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The solenoidal Heisenberg Virasoro algebra and its

simple weight modules
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Abstract

Let An = C[t±1

i , 1 ≤ i ≤ n] and W(n)µ = Andµ the solenoidal Lie algebra introduced by
Y.Billig and V.Futorny in [6], where µ = (µ1, . . . , µn) ∈ Cn is a generic vector and

dµ =

n∑

i=1

µiti

∂

∂ti

.

We consider the semi-direct product Lie algebra WA(n)µ := W(n)µ ⋉ An.
In the first part, We prove that WA(n)µ has a unique three-dimensional universal central

extension. In fact we construct a higher rank Heisenberg-Virasoro algebra (see [11, 14]). It
will be denoted by HVir(n)µ and it will be called the solenoidal Heisenberg-Virasoro algebra.
Then we will study Harish-Chandra modules of HVir(n)µ following [14]. We will obtain two
classes of Harich-Chandra modules: generalized highest weight modules(GHW modules) and
intermediate series modules. Our results are particular cases of [14]. In the end, we will
construct HVir(n)µ Verma modules using the lexicographic order on Zn. In particular we
give examples of irreducible weight modules which have infinite dimensional weight spaces.
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1 Introduction

The Heisenberg-Virasoro algebra HVir was first introduced in [3], where highest weight
modules were studied and a determinant formula for the Shapovalov form on Verma modules was
obtained. In [15] (see also [12], [9]), Lu and Zhao classified the irreducible Harish-Chandra modules
over HVir, which turn out to be modules of intermediate series and highest/lowest weight modules.
Whittaker modules for HVir were studied by [13]. Recently, a large class of irreducible non-weight
modules were constructed in [8]. The generalized Heisenberg Virasoro algebras are generalization
of the Heisenberg-Virasoro algebras where the grading by Z is replaced by an additive subgroup
G of C. Their representation theory was considered by several authors, see for example [11,18].

Recently in [4, 5], Y. Billig and V. Futorny study weight modules of finite weight spaces of
the Lie algebra W(n) of vector fields on the torus. They prove that such modules are highest
modules or quotients of modules of tensor fields. In [6], they introduced so called solenoidal
Lie algebra W(n)µ := Andµ as a bridge between the Lie algebra W(1) and the Lie algebra

W(n) where µ = (µ1, . . . µn) is a generic element in Cn and dµ =
n∑

i=1

µiti
∂

∂ti
. Then they give a

classification of the simple cuspidal W(n)µ-modules. In a forthcoming paper (see [2]), we compute
the second cohomology space H2(W(n)µ,C). The universal central extension of W(n)µ is a new
generalization of the Virasoro algebra, denoted Vir(n)µ and is called the solenoidal-Virasoro
algebra. Then we give a complete classification of its Harish-Chandre modules.

In this paper we consider the semi-direct product WA(n)µ := W(n)µ ⋉ An, the analogue
of the Lie algebra WA(1) = W(1) ⋉ A1 in the case n = 1. The first section of this paper
contains our main result given by Theorem 2.1. We compute three generating 2-cocycles and
then we classify the universal central extension of WA(n)µ. The obtained three-dimensional
central extension of WA(n)µ is called the solenoidal Heisenberg-Virasoro algebra and is denoted
by HVir(n)µ. In the second section, we study Harish-Chandra modules over HVir(n)µ. In [14],
G.Liu and X.Guo give the definition of generalized Heisenberg-Virasoro algebras HVir[G] where
G is an additive subgroup of C. When G ≃ Zn, HVir[G] is called rank n Heisenberg-Virasoro
algebra. Our algebra HVir(n)µ is an example of rank n Heisenberg-Virasoro algebra.

In the second section, following [14], we classify Harish-Chandra modules of HVir(n)µ. We
obtain tow kinds of modules, generalized highest weight modules (GHW modules) or intermediate
series modules. For n = 1, we obtain the classification results for the classical Heisenberg-Virasoro
algebra given by R. Lü and K. Zhao (see [15]).

In the third section, we introduce a triangular decomposition of HVir(n)µ using the lex-
icographic order on Zn, then we define Verma modules and anti-Verma modules. As the usual
highest weight theory, we obtain irreducible highest weight modules and irreducible lowest weight
modules of HVir(n)µ by taking respectively quotients of Verma modules and anti-Verma modules.
In the end, we provide that these modules have infinite dimensional weight spaces.
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2 The solenoidal Heisenberg-Virasoro algebra HVir(n)µ

Let An = C[t±1
i , 1 ≤ i ≤ n] be the algebra of Laurent polynomials and let µ = (µ1, . . . , µn) ∈

Cn generic, that is, for all α = (α1, . . . , αn) ∈ Zn , µ · α :=
n∑

i=1

µiαi 6= 0. Let dµ :=
n∑

i=1

µiDti
,

where Dti
= ti

∂
∂ti

. Y. Billig and V. Futorny [6], introduced the solenoidal-Witt Lie algebra
W(n)µ := Andµ as the Lie subalgebra of the Lie algebra W(n) = Der(An). Let

Γµ = {µ · α; α ∈ Zn}.

It is the image of Zn by the map :
σµ : Zn −→ C

α 7→ µ · α

Γµ is a subgroup of (C, +). A canonical basis of W(n)µ is given by:

{eµ·α := tαdµ, µ · α ∈ Γµ}.

The commutators of the eµ·α are given by:

[eµ·α, eµ·β ] = µ · (β − α)eµ·(α+β), µ · α, µ · β ∈ Γµ. (2.1)

In the case of n = 1, we take µ ∈ C∗ then Γµ = µZ and W(n)µ is isomorphic to W(1) by taking
dm → γdm where γ is the square root of µ . In particular if µ = 1 we obtain the classical Witt
algebra W(1).

In the recent paper (see [2]) , we study the central extension of the solenoidal Lie algebra
W(n)µ introduced by Y. Billig and V.Futorny (see [6]), we obtain an analogue of the Virasoro
algebra and we called it the solenoidal Virasoro algebra and we denoted it by Vir(n)µ. Then we
give a classification of Harish-Chandra modules over Vir(n)µ. Also, we construct Vir(n)µ-modules
with infinite dimensional weight spaces by using the lexicographic order on Zn.

In this paper we consider the Lie algebra WA(n)µ := W(n)µ ⋉ An. Its canonical basis is:

{eµ·α = tαdµ, hα = tα, µ · α ∈ Γµ, α ∈ Zn}

Its Lie structure generated by the following brackets:

[eµ·α, eµ·β ] = µ · (β − α)eµ·(α+β).

[hα, hβ ] = 0.

[eµ·α, hβ ] = (µ · β)hα+β .

The main purpose of this paper is to compute central extensions of the algbera WA(n)µ.

The following theorem is a generalization to multidimensional case of Theorem 3 and Propo-
sition 3 in [17] where the extension of the Lie algebra V ect(S1) of vector fields on the circle by
modules of tensor densities Fλ is study.

Theorem 2.1. The second cohomology space H2(WA(n)µ,C) is three dimensional and it is gen-
erated by the following 2-cocycles Cµ,1, Cµ,2, Cµ,3 : WA(n)µ × WA(n)µ −→ C defined by:
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{
Cµ,1(eµ·α, eµ·β) := δα,−β

(µ·α)3−(µ·α)
12 cµ,1

0 otherwise
, (2.2)

{
Cµ,2(eµ·α, hβ) := δα,−β((µ · α)2 − (µ · α))cµ,2

0 otherwise
, (2.3)

{
Cµ,3(hα, hβ) := δα,−β

(µ·α)
3 cµ,3

0 otherwise
, (2.4)

Proof. The fact that the 2-cochains

Cµ,1, Cµ,2, Cµ,3 : WA(n)µ × WA(n)µ −→ C

are 2-cocycles is a straight forward computations using the 2-cocycle condition:

Cµ,i([X, Y ], Z) + Cµ,i([Y, Z], X) + Cµ,i([Z, X], Y ) = 0, (2.5)

For i = 1, 2, 3; X, Y, Z ∈ WA(n)µ.

Let us now prove the unicity of the 2-cocycles Cµ,1, Cµ,2, Cµ,3.

Denote Xα,1 = eµ·α and Xα,2 = hα. The first step, we prove that for i ∈ {1, 2, 3} and
j, k ∈ {1, 2} each cocycle has the following form:

Cµ,i(Xα,j , Xβ,k) = δi,j+k−1δα,−βθi(µ · α)cµ,i, for all α, β ∈ Zn.

The second step, we apply known results on functional equations (see [10], [1]) to give the final
expressions.

Take X = Xα,j, Y = Xβ,k and Z = Xγ,l. Since condition (2.5) is cyclic in X, Y, Z, it suffices
to take (j, k, l) ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 2)} corresponding respectively to {Cµ,1, Cµ,2, Cµ,3} since
the left hand side in condition (2.5) is equal to zero for the other possibilities.

Let us start by proving the unicity of Cµ,1. So we take (j, k, l) = (1, 1, 1), that is (Xα,1, Xβ,1, Xγ,1) =
(eµ·α, eµ·β , eµ·γ). Assume that there exists Ψ1 : Γµ × Γµ → C such that:

[eµ·α, eµ·β ]HV irµ
= (µ · β − µ · α)eµ·(α+β) + Ψ1(µ · α, µ · β)cµ,1. (2.6)

The function Ψ1(µ · α, µ · β) can not be chosen arbitrary because of the anti-commutativity
of the bracket and of the Jacobi identity. We observe from (2.6) that if we put:

e′
µ·0 = eµ·0, e′

µ·α = eµ·α +
Ψ1(0, µ · α)

µ · α
cµ,1, (α 6=

−→
0 ),

then we will have
[e′

µ·0, e′
µ·α]HV irµ

= (µ · α)e′
µ·α for all µ · α ∈ Γµ.

This transformation is merely a change of basis and we can drop the prime and say that:

[eµ·0, eµ·α]HV irµ
= (µ · α)eµ·α for all µ · α ∈ Γµ. (2.7)

From the Jacobi identity for eµ·0, eµ·α, eµ·β we get

[eµ·0, [eµ·β , eµ·α]HV irµ
]HV irµ

= µ · (β + α)[eµ·β , eµ·α]HV irµ
(2.8)
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Substituting (2.6) in (2.8) and using (2.7) we get:

µ · (α + β)Ψ1(µ · α, µ · β)cµ,1 = 0.

But this is equivalent to α + β =
−→
0 or Ψ1(µ · α, µ · β) = 0. Then Ψ1 has the following form:

Ψ1(µ · α, µ · β) = δα,−βθ1(µ · α) (2.9)

where θ1 is a function from Γµ to C.

The Lie bracket (2.6) becomes:

[eµ·α, eµ·β ]HV irµ
= (µ · β − µ · α)eµ·(α+β) + δα,−βθ1(µ · α)cµ,1, µ · α, µ · β ∈ Γµ. (2.10)

By antisymmetry of the bracket, we deduce that θ1 is an odd function (θ1(µ · α) = −θ1(−µ · α))
and by bilinearity of the bracket, we deduce that θ1 is additive. So, θ1 is a group morphism from
(Γµ, +) to (C, +).

We now work out the 2-cocycle condition (2.5) on Cµ,1 for eµ·γ , eµ·α, eµ·β . If γ + β + α 6=
−→
0

then (2.5) is satisfied. If γ + β + α =
−→
0 , using (2.10) and the the fact that θ1 is odd, we get from

(2.5) the following equation:

µ · (α − β)θ1(µ · (α + β)) − µ · (2β + α)θ1(µ · α) + µ · (β + 2α)θ1(µ · β) = 0 (2.11)

where θ1 is a continuous function. Substituting β by −β in (2.11) we obtain the following equation:

µ · (α + β)θ1(µ · (α − β)) − µ · (α − 2β)θ1(µ · α) − µ · (2α − β)θ1(µ · β) = 0 (2.12)

by adding (2.11) and (2.12) we get:

(µ ·α)[θ1(µ ·(α+β))+θ1(µ ·(α−β))−2θ1(µ ·α)] = (µ ·β)[θ1(µ ·(α+β))+θ1(µ ·(β −α))−2θ1(µ ·β)]
(2.13)

Let us denoted x := µ · α and y := µ · β and replace them in (2.13) we will obtain:

x[θ1(x + y) + θ1(x − y) − 2θ1(x)] = y[θ1(x + y) − θ1(x − y) − 2θ1(y)] (2.14)

But (2.14) is equivalent to the following equation:

2xθ1(x) − 2yθ1(y) = (x − y)θ1(x + y) + (x + y)θ1(x − y). (2.15)

Using results on functional equations by PL.Kannappan,T.Riedel and P.K.Sahoo (see [10]),
the equation (2.15) has the following general solution:

θ1(x) = ax3 + A(x)

where A : C 7→ C is an additive function. Since we work with continuous function θ1, then A will
be continuous and additive function, and so it is a linear function A(x) = bx, b ∈ C.

Finally, θ1(x) = ax3 + bx where a, b ∈ C and for x = µ · α we have:

θ1(µ · α) = a(µ · α)3 + b(µ · α).
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The 2-cocycle θ1 is non trivial if and only if a 6= 0 while b can be chosen arbitrary. By the
convention taken in Virasoro 2-cocycle ( n = 1 ), the choice a = −b = 1

12 and the generating
2-cocycle becomes:

Cµ,1(eµ·α, eµ·β) = δα,−βθ1(µ · α)cµ,1 =
(µ · α)3 − µ · α

12
δα,−βcµ,1. (2.16)

For the unicity of the 2-cocycle Cµ,2, we take (j, k, l) = (1, 1, 2). Assume that there exists
Ψ2 : Γµ × Γµ → C such that:

[eµ·α, hβ]HV irµ
= (µ · β)hα+β + Ψ2(µ · α, µ · β)cµ,2. (2.17)

The function Ψ2(µ · α, µ · β) can not be chosen arbitrary because of the anti-commutativity
of the bracket and of the Jacobi identity. We observe from (2.17) that if we put:

e′
µ·0 = eµ·0, h′

α = hα +
Ψ2(0, µ · α)

µ · α
cµ,2, (α 6=

−→
0 ),

then we will have
[e′

µ·0, h′
α]HV irµ

= (µ · α)h′
α for all α ∈ Zn.

This transformation is merely a change of basis and we can drop the prime and say that:

[eµ·0, hα]HV irµ
= (µ · α)hα for all α ∈ Zn (2.18)

From the Jacobi identity for eµ·0, eµ·α, hβ , we get:

[eµ·0, [eµ·α, hβ ]HV irµ
]HV irµ

= µ · (β + α)[eµ·α, hβ ]HV irµ
(2.19)

Substituting (2.17) in (2.19) and using (2.18) we get:

µ · (α + β)Ψ2(µ · α, µ · β)cµ,2 = 0.

But this is equivalent to α + β =
−→
0 or Ψ2(µ · α, µ · β) = 0. Then Ψ2 has the following form:

Ψ2(µ · α, µ · β) = δα,−βθ2(µ · α) (2.20)

where θ2 is a function from Γµ to C.

We now work out the 2-cocycle condition on Cµ,2 for (Xα,1, Xβ,1, Xγ,2) = (eµ·α, eµ·β , hγ). If

γ + β + α 6=
−→
0 then (2.5) is satisfied. If γ + β + α =

−→
0 , using (2.9) and the the fact that θ2 is

odd, we get from (2.5) the following equation:

(µ · β − µ · α)θ2(µ · (α + β)) − (µ · (α + β))θ2(µ · β) + (µ · β + µ · α)θ2(µ · α) = 0

Put x = µ · α and y = µ · β, then we will obtain:

(y − x)θ2(x + y) = (y + x)(θ2(y) − θ2(x)) (2.21)

If x = y or x = −y the equation (2.21) is satisfied. If x 6= y and x 6= −y, then (2.21) is equivalent
to the following equation:

θ2(x + y)

x + y
=

θ2(x) − θ2(y)

x − y
(2.22)
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If x 6= 0, put h(x) = θ2(2x)
2x

, so we have:

θ2(x) − θ2(y)

x − y
= h(

x + y

2
) (2.23)

This is the well known Aczél functional equation (see [1]). Its general solution is given by:

θ2(x) = ax2 + bx + c, for a, b, c ∈ R

and h is C1-function such that h(x) = θ′
2(x). But in our case θ2(0) = 0 then c = 0 and θ2 becomes:

θ2(x) = ax2 + bx ∀ a, b ∈ R.

Following the choice of the 2-cocycle in the twisted Heisenberg-Virasoro algebra corresponding
to one variable ( n = 1 ), we take a = 1 and b = −1 then we obtain:

θ2(µ · α) = (µ · α)2 − µ · α.

For the unicity of the 2-cocycle Cµ,3, we take (j, k, l) = (1, 2, 2). Assume that there exists
Ψ3 : Γµ × Γµ →∈ C such that:

[hα, hβ ]HV irµ
= Ψ3(µ · α, µ · β)cµ,3. (2.24)

From the Jacobi identity for eµ·0, hα, hβ we get:

µ · (α + β)Ψ3(µ · α, µ · β)cµ,3 = 0.

But this is equivalent to α + β =
−→
0 or Ψ3(µ · α, µ · β) = 0. Then Ψ3 has the following form:

Ψ3(µ · α, µ · β) = δα,−βθ3(µ · α) (2.25)

where θ3 is a function from Γµ to C. We will have:

[hα, hβ ]HV ir = δα,−βθ3(µ · α)cµ,3,

with θ3(0) = 0, θ3(−µ · α) = −θ3(µ · α).

Let α, β, γ ∈ Zn and α+β +γ =
−→
0 . We apply the 2-cocycle condition for (Xα,1, Xβ,2, Xγ,2) =

(eµ·α, hβ , hγ) we obtain the equation:

(µ · β)θ3(µ · (α + β)) − (µ · α + µ · β)θ3(µ · β) = 0. (2.26)

If we put x = µ · α and y = µ · β, then (2.26) becomes:

yθ3(x + y) = (y + x)θ3(y) (2.27)

If x = 0 or y = 0 the equation (2.27) is satisfies.
If x 6= 0 and y 6= 0, then (2.27) is equivalent to:

θ3(x + y) − θ3(y)

x
=

θ3(y)

y
. (2.28)
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Let X = x + y, Y = y, then (2.28) becomes:

θ3(Y ) − θ3(X)

Y − X
=

θ3(Y )

Y
. (2.29)

If Y approaches X( Y → X) in the first member of (2.29), we obtain the following differential
equation:

θ′
3(X) =

θ3(X)

X

which has solution θ3(X) = aX, a ∈ C.

Following the choice of the 2-cocycle in the twisted Heisenberg-Virasoro algebra corresponding
to one variable ( n = 1 ), we take a = 1/3 then we obtain

θ3(µ · α) =
µ · α

3
.

Definition 2.2. The central extension of WA(n)µ given by the three 2-cocycles Cµ,1, Cµ,2 and
Cµ,3 in Theorem 2.1 is called the solenoidal Heisenberg-Virasoro algebra (HVir(n)µ, [., .]HV irµ

)
where

HVir(n)µ := WA(n)µ ⊕ Ccµ,1 ⊕ Ccµ,2 ⊕ Ccµ,3.

and where its Lie bracket [., .]HV irµ
is generated by the following brackets:

[eµ·α, eµ·β ]HV irµ
= µ · (β − α)eµ·(α+β) + δα,−β

(µ · α)3 − (µ · α)

12
cµ,1 (2.30)

[eµ·α, hβ ]HV irµ
= (µ · β)hα+β + δα,−β((µ · α)2 − (µ · α))cµ,2 (2.31)

[hα, hβ ]HV irµ
= δα,−β

(µ · α)

3
cµ,3 (2.32)

[cµ,i, HVir(n)µ]HV irµ
= 0 for all i = 1, 2, 3. (2.33)

Remark 2.3. 1) The name solenoidal Heisenberg-Virasoro algebra comes from the facts that
HVir(n)µ contains a subalgebra isomorphic to Vir(n)µ generated by {eµ·α, cµ,1 | α ∈ Zn}
and a subalgebra

H(n)µ :=
(

⊕α∈Zn Chα

)
⊕ Ccµ,2

which is isomorphic to an infinite dimensional Heisenberg algebra graded by Zn.

2) For a given 2-cocycle Cµ : WA(n)µ × WA(n)µ → C, there exists (a1, a2, a3) ∈ C3 such that
Cµ = a1Cµ,1 + a2Cµ,2 + a3Cµ,3. By bilinearity its expression is given as following:

Cµ((eµ·α, hβ), (eµ·γ , hη)) = a1Cµ,1(eµ·α, eµ·γ)+
a2(Cµ,2(eµ·α, hη) − Cµ,2(eµ·γ , hβ))+
a3Cµ,3(hβ , hη)

for all α, β, γ, η ∈ Zn.

Moreover, The Lie bracket of HVir(n)µ is given by:

[X, Y ]HV irµ
= [X, Y ] + Cµ(X, Y ), for all X, Y ∈ HVir(n)µ.
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3 Harish Chandra modules for HVir(n)µ

3.1 Generalities on Harish-Chandra modules

Let V be a nonzero HVir(n)µ-module. Suppose that the central elements cµ,1, cµ,2, cµ,3 and h0

act as scalars c1, c2, c3, F respectively, on V . Set

Vλ = {v ∈ V |dµv = λv},

which is called a weight space of weight λ. Then V is called a weight module if V = ⊕λ∈CVλ.
Denote supp(V ) = {λ|Vλ 6= 0}, which is called the support of V.

Definition 3.1. A weight HVir(n)µ-module V is called Harish-Chandra if dim Vλ < ∞ for
all λ ∈ supp(V ) and is called uniformly bounded or cuspidal if there is some N ∈ N such that
dimVλ < N for all λ ∈ supp(V ).

Definition 3.2. A weight HVir(n)µ-module V is called a module of the intermediate series if it
is indecomposable and all its weight spaces are at most one dimensional.

3.2 Intermediate series of HVir(n)µ

Proposition 3.3. Let Tµ(a, b, F ) the Γµ-graded vector space:

Tµ(a, b, F ) = ⊕µ·κ∈Γµ
vµ·κ+a

where a, b, F ∈ C. We define an action of HVir(n)µ on Tµ(a, b, F ) by:

eµ·α.vµ·κ+a = (a + µ · κ + b(µ · α))vµ·(κ+α)+a,

hα.vµ·κ+a = Fvµ·(κ+α)+a,

cµ,1vµ·κ+a = 0, cµ,2vµ·κ+a = 0, cµ,3vµ·κ+a = 0

(3.1)

for all κ, α ∈ Zn. Then Tµ(a, b, F ) is a HVir(n)µ-module for this action.

Remark 3.4. The weight spaces of Tµ(a, b, F ) are one dimensional. Then Tµ(a, b, F ) are called
cuspidal or intermediate series modules.

It is easy to check that the HVir(n)µ-module Tµ(a, b, F ) is reducible if and only if F =
0, a ∈ Γµ and b = 0, 1. The module Tµ(0, 0, 0) contains Cv0 as a submodule and the quotient
Tµ(0, 0, 0)/Cv0 is irreducible. The module Tµ(0, 1, 0) contains ⊕

α∈Zn\{
−→
0 }

Cvµ·α as irreducible

submodule of codimension one. By duality, it will be isomorphic to Tµ(0, 0, 0)/Cv0. We will
denote it T µ(0, 0, 0).

Let V be a nontrivial irreducible weight HVir(n)µ-module with weight multiplicity one. We
may assume that h0, cµ,1, cµ,2, cµ,3 act as scalars F, c1, c2, c3 respectively.

Following Lemma 3.1 and Lemma 3.2 in [15], we will prove the following proposition:

Proposition 3.5. Let µ = (µ1, . . . , µn) ∈ Cn a generic element that is:

µ · α 6= 0, ∀ α = (α1, . . . , αn) ∈ Zn \ {
−→
0 }.
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Let V := ⊕µ·κ∈Γµ
Cvµ·κ be a HVir(n)µ-module the action given by:

eµ·α.vµ·κ+a = (a + µ · κ + b(µ · α))vµ·(κ+α)+a.

hα.vµ·κ+a = Fµ·α,µ·κvµ·(κ+α)+a and cµ,ivµ·κ+a = civµ·κ+a for i ∈ {1, 2, 3}.

Then all Fµ·α,µ·κ are equal to a constant F and ci = 0 for i ∈ {1, 2, 3} and such module V is
isomorphic to Tµ(a, b, F ).

Proof. It is strait forward to prove that c1 = 0 by restriction to Vir(n)µ and using results by [7,16].

It is clear that supp(V ) ⊂ a + Γµ for some a ∈ C. We give a proof by induction on n to prove
that Fµ·α,µ·κ = F for all α, κ ∈ Zn.

For n = 1, Proposition 3.5 is Lemma 3.1 in the paper [15].
Let us prove the case of n = 2. Let h(l,m) = tl

1tm
2 and let H(2) = ⊕(l,m)∈Z2Ch(l,m) ⊕ Ccµ,3 be

the Heisenberg subalgebra of HVir(2)µ and let V = ⊕(p,q)∈Z2Cvµ1p+µ2q. Let us fix l and p and
consider Hl(1) = ⊕m∈ZCh(l,m) ⊕ Ccµ,3 and Vp = ⊕q∈ZCvµ1p+µ2q. Then Hl(1) is a subalgebra
of H(2) isomorphic to the Heisenberg algebra H(1) and Vp is an intermediate module for Hl(1).
By Lemma 3.1 in the paper [15], h(l,m) acts by a constant Fl,p which depends on l, p ∈ Z but
independent of m and q and cµ,3 act by zero on Vp for all p. If we interchange n by m and p by q,
then Fl,p will be independent of l and p and then it will be a constant F for all (l, m) ∈ Z2 and
cµ,3 act by zero on all V .

Now, assume that the proposition is true on Zn−1 where n ∈ N and n ≥ 2. Let Hm(n − 1) =
⊕α∈Zn−1Ch(α,m) ⊕Ccµ,3 and Vq = ⊕β∈Zn−1Cvµ′·β+µnq where µ′ = (µ1, . . . , µn−1). By the induction
hypothesis Hm(n−1) acts by a constant Fm,q on Vq which depends only on m and q for the moment
and cµ,3 act by zero on Vq. Now if we fix α, β ∈ Zn−1 and consider Hα(1) = ⊕m∈ZCh(α,m) ⊕Ccµ,3

and Vβ := ⊕q∈ZCvµ′·β+µnq, then Fm,q will be independent of m and q and then it will be a constant
F for all (α, m) ∈ Zn.

3.3 Generalized highest weight modules

For µ = (µ1, µ2, . . . , µn) ∈ Cn, let µ′ = (µ2, . . . , µn) ∈ Cn−1. For any α = (α1, . . . , αn) ∈ Zn

we have µ · α = µ1α1 + µ′ · α′ where α′ = (α2, . . . , αn). This induces a natural embedding of Γµ′ in
Γµ given by µ′ ·α′ 7→ µ · (0, α′). The embedding Γµ′ →֒ Γµ as defined below, induces an embedding
of the Lie algebra HVir(n − 1)µ′ into the Lie algebra HVir(n)µ given by:

eµ′·α′ 7→ eµ·(0,α′) and hα′ 7→ h(0,α′).

Let An−1 = C[t±1
2 , . . . , t±1

n ], then we have the following Z-grading of HVir(n)µ:

HVir(n)µ = ⊕i∈ZHVir(n)i
µ

where HVir(n)0
µ = An−1dµ ⊕An−1 ⊕

∑3
i=1 Ccµ,i and HVir(n)i

µ = ti
1An−1dµ ⊕ ti

1An−1 ⊕
∑3

i=1 Ccµ,i

if i 6= 0. The Lie subalgebra HVir(n)0
µ of HVir(n)µ is isomorphic to HVir(n − 1)µ′ . The algebra

HVir(n)µ has a triangular decomposition

HVir(n)+
µ ⊕ HVir(n)0

µ ⊕ HVir(n)−
µ

where HVir(n)±
µ := ⊕i∈±NHVir(n)i

µ.
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For a, b ∈ C, we denote Tµ′(a, b, F ) the HVir(n)0
µ module of tensor fields

Tµ′(a, b, F ) = ⊕µ′·κ′∈Γµ′
Cvµ′·κ′

subject to the action:

eµ′·α′ .vµ′·κ′ = (a + µ′ · κ′ + b(µ′ · α′))vµ′.(α′+κ′),

hα′ .vµ′.κ′ = Fvµ′·(κ′+α′),

cµ,i.vµ′·κ′ = 0 for i = 1, 2, 3 and µ′ · κ′, µ′ · α′ ∈ Γ′
µ·

(3.2)

We extend the HVir(n)0
µ module structure on Tµ′(a, b, F ) given by (3.2) to HVir(n)+

µ ⊕
HVir(n)0

µ where the elements of HVir(n)+
µ act by zero on Tµ′(a, b, F ). Let

M̃(a, b, Γµ′) = Ind
HVir(n)µ

HVir(n)+
µ ⊕HVir(n)0

µ

Tµ′(a, b, F )

be the generalized Verma module. As vector spaces we have M̃(a, b, Γµ′) ∼= U(HVir(n)−
µ ) ⊗

Tµ′(a, b, F ). The module M̃ (a, b, Γµ′) has a unique maximal proper submodule M(a, b, Γµ′) trivially
intersecting Tµ′(a, b, F ). The quotient module

L(a, b, Γµ′) := M̃(a, b, Γµ′)/M (a, b, Γµ′)

is uniquely determined by the constants a, b and

L(a, b, Γµ′) = ⊕i>0La−iµ1+Γµ′

where La−iµ1+Γµ′
= ⊕µ′·κ∈Γµ′

La−iµ1+µ′·κ and

La−iµ1+µ′·κ = {v ∈ L/dµv = (a − iµ1 + µ′ · κ)v}

We can similarly define M̃a+iµ1+Γµ′
and M̃a−iµ1+Γµ′

.

Definition 3.6. Let (u1, . . . , un) be a Z-basis of Γµ and let Γ>0
µ := Z+u1 ⊕ . . . ⊕ Z+un and

HVir(n)>0
µ := ⊕u∈Γ>0

µ
(HVir(n)µ)u. Let V be a weight module such that there exists λ0 ∈ Supp(V )

and a nonzero vector vλ0
∈ Vλ0

such that : HVir(n)>0
µ vλ0

= 0. Then V is said to be a generalized
highest weight module with generalized highest weight λ0 and generalized highest weight vector vλ0

.
Such module V is denoted by V (λ0).

In G.Liu and X.Guo (see [14] Theorem.16) , it is proved that for a generalized Heisenberg-
Virasoro algebra an irreducible weight module with finite dimensional weight spaces is either a
cuspidal or a generalized highest weight module. In our particular case, any irreducible HVir(n)µ-
module is either cuspidal or isomorphic to L(a, b, Γµ′).

Definition 3.7. A HVir(n)µ-module V is called a dense module if supp(V ) = a + Γµ, a ∈ C

and is called a cut module if supp(V ) ⊂ λ + γ + Γ
(α)
≤0 where Γ

(α)
≤0 := {µ · β|β ∈ Zn and β.α ≤

0} and γ ∈ Γµ.

The modules Tµ(a, b, F ) are irreducible dense modules and L(a, b, Γµ′) are irreducible cut

modules.

The following theorem is a consequence of Theorem 15 and Theorem 16 in [14]. It classifies
Harish-chandra modules of HVir(n)µ.
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Theorem 3.8. Let V be a nontrivial irreducible weight module with finite dimensional weight
spaces over the Heisenberg solenoidal-Virasoro algebra HVir(n)µ.

1) If n = 1 then Γµ = µZ ≃ Z, then V is of intermediate series or highest or lowest module
(see [12,15]).

2) If n ≥ 2, then V is isomorphic to one of the following modules:

a) V ∼= Tµ(a, b, F ) for (a, b) ∈ C2 \ {(0, 0)} or V ∼= T µ(0, 0, 0).

b) V ∼= L(a, b, Γµ′) for some a, b ∈ C.

4 Simple Weight HVir(n)µ-modules having infinite dimensional

weight spaces

Let Zn be the free abelian group of rank n whose elements are sequences of n integers, and
operation is the addition. A group order on Zn is a total order, which is compatible with addition,
that is

a < b if and only if a + c < b + c.

The lexicographical order <lex is a group order on Zn.

We transport the lexicographic order <lex on Zn to Γµ that is

µ · α ≺ µ · β if and only if α <lex β.

Let us introduce

∆+ := {α ∈ Zn|
−→
0 <lex α} , ∆− := {α ∈ Zn|α <lex

−→
0 }

Γ+
µ := σµ(∆+) := {µ · α|

−→
0 <lex α} , Γ−

µ := σµ(∆−) := {µ · α|α <lex
−→
0 }

Let (Vir(n)µ)+, (Vir(n)µ)−, (Vir(n)µ)0, (H(n)µ)+, (H(n)µ)− and (H(n)µ)0 be the subalge-
bras defined by:

(Vir(n)µ)+ =
⊕

α∈∆+

Ceµ·α, (Vir(n)µ)− =
⊕

α∈∆−

Ceµ·α, (Vir(n)µ)0 = Cdµ ⊕ Ccµ,1,

(H(n)µ)+ =
⊕

α∈∆+

Chα, (H(n)µ)− =
⊕

α∈∆−

Chα, (H(n)µ)0 = Ch0 ⊕ Ccµ,2
.

The algebra HVir(n)µ has the following triangular decomposition:

HVir(n)µ = (HVir(n)µ)+ ⊕ (HVir(n)µ)0 ⊕ (HVir(n)µ)−

where,
(HVir(n)µ)± = (H(n)µ)± ⊕ (Vir(n)µ)±,

(HVir(n)µ)0 = Ceµ·0 ⊕ Ch0 ⊕ Ccµ,1 ⊕ Ccµ,2 ⊕ Ccµ,3.

Let λ = (λµ, c0 , c1, c2, c3) ∈ C5 and denote HB(n)+ := (HVir(n)µ)0 ⊕ (HVir(n)µ)+. Let
the one dimentional HB(n)+-module Cλ where the action is given by:

eµ·0.1λ = λµ1λ, h0.1λ = c01λ, cµ,1.1λ = c11λ, cµ,2.1λ = c21λ, cµ,3.1λ = c31λ.
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The Verma module of HVir(n)µ is the induced weight module:

M(λ) = Ind
HVir(n)µ

HB(n)+
Cλ := U(HVir(n)µ) ⊗U(HB(n)+) Cλ

The Verma module M(λ) has a maximal proper submodule M̃(λ) and the quotient V (λ) :=

M(λ)/M̃(λ) will be irreducible and called the irreducible highest module with highest weight λ.
Moreover, every irreducible highest module will be constructed with this manner.

The irreducible lowest weight modules V (λ)∨ of lowest weight λ are constructed in the same
manner of the ones in the case of the HVir(n)µ algebra.

We can also consider the Verma module of Vir(n)µ:

K(ν) := Ind
Vir(n)µ

(Vir(n)µ)0⊕(Vir(n)µ)+
Cν

where ν = (λµ, c1), eµ·0.1ν = λµ1ν , cµ,1.1ν = c11ν and (Vir(n)µ)+ acts by 0.

The module K(ν) has a maximal proper submodule K̃(ν) and the quotient L(ν) := K(ν)/K̃(ν)
is an irreducible highest Vir(n)µ-module.

The algebra HVir(n)µ has also the following generalized triangular decomposition:

HVir(n)µ = (H(n)µ)− ⊕ Vir(n)µ ⊕ (H(n)µ)0 ⊕ Ccµ,3 ⊕ (H(n)µ)+.

Let (P(n)µ)+ := Vir(n)µ ⊕(H(n)µ)0 ⊕(H(n)µ)+ ⊕Ccµ,3. Let L(ν) be an irreducible Vir(n)µ-
module. Extend it to (P(n)µ)+-module by letting h0 acts by c0, cµ,2 acts by c2, cµ,3 acts by c3

and (H(n)µ)+ acts by 0. Let the generalized Verma module of HVir(n)µ:

G(λ) = Ind
HVir(n)µ

(P(n)µ)+
L(ν)

where λ = (ν, c0, c2, c3). The module G(λ) has a maximal submodule G̃(λ) and the quotient is
irreducible module V (λ). As a module of Vir(n)µ it contains L(ν) as a submodule.

Theorem 4.1. Let V (λ) be the irreducible highest weight module of HVir(n)µ, then there exists
α ∈ supp(V (λ)) such that V (λ)α is an infinite dimensional weight subspace of V (λ).

We have the same assertion for the lowest weight module V (λ)∨.

Proof. As a module of Vir(n)µ, V (λ) contains L(ν) as submodule. Using results in [2], L(ν) has in-
finite dimensional weight subspaces. We deduce that V (λ) has submodules of infinite dimensional
weight spaces.
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