The solenoidal Heisenberg Virasoro algebra and its simple weight modules

Boujemaa Agrebaoui ${ }^{1}$ *and Walid Mhiri ${ }^{1} \dagger$
1. University of Sfax, Faculty of Sciences Sfax, BP 1171, 3038 Sfax, Tunisia

Abstract

Let $A_{n}=\mathbb{C}\left[t_{i}^{ \pm 1}, 1 \leq i \leq n\right]$ and $\mathbf{W}(n)_{\mu}=A_{n} d_{\mu}$ the solenoidal Lie algebra introduced by Y.Billig and V.Futorny in [6||, where $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{C}^{n}$ is a generic vector and $$
d_{\mu}=\sum_{i=1}^{n} \mu_{i} t_{i} \frac{\partial}{\partial t_{i}}
$$

We consider the semi-direct product Lie algebra $\mathbf{W A}(n)_{\mu}:=\mathbf{W}(n)_{\mu} \ltimes A_{n}$. In the first part, We prove that $\mathbf{W A}(n)_{\mu}$ has a unique three-dimensional universal central extension. In fact we construct a higher rank Heisenberg-Virasoro algebra (see [in). It will be denoted by $\operatorname{HVir}(n)_{\mu}$ and it will be called the solenoidal Heisenberg-Virasoro algebra. Then we will study Harish-Chandra modules of $\mathbf{H V i r}(n)_{\mu}$ following classes of Harich-Chandra modules: generalized highest weight modules(GHW modules) and intermediate series modules. Our results are particular cases of [ind. In the end, we will construct $\mathbf{H V i r}(n)_{\mu}$ Verma modules using the lexicographic order on \mathbb{Z}^{n}. In particular we give examples of irreducible weight modules which have infinite dimensional weight spaces.

Key words: Heisenberg-Virasoro algebra, solenoidal algebra, solenoidal Heisenberg Virasoro algebra, central extension, Harish-Chandra modules, cuspidal modules

Mathematics Subject Classification (2010): 17B10,17B20,17B68,17B86.

Contents

i1-Īn̄ō \bar{d} 2
 3
3. Harish Chandra modules for HVir (1) 9
Bi- Generaities on Harish-Chandra modules' 9
B. Intermediate seriesof $\overline{\mathrm{H}} \mathrm{ir}(n)$ 9
$3 \overline{3}-\mathrm{Gen}$-raized highest weight modules 10

[^0]
1 Introduction

The Heisenberg－Virasoro algebra HVir was first introduced in＂3ive ，where highest weight modules were studied and a determinant formula for the Shapovalov form on Verma modules was obtained．In＂気＂（see also［i］ over HVir，which turn out to be modules of intermediate series and highest／lowest weight modules． Whittaker modules for HVir were studied by［i］［1］．Recently，a large class of irreducible non－weight modules were constructed in ．The generalized Heisenberg Virasoro algebras are generalization of the Heisenberg－Virasoro algebras where the grading by \mathbb{Z} is replaced by an additive subgroup G of \mathbb{C} ．Their representation theory was considered by several authors，see for example＂īin

Recently in［融，可］，Y．Billig and V．Futorny study weight modules of finite weight spaces of the Lie algebra $\mathbf{W}(n)$ of vector fields on the torus．They prove that such modules are highest modules or quotients of modules of tensor fields．In［īn ，they introduced so called solenoidal Lie algebra $\mathbf{W}(n)_{\mu}:=A_{n} d_{\mu}$ as a bridge between the Lie algebra $\mathbf{W}(1)$ and the Lie algebra $\mathbf{W}(n)$ where $\mu=\left(\mu_{1}, \ldots \mu_{n}\right)$ is a generic element in \mathbb{C}^{n} and $d_{\mu}=\sum_{i=1}^{n} \mu_{i} t_{i} \frac{\partial}{\partial t_{i}}$ ．Then they give a classification of the simple cuspidal $\mathbf{W}(n)_{\mu}$－modules．In a forthcoming paper（see［2in），we compute the second cohomology space $H^{2}\left(\mathbf{W}(n)_{\mu}, \mathbb{C}\right)$ ．The universal central extension of $\mathbf{W}(n)_{\mu}$ is a new generalization of the Virasoro algebra，denoted $\operatorname{Vir}(n)_{\mu}$ and is called the solenoidal－Virasoro algebra．Then we give a complete classification of its Harish－Chandre modules．

In this paper we consider the semi－direct product $\mathbf{W A}(n)_{\mu}:=\mathbf{W}(n)_{\mu} \ltimes A_{n}$ ，the analogue of the Lie algebra $\mathbf{W A}(1)=\mathbf{W}(1) \ltimes A_{1}$ in the case $n=1$ ．The first section of this paper contains our main result given by Theorem $\overline{2}$ ．in ．We compute three generating 2－cocycles and then we classify the universal central extension of $\mathbf{W A}(n)_{\mu}$ ．The obtained three－dimensional central extension of $\mathbf{W A}(n)_{\mu}$ is called the solenoidal Heisenberg－Virasoro algebra and is denoted by $\operatorname{HVir}(n)_{\mu}$ ．In the second section，we study Harish－Chandra modules over $\mathbf{H V i r}(n)_{\mu}$ ．In［1il $\left.{ }_{1}^{1}\right]_{1}$ ， G．Liu and X．Guo give the definition of generalized Heisenberg－Virasoro algebras HVir $[G]$ where G is an additive subgroup of \mathbb{C} ．When $G \simeq \mathbb{Z}^{n}, \mathbf{H V i r}[G]$ is called rank n Heisenberg－Virasoro algebra．Our algebra $\operatorname{HVir}(n)_{\mu}$ is an example of rank n Heisenberg－Virasoro algebra．

In the second section，following［1］［1］，we classify Harish－Chandra modules of $\mathbf{H V i r}(n)_{\mu}$ ．We obtain tow kinds of modules，generalized highest weight modules（GHW modules）or intermediate series modules．For $n=1$ ，we obtain the classification results for the classical Heisenberg－Virasoro algebra given by R．Lü and K．Zhao（see［17

In the third section，we introduce a triangular decomposition of $\mathbf{H V i r}(n)_{\mu}$ using the lex－ icographic order on \mathbb{Z}^{n} ，then we define Verma modules and anti－Verma modules．As the usual highest weight theory，we obtain irreducible highest weight modules and irreducible lowest weight modules of $\mathbf{H V i r}(n)_{\mu}$ by taking respectively quotients of Verma modules and anti－Verma modules． In the end，we provide that these modules have infinite dimensional weight spaces．

2 The solenoidal Heisenberg-Virasoro algebra $\operatorname{HVir}(n)_{\mu}$

Let $A_{n}=\mathbb{C}\left[t_{i}^{ \pm 1}, 1 \leq i \leq n\right]$ be the algebra of Laurent polynomials and let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in$ \mathbb{C}^{n} generic, that is, for all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}, \mu \cdot \alpha:=\sum_{i=1}^{n} \mu_{i} \alpha_{i} \neq 0$. Let $d_{\mu}:=\sum_{i=1}^{n} \mu_{i} D_{t_{i}}$, where $D_{t_{i}}=t_{i} \frac{\partial}{\partial t_{i}}$. Y. Billig and V. Futorny [īid, introduced the solenoidal-Witt Lie algebra $\mathbf{W}(n)_{\mu}:=A_{n} d_{\mu}$ as the Lie subalgebra of the Lie algebra $\mathbf{W}(n)=\operatorname{Der}\left(A_{n}\right)$. Let

$$
\Gamma_{\mu}=\left\{\mu \cdot \alpha ; \alpha \in \mathbb{Z}^{n}\right\}
$$

It is the image of \mathbb{Z}^{n} by the map :

$$
\begin{aligned}
\sigma_{\mu}: & \mathbb{Z}^{n} \longrightarrow \mathbb{C} \\
& \alpha \mapsto \mu \cdot \alpha
\end{aligned}
$$

Γ_{μ} is a subgroup of $(\mathbb{C},+)$. A canonical basis of $\mathbf{W}(n)_{\mu}$ is given by:

$$
\left\{e_{\mu \cdot \alpha}:=t^{\alpha} d_{\mu}, \mu \cdot \alpha \in \Gamma_{\mu}\right\}
$$

The commutators of the $e_{\mu \cdot \alpha}$ are given by:

$$
\begin{equation*}
\left[e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}\right]=\mu \cdot(\beta-\alpha) e_{\mu \cdot(\alpha+\beta)}, \mu \cdot \alpha, \mu \cdot \beta \in \Gamma_{\mu} \tag{2.1}
\end{equation*}
$$

In the case of $n=1$, we take $\mu \in \mathbb{C}^{*}$ then $\Gamma_{\mu}=\mu \mathbb{Z}$ and $\mathbf{W}(n)_{\mu}$ is isomorphic to $\mathbf{W}(1)$ by taking $d_{m} \rightarrow \gamma d_{m}$ where γ is the square root of μ. In particular if $\mu=1$ we obtain the classical Witt algebra $\mathbf{W}(1)$.

In the recent paper (see $\mathbf{W}(n)_{\mu}$ introduced by Y. Billig and V.Futorny (see [algebra and we called it the solenoidal Virasoro algebra and we denoted it by $\operatorname{Vir}(n)_{\mu}$. Then we give a classification of Harish-Chandra modules over $\operatorname{Vir}(n)_{\mu}$. Also, we construct $\operatorname{Vir}(n)_{\mu}$-modules with infinite dimensional weight spaces by using the lexicographic order on \mathbb{Z}^{n}.

In this paper we consider the Lie algebra $\mathbf{W A}(n)_{\mu}:=\mathbf{W}(n)_{\mu} \ltimes A_{n}$. Its canonical basis is:

$$
\left\{e_{\mu \cdot \alpha}=t^{\alpha} d_{\mu}, h_{\alpha}=t^{\alpha}, \mu \cdot \alpha \in \Gamma_{\mu}, \alpha \in \mathbb{Z}^{n}\right\}
$$

Its Lie structure generated by the following brackets:

$$
\begin{gathered}
{\left[e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}\right]=\mu \cdot(\beta-\alpha) e_{\mu \cdot(\alpha+\beta)}} \\
{\left[h_{\alpha}, h_{\beta}\right]=0} \\
{\left[e_{\mu \cdot \alpha}, h_{\beta}\right]=(\mu \cdot \beta) h_{\alpha+\beta}}
\end{gathered}
$$

The main purpose of this paper is to compute central extensions of the algbera $\mathbf{W A}(n)_{\mu}$.
The following theorem is a generalization to multidimensional case of Theorem 3 and Proposition 3 in [$[\overline{1} \overline{1}]$] where the extension of the Lie algebra $\operatorname{Vect}\left(S^{1}\right)$ of vector fields on the circle by modules of tensor densities \mathcal{F}_{λ} is study.

Theorem 2.1. The second cohomology space $H^{2}\left(\mathbf{W A}(n)_{\mu}, \mathbb{C}\right)$ is three dimensional and it is generated by the following 2 -cocycles $C_{\mu, 1}, C_{\mu, 2}, C_{\mu, 3}: \mathbf{W A}(n)_{\mu} \times \mathbf{W A}(n)_{\mu} \longrightarrow \mathbb{C}$ defined by:

$$
\begin{gather*}
\left\{\begin{array}{l}
C_{\mu, 1}\left(e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}\right):=\delta_{\alpha,-\beta} \frac{(\mu \cdot \alpha)^{3}-(\mu \cdot \alpha)}{12} c_{\mu, 1} \\
0 \text { otherwise }
\end{array}\right. \tag{2.2}\\
\left\{\begin{array}{l}
C_{\mu, 2}\left(e_{\mu \cdot \alpha}, h_{\beta}\right):=\delta_{\alpha,-\beta}\left((\mu \cdot \alpha)^{2}-(\mu \cdot \alpha)\right) c_{\mu, 2} \\
0 \text { otherwise }
\end{array}\right. \tag{2.3}\\
\left\{\begin{array}{l}
C_{\mu, 3}\left(h_{\alpha}, h_{\beta}\right):=\delta_{\alpha,-\beta} \frac{(\mu \cdot \alpha)}{3} c_{\mu, 3} \\
0 \text { otherwise }
\end{array}\right. \tag{2.4}
\end{gather*}
$$

Proof. The fact that the 2-cochains

$$
C_{\mu, 1}, C_{\mu, 2}, C_{\mu, 3}: \mathbf{W A}(n)_{\mu} \times \mathbf{W A}(n)_{\mu} \longrightarrow \mathbb{C}
$$

are 2-cocycles is a straight forward computations using the 2-cocycle condition:

$$
\begin{equation*}
C_{\mu, i}([X, Y], Z)+C_{\mu, i}([Y, Z], X)+C_{\mu, i}([Z, X], Y)=0 \tag{2.5}
\end{equation*}
$$

For $i=1,2,3 ; \quad X, Y, Z \in \mathbf{W A}(n)_{\mu}$.
Let us now prove the unicity of the 2-cocycles $C_{\mu, 1}, C_{\mu, 2}, C_{\mu, 3}$.
Denote $X_{\alpha, 1}=e_{\mu \cdot \alpha}$ and $X_{\alpha, 2}=h_{\alpha}$. The first step, we prove that for $i \in\{1,2,3\}$ and $j, k \in\{1,2\}$ each cocycle has the following form:

$$
C_{\mu, i}\left(X_{\alpha, j}, X_{\beta, k}\right)=\delta_{i, j+k-1} \delta_{\alpha,-\beta} \theta_{i}(\mu \cdot \alpha) c_{\mu, i}, \text { for all } \alpha, \beta \in \mathbb{Z}^{n}
$$

The second step, we apply known results on functional equations (see [ī expressions.

Take $X=X_{\alpha, j}, Y=X_{\beta, k}$ and $Z=X_{\gamma, l}$. Since condition (2, is cyclic in X, Y, Z, it suffices to take $(j, k, l) \in\{(1,1,1),(1,1,2),(1,2,2)\}$ corresponding respectively to $\left\{C_{\mu, 1}, C_{\mu, 2}, C_{\mu, 3}\right\}$ since the left hand side in condition $(\overline{2} \cdot \overline{5} \cdot \overline{1})$ is equal to zero for the other possibilities.

Let us start by proving the unicity of $C_{\mu, 1}$. So we take $(j, k, l)=(1,1,1)$, that is $\left(X_{\alpha, 1}, X_{\beta, 1}, X_{\gamma, 1}\right)=$ $\left(e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}, e_{\mu \cdot \gamma}\right)$. Assume that there exists $\Psi_{1}: \Gamma_{\mu} \times \Gamma_{\mu} \rightarrow \mathbb{C}$ such that:

$$
\begin{equation*}
\left[e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}\right]_{H V i r_{\mu}}=(\mu \cdot \beta-\mu \cdot \alpha) e_{\mu \cdot(\alpha+\beta)}+\Psi_{1}(\mu \cdot \alpha, \mu \cdot \beta) c_{\mu, 1} \tag{2.6}
\end{equation*}
$$

The function $\Psi_{1}(\mu \cdot \alpha, \mu \cdot \beta)$ can not be chosen arbitrary because of the anti-commutativity of the bracket and of the Jacobi identity. We observe from (

$$
e_{\mu \cdot 0}^{\prime}=e_{\mu \cdot 0}, e_{\mu \cdot \alpha}^{\prime}=e_{\mu \cdot \alpha}+\frac{\Psi_{1}(0, \mu \cdot \alpha)}{\mu \cdot \alpha} c_{\mu, 1},(\alpha \neq \overrightarrow{0})
$$

then we will have

$$
\left[e_{\mu \cdot 0}^{\prime}, e_{\mu \cdot \alpha}^{\prime}\right]_{H V i r_{\mu}}=(\mu \cdot \alpha) e_{\mu \cdot \alpha}^{\prime} \text { for all } \mu \cdot \alpha \in \Gamma_{\mu}
$$

This transformation is merely a change of basis and we can drop the prime and say that:

$$
\begin{equation*}
\left[e_{\mu \cdot 0}, e_{\mu \cdot \alpha}\right]_{H V i r_{\mu}}=(\mu \cdot \alpha) e_{\mu \cdot \alpha} \text { for all } \mu \cdot \alpha \in \Gamma_{\mu} \tag{2.7}
\end{equation*}
$$

From the Jacobi identity for $e_{\mu \cdot 0}, e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}$ we get

$$
\begin{equation*}
\left[e_{\mu \cdot 0},\left[e_{\mu \cdot \beta}, e_{\mu \cdot \alpha}\right]_{H V i r_{\mu}}\right]_{H V i r_{\mu}}=\mu \cdot(\beta+\alpha)\left[e_{\mu \cdot \beta}, e_{\mu \cdot \alpha}\right]_{H V i r_{\mu}} \tag{2.8}
\end{equation*}
$$

$$
\mu \cdot(\alpha+\beta) \Psi_{1}(\mu \cdot \alpha, \mu \cdot \beta) c_{\mu, 1}=0
$$

But this is equivalent to $\alpha+\beta=\overrightarrow{0}$ or $\Psi_{1}(\mu \cdot \alpha, \mu \cdot \beta)=0$. Then Ψ_{1} has the following form:

$$
\begin{equation*}
\Psi_{1}(\mu \cdot \alpha, \mu \cdot \beta)=\delta_{\alpha,-\beta} \theta_{1}(\mu \cdot \alpha) \tag{2.9}
\end{equation*}
$$

where θ_{1} is a function from Γ_{μ} to \mathbb{C}.
The Lie bracket (

$$
\begin{equation*}
\left[e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}\right]_{H V i r_{\mu}}=(\mu \cdot \beta-\mu \cdot \alpha) e_{\mu \cdot(\alpha+\beta)}+\delta_{\alpha,-\beta} \theta_{1}(\mu \cdot \alpha) c_{\mu, 1}, \mu \cdot \alpha, \mu \cdot \beta \in \Gamma_{\mu} \tag{2.10}
\end{equation*}
$$

By antisymmetry of the bracket, we deduce that θ_{1} is an odd function $\left(\theta_{1}(\mu \cdot \alpha)=-\theta_{1}(-\mu \cdot \alpha)\right)$ and by bilinearity of the bracket, we deduce that θ_{1} is additive. So, θ_{1} is a group morphism from $\left(\Gamma_{\mu},+\right)$ to $(\mathbb{C},+)$.

We now work out the 2-cocycle condition (then $(\overline{2} . \overline{5})$ is satisfied. If $\gamma+\beta+\alpha=\overrightarrow{0}$, using $(\overline{2}=\overline{1} 0$ (2.5) the following equation:

$$
\begin{equation*}
\mu \cdot(\alpha-\beta) \theta_{1}(\mu \cdot(\alpha+\beta))-\mu \cdot(2 \beta+\alpha) \theta_{1}(\mu \cdot \alpha)+\mu \cdot(\beta+2 \alpha) \theta_{1}(\mu \cdot \beta)=0 \tag{2.11}
\end{equation*}
$$

where θ_{1} is a continuous function. Substituting β by $-\beta$ in (2.1

$$
\begin{equation*}
\mu \cdot(\alpha+\beta) \theta_{1}(\mu \cdot(\alpha-\beta))-\mu \cdot(\alpha-2 \beta) \theta_{1}(\mu \cdot \alpha)-\mu \cdot(2 \alpha-\beta) \theta_{1}(\mu \cdot \beta)=0 \tag{2.12}
\end{equation*}
$$

by adding $(\underset{2}{2}-\overline{1} \overline{1})$ and $(\overline{2}-\overline{12})$ we get:
$(\mu \cdot \alpha)\left[\theta_{1}(\mu \cdot(\alpha+\beta))+\theta_{1}(\mu \cdot(\alpha-\beta))-2 \theta_{1}(\mu \cdot \alpha)\right]=(\mu \cdot \beta)\left[\theta_{1}(\mu \cdot(\alpha+\beta))+\theta_{1}(\mu \cdot(\beta-\alpha))-2 \theta_{1}(\mu \cdot \beta)\right]$
Let us denoted $x:=\mu \cdot \alpha$ and $y:=\mu \cdot \beta$ and replace them in (2.13) we will obtain:

$$
\begin{equation*}
x\left[\theta_{1}(x+y)+\theta_{1}(x-y)-2 \theta_{1}(x)\right]=y\left[\theta_{1}(x+y)-\theta_{1}(x-y)-2 \theta_{1}(y)\right] \tag{2.14}
\end{equation*}
$$

But $\left(\sqrt{2}-\overline{1} \overline{1}_{1}\right)$ is equivalent to the following equation:

$$
\begin{equation*}
2 x \theta_{1}(x)-2 y \theta_{1}(y)=(x-y) \theta_{1}(x+y)+(x+y) \theta_{1}(x-y) \tag{2.15}
\end{equation*}
$$

Using results on functional equations by PL.Kannappan,T.Riedel and P.K.Sahoo (see [ī10 the equation $(\overline{2} \cdot \overline{1} \cdot \mathbf{1})$ has the following general solution:

$$
\theta_{1}(x)=a x^{3}+A(x)
$$

where $A: \mathbb{C} \mapsto \mathbb{C}$ is an additive function. Since we work with continuous function θ_{1}, then A will be continuous and additive function, and so it is a linear function $A(x)=b x, b \in \mathbb{C}$.

Finally, $\theta_{1}(x)=a x^{3}+b x$ where $a, b \in \mathbb{C}$ and for $x=\mu \cdot \alpha$ we have:

$$
\theta_{1}(\mu \cdot \alpha)=a(\mu \cdot \alpha)^{3}+b(\mu \cdot \alpha)
$$

The 2-cocycle θ_{1} is non trivial if and only if $a \neq 0$ while b can be chosen arbitrary. By the convention taken in Virasoro 2-cocycle ($n=1$), the choice $a=-b=\frac{1}{12}$ and the generating 2-cocycle becomes:

$$
\begin{equation*}
C_{\mu, 1}\left(e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}\right)=\delta_{\alpha,-\beta} \theta_{1}(\mu \cdot \alpha) c_{\mu, 1}=\frac{(\mu \cdot \alpha)^{3}-\mu \cdot \alpha}{12} \delta_{\alpha,-\beta} c_{\mu, 1} . \tag{2.16}
\end{equation*}
$$

For the unicity of the 2-cocycle $C_{\mu, 2}$, we take $(j, k, l)=(1,1,2)$. Assume that there exists $\Psi_{2}: \Gamma_{\mu} \times \Gamma_{\mu} \rightarrow \mathbb{C}$ such that:

$$
\begin{equation*}
\left[e_{\mu \cdot \alpha}, h_{\beta}\right]_{H V i r_{\mu}}=(\mu \cdot \beta) h_{\alpha+\beta}+\Psi_{2}(\mu \cdot \alpha, \mu \cdot \beta) c_{\mu, 2} \tag{2.17}
\end{equation*}
$$

The function $\Psi_{2}(\mu \cdot \alpha, \mu \cdot \beta)$ can not be chosen arbitrary because of the anti-commutativity of the bracket and of the Jacobi identity. We observe from (2) that if we put:

$$
e_{\mu \cdot 0}^{\prime}=e_{\mu \cdot 0}, h_{\alpha}^{\prime}=h_{\alpha}+\frac{\Psi_{2}(0, \mu \cdot \alpha)}{\mu \cdot \alpha} c_{\mu, 2}, \quad(\alpha \neq \overrightarrow{0})
$$

then we will have

$$
\left[e_{\mu \cdot 0}^{\prime}, h_{\alpha}^{\prime}\right]_{H V i r_{\mu}}=(\mu \cdot \alpha) h_{\alpha}^{\prime} \text { for all } \alpha \in \mathbb{Z}^{n}
$$

This transformation is merely a change of basis and we can drop the prime and say that:

$$
\begin{equation*}
\left[e_{\mu \cdot 0}, h_{\alpha}\right]_{H V i r_{\mu}}=(\mu \cdot \alpha) h_{\alpha} \text { for all } \alpha \in \mathbb{Z}^{n} \tag{2.18}
\end{equation*}
$$

From the Jacobi identity for $e_{\mu \cdot 0}, e_{\mu \cdot \alpha}, h_{\beta}$, we get:

$$
\begin{equation*}
\left[e_{\mu \cdot 0},\left[e_{\mu \cdot \alpha}, h_{\beta}\right]_{H V i r_{\mu}}\right]_{H V i r_{\mu}}=\mu \cdot(\beta+\alpha)\left[e_{\mu \cdot \alpha}, h_{\beta}\right]_{H V i r_{\mu}} \tag{2.19}
\end{equation*}
$$

Substituting $(\underset{2}{2} 10$

$$
\mu \cdot(\alpha+\beta) \Psi_{2}(\mu \cdot \alpha, \mu \cdot \beta) c_{\mu, 2}=0
$$

But this is equivalent to $\alpha+\beta=\overrightarrow{0}$ or $\Psi_{2}(\mu \cdot \alpha, \mu \cdot \beta)=0$. Then Ψ_{2} has the following form:

$$
\begin{equation*}
\Psi_{2}(\mu \cdot \alpha, \mu \cdot \beta)=\delta_{\alpha,-\beta} \theta_{2}(\mu \cdot \alpha) \tag{2.20}
\end{equation*}
$$

where θ_{2} is a function from Γ_{μ} to \mathbb{C}.
We now work out the 2 -cocycle condition on $C_{\mu, 2}$ for $\left(X_{\alpha, 1}, X_{\beta, 1}, X_{\gamma, 2}\right)=\left(e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}, h_{\gamma}\right)$. If $\gamma+\beta+\alpha \neq \overrightarrow{0}$ then (odd, we get from (

$$
(\mu \cdot \beta-\mu \cdot \alpha) \theta_{2}(\mu \cdot(\alpha+\beta))-(\mu \cdot(\alpha+\beta)) \theta_{2}(\mu \cdot \beta)+(\mu \cdot \beta+\mu \cdot \alpha) \theta_{2}(\mu \cdot \alpha)=0
$$

Put $x=\mu \cdot \alpha$ and $y=\mu \cdot \beta$, then we will obtain:

$$
\begin{equation*}
(y-x) \theta_{2}(x+y)=(y+x)\left(\theta_{2}(y)-\theta_{2}(x)\right) \tag{2.21}
\end{equation*}
$$

If $x=y$ or $x=-y$ the equation $\binom{2}{2}$ in satisfied. If $x \neq y$ and $x \neq-y$, then $(2,2 \overline{1} 10)$ is equivalent to the following equation:

$$
\begin{equation*}
\frac{\theta_{2}(x+y)}{x+y}=\frac{\theta_{2}(x)-\theta_{2}(y)}{x-y} \tag{2.22}
\end{equation*}
$$

If $x \neq 0$, put $h(x)=\frac{\theta_{2}(2 x)}{2 x}$, so we have:

$$
\begin{equation*}
\frac{\theta_{2}(x)-\theta_{2}(y)}{x-y}=h\left(\frac{x+y}{2}\right) \tag{2.23}
\end{equation*}
$$

$$
\theta_{2}(x)=a x^{2}+b x+c, \text { for } a, b, c \in \mathbb{R}
$$

and h is C^{1}-function such that $h(x)=\theta_{2}^{\prime}(x)$. But in our case $\theta_{2}(0)=0$ then $c=0$ and θ_{2} becomes:

$$
\theta_{2}(x)=a x^{2}+b x \forall a, b \in \mathbb{R} .
$$

Following the choice of the 2-cocycle in the twisted Heisenberg-Virasoro algebra corresponding to one variable ($n=1$), we take $a=1$ and $b=-1$ then we obtain:

$$
\theta_{2}(\mu \cdot \alpha)=(\mu \cdot \alpha)^{2}-\mu \cdot \alpha .
$$

For the unicity of the 2-cocycle $C_{\mu, 3}$, we take $(j, k, l)=(1,2,2)$. Assume that there exists $\Psi_{3}: \Gamma_{\mu} \times \Gamma_{\mu} \rightarrow \in \mathbb{C}$ such that:

$$
\begin{equation*}
\left[h_{\alpha}, h_{\beta}\right]_{H V i r_{\mu}}=\Psi_{3}(\mu \cdot \alpha, \mu \cdot \beta) c_{\mu, 3} \tag{2.24}
\end{equation*}
$$

From the Jacobi identity for $e_{\mu \cdot 0}, h_{\alpha}, h_{\beta}$ we get:

$$
\mu \cdot(\alpha+\beta) \Psi_{3}(\mu \cdot \alpha, \mu \cdot \beta) c_{\mu, 3}=0
$$

But this is equivalent to $\alpha+\beta=\overrightarrow{0}$ or $\Psi_{3}(\mu \cdot \alpha, \mu \cdot \beta)=0$. Then Ψ_{3} has the following form:

$$
\begin{equation*}
\Psi_{3}(\mu \cdot \alpha, \mu \cdot \beta)=\delta_{\alpha,-\beta} \theta_{3}(\mu \cdot \alpha) \tag{2.25}
\end{equation*}
$$

where θ_{3} is a function from Γ_{μ} to \mathbb{C}. We will have:

$$
\left[h_{\alpha}, h_{\beta}\right]_{H V i r}=\delta_{\alpha,-\beta} \theta_{3}(\mu \cdot \alpha) c_{\mu, 3},
$$

with $\theta_{3}(0)=0, \theta_{3}(-\mu \cdot \alpha)=-\theta_{3}(\mu \cdot \alpha)$.
Let $\alpha, \beta, \gamma \in \mathbb{Z}^{n}$ and $\alpha+\beta+\gamma=\overrightarrow{0}$. We apply the 2-cocycle condition for $\left(X_{\alpha, 1}, X_{\beta, 2}, X_{\gamma, 2}\right)=$ $\left(e_{\mu \cdot \alpha}, h_{\beta}, h_{\gamma}\right)$ we obtain the equation:

$$
\begin{equation*}
(\mu \cdot \beta) \theta_{3}(\mu \cdot(\alpha+\beta))-(\mu \cdot \alpha+\mu \cdot \beta) \theta_{3}(\mu \cdot \beta)=0 . \tag{2.26}
\end{equation*}
$$

If we put $x=\mu \cdot \alpha$ and $y=\mu \cdot \beta$, then $(2-2 \overline{6})$ becomes:

$$
\begin{equation*}
y \theta_{3}(x+y)=(y+x) \theta_{3}(y) \tag{2.27}
\end{equation*}
$$

If $x=0$ or $y=0$ the equation $(2,2)$ is satisfies.
If $x \neq 0$ and $y \neq 0$, then $(\overline{2}-\overline{2})$ is equivalent to:

$$
\begin{equation*}
\frac{\theta_{3}(x+y)-\theta_{3}(y)}{x}=\frac{\theta_{3}(y)}{y} . \tag{2.28}
\end{equation*}
$$

Let $X=x+y, Y=y$, then $\left(2.2 \varepsilon_{1}^{\prime}\right)$ becomes:

$$
\begin{equation*}
\frac{\theta_{3}(Y)-\theta_{3}(X)}{Y-X}=\frac{\theta_{3}(Y)}{Y} \tag{2.29}
\end{equation*}
$$

If Y approaches $X(Y \rightarrow X)$ in the first member of (2.29), we obtain the following differential equation:

$$
\theta_{3}^{\prime}(X)=\frac{\theta_{3}(X)}{X}
$$

which has solution $\theta_{3}(X)=a X, a \in \mathbb{C}$.
Following the choice of the 2-cocycle in the twisted Heisenberg-Virasoro algebra corresponding to one variable $(n=1)$, we take $a=1 / 3$ then we obtain

$$
\theta_{3}(\mu \cdot \alpha)=\frac{\mu \cdot \alpha}{3}
$$

Definition 2.2. The central extension of $\mathbf{W A}(n)_{\mu}$ given by the three 2 -cocycles $C_{\mu, 1}, C_{\mu, 2}$ and $C_{\mu, 3}$ in Theorem $\stackrel{\text { 2.1 }}{2}$ is called the solenoidal Heisenberg-Virasoro algebra $\left(\mathbf{H V i r}(n)_{\mu},[., .]_{H V i r_{\mu}}\right)$ where

$$
\mathbf{H V i r}(\mathbf{n})_{\mu}:=\mathbf{W A}(n)_{\mu} \oplus \mathbb{C} c_{\mu, 1} \oplus \mathbb{C} c_{\mu, 2} \oplus \mathbb{C} c_{\mu, 3}
$$

and where its Lie bracket $[., .]_{H V i r}$ is generated by the following brackets:

$$
\begin{gather*}
{\left[e_{\mu \cdot \alpha}, e_{\mu \cdot \beta}\right]_{H \operatorname{Vir}_{\mu}}=\mu \cdot(\beta-\alpha) e_{\mu \cdot(\alpha+\beta)}+\delta_{\alpha,-\beta} \frac{(\mu \cdot \alpha)^{3}-(\mu \cdot \alpha)}{12} c_{\mu, 1}} \tag{2.30}\\
{\left[e_{\mu \cdot \alpha}, h_{\beta}\right]_{H V_{i r}}=(\mu \cdot \beta) h_{\alpha+\beta}+\delta_{\alpha,-\beta}\left((\mu \cdot \alpha)^{2}-(\mu \cdot \alpha)\right) c_{\mu, 2}} \tag{2.31}\\
{\left[h_{\alpha}, h_{\beta}\right]_{H V_{i r}}=\delta_{\alpha,-\beta} \frac{(\mu \cdot \alpha)}{3} c_{\mu, 3}} \tag{2.32}\\
{\left[c_{\mu, i}, \mathbf{H V i r}(n)_{\mu}\right]_{H V_{i r}}=0 \text { for all } i=1,2,3} \tag{2.33}
\end{gather*}
$$

Remark 2.3. 1) The name solenoidal Heisenberg-Virasoro algebra comes from the facts that $\mathbf{H V i r}(n)_{\mu}$ contains a subalgebra isomorphic to $\operatorname{Vir}(n)_{\mu}$ generated by $\left\{e_{\mu \cdot \alpha}, c_{\mu, 1} \mid \alpha \in \mathbb{Z}^{n}\right\}$ and a subalgebra

$$
\mathbf{H}(n)_{\mu}:=\left(\oplus_{\alpha \in \mathbb{Z}^{n}} \mathbb{C} h_{\alpha}\right) \oplus \mathbb{C} c_{\mu, 2}
$$

which is isomorphic to an infinite dimensional Heisenberg algebra graded by \mathbb{Z}^{n}.
2) For a given 2-cocycle $C_{\mu}: \mathbf{W A}(n)_{\mu} \times \mathbf{W A}(n)_{\mu} \rightarrow \mathbb{C}$, there exists $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{C}^{3}$ such that $C_{\mu}=a_{1} C_{\mu, 1}+a_{2} C_{\mu, 2}+a_{3} C_{\mu, 3}$. By bilinearity its expression is given as following:

$$
\begin{aligned}
C_{\mu}\left(\left(e_{\mu \cdot \alpha}, h_{\beta}\right),\left(e_{\mu \cdot \gamma}, h_{\eta}\right)\right)= & a_{1} C_{\mu, 1}\left(e_{\mu \cdot \alpha}, e_{\mu \cdot \gamma}\right)+ \\
& a_{2}\left(C_{\mu, 2}\left(e_{\mu \cdot \alpha}, h_{\eta}\right)-C_{\mu, 2}\left(e_{\mu \cdot \gamma}, h_{\beta}\right)\right)+ \\
& a_{3} C_{\mu, 3}\left(h_{\beta}, h_{\eta}\right)
\end{aligned}
$$

for all $\alpha, \beta, \gamma, \eta \in \mathbb{Z}^{n}$.
Moreover, The Lie bracket of $\mathbf{H V i r}(n)_{\mu}$ is given by:

$$
[X, Y]_{H V i r_{\mu}}=[X, Y]+C_{\mu}(X, Y), \text { for all } X, Y \in \mathbf{H V i r}(n)_{\mu}
$$

3 Harish Chandra modules for $\operatorname{HVir}(n)_{\mu}$

3.1 Generalities on Harish-Chandra modules

Let V be a nonzero $\operatorname{HVir}(n)_{\mu}$-module. Suppose that the central elements $c_{\mu, 1}, c_{\mu, 2}, c_{\mu, 3}$ and h_{0} act as scalars c_{1}, c_{2}, c_{3}, F respectively, on V. Set

$$
V_{\lambda}=\left\{v \in V \mid d_{\mu} v=\lambda v\right\},
$$

which is called a weight space of weight λ. Then V is called a weight module if $V=\oplus_{\lambda \in \mathbb{C}} V_{\lambda}$. Denote $\operatorname{supp}(V)=\left\{\lambda \mid V_{\lambda} \neq 0\right\}$, which is called the support of V.

Definition 3.1. A weight $\mathbf{H V i r}(n)_{\mu}$-module V is called Harish-Chandra if dim $V_{\lambda}<\infty$ for all $\lambda \in \operatorname{supp}(V)$ and is called uniformly bounded or cuspidal if there is some $N \in \mathbb{N}$ such that $\operatorname{dim} V_{\lambda}<N$ for all $\lambda \in \operatorname{supp}(V)$.

Definition 3.2. A weight $\mathbf{H V i r}(n)_{\mu}$-module V is called a module of the intermediate series if it is indecomposable and all its weight spaces are at most one dimensional.

3.2 Intermediate series of $\operatorname{HVir}(n)_{\mu}$

Proposition 3.3. Let $T_{\mu}(a, b, F)$ the Γ_{μ}-graded vector space:

$$
T_{\mu}(a, b, F)=\oplus_{\mu \cdot \kappa \in \Gamma_{\mu}} v_{\mu \cdot k+a}
$$

where $a, b, F \in \mathbb{C}$. We define an action of $\mathbf{H V i r}(n)_{\mu}$ on $T_{\mu}(a, b, F)$ by:

$$
\begin{gather*}
e_{\mu \cdot \alpha} \cdot v_{\mu \cdot \kappa+a}=(a+\mu \cdot \kappa+b(\mu \cdot \alpha)) v_{\mu \cdot(\kappa+\alpha)+a}, \\
h_{\alpha} \cdot v_{\mu \cdot \kappa+a}=F v_{\mu \cdot(\kappa+\alpha)+a}, \tag{3.1}\\
c_{\mu, 1} v_{\mu \cdot \kappa+a}=0, c_{\mu, 2} v_{\mu \cdot \kappa+a}=0, c_{\mu, 3} v_{\mu \cdot \kappa+a}=0
\end{gather*}
$$

for all $\kappa, \alpha \in \mathbb{Z}^{n}$. Then $T_{\mu}(a, b, F)$ is a $\mathbf{H V i r}(n)_{\mu}$-module for this action.
Remark 3.4. The weight spaces of $T_{\mu}(a, b, F)$ are one dimensional. Then $T_{\mu}(a, b, F)$ are called cuspidal or intermediate series modules.

It is easy to check that the $\mathbf{H V i r}(n)_{\mu}$-module $T_{\mu}(a, b, F)$ is reducible if and only if $F=$ $0, a \in \Gamma_{\mu}$ and $b=0,1$. The module $T_{\mu}(0,0,0)$ contains $\mathbb{C} v_{0}$ as a submodule and the quotient $T_{\mu}(0,0,0) / \mathbb{C} v_{0}$ is irreducible. The module $T_{\mu}(0,1,0)$ contains $\oplus_{\alpha \in \mathbb{Z}^{n} \backslash\{\overrightarrow{0}\}} \mathbb{C} v_{\mu \cdot \alpha}$ as irreducible submodule of codimension one. By duality, it will be isomorphic to $T_{\mu}(0,0,0) / \mathbb{C} v_{0}$. We will denote it $\bar{T}_{\mu}(0,0,0)$.

Let V be a nontrivial irreducible weight $\mathbf{H V i r}(n)_{\mu}$-module with weight multiplicity one. We may assume that $h_{0}, c_{\mu, 1}, c_{\mu, 2}, c_{\mu, 3}$ act as scalars F, c_{1}, c_{2}, c_{3} respectively.

Following Lemma 3.1 and Lemma 3.2 in [in
Proposition 3.5. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{C}^{n}$ a generic element that is:

$$
\mu \cdot \alpha \neq 0, \forall \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n} \backslash\{\overrightarrow{0}\}
$$

Let $V:=\oplus_{\mu \cdot \kappa \in \Gamma_{\mu}} \mathbb{C} v_{\mu \cdot \kappa}$ be $a \mathbf{H V i r}(n)_{\mu}$-module the action given by:

$$
\begin{gathered}
e_{\mu \cdot \alpha \cdot} \cdot v_{\mu \cdot \kappa+a}=(a+\mu \cdot \kappa+b(\mu \cdot \alpha)) v_{\mu \cdot(\kappa+\alpha)+a} . \\
h_{\alpha} \cdot v_{\mu \cdot \kappa+a}=F_{\mu \cdot \alpha, \mu \cdot \kappa} v_{\mu \cdot(\kappa+\alpha)+a} \text { and } c_{\mu, i} v_{\mu \cdot \kappa+a}=c_{i} v_{\mu \cdot \kappa+a} \text { for } i \in\{1,2,3\} .
\end{gathered}
$$

Then all $F_{\mu \cdot \alpha, \mu \cdot \kappa}$ are equal to a constant F and $c_{i}=0$ for $i \in\{1,2,3\}$ and such module V is isomorphic to $T_{\mu}(a, b, F)$.

Proof. It is strait forward to prove that $c_{1}=0$ by restriction to $\operatorname{Vir}(n)_{\mu}$ and using results by
It is clear that $\operatorname{supp}(V) \subset a+\Gamma_{\mu}$ for some $a \in \mathbb{C}$. We give a proof by induction on n to prove that $F_{\mu \cdot \alpha, \mu \cdot \kappa}=F$ for all $\alpha, \kappa \in \mathbb{Z}^{n}$.

For $n=1$, Proposition 3.1 in the paper
Let us prove the case of $n \stackrel{-}{=}$. Let $h_{(l, m)}=t_{1}^{l} t_{2}^{m}$ and let $\dot{\mathcal{H}}(2)=\oplus_{(l, m) \in \mathbb{Z}^{2}} \mathbb{C} h_{(l, m)} \oplus \mathbb{C} c_{\mu, 3}$ be the Heisenberg subalgebra of $\mathbf{H V i r}(2)_{\mu}$ and let $V=\oplus_{(p, q) \in \mathbb{Z}^{2}} \mathbb{C} v_{\mu_{1} p+\mu_{2} q}$. Let us fix l and p and consider $\mathcal{H}_{l}(1)=\oplus_{m \in \mathbb{Z}} \mathbb{C} h_{(l, m)} \oplus \mathbb{C} c_{\mu, 3}$ and $V_{p}=\oplus_{q \in \mathbb{Z}} \mathbb{C} v_{\mu_{1} p+\mu_{2} q}$. Then $\mathcal{H}_{l}(1)$ is a subalgebra of $\mathcal{H}(2)$ isomorphic to the Heisenberg algebra $\mathcal{H}(1)$ and V_{p} is an intermediate module for $\mathcal{H}_{l}(1)$. By Lemma 3.1 in the paper [1] [1], $h_{(l, m)}$ acts by a constant $F_{l, p}$ which depends on $l, p \in \mathbb{Z}$ but independent of m and q and $c_{\mu, 3}$ act by zero on V_{p} for all p. If we interchange n by m and p by q, then $F_{l, p}$ will be independent of l and p and then it will be a constant F for all $(l, m) \in \mathbb{Z}^{2}$ and $c_{\mu, 3}$ act by zero on all V.

Now, assume that the proposition is true on \mathbb{Z}^{n-1} where $n \in \mathbb{N}$ and $n \geq 2$. Let $\mathcal{H}_{m}(n-1)=$ $\oplus_{\alpha \in \mathbb{Z}^{n-1}} \mathbb{C} h_{(\alpha, m)} \oplus \mathbb{C} c_{\mu, 3}$ and $V_{q}=\oplus_{\beta \in \mathbb{Z}^{n-1}} \mathbb{C} v_{\mu^{\prime} \cdot \beta+\mu_{n} q}$ where $\mu^{\prime}=\left(\mu_{1}, \ldots, \mu_{n-1}\right)$. By the induction hypothesis $\mathcal{H}_{m}(n-1)$ acts by a constant $F_{m, q}$ on V_{q} which depends only on m and q for the moment and $c_{\mu, 3}$ act by zero on V_{q}. Now if we fix $\alpha, \beta \in \mathbb{Z}^{n-1}$ and consider $\mathcal{H}_{\alpha}(1)=\oplus_{m \in \mathbb{Z}} \mathbb{C} h_{(\alpha, m)} \oplus \mathbb{C} c_{\mu, 3}$ and $V_{\beta}:=\oplus_{q \in \mathbb{Z}} \mathbb{C} v_{\mu^{\prime} \cdot \beta+\mu_{n} q}$, then $F_{m, q}$ will be independent of m and q and then it will be a constant F for all $(\alpha, m) \in \mathbb{Z}^{n}$.

3.3 Generalized highest weight modules

For $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) \in \mathbb{C}^{n}$, let $\mu^{\prime}=\left(\mu_{2}, \ldots, \mu_{n}\right) \in \mathbb{C}^{n-1}$. For any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$ we have $\mu \cdot \alpha=\mu_{1} \alpha_{1}+\mu^{\prime} \cdot \alpha^{\prime}$ where $\alpha^{\prime}=\left(\alpha_{2}, \ldots, \alpha_{n}\right)$. This induces a natural embedding of $\Gamma_{\mu^{\prime}}$ in Γ_{μ} given by $\mu^{\prime} \cdot \alpha^{\prime} \mapsto \mu \cdot\left(0, \alpha^{\prime}\right)$. The embedding $\Gamma_{\mu^{\prime}} \hookrightarrow \Gamma_{\mu}$ as defined below, induces an embedding of the Lie algebra $\operatorname{HVir}(n-1)_{\mu^{\prime}}$ into the Lie algebra $\operatorname{HVir}(n)_{\mu}$ given by:

$$
e_{\mu^{\prime} \cdot \alpha^{\prime}} \mapsto e_{\mu \cdot\left(0, \alpha^{\prime}\right)} \text { and } h_{\alpha^{\prime}} \mapsto h_{\left(0, \alpha^{\prime}\right)} .
$$

Let $A_{n-1}=\mathbb{C}\left[t_{2}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, then we have the following \mathbb{Z}-grading of $\mathbf{H V i r}(n)_{\mu}$:

$$
\mathbf{H V i r}(n)_{\mu}=\oplus_{i \in \mathbb{Z}} \mathbf{H V i r}(n)_{\mu}^{i}
$$

where $\mathbf{H V i r}(n)_{\mu}^{0}=A_{n-1} d_{\mu} \oplus A_{n-1} \oplus \sum_{i=1}^{3} \mathbb{C} c_{\mu, i}$ and $\mathbf{H V i r}(n)_{\mu}^{i}=t_{1}^{i} A_{n-1} d_{\mu} \oplus t_{1}^{i} A_{n-1} \oplus \sum_{i=1}^{3} \mathbb{C} c_{\mu, i}$ if $i \neq 0$. The Lie subalgebra $\mathbf{H V i r}(n)_{\mu}^{0}$ of $\mathbf{H V i r}(n)_{\mu}$ is isomorphic to $\mathbf{H V i r}(n-1)_{\mu^{\prime}}$. The algebra $\operatorname{HVir}(n)_{\mu}$ has a triangular decomposition

$$
\mathbf{H V i r}(n)_{\mu}^{+} \oplus \mathbf{H V i r}(n)_{\mu}^{0} \oplus \mathbf{H V i r}(n)_{\mu}^{-}
$$

where $\mathbf{H V i r}(n)_{\mu}^{ \pm}:=\oplus_{i \in \pm \mathbb{N}} \mathbf{H V i r}(n)_{\mu}^{i}$.

For $a, b \in \mathbb{C}$, we denote $T_{\mu^{\prime}}(a, b, F)$ the $\mathbf{H V i r}(n)_{\mu}^{0}$ module of tensor fields

$$
T_{\mu^{\prime}}(a, b, F)=\oplus_{\mu^{\prime} \cdot \kappa^{\prime} \in \Gamma_{\mu^{\prime}}} \mathbb{C} v_{\mu^{\prime} \cdot \kappa^{\prime}}
$$

subject to the action:

$$
\begin{align*}
& e_{\mu^{\prime} \cdot \alpha^{\prime}} \cdot v_{\mu^{\prime} \cdot \kappa^{\prime}}=\left(a+\mu^{\prime} \cdot \kappa^{\prime}+b\left(\mu^{\prime} \cdot \alpha^{\prime}\right)\right) v_{\mu^{\prime} \cdot\left(\alpha^{\prime}+\kappa^{\prime}\right)}, \\
& h_{\alpha^{\prime}} \cdot v_{\mu^{\prime} \cdot \kappa^{\prime}}=F v_{\mu^{\prime} \cdot\left(\kappa^{\prime}+\alpha^{\prime}\right)}, \tag{3.2}\\
& c_{\mu, i} \cdot v_{\mu^{\prime} \cdot \kappa^{\prime}}=0 \text { for } i=1,2,3 \text { and } \mu^{\prime} \cdot \kappa^{\prime}, \mu^{\prime} \cdot \alpha^{\prime} \in \Gamma_{\mu}^{\prime} .
\end{align*}
$$

We extend the $\mathbf{H V i r}(n)_{\mu}^{0}$ module structure on $T_{\mu^{\prime}}(a, b, F)$ given by $\left(\overline{1} \overline{1}, \overline{2}, \bar{n}_{1}^{\prime}\right)$ to $\mathbf{H V i r}(n)_{\mu}^{+} \oplus$ $\mathbf{H V i r}(n)_{\mu}^{0}$ where the elements of $\mathbf{H V i r}(n)_{\mu}^{+}$act by zero on $T_{\mu^{\prime}}(a, b, F)$. Let

$$
\widetilde{M}\left(a, b, \Gamma_{\mu^{\prime}}\right)=\operatorname{Ind} d_{\mathbf{H V i r}(n)_{\mu}^{+} \oplus \mathbf{H V i r}(n)_{\mu}^{0}}^{\mathbf{H V i r}(n)_{\mu}} T_{\mu^{\prime}}(a, b, F)
$$

be the generalized Verma module. As vector spaces we have $\widetilde{M}\left(a, b, \Gamma_{\mu^{\prime}}\right) \cong U\left(\mathbf{H V i r}(n)_{\mu}^{-}\right) \otimes$ $T_{\mu^{\prime}}(a, b, F)$. The module $\widetilde{M}\left(a, b, \Gamma_{\mu^{\prime}}\right)$ has a unique maximal proper submodule $\bar{M}\left(a, b, \Gamma_{\mu^{\prime}}\right)$ trivially intersecting $T_{\mu^{\prime}}(a, b, F)$. The quotient module

$$
L\left(a, b, \Gamma_{\mu^{\prime}}\right):=\widetilde{M}\left(a, b, \Gamma_{\mu^{\prime}}\right) / \bar{M}\left(a, b, \Gamma_{\mu^{\prime}}\right)
$$

is uniquely determined by the constants a, b and

$$
L\left(a, b, \Gamma_{\mu^{\prime}}\right)=\oplus_{i>0} L_{a-i \mu_{1}+\Gamma_{\mu^{\prime}}}
$$

where $L_{a-i \mu_{1}+\Gamma_{\mu^{\prime}}}=\oplus_{\mu^{\prime} \cdot \kappa \in \Gamma_{\mu^{\prime}}} L_{a-i \mu_{1}+\mu^{\prime} \cdot \kappa}$ and

$$
L_{a-i \mu_{1}+\mu^{\prime} \cdot \kappa}=\left\{v \in L / d_{\mu} v=\left(a-i \mu_{1}+\mu^{\prime} \cdot \kappa\right) v\right\}
$$

We can similarly define $\widetilde{M}_{a+i \mu_{1}+\Gamma_{\mu^{\prime}}}$ and $\widetilde{M}_{a-i \mu_{1}+\Gamma_{\mu^{\prime}}}$.
Definition 3.6. Let $\left(u_{1}, \ldots, u_{n}\right)$ be a \mathbb{Z}-basis of Γ_{μ} and let $\Gamma_{\mu}^{>0}:=\mathbb{Z}^{+} u_{1} \oplus \ldots \oplus \mathbb{Z}^{+} u_{n}$ and $\operatorname{HVir}(n)_{\mu}^{>0}:=\oplus_{u \in \Gamma_{\mu}^{>0}}\left(\mathbf{H V i r}(n)_{\mu}\right)_{u}$. Let V be a weight module such that there exists $\lambda_{0} \in \operatorname{Supp}(V)$ and a nonzero vector $v_{\lambda_{0}} \in V_{\lambda_{0}}$ such that : $\mathbf{H V i r}(n)_{\mu}^{>0} v_{\lambda_{0}}=0$. Then V is said to be a generalized highest weight module with generalized highest weight λ_{0} and generalized highest weight vector $v_{\lambda_{0}}$. Such module V is denoted by $V\left(\lambda_{0}\right)$.

In G.Liu and X.Guo (see [1] 4 Virasoro algebra an irreducible weight module with finite dimensional weight spaces is either a cuspidal or a generalized highest weight module. In our particular case, any irreducible $\mathbf{H V i r}(n)_{\mu^{-}}$ module is either cuspidal or isomorphic to $L\left(a, b, \Gamma_{\mu^{\prime}}\right)$.

Definition 3.7. $A \operatorname{HVir}(n)_{\mu}$-module V is called a dense module if $\operatorname{supp}(V)=a+\Gamma_{\mu}, a \in \mathbb{C}$ and is called a cut module if $\operatorname{supp}(V) \subset \lambda+\gamma+\Gamma_{\leq 0}^{(\alpha)}$ where $\Gamma_{\leq 0}^{(\alpha)}:=\left\{\mu \cdot \beta \mid \beta \in \mathbb{Z}^{n}\right.$ and $\beta \cdot \alpha \leq$ $0\}$ and $\gamma \in \Gamma_{\mu}$.

The modules $T_{\mu}(a, b, F)$ are irreducible dense modules and $L\left(a, b, \Gamma_{\mu^{\prime}}\right)$ are irreducible cut modules.

The following theorem is a consequence of Theorem 15 and Theorem 16 in $[1]$ Harish-chandra modules of $\mathbf{H V i r}(n)_{\mu}$.

Theorem 3.8. Let V be a nontrivial irreducible weight module with finite dimensional weight spaces over the Heisenberg solenoidal-Virasoro algebra $\mathbf{H V i r}(n)_{\mu}$.

1) If $n=1$ then $\Gamma_{\mu}=\mu \mathbb{Z} \simeq \mathbb{Z}$, then V is of intermediate series or highest or lowest module (see [19 [19]
2) If $n \geq 2$, then V is isomorphic to one of the following modules:
a) $V \cong T_{\mu}(a, b, F)$ for $(a, b) \in \mathbb{C}^{2} \backslash\{(0,0)\}$ or $V \cong \bar{T}_{\mu}(0,0,0)$.
b) $V \cong L\left(a, b, \Gamma_{\mu^{\prime}}\right)$ for some $a, b \in \mathbb{C}$.

4 Simple Weight $\operatorname{HVir}(n)_{\mu}$-modules having infinite dimensional weight spaces

Let \mathbb{Z}^{n} be the free abelian group of rank n whose elements are sequences of n integers, and operation is the addition. A group order on \mathbb{Z}^{n} is a total order, which is compatible with addition, that is

$$
a<b \quad \text { if and only if } \quad a+c<b+c
$$

The lexicographical order $<_{l e x}$ is a group order on \mathbb{Z}^{n}.
We transport the lexicographic order $<_{l e x}$ on \mathbb{Z}^{n} to Γ_{μ} that is

$$
\mu \cdot \alpha \prec \mu \cdot \beta \text { if and only if } \alpha<_{\text {lex }} \beta \text {. }
$$

Let us introduce

$$
\begin{gathered}
\Delta^{+}:=\left\{\alpha \in \mathbb{Z}^{n} \mid \overrightarrow{0}<_{\text {lex }} \alpha\right\}, \Delta^{-}:=\left\{\alpha \in \mathbb{Z}^{n} \mid \alpha<_{\text {lex }} \overrightarrow{0}\right\} \\
\Gamma_{\mu}^{+}:=\sigma_{\mu}\left(\Delta^{+}\right):=\left\{\mu \cdot \alpha \mid \overrightarrow{0}<_{\text {lex }} \alpha\right\}, \Gamma_{\mu}^{-}:=\sigma_{\mu}\left(\Delta^{-}\right):=\left\{\mu \cdot \alpha \mid \alpha<_{\text {lex }} \overrightarrow{0}\right\}
\end{gathered}
$$

Let $\left(\operatorname{Vir}(n)_{\mu}\right)_{+},\left(\operatorname{Vir}(n)_{\mu}\right)_{-},\left(\operatorname{Vir}(n)_{\mu}\right)_{0},\left(\mathbf{H}(n)_{\mu}\right)_{+},\left(\mathbf{H}(n)_{\mu}\right)_{-}$and $\left(\mathbf{H}(n)_{\mu}\right)_{0}$ be the subalgebras defined by:

$$
\begin{gathered}
\left(\operatorname{Vir}(n)_{\mu}\right)_{+}=\bigoplus_{\alpha \in \Delta^{+}} \mathbb{C} e_{\mu \cdot \alpha},\left(\operatorname{Vir}(n)_{\mu}\right)_{-}=\bigoplus_{\alpha \in \Delta^{-}} \mathbb{C} e_{\mu \cdot \alpha},\left(\operatorname{Vir}(n)_{\mu}\right)_{0}=\mathbb{C} d_{\mu} \oplus \mathbb{C} c_{\mu, 1} \\
\left(\mathbf{H}(n)_{\mu}\right)_{+}=\bigoplus_{\alpha \in \Delta^{+}} \mathbb{C} h_{\alpha},\left(\mathbf{H}(n)_{\mu}\right)_{-}=\bigoplus_{\alpha \in \Delta^{-}} \mathbb{C} h_{\alpha},\left(\mathbf{H}(n)_{\mu}\right)_{0}=\mathbb{C} h_{0} \oplus \mathbb{C} c_{\mu, 2}
\end{gathered}
$$

The algebra $\mathbf{H V i r}(n)_{\mu}$ has the following triangular decomposition:

$$
\mathbf{H V i r}(n)_{\mu}=\left(\mathbf{H V i r}(n)_{\mu}\right)_{+} \oplus\left(\mathbf{H V i r}(n)_{\mu}\right)_{0} \oplus\left(\mathbf{H V i r}(n)_{\mu}\right)_{-}
$$

where,

$$
\begin{gathered}
\left(\mathbf{H V i r}(n)_{\mu}\right)_{ \pm}=\left(\mathbf{H}(n)_{\mu}\right)_{ \pm} \oplus\left(\mathbf{V i r}(n)_{\mu}\right)_{ \pm} \\
\left(\mathbf{H V i r}(n)_{\mu}\right)_{0}=\mathbb{C} e_{\mu \cdot 0} \oplus \mathbb{C} h_{0} \oplus \mathbb{C} c_{\mu, 1} \oplus \mathbb{C} c_{\mu, 2} \oplus \mathbb{C} c_{\mu, 3}
\end{gathered}
$$

Let $\lambda=\left(\lambda_{\mu}, c_{0}, c_{1}, c_{2}, c_{3}\right) \in \mathbb{C}^{5}$ and denote $\mathbf{H B}(n)_{+}:=\left(\mathbf{H V i r}(n)_{\mu}\right)_{0} \oplus\left(\mathbf{H V i r}(n)_{\mu}\right)_{+}$. Let the one dimentional $\mathbf{H B}(n)_{+}$-module \mathbb{C}_{λ} where the action is given by:

$$
e_{\mu \cdot 0} \cdot 1_{\lambda}=\lambda_{\mu} 1_{\lambda}, h_{0} \cdot 1_{\lambda}=c_{0} 1_{\lambda}, c_{\mu, 1} \cdot 1_{\lambda}=c_{1} 1_{\lambda}, c_{\mu, 2} \cdot 1_{\lambda}=c_{2} 1_{\lambda}, c_{\mu, 3} \cdot 1_{\lambda}=c_{3} 1_{\lambda}
$$

The Verma module of $\mathbf{H V i r}(n)_{\mu}$ is the induced weight module：

$$
M(\lambda)=\operatorname{Ind} d_{\mathbf{H B}(n)_{+}}^{\mathbf{H V i r}(n)_{\mu}} \mathbb{C}_{\lambda}:=U\left(\mathbf{H V i r}(n)_{\mu}\right) \otimes_{U\left(\mathbf{H B}(n)_{+}\right)} \mathbb{C}_{\lambda}
$$

The Verma module $M(\lambda)$ has a maximal proper submodule $\widetilde{M(\lambda)}$ and the quotient $V(\lambda):=$ $M(\lambda) / \widetilde{M(\lambda)}$ will be irreducible and called the irreducible highest module with highest weight λ ． Moreover，every irreducible highest module will be constructed with this manner．

The irreducible lowest weight modules $V(\lambda)^{\vee}$ of lowest weight λ are constructed in the same manner of the ones in the case of the $\mathbf{H V i r}(n)_{\mu}$ algebra．

We can also consider the Verma module of $\operatorname{Vir}(n)_{\mu}$ ：

$$
K(\nu):=\operatorname{Ind}_{\left(\operatorname{Vir}(n)_{\mu}\right)_{0} \oplus\left(\operatorname{Vir}(n)_{\mu}\right)_{+}}^{\operatorname{Vir}_{\nu} \mathbb{C}_{\nu}}
$$

where $\nu=\left(\lambda_{\mu}, c_{1}\right), e_{\mu \cdot 0} \cdot 1_{\nu}=\lambda_{\mu} 1_{\nu}, c_{\mu, 1} \cdot 1_{\nu}=c_{1} 1_{\nu}$ and $\left(\operatorname{Vir}(n)_{\mu}\right)_{+}$acts by 0 ．
The module $K(\nu)$ has a maximal proper submodule $\widetilde{K(\nu)}$ and the quotient $L(\nu):=K(\nu) / \widetilde{K(\nu)}$ is an irreducible highest $\operatorname{Vir}(n)_{\mu}$－module．

The algebra $\mathbf{H V i r}(n)_{\mu}$ has also the following generalized triangular decomposition：

$$
\mathbf{H V i r}(n)_{\mu}=\left(\mathbf{H}(n)_{\mu}\right)_{-} \oplus \operatorname{Vir}(n)_{\mu} \oplus\left(\mathbf{H}(n)_{\mu}\right)_{0} \oplus \mathbb{C} c_{\mu, 3} \oplus\left(\mathbf{H}(n)_{\mu}\right)_{+} .
$$

Let $\left(\mathbf{P}(n)_{\mu}\right)_{+}:=\operatorname{Vir}(n)_{\mu} \oplus\left(\mathbf{H}(n)_{\mu}\right)_{0} \oplus\left(\mathbf{H}(n)_{\mu}\right)_{+} \oplus \mathbb{C} c_{\mu, 3}$ ．Let $L(\nu)$ be an irreducible $\operatorname{Vir}(n)_{\mu^{-}}$ module．Extend it to $\left(\mathbf{P}(n)_{\mu}\right)_{+}$－module by letting h_{0} acts by $c_{0}, c_{\mu, 2}$ acts by $c_{2}, c_{\mu, 3}$ acts by c_{3} and $\left(\mathbf{H}(n)_{\mu}\right)_{+}$acts by 0 ．Let the generalized Verma module of $\mathbf{H V i r}(n)_{\mu}$ ：

$$
G(\lambda)=\operatorname{Ind} d_{\left(\mathbf{P}(n)_{\mu}\right)_{+}}^{\mathbf{H V i r}(n)_{\mu}} L(\nu)
$$

where $\lambda=\left(\nu, c_{0}, c_{2}, c_{3}\right)$ ．The module $G(\lambda)$ has a maximal submodule $\widetilde{G(\lambda)}$ and the quotient is irreducible module $V(\lambda)$ ．As a module of $\operatorname{Vir}(n)_{\mu}$ it contains $L(\nu)$ as a submodule．

Theorem 4．1．Let $V(\lambda)$ be the irreducible highest weight module of $\mathbf{H V i r}(n)_{\mu}$ ，then there exists $\alpha \in \operatorname{supp}(V(\lambda))$ such that $V(\lambda)_{\alpha}$ is an infinite dimensional weight subspace of $V(\lambda)$ ．

We have the same assertion for the lowest weight module $V(\lambda)^{\vee}$ ．
Proof．As a module of $\operatorname{Vir}(n)_{\mu}, V(\lambda)$ contains $L(\nu)$ as submodule．Using results in［in］，$L(\nu)$ has in－ finite dimensional weight subspaces．We deduce that $V(\lambda)$ has submodules of infinite dimensional weight spaces．

References

［1］J．Aczél，A mean value property of the derivative of quadratique polynomials－without mean values and derivations，Mathematics Magazine 58，（1985），42－45．要
［2］B．Agrebaoui，W．Mhiri，The solenoidal Virasoro algebra and its simple weight modules arxiv：2403．03753．気，気发高
［3］E．Arbarello，C．De Concini，V．G．Kac，C．Procesi Moduli Space of Curves and Representation Theory，Comm．Math．Phys，117，（1988），1－36．岛
［4］Y．Billig，V．Futorny，Representations of the Lie algebra of vector fields on a torus and the chiral de Rham complex，Transactions of the american math．Soc，Vol．366，（2014），4697－4731．高
［5］Y．Billig，V．Futorny，Classification of simple \mathbf{W}_{n}－module with finite－dimensional weight spaces ，J．Reine Angew．Math．720，（2016），199－216．
［6］Y．Billig，V．Futorny，Classification of simple cuspidal modules for solenoidal Lie algebras，

［7］V．Chari，A．Pressley，Unitary representations of Virasoro algebra and a conjecture of Kac．， Comp．Math．，67，No3（1988），p．315－342．＇İŌ＂
［8］H．Chen and X．Guo，New irreducible modules for the Heisenberg－Virasoro algebra，Journal of Algebra 390，（2013），77－86．
［9］M．Dilxat，L．Chen，D．Liu Classification of simple Harish－Chandra modules over the Ovsienko－Roger super－algebra，Proceedings of the royal society of Edinburgh，Section A Math－ ematics P 1－11．気
［10］PL．Kannappan，T．Riedel and P．K．Sahoo，On a fonctional equation associated with simpson＇s rule，Results．Math．31，（1997），115－126．＇
［11］D．Liu and L．Zhu，The generalized Heisenberg－Virasoro algebra，Frontiers of Mathematics in China 4 ，（2012），297－310．高空
［12］D．Liu and C．Jiang，Harish－Chandra modules over the twisted Heisenberg－Virasoro algebra， J．Math．Phys．Vol 49 ，012901，（2008）$\overline{2}$ n
［13］D．Liu，Y．Wu and L．Zhu，Whittaker modules for the twisted Heisenberg－Virasoro Algebra， Journal of Mathematical Physics 51 （2010），023524．2̄
［14］G．Liu and X．Guo Harish－Chandra modules over generalized Heisenberg－Virasoro algebras I．

［15］R．Lü and K．Zhao，Classification of irreducible weight modules over the twisted Heisenberg－ Virasoro algebra，Com．in Contemp．Math．Vol．12，No．02，pp．183－205（2010）．気 ， ！ 1
［16］C．Martin，A．Piard，Indecomposable Modules Over the Virasoro Lie Algebra and a Conjec－ ture of V．Kac，Commun．Math．Phys．137（1991），109－132．＇1̄O
［17］V．Ovsienko，C．Roger，Extension of Virasoro group and Virasoro algebra by modules of tensor densities on S^{1} ，Funct．Anal．Appl． 30 （1996），290－291．
［18］R．Shen，Q．Jiang and Y．Su，Verma modules over the generalized Heisenebrg Virasoro algebras，Communications in Algebra 36 ，（2008），1464－1473．

[^0]: *E-mail: b.agreba@fss.rnu.tn
 ${ }^{\dagger}$ E-mail: mhiriw1@gmail.com

