontinuity is also maintained because Sgc
t ≤ ag by assumption.

To accommodate the restriction

yk,ℓgk,ℓ =
K∑
j=1

1{xj,ℓ = xk,ℓ}cjpj (B.12)

under Assumption 3 in correspondence Γ, note that any sequence ({pnk}, {cnk}) → ({pk}, {ck}) with
({pnk}, {cnk}) ∈ Γ

(
(yn, {gnk,ℓ}k,ℓ, {ynk,ℓ}k,ℓ)

)
satisfies

ynk,ℓg
n
k,ℓ =

K∑
j=1

1{xj,ℓ = xk,ℓ}cnj pnj ,

and thus (B.12) holds by continuity as well. So upper hemicontinuity is maintained.

The assumption that D̂ is nonempty and the observed marginals are valid with respect to

the assumed support ensures that for (yn, {gnk,ℓ}k,ℓ, {ynk,ℓ}k,ℓ) → (y, {gk,ℓ}k,ℓ, {yk,ℓ}k,ℓ) there ex-

ists ({pk}, {ck}) ∈ Γ(y, {gk,ℓ}k,ℓ, {yk,ℓ}k,ℓ) and that Γ(ynt , {gnt
k,ℓ}k,ℓ, {y

nt
k,ℓ}k,ℓ) is nonempty. Let

({ptk}, {ctk}) ∈ Γ(ynt , {gnt
k,ℓ}k,ℓ, {y

nt
k,ℓ}k,ℓ) be a sequence such that maxk{|ptk − pk|, |ctk − ck|} is mini-

mized over ({ptk}, {ctk}) ∈ Γ(ynt , {gnt
k,ℓ}k,ℓ)for each t.

I claim ({ptk}, {ctk}) → ({pk}, {ck}). From the restrictions that gnt
k,ℓ = 1{xj,ℓ = xk,ℓ}ptj we know

maxk
∑K

k=1 |ptk − pk| → 0 as discussed above with the Moore-Penrose inverse solution to the linear

system. And if maxk
∑K

k=1 |ctk− ck| ̸→ 0 then ctkp
t
k ̸→ ckpk, meaning the constraints y =

∑K
k=1 ckpk

and yk,ℓgk,ℓ =
∑K

j=1 1{xj,ℓ = xk,ℓ}cjpj cannot hold either as ynt → y, gnt
k,ℓ → gk,ℓ, y

nt
k,ℓ → yk,ℓ. Thus

it must be that {ctk} → {ck} and so lower hemicontinuity is also maintained.

B.6 Proof of Proposition 5

Proof. Since Clopper-Pearson intervals are finite-sample valid for each sample observation, using

the Bonferroni correction means that the population analog of every single sample observation is

contained in its Clopper-Pearson interval with joint probability greater than 1− α.

Note that if all population analogs of the sample observations are jointly in their respective

Clopper-Pearson intervals then any {ckg} and {pkg} consistent with the population Pg and Lg, Ug

constraints in the formulation of D are also consistent with the P̂g,CI and L̂g,CI , Ûg,CI constraints in
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the formulation of D̂CI . Thus the set of
∑K

k=1 λkckg consistent with the population Pg and Lg, Ug

constraints in the formulation of D is a subset of the set of
∑K

k=1 λkckg consistent with the P̂g,CI

and L̂g,CI , Ûg,CI constraints in the formulation of D̂CI . And if the true P[Gi = g] are all contained

in their Clopper-Pearson intervals, it follows that D ⊆ D̂CI .

Since the event that all population analogs of the sample observations are jointly in their

respective Clopper-Pearson intervals happens with probability at least 1−α, it follows that P[D ⊆
D̂CI ] ≥ 1− α.

B.7 Proof of Corollary A.1

Proof. For given weights λ1, . . . , λK and any fixed {pkg} ∈ Pg, relabel the indices k = 1, . . . ,K so

that λ1
p1g

≥ · · · ≥ λK
pKg

, where if pkg = 0 we define λk
pgk

≡ +∞.

Note that the proposed solution in Corollary A.1 is feasible. We will take advantage of strong

duality (because Slater’s condition holds) and use the joint feasiblity and satisfaction of comple-

mentary slackness for proposed solutions to the primal and dual problems to show optimality.

The dual of the minimization linear program is

max
u∈R,v∈R2K

−E[Yi|Gi = g]u−
K∑
i=1

vi s.t. − pkgu− vk ≤ λk ∀k = 1, . . . ,K, vi ≥ 0 ∀i = 1, . . . ,K.

Let k be such that
∑k−1

j=1 pjg ≤ 1 − E[Yi|Gi = g] <
∑k

j=1 pjg holds. Consider a solution to the

dual where vi = 0 for all i ≤ k, and for i ≥ k we have that vi satisfies −pigu − vi = λi, meaning

u = − λk
pkg

. Thus for i > k we have vi > 0 because −pigu =
λkpig
pkg

≥ λi. Clearly this is a feasible

solution.

We see that complementary slackness holds with the condition that cig ≤ 1 for all i and vi ≥ 0

for all i because cig ̸= 1 for all i ≤ k while vi = 0 for all i ≤ k. Complementary slackness holds

with the condition that cig ≥ 0 for all i and −pigu − vi ≤ λi for all i because cig ̸= 0 for all i ≥ k

while −pigu− vi = λi for all i ≥ k.

Thus the proposed solution for the minimization problem is optimal.

The dual of the maximization linear program is

min
u∈R,v∈R2K

E[Yi|Gi = g]u+

K∑
i=1

vi s.t. pku+ vk ≥ λk ∀k = 1, . . . ,K, vi ≥ 0 ∀i = 1, . . . ,K.

Let k be such that
∑k−1

j=1 pjg ≤ E[Yi|Gi = g] <
∑k

j=1 pjg holds. Consider a solution to the dual

where vi = 0 for all i ≥ k, and for i ≤ k we have that vi satisfies pigu+ vi = λi, meaning u = λk
pkg

.

Thus for i < k we have vi > 0 because pigu =
λkpig
pkg

≤ λi. Clearly this is a feasible solution.

We see that complementary slackness holds with the condition that cig ≤ 1 for all i and vi ≥ 0

for all i because cig ̸= 1 for all i ≥ k while vi = 0 for all i ≥ k. Complementary slackness holds

with the condition that cig ≥ 0 for all i and pigu + vi ≥ λi for all i because cig ̸= 0 for all i ≤ k

while pigu+ vi = λi for all i ≤ k.
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Thus the proposed solution for the minimization problem is optimal.

B.8 Proof of Proposition A.1

Proof. First I show that D ⊆ DF .

SinceD is truly an interval, as proved when proving Proposition 1, there exists some {ckg}k,g, {pkg}k,g
that satisfy the constraints of Lg, Ug, and Pg where

∑G
g=1 P[Gi = g]

∑K
k=1 λkckg ∈ D.

By an argument analogous to that given in the proof of Proposition 1, the set of each ckg that

satisfy the constraints is the sharp identified set for E[Yi|Xi = xk, Gi = g]. Thus it is sufficient to

show that for each k, g,

Lg(1, xk)

Lg(1, xk) + Ug(0, xk)
≤ E[Yi|Xi = xk, Gi = g] ≤ Ug(1, xk)

Ug(1, xk) + Lg(0, xk)
.

This means
[

Lg(1,xk)
Lg(1,xk)+Ug(0,xk)

,
Ug(1,xk)

Ug(1,xk)+Lg(0,xk)

]
are also bounds, so it follows that

Lg(1, xk)

Lg(1, xk) + Ug(0, xk)
≤ ckg ≤ Ug(1, xk)

Ug(1, xk) + Lg(0, xk)
.

and thus
∑G

g=1 P[Gi = g]
∑K

k=1 λkckg ∈ DF .

Note

E[Yi|Xi = xk, Gi = g] = P[Yi = 1|Xi = xk, Gi = g]

=
P[Yi = 1, Xi = xk|Gi = g]

P[Xi = xk|Gi = g]

=
P[Yi = 1, Xi = xk|Gi = g]

P[Yi = 1, Xi = xk|Gi = g] + P[Yi = 0, Xi = xk|Gi = g]
.

One can check that the function x
x+y is increasing in x and decreasing in y; thus E[Yi|Xi = xk, Gi =

g] attains its minimum when P[Yi = 1, Xi = xk|Gi = g] is as small as possible and P[Yi = 0, Xi =

xk|Gi = g] is as large as possible. Similarly E[Yi|Xi = xk, Gi = g] attains its maximum when

P[Yi = 1, Xi = xk|Gi = g] is as large as possible and P[Yi = 0, Xi = xk|Gi = g] is as small as

possible.

Since P[Yi = 0, Xi = xk|Gi = g] ∈ [Lg(0, xk), Ug(0, xk)] and P[Yi = 1, Xi = xk|Gi = g] ∈
[Lg(1, xk), Ug(1, xk)], it follows then that E[Yi|Xi = xk, Gi = g] ∈

[
Lg(1,xk)

Lg(1,xk)+Ug(0,xk)
,

Ug(1,xk)
Ug(1,xk)+Lg(0,xk)

]
.

Now note that if the Fréchet inequalities on P[Yi = y,Xi = xk|Gi = g] are sharp for all

y ∈ {0, 1}, k = 1, . . . ,K, g = 1, . . . , G then P[Yi = 0, Xi = xk|Gi = g] attains its minimum at

Lg(0, xk) and its maximum at Ug(0, xk), and P[Yi = 1, Xi = xk|Gi = g] attains its minimum

at Lg(1, xk) and its maximum at Ug(1, xk). Thus bounds
[

Lg(1,xk)
Lg(1,xk)+Ug(0,xk)

,
Ug(1,xk)

Ug(1,xk)+Lg(0,xk)

]
on

E[Yi|Xi = xk, Gi = g] are indeed sharp and so D = DF .
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