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SPHERICAL p-GROUP COMPLEXES ARISING FROM FINITE GROUPS
OF LIE TYPE

KEVIN I. PITERMAN

Abstract. We show that the p-group complex of a finite group G is homotopy
equivalent to a wedge of spheres of dimension at most n if G contains a self-
centralising normal subgroup H which is isomorphic to a group of Lie type and
Lie rank n in characteristic p. If in addition every order-p element of G induces
an inner or field automorphism on H, the p-group complex of G is G-homotopy
equivalent to a spherical complex obtained from the Tits building of H.

We also prove that the reduced Euler characteristic of the p-group complex of a
finite group G is non-zero if G has trivial p-core and H is a self-centralising normal
subgroup of G which is a group of Lie type (in any characteristic), except possibly
when p = 2 and H = An(4a) (n ≥ 2) or E6(4a). In particular, we conclude that the
Euler characteristic of the p-group complex of an almost simple group does not
vanish for p ≥ 7.

1. Introduction

For a finite group G and a prime p, the Quillen poset Ap(G) consists of the
non-trivial elementary abelian p-subgroups of G ordered by inclusion. This poset
was introduced by D. Quillen [Q] who established many connections between
homotopical properties of its order complex (which we shall call the p-group
complex of G) and intrinsic algebraic properties of G. For instance, when G
is a finite group of Lie type in characteristic p, the poset Ap(G) is G-homotopy
equivalent to the poset of proper parabolic subgroups of G, and therefore its
homology, which is concentrated in a single degree, gives the Steinberg module
of G.

On the other hand, for an arbitrary finite group G, the fixed point subposet
Ap(G)g is contractible for any element g ∈ G of order divisible by p. This implies
that, although in general the homology of Ap(G) might not be concentrated in a
single degree, the virtual character associated with the Lefschetz module ofAp(G)
(viewed, for example, as an element in the Green ring of QG-modules) vanishes
at elements of order divisible by p, recovering one of the crucial features of the
Steinberg character. Motivated by these observations, one usually regards the
Lefschetz module ofAp(G) as the “mod p” analogues of the Steinberg module for
an arbitrary finite group G (cf. [W]).

In general, the homotopy type of the p-group complexes is far from being com-
pletely understood. The first computations by Quillen [Q] suggested that Ap(G)
had the homotopy type of a wedge of spheres of possibly different dimensions. In
fact, if G is a solvable group, J. Pulkus and V. Welker [PW] showed that there is a

1

http://arxiv.org/abs/2403.07489v1


2 KEVIN I. PITERMAN

wedge decomposition forAp(G) such that if N is a normal p′-subgroup of G, and
Ap(G/N)>A is a wedge of spheres for all A ∈ Ap(G/N), then Ap(G) is a wedge of
spheres. Thus, the determination of the homotopy type of the p-group complexes
of solvable groups roughly boils down to a question about the upper-intervals.
However, for non-solvable groups, Ap(G) might not be a wedge of spheres, and
the first example was exhibited by J. Shareshian [Sh]. There it is shown that there
is torsion in the homology of the Quillen poset of the alternating group on 13
letters for p = 3, so it cannot have the homotopy type of a wedge of spheres.
Furthermore, it was shown later that the failure of being a wedge of spheres can
also arise from the fundamental group: in [MiP] the authors proved that the
fundamental group of the Quillen poset of the alternating group on 10 letters for
p = 3 is not a free group, but its homology is abelian free. In this case, the failure
to be a wedge of spheres cannot be detected by the homology, indicating that, in
general, homology groups do not provide enough information to determine the
homotopy type of the p-group complexes. It is worth noting that these examples
come from simple groups.

In this article, we describe the homotopy type of the p-group complex for finite
groups that contain suitable subgroups of Lie type in characteristic p.

Given a group G and a prime p, we say that H is an SCNLp-subgroup of G if H is
a normal and self-centralising subgroup of G (i.e. if g ∈ G centralises H then g ∈ H)
such that H is isomorphic to a finite group of Lie type in characteristic p. Here by
a finite group of Lie type in characteristic p we mean the fixed point subgroup of a
Steinberg endomorphism of a simple algebraic group over an algebraically closed
field of characteristic p, and by its Lie rank we mean the rank of the underlying
building of the fixed points. Indeed, if such an SCNLp-subgroup H exists, then it
must be unique (cf. Lemma 5.5), and if further H is quasisimple then H = F∗(G),
the generalised Fitting subgroup of G.

Our main result can be summarised as follows:

Theorem 1.1. Let p be a prime and G a finite group with an SCNLp-subgroup H of Lie
rank n. ThenAp(G) is homotopy equivalent to a wedge of spheres of dimension at most n.

Moreover, if {E ∈ Ap(G) : E ∩ H = 1,Op(CH(E)) = 1} is non-empty and consists
only of cyclic subgroups inducing field automorphisms on H, then the order complex of
the Bouc poset Bp(Ω1(G)) is spherical of dimension n.

Here a simplicial complex of dimension n is said to be spherical if it is homotopy
equivalent to a wedge of spheres of dimension n. Also recall thatΩ1(G) is the sub-
group generated by the order-p elements of G, soAp(G) = Ap(Ω1(G)). Indeed the
Quillen posetAp(G) is G-homotopy equivalent to the Bouc posetBp(G) consisting
of the radical p-subgroups of G, i.e. the non-trivial p-subgroups R ≤ G such that
Op(NG(R)) = R, where Op(N) is the p-core of N, and NG(R) is the normaliser of R
in G (see [Bo]). Finally CH(E) is the centraliser of E in H. See Theorem 5.15 for
the general statement, which additionally contains an explicit description of the
spheres appearing in the wedge decomposition ofAp(G). Corollary 5.12 contains
the conclusions on the sphericity of Bp(Ω1(G)).
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Moreover, Theorem 5.15 yields a formula for the reduced homology of Ap(G)

with rational coefficients, denoted by H̃∗(Ap(G),Q), which we briefly describe in
the following corollary. If G contains an SCNLp-subgroup H, then we define

F f = {E ∈ Ap(G) : |E| = p and E induces field automorphisms on H},

Fg = {E ∈ Ap(G) : |E| = p, Op(CH(E)) = 1, E < F f }.

By uniqueness of H (if it exists), these sets depend exclusively on G and p. Note

that F f ,Fg are invariant under the conjugation action of G, and we write E for the
orbit of E ∈ F f ∪ Fg, and F f/G, Fg/G for the orbit sets.

The elements of Fg induce “graph” or “graph-field” automorphisms on H. In

any case, if E ∈ F f ∪ Fg then Op′(CH(E)) is a group of Lie type in characteristic
p of a certain Lie rank mE. For E ∈ Fg, write m∗E = mE if E centralises some
element of F f and m∗E = mE − 1 otherwise. Denote by Gd f the pre-image by the
natural map G → Aut(H) of the subgroup Inndiag(H)ΦH, where Inndiag(H) is
the group of inner-diagonal automorphisms of H andΦH is the full group of field
automorphisms of H (in the Steinberg sense [St1, Section 10], see Section 5 for
more details). Note that Gd f is a normal subgroup of G.

Corollary 1.2. Let G be a finite group, p a prime, and suppose that H is an SCNLp-
subgroup of G of Lie rank n. Then for m ≥ 0 we have an isomorphism of G-modules:

H̃m(Ap(G),Q) � H̃m(Ap(Gd f ),Q) ⊕
⊕

E∈Fg/G

IndG
NG(E)

(
H̃m−1(Ap(CGd f

(E),Q)
)
,

where H̃m−1(Ap(CGd f
(E),Q)

)
, 0 if and only if m − 1 = m∗E. Moreover, if F f = ∅ then

H̃∗(Ap(Gd f ),Z) = H̃n−1(Ap(Gd f ),Z) = H̃n−1(Ap(H),Z),

and if F f , ∅ then H̃∗(Ap(Gd f ),Z) = H̃n(Ap(Gd f ),Z) is the kernel of the surjective
G-equivariant map

⊕

E∈F f /G

IndG
NG(E)

(
H̃n−1(Ap(CH(E)),Z)

)
i
−→ H̃n−1(Ap(H),Z),

where i is induced by the inclusionsAp(CH(E)) →֒ Ap(H).

See Theorems 5.9 and 5.15. From this description, one can write down an
expression for the Lefschetz module of Ap(G) in terms of the Steinberg modules
of H and the centralisers of outer automorphisms of order p of H included in G.
For instance, for the homology ofAp(Gd f ), if Stp(H) denotes the Steinberg module
of H over the rationals then

H̃n(Ap(Gd f ),Q) =



⊕

E∈F f /G

IndG
NG(E)(Stp(CH(E)))



/

Stp(H).

As a corollary of the wedge decomposition forAp(G), we also get:
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Corollary 1.3. Let G be a finite group, p a prime, and suppose that H is an SCNLp-
subgroup of G. Then χ̃(Ap(G)) , 0, except possibly if p = 2, H = An(4a) or E6(4a) and
both F f and Fg are non-empty.

Here χ̃(Ap(G)) denotes the reduced Euler characteristic of Ap(G). Indeed, the
excluded cases in the above corollary may be ruled out by performing some extra
(but lengthier) computations according to the possibilities of G and the formula
that we get for the homology ofAp(G). See Corollary 6.7.

The results on the homotopy type of the Quillen complex of such a family of
groups G are obtained by basically showing that Ap(G) is homotopy equivalent
to the Tits building of the SCNLp-subgroup H after adding new vertices with
highly-connected links, which are basically the Tits buildings of the centralisers
in H of the elements in F f ∪ Fg. We provide preliminaries on more theoretic
homotopy-results in Section 2, and an Appendix A with some classical theorems
of algebraic topology to compute homotopy types. In Section 3, we set the
notation related to finite groups, and exhibit homotopy equivalences between
different p-subgroup complexes, not always obtained from standard p-subgroup
posets. Then, in Section 4, we briefly state some intermediate consequences of
these methods on buildings. In Section 5, we discuss preliminaries on finite groups
of Lie type, adopting mainly the language of [MT], and prove the main result of
this article Theorem 5.15. Finally, Section 6 contains computations with the Euler
characteristic of the Quillen poset, and hence the proof of Corollary 6.7. In view
of these results, we also conjecture that χ̃(Ap(G)) , 0 for any almost simple group
G and prime p (this is a stronger reformulation of the original Quillen’s conjecture
which states thatAp(G) is non-contractible if Op(G) = 1, see [Q]). To support this
conjecture, we establish the non-vanishing of the reduced Euler characteristic of
the Quillen poset of an almost simple group G such that none of the following
cases holds: F∗(G) is either a sporadic group with p = 2, 3, 5, an alternating group
with p = 2, 3, or An(4a) (n ≥ 2), E6(4a) with p = 2 and F f ,Fg non-empty. The
completeness of this list depends on the classification of the finite simple groups.
See Corollary 6.8.

Computer calculations were performed in [GAP22].
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2. Preliminaries on simplicial complexes

In this section, we set some notation and provide results on the homotopy
type of particular families of simplicial complexes. These results mostly rely on
classical theorems of algebraic topology, which we include in the Appendix A.

Suppose K and L are (abstract) simplicial complexes. We denote by K ∗ L the
simplicial join of K and L. Recall this is a simplicial complex whose vertex set
equals the disjoint union of the set of vertices of K and L, and there is a simplex
σ ∪ τ for every σ ∈ K and τ ∈ L (including the empty simplex). If |K| denotes the
geometric realisation of K, then |K ∗L| is homeomorphic to the classical topological
join |K| ∗ |L|. We will use the symbol ≃ to denote homotopy equivalences between
posets, complexes or topological spaces. The symbol � will be mostly used to
denote isomorphisms. A subscript ≃G or �G indicates G-equivariant homotopy
equivalence or G-isomorphism respectively, where G is a group.

Suppose that L is a subcomplex of K, which we write L ≤ K. We say that L
is a full subcomplex of K if every simplex of K whose vertices lie L is already
contained in L. We write K \ L for the subcomplex of K whose simplices do not
contain vertices in L. If σ ∈ K is a simplex, the link of σ in L is the subcomplex
LkL(σ) = {τ ∈ L : τ ∪ σ ∈ K, τ ∩ σ = ∅}. The star of σ in L is the subcomplex
StL(σ) = {τ ∈ L : τ ∪ σ ∈ K}. Note that StK(σ) = LkK(σ) ∗ σ = StK\σ(σ) ∗ σ, where
here we regard σ as a simplicial complex whose simplices are the faces of σ.
The definition of LkL and StL depends on the ambient complex K, although the
notation does not suggest it. In our settings, the complex K will always be clear
from the context.

If G is a group, we say that K is a G-complex if G acts on K by simplicial
automorphisms. We denote by StabG(σ) the stabiliser in G of a simplex σ ∈ K, and
by KG the subcomplex of pointwise fixed simplices of K.

We will need the following result that describes the homotopy type of a sim-
plicial complex K from a full subcomplex L such that K \ L is a discrete complex,
that is, its simplices have dimension at most 0.

Theorem 2.1. Let K be a G-complex and let L be a full G-invariant subcomplex such that
K \ L is discrete. Denote by V the set of vertices of K \ L. Then we have a pushout in the
geometric realisations:

(2.1)

∐
v∈V |LkL(v)|

� _

��

// |L|

��∐
v∈V |LkL(v) ∗ {v}| // |K|

Moreover, the following hold:

(1) There is a long exact sequence in homology with G-equivariant maps

. . .→ H̃m+1(K,Z)→
⊕

v∈V

H̃m(LkL(v),Z)
j
−→ H̃m(L,Z)

i
−→ H̃m(K,Z)→ . . .
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where the maps i, j are induced by the corresponding inclusions.
(2) If for each vertex v ∈ V the inclusion LkL(v) →֒ L is homotopic to a constant map

on a vertex v∗ ∈ L, then K is homotopy equivalent to the wedge

K ≃ L ∨
∨

v∈V

LkL(v) ∗ Sv

where Sv is the discrete complex on vertices v and v∗, and v∗ ∈ L is identified with
v∗ ∈ Sv ≤ LkL(v) ∗ Sv.

Moreover, if G is finite and RG is semisimple then we have an isomorphism of
RG-modules

H̃m(K,R) � H̃m(L,R) ⊕
⊕

v∈V/G

IndG
StabG(v)

(
H̃m−1(LkL(v),R)

)
,

for all m ≥ 0.
(3) If LkL(v) is StabG(v)-contractible for all v ∈ V then K ≃G L.

Proof. The pushout in Eq. (2.1) is a standard construction. Note that for v ∈ V we
have StK(v) = LkL(v) ∗ {v}, i.e. LkK(v) = LkL(v).

The long exact sequence in item (1) follows by applying the Mayer-Vietoris
Theorem to the cover of |K| by the open sets A =

⋃
v∈V |StK(v)| \ |LkK(v)|, and

B = |K| \V. Note that the inclusion |L| →֒ B is a homotopy equivalence. Moreover,
A is the disjoint union of the open sets |StK(v)| \ |LkK(v)|, for v ∈ V, and each of
these open sets is contractible. This sequence can also be obtained by applying
Theorem 2.5 of [SW] to the face poset of K with M there being our set of vertices
V, where the equivariant property of the maps is also justified.

Item (2) follows by noting that in the pushout of Eq. (2.1), we can change the
arrow

∐
v∈V |LkL(v)| → |L| by the map induced by the constant maps x ∈ |LkL(v)| 7→

v∗, for v ∈ V, and since these maps are homotopy equivalent, the pushouts are
homotopy equivalent (see Proposition 0.18 of [H]).

The G-module isomorphism follows from the long exact sequence in item (1)

with R coefficients, since the zero maps H̃∗(LkL(v),R)→ H̃∗(L,R) give rise to short
exact sequences and they all RG-split by semisimplicity.

Finally, item (3) follows from Proposition A.5. �

Denote by Sn the (topological) sphere of dimension n. A simplicial complex K is
said to be spherical if it has dimension n ≥ −1 and its homotopy groups of degree
≤ n − 1 vanish. Equivalently, K is homotopy equivalent to a wedge of spheres of
dimension n (see Theorem A.3).

Corollary 2.2. Let K be a simplicial complex and L a full subcomplex such that:

(1) L is spherical of dimension n − 1,
(2) K \ L is a discrete set of vertices V such that LkL(v) is spherical of dimension n− 1

for all v ∈ V,
(3) for a fixed simplex C ∈ L, there are (n − 1)-dimensional subcomplexes (Si)i∈I such

that Si ≃ Sn−1 and C ∈ Si for all i ∈ I, and the homotopy classes [Si] generate the
homotopy group πn−1(L,C), and
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(4) for all i ∈ I there exists v ∈ V such that Si ≤ LkL(v).

Then K is spherical of dimension n.

Proof. By Proposition A.5, the map i : L →֒ K is an (n − 1)-equivalence since
the links LkL(v), v ∈ V, are (n − 1)-spherical by hypothesis. Thus we have an
epimorphism πn−1(L,C)→ πn−1(K,C), where C is as in item (3) of the hypotheses.

On the other hand, πn−1(L,C) is spanned by the classes of the subcomplexes
Si, which in fact lie in the links of the vertices v ∈ V. Therefore [Si] becomes the
trivial element when regarded in πn−1(K,C), showing that πn−1(K,C) is the trivial
group. Hence K is (n − 1)-connected and n-dimensional, that is, K is spherical of
dimension n. �

We define now some particular simplicial complexes that look like those in the
previous theorem.

Definition 2.3. Let L be a simplicial complex and let F be a collection of groups
acting on L. The F -extended complex LF is the simplicial complex whose vertex set
is the (disjoint) union of F and the vertex set of L, and simplices are as follows.
Every simplex of L is a simplex, and if E ∈ F fixes a simplex σ ∈ L pointwise, then
σ∪{E} is a simplex. That is, for E ∈ F , LkL(E) = LkLF (E) = LE and StLF (E) = LE ∗{E}.

We say that L and F have a compatible action by G if L is a G-complex, F is a
G-set, and the action of G on the vertices of LF induces a simplicial action on this
complex.

We will usually describe the homotopy type of LF by using Theorem 2.1 since
L is a full subcomplex of K = LF such that K \ L = F is a discrete set of vertices.

Recall that a simplicial action of a group G on a simplicial complex K is said to
be admissible if every time an element g ∈ G fixes a simplex σ ∈ K, then g fixes σ
pointwise.

The following result is almost immediate from the Gluing Lemma A.6 and the
properties of a G-homotopy equivalence between G-complexes with admissible
actions.

Proposition 2.4. Let L1, L2 be two simplicial complexes with an admissible action of a
group G such that L1 ≃G L2. Let F be a family of subgroups of G. Then L1F ≃ L2F .
Moreover, if F is closed under G-conjugation, then L1F ≃G L2F .

Proof. Let φ : |L1| → |L2| be a G-homotopy equivalence. For H ≤ G, we have
|Li|

H = |LH
i
| since the action is admissible. Therefore, φ restricts to a homotopy

equivalence |LH
1
| → |LH

2 | by the equivariant Whitehead Theorem A.4. Let Ki = LiF

and E ∈ F . Then LkLi
(E) = LE

i
. By Theorem 2.1 and the Gluing Lemma A.6, we

have a homotopy equivalence of the pushouts φ : |K1| → |K2|.
Moreover, we claim that this is a G-homotopy equivalence. Indeed, we must

prove that φ is G-equivariant and that it induces homotopy equivalences between
the fixed point subspaces.
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The G-equivariant property follows from φ and since Li,F have a compatible
G-action. We analyse the fixed points. Let H ≤ G. Then Ki

H = (LH
i

)F H , where

F H = {E ∈ F : H normalises E}. For E ∈ F H, LkLH
i
(E) = L〈H,E〉

i
, and φ restricts

again to a homotopy equivalence L〈H,E〉
1

→ L〈H,E〉
2

. Thus, by the Gluing Lemma

again, the induced map φH : |K1|
H → |K2|

H is a homotopy equivalence. �

3. Homotopy equivalences between p-subgroup complexes

We show some homotopy equivalences between different posets of p-subgroups
whose order relations are not always given by set-theoretic inclusion, and related
complexes of p-subgroups constructed by using Definition 2.3.

Recall that if X is a poset, then the order complex of X, which we denote by∆(X),
is the simplicial complex whose simplices are the finite totally ordered subsets
of X. We will regard a poset as a topological space via the topology of its order
complex. When we need to emphasise that we work on a simplicial complex, we
will write expressions like (∆(X))F ≃ Y to say that the F -extended complex of
∆(X) is homotopy equivalent to the poset Y. Otherwise we will just write X ≃ Y.
For x ∈ X, let X≤x = {y ∈ X : y ≤ x}, and define analogously X<x,X≥x,X>x.

If X is a G-poset, i.e. a poset with an action of a group G by poset automorphisms,
then ∆(X) is an admissible G-complex and (∆(X))H = ∆(XH) for any subgroup H
of G, where XH is the set of H-fixed points of X. Also recall that if f , g : X→ Y are
two order-preserving G-maps between G-posets X and Y such that f (x) ≤ g(x) for
all x ∈ X, then (the geometric realisations of) f , g are G-homotopy equivalent.

From now on, p denotes a prime number, and groups are considered to be finite.
If H ≤ G are groups, then NG(H) and CG(H) denote the normaliser and centraliser
of H in G respectively. If H,K ≤ G then we write NG(H,K) = NG(H) ∩NG(K), and
[H,K] for the commutator subgroup of H and K. Also Z(G), Op(G), Op′(G) denote
the centre of G, the largest normal p-subgroup of G (the p-core), and the subgroup
generated by the Sylow p-subgroups of G, respectively. After fixing the prime p,
Ω1(G) is the subgroup generated by the order-p elements of G.

The Quillen poset of G (at p) is the posetAp(G) of non-trivial elementary abelian
p-subgroups of G ordered by inclusion ≤. As mentioned in the introduction, this
poset was first studied by Quillen [Q] who established numerous connections
between its homotopy properties and algebraic properties of the group G. Indeed,
from Quillen’s work it follows that Ap(G) is homotopy equivalent to the poset
Sp(G) of all non-trivial p-subgroups of G. There is another related p-subgroup
poset, namely the Bouc poset Bp(G) whose elements are the radical p-subgroups
of G, that is, non-trivial p-subgroups R such that Op(NG(R)) = R (ordered by
inclusion). This poset was introduced by S. Bouc [Bo] who showed that Bp(G) ≃
Sp(G).

We will use the following slightly stronger result on the homotopy equivalences
between the p-subgroup posets defined above.
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Proposition 3.1. Suppose we have groups G, Ĝ, where Ĝ acts on G. Then the inclusions

Ap(G) →֒ Sp(G) and Bp(G) →֒ Sp(G) are Ĝ-homotopy equivalences.

Proof. It is clear that Ĝ induces an action on Sp(G) and hence onAp(G) and Bp(G).
We first apply Quillen’s fibre Theorem A.2 applied to the inclusion i : Ap(G)op →֒

Sp(G)op (where Xop is the opposite poset). Observe that for P ∈ Sp(G) \Ap(G) one
has

i−1
(
(Sp(G)op)≤P

)
∗ (Sp(G)op)>P = Sp(G)<P.

IfΦ(P) denotes the Frattini subgroup of P, thenSp(G)<P is StabĜ(P)-contractible via
the StabĜ(P)-equivariant chain of homotopies R ≤ RΦ(P) ≥ Φ(P), for R ∈ Sp(G)<P,
where Φ(P),RΦ(P) ∈ Sp(G)<P since P is not elementary abelian. Hence, Theorem
A.2 yields the desired conclusion.

A similar argument works for Bp(G) since for P ∈ Sp(G) \ Bp(G) we have that
Sp(G)>P is StabĜ(P)-contractible via the StabĜ(P)-equivariant chain of homotopies

(3.1) R ≥ NR(P) ≤ NR(P)Op(NG(P)) ≥ Op(NG(P)),

where each subgroup in this chain of inequalities lies in Sp(G)>P. �

Recall also the classical contractibility theorem:

Proposition 3.2 (Quillen). If Op(G) , 1 and Ĝ acts on G then the posetsAp(G), Sp(G)

and Bp(G) are Ĝ-contractible.

Proof. We have a Ĝ-equivariant homotopy

P ≤ POp(G) ≥ Op(G),

where each term lies in Sp(G). Thus Sp(G) is Ĝ-contractible, and the same holds
forAp(G) and Bp(G) by Proposition 3.1. �

Next, we introduce a distinguished subposet F that will be crucial to recover
(somehow) the homotopy type ofAp(G) from the homotopy type ofAp(H), with
H ≤ G, and the behaviour of the Quillen poset of the centralisers in H of the
subgroups in F .

Definition 3.3 (The F -poset). Let H ≤ G be finite groups, and fix a prime p. Then
we define

FG(H) = {E ∈ Ap(G) : E ∩H = 1},

FG(H)′ = {E ∈ FG(H) : Op(CH(E)) = 1}.

The following theorem is extracted from [PS].

Theorem 3.4. Let H ≤ K ≤ G be finite groups and p a prime. ThenAp(K) is NG(H,K)-
homotopy equivalent to the poset

Bp(H ↑ K) := Bp(H) ∪ FK(H),

whose ordering � is given as follows: inside Bp(H) and FK(H) we keep the inclusion
ordering, and for R ∈ Bp(H) and E ∈ FK(H) we put

E ≺ R ⇔ CR(E) , 1.
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Proof. This is the poset WB
K

(H, 1) of [PS, Theorem 4.10], where it is proved to be
NK(H)-homotopy equivalent to Ap(K). Nevertheless, the same proof extends to
an NG(H,K)-homotopy equivalence. �

Remark 3.5. Let E be a p-group acting on a group H. Then Sp(H)E ≃ Sp(CH(E)) =
Sp(NH(E)) (and hence we have the same homotopy equivalences for Bp andAp).
Indeed, if Sp(CH(E)) ⊆ Sp(H)E and R ∈ Sp(H)E, then CR(E) , 1 by p-group actions,
so the map R 7→ CR(E) defines a strong deformation retract from Sp(H)E onto
Sp(CH(E)). In particular, we get

(3.2) Bp(H)E ≃ Sp(H)E ≃ Sp(CH(E)) ≃ Bp(CH(E)).

Note that Bp(H)E →֒ Sp(H)E is a homotopy equivalence since the inclusion
Bp(H) →֒ Sp(H) is an E-equivariant homotopy equivalence by Proposition 3.1.

Moreover, if H,E ≤ G and E acts on H by conjugation, then the equivalences in
Eq. (3.2) are NG(H,E)-equivariant.

We will usually work under the assumption that FG(H) consists of at most
cyclic subgroups. This is equivalent to saying that FG(H) is an antichain, where
we regard FG(H) as a subposet ofAp(G) with order given by inclusion.

Corollary 3.6. Let H ≤ K ≤ G be such that FK(H) is an antichain. Then Ap(K) ≃
Bp(H ↑ K) is NG(H,K)-homotopy equivalent to (∆Bp(H))FK(H).

Proof. LetF := FK(H). For E ∈ F , note that Sp(CH(E)) →֒ Sp(H)E is an NG(H,K,E)-
homotopy equivalence since the map R ∈ Sp(H)E 7→ CR(E) ∈ Sp(CH(E)) is an
NG(H,K,E)-equivariant homotopy inverse.

Let NS
H

(E) = {R ∈ Sp(H) : NR(E) , 1} and NB
H

(E) = Bp(H) ∩ NS
H

(E). Thus

NB
H

(E) →֒ NS
H

(E) is an NG(H,K,E)-homotopy equivalence by Quillen’s fibre The-

orem A.2. Indeed, if R ∈ NS
H

(E) is not a radical p-subgroup of H, then, as NS
H

(E)

is an upward-closed subposet of Sp(H), we see that NS
H

(E)>R = Sp(H)>R, which is
NG(H,R)-contractible (see Eq. (3.1)).

We claim now that the inclusion Bp(H)E →֒ NB
H

(E) also yields an NG(H,K,E)-

homotopy equivalence. In fact, the map c : NS
H

(E) → Sp(CH(E)) that takes R to
CR(E) defines an equivariant strong deformation retract. From this, we conclude
that the inclusion Sp(H)E →֒ NS

H
(E) is an NG(H,K,E)-homotopy equivalence as

well (see Remark 3.5).
Then we have the following commutative diagram with NG(H,K,E)-homotopy

equivalences:

Bp(H)E
� _

≃

��

� � // NB
H

(E)
� _

≃

��

Sp(H)E � �

≃
// NS

H
(E)

c

≃
// Sp(CH(E))

Therefore Bp(H)E →֒ NB
H

(E) is an NG(H,K,E)-homotopy equivalence.
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On the other hand, by Theorem 2.1 we have an adjunction
∐

E∈F |∆Bp(H)E|
� _

��

// |∆Bp(H)|
� _

��∐
E∈F |(∆Bp(H)E) ∗ {E}| // |(∆Bp(H))F |

Similarly, |∆Bp(H ↑ K)| is obtained as the following adjunction space:

∐
E∈F |∆N

B
H

(E)|
� _

��

// |∆Bp(H)|
� _

��∐
E∈F |(∆N

B
H

(E)) ∗ {E}| // |∆Bp(H ↑ G)|

Note that we have an NG(H,K)-equivariant simplicial map Ψ : (∆Bp(H))
F
→

∆Bp(H ↑ G) which is the identity on Bp(H) and on F , and it maps a simplex
{R1 < . . . < Rk} ∪ {E} with Ri ∈ Bp(H)E and E ∈ F to {E ≺ R1 < . . . < Rk}. Since
Ψ restricts to the homotopy equivalences described above, by the Gluing Lemma
A.6 we conclude thatΨ is a homotopy equivalence.

Finally, the claim on the NG(H,K)-homotopy equivalence follows by an appli-
cation of the equivariant Whitehead theorem. Namely, for each N ≤ NG(H,K) we
take the fixed point subcomplexes by N and observe that

(
(∆Bp(H))F

)N
=
(
∆Bp(H)N

)
F N

and (
∆Bp(H ↑ K)

)N
= ∆
(
Bp(H)N ∪ F N

)
.

Then the same proof restricted to the N-fixed points yields a homotopy equiva-
lence of the pushouts

(
(∆Bp(H))F

)N
→
(
∆Bp(H ↑ K)

)N
,

where this is the map induced by restricting the simplicial mapΨ above. �

We produce one last homotopy equivalence between p-subgroup complexes.

Proposition 3.7. Let H ≤ K ≤ G be such that H,K are normal in G, and FK(H)∪FG(K)
is an antichain. Then there are G-homotopy equivalences:

Ap(G) ≃G

(
(∆Bp(H))FK(H)′

)
FG(K)′

≃G

(
∆Bp(K)

)
FG(K)′

.

Proof. First, we have
Ap(G) ≃G (∆Bp(K))FG(K)

by Corollary 3.6. Also

(∆Bp(H))FK(H) ≃G ∆Ap(K) ≃G ∆Bp(K)

by Corollary 3.6 and Proposition 3.1.
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Now, an element E ∈ FK(H) \ FK(H)′ satisfies

Lk∆Bp(H)(E) = ∆(Bp(H)E) ≃NG(E) Bp(CH(E)) ≃NG(E) ∗

by Remark 3.5 and Proposition 3.2. Since the sets FK(H)′ and FK(H) are G-
invariant, by Theorem 2.1(3) we get G-homotopy equivalences

(∆Bp(H))FK(H)′ ≃G (∆Bp(H))FK(H) ≃G ∆Bp(K).

Since FG(K) is also closed under G-conjugation, the G-homotopy equivalence
(

(∆Bp(H))FK(H)′

)
FG(K)

≃G

(
∆Bp(K)

)
FG(K)

follows from Proposition 2.4. Finally, the same argument as before now shows
that we can equivariantly eliminate the vertices in FG(K) \ FG(K)′ and thus

(
(∆Bp(H))FK(H)′

)
FG(K)′

≃G

(
∆Bp(K)

)
FG(K)′

.

�

One could even try to iterate the above procedure and consider longer chains
of normal subgroups. Moreover, all these results do not depend on the structure
of the Bp poset, so they are still valid if we change Bp by Ap or Sp. However, in
these notes, we will mainly consider the Bouc poset.

4. Some preliminary results on buildings

In this section, we work with (spherical) buildings, as defined by Tits [T]. We
adopt the language of [AB] when we talk about buildings and groups with BN-
pairs. We will just review some basic facts, and we refer to [AB, T] for standard
definitions and further details.

Below, we recall the well-known Solomon-Tits theorem, which will be a key
ingredient in the proof of our main theorem.

Theorem 4.1 (Solomon-Tits). Let ∆ be a spherical building of rank n, and let C be a
fixed chamber. Then ∆ is homotopy equivalent to a wedge of spheres of dimension n − 1.
Moreover, there is one sphere for each apartment of ∆ containing C, and they yield a basis
for the (n − 1)-th homotopy group of ∆ (and hence for the (n − 1)-th homology group).

Proof. See Theorem 4.73 of [AB]. �

Recall that a simplicial complex K of finite dimension n is said to be Cohen-
Macaulay if for any simplex σ ∈ K (including the empty simplex), the link LkK(σ)
is spherical of dimension n − |σ|, where |σ| is the size of σ. Since in a building the
links of simplices are buildings, we conclude that they are Cohen-Macaulay.

Corollary 4.2. Let ∆ be a spherical building of rank n with apartment system A, and
let σ ∈ ∆ be a simplex. Then Lk∆(σ) is a building of rank n − |σ| with apartment system
given byA∆ = {A \ σ : A ∈ A and σ ∈ A}.

In particular, ∆ and Lk∆(σ) are Cohen-Macaulay.
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Proof. This follows from Proposition 4.9 of [AB] together with its proof, and The-
orem 4.1. �

In conjunction with Corollary 2.2 we get:

Corollary 4.3. Let ∆ be a building of rank n and let K be a simplicial complex such that
∆ ≤ K is a full subcomplex and K \∆ = V is a discrete set of vertices. Assume that Lk∆(v)
is spherical for all v ∈ V, and for some chamber C ∈ ∆, any apartment of ∆ containing C
is contained in some Lk∆(v), v ∈ V. Then K is spherical of dimension n.

If in addition Lk∆(v) is Cohen-Macaulay for all v ∈ V and, for a given system of
apartments A, every apartment of A is contained in the link of some v ∈ V, then K is
Cohen-Macaulay.

Proof. That K is spherical follows from the Solomon-Tits theorem and Corollary
2.2 applied to L = ∆ where we use the classes of apartments containing C as
generating spheres Si in item (3) there. Note that K = ∆V.

We show now that K is Cohen-Macaulay under the additional assumptions.
LetA be a system of apartments for ∆ such that for all A ∈ A there is v ∈ V with
A ⊆ LkK(v). Let σ ∈ K and v ∈ V. If σ ∈ LkK(v), then LkK(σ ∪ {v}) = LkLk∆(v)(σ) is
spherical of dimension n − 1 − |σ| by hypothesis.

On the other hand, LkK(σ) = Lk∆(σ)Fσ where Fσ = {v
′ ∈ V : v′ ∈ LkK(σ)}. Now,

Lk∆(σ) is a building by Corollary 4.2, and a system of apartments for it is given
by A \ σ such that A ∈ A and σ ∈ A. For such an apartment A, there is v ∈ V
with A ⊆ LkK(v) by hypothesis. Hence σ ∈ LkK(v), A \ σ ⊆ LkK(v), and therefore
the apartment A \ σ of Lk∆(σ) is contained in LkLk∆(σ)(v). By the first part of this
corollary applied to the building Lk∆(σ) inside the simplicial complex LkK(σ), we
conclude that the latter is spherical (of the correct dimension). �

5. Algebraic groups and main results

Now we apply the homotopical results described in the previous sections to
the case L = ∆ is the building of a finite group of Lie type H and a vertex v ∈ K \∆
can be regarded as a field automorphism of H such that Lk∆(v) = ∆v (the fixed
point subcomplex) contains an apartment of ∆ and it is homotopy equivalent to
the building associated with CH(v). Below we provide the necessary notation and
basic results on linear algebraic groups and groups of Lie type. Our main reference
for algebraic groups is [MT], but sometimes we will refer to [GLS, St1, St2] for
some general facts. From now on, we denote by∆(G) the building associated with
a (not necessarily finite) group G with a BN-pair.

Assume that K is an algebraically closed field of characteristic p > 0, and let F
denote the Frobenius map which acts as p-powering on the entries of the matrices
of GLn(K). For a (closed) linear algebraic group G ≤ GLn(K), we also write F for
the induced Frobenius map onG. A Steinberg endomorphism ofG is an algebraic
group homomorphism F : G→ G such that Fm = Fa for some m, a ≥ 1. Denote by
Aut+0 (G) the set of Steinberg endomorphisms of G. The family of groups of Lie
type in characteristic p, which we denote by Lie(p), consists of the finite groups
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arising as fixed points GF = {x ∈ G : F(x) = x}, where G is a simple algebraic
group over an algebraically closed field of characteristic p > 0, and F is a Steinberg
endomorphism of G:

Lie(p) = {GF : G is a simple algebraic group in characteristic p and F ∈ Aut+0 (G)}.

By a split-pair of G we mean a pair (B,T) where B is a Borel subgroup and
T ≤ B is a maximal torus. If G is connected reductive with a maximal torus T,
we fix a root system Σ and base Π, with positive root system Σ+, and therefore
we have a Borel subgroup B spanned by T and the root subgroups Uα, α ∈ Σ+ (cf.
Theorem 11.1 of [MT]). We call the tuple (B,T,Σ,Π) a root-setup for G, and (B,T)
is its associated split-pair. When Σ is indecomposable (e.g. G is simple), we write
Σ = An,Bn,. . . to denote its type.

Suppose G is a simple simply connected algebraic group with a root-setup
(B,T,Σ,Π). A Steinberg endomorphism F of G can be written, up to an inner-
automorphism, as γFs, where s > 0 and γ is a group-theoretic automorphism ofG
that arises from a permutation of the set of simple rootsΠ that induce a symmetry
of the Coxeter diagram. Although γ is a bijective endomorphism of algebraic
groups, it might not be invertible as an algebraic group map. For instance, in
the cases Σ = B2, F4,G2 with characteristic p = 2, 2, 3 respectively, γ can arise
from the permutation that interchanges the long and short roots, which is an
order-2 symmetry of the Coxeter diagram. In this case, we will use the notation
γ = ψ (here following [GLS]), and it holds ψ2 = F. See, for example, Theorem
22.5 of [MT]. For an arbitrary simple algebraic group G, we obtain the same
decomposition for a Steinberg endomorphism F after passing through a simply
connected group Gsc with an isogeny Gsc → G (cf. Proposition 9.15 of [MT] and
Theorem 1.15.7 of [GLS]).

Moreover, γ and F commute, and B,T are (by construction) stable by γ and F.
If F = γF, we will say that F is a Steinberg endomorphism in standard form (with
respect to the fixed root-setup). Recall that if x is an inner automorphism of G,
then GxF and GF are isomorphic (see Corollary 21.8 of [MT]). Therefore, to study
the groups GF we can (and we will) assume that F is in standard form. Finally, if
γ , 1 then we say that GF is a twisted group. Otherwise, GF is untwisted.

If F = γFs is in standard form as above, any power of F induces an automor-
phism on GF, which we call the canonical field automorphisms of GF. We have a
group homomorphism Z→ Aut(GF) given by n 7→ (F|GF)n, and we denote its im-
age byΦGF . This is a cyclic group of order ds, where d is the order of the symmetry
induced from γ if γ , ψ in the cases Σ = B2, F4,G2 with p = 2, 2, 3 respectively. In
such cases, ΦGF has order 2s + 1.

A field automorphism ofGF is an element x ∈ Aut(GF) which is Aut(GF)-conjugate
to an element ofΦGF (see also Section 10 of [St1]). Note that this terminology differs
from [GLS], where a field automorphism for GF is a field automorphism in our
sense but in addition, in the twisted cases for γ , ψ, its order must be prime to
the order d of the symmetry induced by γ on the Coxeter diagram. In such cases,
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if the order of x∗ is divisible by d then [GLS, Definition 2.5.13(c)] calls x a graph
automorphism. We will not adopt this terminology here.

Remark 5.1. Let F be a Steinberg endomorphism of a connected reductive algebraic
group G in characteristic p > 0, with H = GF a finite group. It is well-known that
F stabilises a split-pair (B,T) of G (cf. Corollary 21.12 of [MT]), and for any such
a pair, BF,NG(T)F yields a BN-pair for H (Theorem 24.10 of [MT]). The poset of
parabolic subgroups of H gives rise to the building of H defined from this BN-pair,
and moreover, such a poset is anti-isomorphic to the poset of radical p-subgroups
of H via the map P 7→ Op(P) with inverse R 7→ NH(R). Therefore ∆Bp(H) � ∆(H)
(and indeed this isomorphism is Aut(H)-invariant).

Let S be the set of simple reflections generating the Weyl group W = NG(T)/T.
Then each proper subset I of S defines a standard parabolic subgroup PI of G (see
Proposition 12.2 of [MT]). Moreover, the order complex of the poset {w−1PIw :
w ∈W, I ( S} yields a standard apartment for ∆(G).

Now, F permutes the set S, and each F-invariant subset I of S defines an F-
stable parabolic PI, and PF

I
is a standard parabolic subgroup of GF (and indeed it is a

parabolic subgroup for the BN-pair BF,NG(T)F). Hence, the order complex of the
subposet of parabolics

(5.1) {w−1(PI)
Fw : w ∈WF, I ( S is F-invariant},

yields a standard apartment for ∆(H) (see p.320 of [AB] and Section 26.1 of [MT]).

Lemma 5.2. Let x be a field automorphism of a group of Lie type H ∈ Lie(p). Then
the fixed point subcomplex ∆(H)x contains an apartment that is Aut(H)-conjugate to a
standard apartment of ∆(H). Moreover, if |x| = p then ∆(H)x is homotopy equivalent to
∆Bp(CH(x)), which is a building of the same type as ∆(H).

Proof. Suppose that H = GF, where F is a Steinberg endomorphism of a simple
algebraic group G over an algebraically closed field of characteristic p > 0, and
fix a root-setup (B,T,Σ,Π) for G. Without loss of generality, we may assume
that F is in standard form, so F = γFs for some s > 0. Let W = NG(T)/T be the
corresponding Weyl group and S the set of simple reflections generating W. Then
γ permutes S and F centralises S (and hence W). Let Z be the set of parabolic
subgroups of H defined in Eq. (5.1), so ∆(Z) is a standard apartment for ∆(H). Up
to Aut(H)-conjugation, we can assume x = F′|H : H → H, with F′ = Fa for some
a > 0. Since F acts trivially on W and stabilises B, we see that x fixes every vertex
in Z. Therefore ∆(Z) ≤ ∆(H)x.

Suppose now that |x| = p. The homotopy equivalence ∆(H)x ≃ ∆Bp(CH(x))
follows from Remarks 3.5 and 5.1. Finally, by Proposition 5.7 we have that
Op′(CH(x)) ∈ Lie(p) and its building has the same type as the building of H, with
∆(Op′(CH(x))) = ∆Bp(CH(x)). This proves the Moreover part. �

Recall that for H ∈ Lie(p) we have Aut(H) ≤ Aut(H/Z(H)), and the latter is a
split-extension of Inndiag(H) by ΦHΓH (see Theorems 2.5.12 and 2.5.14 of [GLS]).
Here Inndiag(H) denotes the group of inner-diagonal automorphisms of H, which
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has order prime to p, as well as Z(H). As defined above, ΦH is the group of field
automorphisms induced by the Frobenius map (after fixing a suitable root-setup
and a Steinberg endomorphism in standard form), and ΓH is the set of graph
automorphisms induced from symmetries of the underlying Coxeter diagram of
H. We write

(5.2) Out(H)∗ := Aut(H)/ Inndiag(H),

which is a subgroup of ΦHΓH (with equality when H = GF and G is simple and
either simply connected or adjoint) and contains ΦH as a normal subgroup. We
shall denote by E∗ and x∗ the image in Out(H)∗ of a group E and element x,
respectively, inducing automorphisms on H. In particular, if x ∈ Aut(H) induces
a field automorphism on H then x∗ ∈ ΦH. Recall Out(H)∗ is abelian except for
H = D4(q). For more details, see Theorem 2.5.14 of [GLS]. We warn that ΓH does
not always define a subgroup of Out(H)∗, and ΓH = 1 if H is twisted.

If a group E acts on a group H, we say that x ∈ E induces an outer automorphism
on H if the image of x under the map E→ Aut(H) does not lie in Inn(H), the group
of inner automorphisms of H. We say that E induces outer automorphisms on H
if every non-trivial element x ∈ E induces an outer automorphism on H.

Recall that a subgroup H of G is self-centralising if CG(H) ≤ H, i.e. CG(H) =
Z(H). This property implies that, if E ≤ G normalises H and E ∩ H = 1, then
E � EH/H ≤ Out(H). If in addition H is normal in G, the elements of FG(H)
induce outer automorphisms on H. An important example of a normal self-
centralising subgroup is the generalised Fitting subgroup of G, which we will
denote by F∗(G). From the properties of the components of G and the Fitting
subgroup, one can show that if H is self-centralising, normal and quasisimple (i.e.
H = [H,H] is perfect and H/Z(H) is simple) then H = F∗(G).

We will be interested in the case that G contains a self-centralising normal
subgroup H such that H ∈ Lie(p):

Definition 5.3. Let G be a finite group and fix a prime p. An SCNLp-subgroup of
G is a self-centralising normal subgroup which is isomorphic to a finite group of
Lie type in characteristic p.

Note that if H is an SCNLp-subgroup of G, then H = F∗(G) if and only if H
is quasisimple (see Theorem 2.2.7 of [GLS]). Conversely, a group H ∈ Lie(p) is
quasisimple except for the cases described in Table 1. In those cases, we see that
either [H,H] is a non-abelian simple group or H is solvable.

In the following example, we analyse the homotopy type of the Quillen poset
of the almost simple groups appearing in Table 1. Recall that np denotes the p-part
of a non-zero integer n, i.e. the largest power of p dividing n.

Example 5.4. Let p = 2 and let H = 2F4(2). Then Z(H) = 1, Aut(H) = H, and if
H is an SCNL2-subgroup of a group G, then H = G. However, H is not simple,
but [H,H], the Tits group, is simple of index 2 in H (see Table 1). Since [H,H]
contains all the involutions of H, it follows that A2(H) = A2([H,H]). Therefore
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H p [H,H] Out(H)

A1(2) � Sym3 2 Solvable 1

A1(3) 3 Solvable Outdiag(H) � C2

2A2(2) 2 Solvable Outdiag(H) : ΦH � Sym3
2B2(2) 2 Solvable 1

PSp4(2) � Sym6 2 Alt6, simple ΓH � C2

G2(2) � Aut(PSU3(3)) 2 PSU3(3), simple 1
2F4(2) 2 Tits group, simple 1

2G2(3) � Aut(PSL2(8)) 3 PSL2(8), simple 1
Table 1. In all cases, |H : [H,H]| = p and H ∈ Lie(p).

A2([H,H]) is H-homotopy equivalent to a wedge of 1-spheres, and the number of
such spheres is |H|2 = 212.

More generally, if H is one of the non-solvable groups of the first column
of Table 1 and p is the index of [H,H] in H, then it is not hard to show that
Ap([H,H]) ≃H Ap(H) ≃H ∆(H). ThereforeAp([H,H]) is homotopy equivalent to a
wedge of |H|p spheres of dimension equal to the Lie rank of H minus one.

Next, we show that SCNLp-subgroups are unique.

Lemma 5.5. Let G be a finite group and p a prime. Then G contains at most one
SCNLp-subgroup.

Proof. By way of contradiction, suppose that H,K are two distinct SCNLp-subgroups
of G.

By the discussion above on quasisimplicity and the generalised Fitting sub-
group, we can assume without loss of generality that H is not quasisimple, i.e. H
is one of the groups given in the first column of Table 1. Note that K/K∩H � KH/H
embeds into Out(H), and the condition [H,K] = 1 would imply K ≤ Z(H) and
H ≤ Z(K), i.e. H,K are abelian, which never holds. Thus [H,K] , 1, and in conse-
quence H ∩ K , 1. Moreover, since Out(K),Out(H) are solvable, we see that if H
or K is solvable then G is, and hence both H,K are solvable (that is, H is solvable
if and only if K is).

Suppose that [H,H] is simple (and hence K is not solvable). Then H ∩ K = H or
[H,H], and since [H,H] < Lie(p), we see that [H,H] < K. So 1 , K/[H,H] ≤ Out(H),
which forces H = PSp4(2) and H ≤ G ≤ Aut(H). From this, it is not hard to show
that H = K. Therefore, both H and K are solvable as in the first column of Table 1.

Now, Out(H) = 1 leads to G/H = 1, so G = H and K ≤ H. But a case-by-case
inspection shows that H does not contain a proper self-centralising subgroup
K ∈ Lie(p). Therefore Out(H) , 1, which implies that H,K lie in the same row of
Table 1. Again, a case-by-case inspection with GAP shows that one must have
H = K (to see this, pass through the quotient G/Z(H) and analyse the possibilities
of G and K/(Z(H) ∩ K) as a normal subgroup of G). �
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In light of the previous lemma, we can talk about the “unique” (if it exists)
self-centralising normal subgroup H ∈ Lie(p) of a group G. Note that G might still
contain a self-centralising normal subgroup K ∈ Lie(r) for a different prime r. For
example, H = PSp4(2) ∈ Lie(2) and K = [H,H] � Alt6 � PSL2(9) ∈ Lie(3) are both
self-centralising normal subgroups of any G such that H ≤ G ≤ Aut(H).

Next, we introduce a useful notation that arranges different types of order-p
outer automorphisms of a group of Lie type in characteristic p.

Definition 5.6. Let G be a finite group with an SCNLp-subgroup H. Then we write

F f := {E ∈ FG(H) : |E| = p induces field automorphisms on H},

Fg := {E ∈ FG(H) : |E| = p, E < F f and Op(CH(E)) = 1},

Fc := {E ∈ FG(H) : |E| = p, Op(CH(E)) , 1}.

Note that F f , Fg and Fc are (possibly empty) antichains, and are uniquely deter-
mined by p and G by Lemma 5.5.

The elements of Fg are roughly the order-p subgroups inducing graph or graph-
field automorphisms on H whose image in Out(H)∗ do not lie in ΦH (cf. Definition
2.5.13 of [GLS]).

Below we quote the crucial parts of Propositions 4.9.1 and 4.9.2 of [GLS] on
centralisers of order-p outer automorphisms of a group of Lie type. We write
H = dΣ(q) if H arises as the fixed points of a Steinberg endomorphism F = γFs

of a simple algebraic group G with root-setup (B,T,Σ,Π) such that γ induces a
symmetry of the Coxeter diagram of order d, and q = ps. In the special case that
γ = ψ and Σ = B2, F4,G2 with p = 2, 2, 3 resp., we write q = p2s+1.

Proposition 5.7. Let H ∈ Lie(p) and let x ∈ Aut(H)\Inndiag(H) be an order-p element.
The following hold:

(1) (Field) If x∗ ∈ ΦH then exactly one of the following holds:
(a) d , p, x is a field automorphism of H and Op′(CH(x)) � dΣ(q1/p) ∈

Lie(p). Further, if Z(H) = 1 then Z(CH(x)) = 1 and CInndiag(H)(x) =

Inndiag(dΣ(q1/p)).
(b) d = p and Op(CH(x)) , 1.

(c) d = p, x is a field automorphism of H and Op′(CH(x)) ∈ Lie(p) is described
in Table 2.

p H Op′(CH(x))

2 2An−1(q) B[n/2](q)

2 2Dn(q) Bn−1(q)

2 2E6(q) F4(q)

3 3D4(q) G2(q).
Table 2. Field automorphisms in the twisted cases.
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In cases (a) and (c), H and Op′(CH(x)) have the same Lie rank, and if y ∈
Aut(H) \ Inndiag(H) also has order p, y∗ ∈ ΦH and case (b) does not hold for y,
then 〈x〉 and 〈y〉 are Inndiag(H)-conjugate.

(2) (Non-field) If x∗ ∈ Out(H)∗ \ ΦH then d = 1 (so H is untwisted), x is not a field
automorphism of H, p = 2 or 3, and either Op(CH(x)) , 1 or Op′(CH(x)) ∈ Lie(p)
is described in Table 3.

p H Rank of H Type of x Op′(CH(x)) Rank of Op′(CH(x))

2 B2(22a+1) 2 graph 2B2(22a+1) 1

2 F4(22a+1) 4 graph 2F4(22a+1) 2

2 An−1(2a), n ≥ 3 n − 1 graph B[n/2](2
a) [n/2]

2 An−1(22a), n ≥ 3 n − 1 graph-field 2An−1(2a) [n/2]

2 Dn(2a), n ≥ 4 n graph Bn−1(2a) n − 1

2 Dn(2a), n ≥ 4 n graph-field 2Dn(2a/2) n − 1

3 D4(3a) 4 graph G2(3a) 2

3 D4(33a) 4 graph-field 3D4(3a) 2

2 E6(2a) 6 graph F4(2a) 4

2 E6(22a) 6 graph-field 2E6(2a) 4
Table 3. Centralisers for x ∈ Aut(H) of order p such that x∗ ∈
Out(H)∗ \ΦH and Op(CH(x)) = 1.

Moreover, if y ∈ Aut(H) \ Inndiag(H)ΦH has order p and y falls in the same
row as x in Table 3 then 〈x〉 and 〈y〉 are Inndiag(H)-conjugate, except when
H = D4(q) for p = 2 in the graph case, or p = 3 in the graph-field case. In those
cases 〈x〉, 〈y〉 are Inndiag(H)ΓH-conjugate, with ΓH � Sym3.

We derive some useful properties from the previous proposition.

Proposition 5.8. Let G be a finite group with an SCNLp-subgroup H, and let E ∈ FG(H).

(1) E � E∗ ≤ Out(H)∗ and it has p-rank at most 2.
(2) If H is untwisted, then E ∈ F f if and only if E is cyclic and E∗ ≤ ΦH.
(3) If H is untwisted, then E ∈ Fg ∪ Fc if and only if E is cyclic and E∗ ∩ ΦH = 1.

Moreover, Fg and Fc are disjoint, and if Fc is non-empty then Fg is non-empty.
(4) If H is twisted, then Fg = ∅, E ∈ F f ∪ Fc, E∗ ≤ ΦH, and F f and Fc are disjoint.
(5) If E is cyclic then E ∈ F f ∪ Fg ∪ Fc, which is a disjoint union.
(6) If E ∈ Fc then Bp(K)E ≃ ∗ for any H ≤ K ≤ G.
(7) Let q : G → Aut(H) be the map induced by the quotient G → G/Z(H) →֒

Aut(H), and define

Gd := q−1(Inndiag(H)) and Gd f := q−1(Inndiag(H)ΦH).

Then FGd f
(H) = F f if H is untwisted, and FGd f

(H) = F f ∪ Fc otherwise. In
particular, FGd f

(H) is an antichain of order-p subgroups.
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Proof. If E ∈ FG(H) then E ∩ Inndiag(H) = 1 since Outdiag(H) has order prime to
p. Then E � E∗ ≤ Out(H)∗.

Items (2-5) follow directly from Proposition 5.7. We briefly explain that Fg

is non-empty if Fc is non-empty and H is untwisted. Take Z to be a long-root
subgroup of H, y ∈ Aut(H) an order-p element inducing “graph” automorphisms
on H (according to the rows of Table 3), and suppose 〈x〉 ∈ Fc. Then there exists
ϕ ∈ Aut(H) such that 〈ϕ(yz)〉 = ϕ(〈yz〉) = 〈x〉 for some z ∈ Z, by Proposition
4.9.2(g) of [GLS] and the remark below that proposition. Since ϕ(z) ∈ H, we see
that ϕ(y) ∈ H〈x〉 ≤ G, so 〈ϕ(y)〉 ∈ Fg.

For item (6) recall first thatBp(K)E ≃ Bp(CK(E)) by Remark 3.5. Also since H ≤ K
is normal, CH(E) is normal in CK(E), so 1 , Op(CH(E)) ≤ Op(CK(E)). This implies
Bp(CK(E)) ≃ ∗ by Proposition 3.2.

On the other hand, F f ⊆ FGd f
(H). Reciprocally, if E ∈ FGd f

(H) then E∗ ≤ ΦH and
the latter is a cyclic group, so E has order p. By items (2) and (4), E ∈ F f if H is
untwisted, and E ∈ F f ∪ Fc otherwise. This establishes (7). �

Now we have the necessary preliminaries to prove the first part of our main
theorem.

Theorem 5.9 (Field case). Let p be a prime and G a finite group with an SCNLp-subgroup
H of Lie rank n such that Fg = ∅. Then

Ap(G) ≃G (∆Bp(H))F f
�G ∆(H)F f

.

Moreover, ∆(H)F f
is spherical of dimension n if F f , ∅, and n− 1 otherwise. In any case,

H̃n(Ap(G),Z) �G Ker



⊕

E∈F f /G

IndG
NG(E)

(
H̃n−1(∆(H)E,Z)

)
i′

−→ H̃n−1(∆(H),Z)




�G Ker



⊕

E∈F f /G

IndG
NG(E)

(
H̃n−1(Ap(CH(E)),Z)

)
i
−→ H̃n−1(Ap(H),Z)


 ,

where the maps i′, i are induced from the corresponding inclusions.

Proof. By Remark 5.1, the isomorphism ofBp(H)op with the poset of parabolic sub-
groups of H is also a G-isomorphism since H is characteristic in G by uniqueness
Lemma 5.5. Then we have a G-isomorphism ∆Bp(H) �G ∆(H), which naturally
extends to a G-isomorphism

∆Bp(H)F f
�G ∆(H)F f

.

On the other hand, by Proposition 5.8 we conclude that FG(H)′ = F f , and thus
by Proposition 3.7 applied to H and K = G, we get a G-homotopy equivalence

Ap(G) ≃G (∆Bp(H))F f
.

Next, we prove that this complex is spherical, and since ∆Bp(H) � ∆(H) is
already spherical by the Solomon-Tits Theorem 4.1, we can assume that we are
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in the case that F f is non-empty. For E ∈ FG(H), we have that Lk∆(H)(E) = ∆(H)E,
which is spherical of dimension n − 1 and contains an apartment A such that
for a suitable y ∈ Aut(H), A′ = {σ · y : σ ∈ A} is an apartment of the standard
apartment system A′ of ∆(H) by Lemma 5.2 (here σ · y denotes the simplicial
action on the right of Aut(H) on ∆(H)). After acting by an element of Aut(H),
we get an apartment systemA of ∆(H) that contains an apartment fixed by some
E ∈ F f . Now recall that H is transitive on {(C,A) : A ∈ A, C is a chamber in A}
(see Theorem 6.56 of [AB]). In particular, if we take a chamber C lying in an
apartment A0 ∈ A fixed by some E0 ∈ F f , then StabH(C) is transitive on the set of
apartments ofA containing C, so each apartment ofA containing C is contained in
Lk∆(H)(E) for some StabH(C)-conjugate E ∈ F f of E0. By Corollary 4.3 we conclude
then that ∆(H)F f

is spherical of dimension n.

Finally, the isomorphism in the homology in terms of ∆(H)E and ∆(H) follows
from Theorem 2.1(1) applied to K = ∆(H)F f

and L = ∆(H). For the case of
Ap(CH(E)) andAp(H), it also follows from Theorem 2.1(1) applied to K = ∆Ap(G)
and L = ∆NG(H) ≃G Ap(H), whereNG(H) =Ap(G) \ Ap(H), so K \ L = F f . �

Let us view some examples and determine the number of spheres that appear
in such a wedge decomposition.

Example 5.10. Let p = 2, q a power of 2, H = PSL2(q2) and G = Aut(H) = H : ΦH.
Then F f/G consists of a unique orbit represented by the unique order-2 subgroup
of ΦH, which we can denote by Φ. Also NG(Φ) = CH(Φ)ΦH = PSL2(q)ΦH. Since
χ̃(A2(H)) = |H|2 = q2 and χ̃(A2(CH(Φ))) = |CH(Φ)|2 = q, by Theorem 5.9 we see that
A2(G) is homotopy equivalent to a wedge of 1-spheres and

dim H̃1(A2(G),Q) =
|G|

|NG(Φ)|
q − q2 =

q2(q4 − 1)

q(q2 − 1)
q − q2 = q4.

Example 5.11. Suppose p = 2, q is a power of 2, H = PΩ−2n(q) (= 2Dn(q)), and
G = Ω1(Aut(H)). Then G = H : Φ, where Φ is the unique subgroup of order 2 of
ΦH. Recall that H is obtained from a symmetry of order 2, and thus ΦH has order
2s, where q = ps. Moreover, since Inndiag(H) = H, we see that elements of F f are
all G-conjugate to Φ and

NG(Φ) = CG(Φ) = PSp2n−2(q) × Φ

by Proposition 5.7(1)(c). Here we have used that Bn(2a) � Cn(2a) (see [St1, Theorem
37]). Hence, by Theorem 5.9,A2(G) is homotopy equivalent to a wedge of (n− 1)-
spheres, and the number of such spheres is

(5.3) dim H̃n−1(A2(G),Q) =
|G|

|NG(Φ)|
· q(n−1)2

− qn(n−1) = qn(n−1)((qn + 1) − 1) = qn2

.

Furthermore, our previous theorem can be used to show that Bp(Ω1(G)) is
spherical of dimension n if F f , ∅:

Corollary 5.12. Let p be a prime and G a finite group with an SCNLp-subgroup of Lie
rank n such that Fg = ∅ and F f , ∅. Then Bp(Ω1(G)) is spherical of dimension n.
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Proof. Let H be the SCNLp-subgroup of G. Since F f , ∅, H is not one of the groups
in Table 1, and therefore H is quasisimple with Ω1(H) = H. In particular, H is
an SCNLp-subgroup of Ω1(G) and FG(H) = FΩ1(G)(H), so we may assume that
G = Ω1(G). We claim that |G|p = p · |H|p. From Fg = ∅, we also get Fc = ∅ if H
is untwisted by Proposition 5.8(3), and therefore G∗ ≤ Ω1(ΦH), which is a cyclic
group of order p. In any case, G∗ = Ω1(ΦH) by our assumptionF f , ∅. This proves
our claim.

Now we invoke a crucial property on radical p-subgroups: if N is a normal
subgroup of K, and R ∈ Bp(K), then N ∩ R ∈ Bp(N) ∪ {1}. In our situation, if
R ∈ Bp(G) then R ∩ H = 1 implies that R is cyclic of order p and hence R ∈ F f .
Moreover, if R < T lie in Bp(G) and R ∩ H = T ∩H then we claim that R ≤ H and
R has index p in T. Indeed, |R : R ∩ H| ≤ p, and |T : T ∩ H| ≤ p. If it happens that
R , R ∩ H then both indices are p, and hence |R| = p|R ∩ H| = p|T ∩ H| = |T|, i.e.
R = T. Thus R ≤ H, and again since T > R = R ∩ H = T ∩ H, we see that R has
index p in T.

These computations show that Bp(G) has dimension at most one plus the di-
mension of Bp(H). Since Bp(G) is homotopy equivalent to a non-trivial wedge of
n-spheres by Theorem 5.9 (see also Corollary 6.5), we see thatBp(G) has dimension
exactly n. Hence Bp(G) is spherical. �

In general Bp(G) might not have dimension n:

Example 5.13. Let p = 2, H = PSL2(16) and G = Aut(H) = H : ΦH, where ΦH

is cyclic of order 4. Then B2(G) is homotopy equivalent to a wedge of 256 1-
spheres by Example 5.10, but B2(G) has dimension 2: we have a chain of radical
2-subgroups given by Ω1(ΦH) < ΦH < SΦH, where S is a Sylow 2-subgroup of H
normalised by ΦH.

Theorem 5.9 describes the homotopy type of Ap(G) when G contains at most
field automorphisms of order p, i.e. Fg = ∅, which is indeed the case for most
groups in Lie(p). The following theorem determines the homotopy type ofAp(G)
in the case F f = ∅, which includes then Fg , ∅ (and hence p = 2, 3).

Theorem 5.14 (No field case). Let p be a prime and G a finite group with an SCNLp-
subgroup H of Lie rank n such that F f = ∅. ThenAp(G) ≃G ∆Bp(H)Fg �G ∆(H)Fg , and
the latter is homotopy equivalent to a wedge of spheres of dimension n− 1 and dimension
mE, for each E ∈ Fg such that Op′(CH(E)) has rank mE (and no such spheres appear if Fg

is empty).
Moreover, the inclusion Ap(H) →֒ Ap(G) induces an injection in homology, and we

have the following G-isomorphism of G-modules for all m ≥ 0:

H̃m(Ap(G),Q) � H̃m(Ap(H),Q) ⊕
⊕

E∈Fg/G

IndG
NG(E)

(
H̃m−1(Ap(CH(E)),Q)

)
.

Proof. Proposition 5.8 and F f = ∅ imply that FG(H)′ = Fg is a possibly empty
antichain. Thus, similar to the proof of Theorem 5.9, we have

Ap(G) ≃G ∆Bp(H)Fg �G ∆(H)Fg .
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Now, if E ∈ Fg, then Lk∆(H)(E) � ∆(Bp(H)E) ≃NG(E) ∆(Bp(CH(E))) by Remark 3.5,
and also

Bp(CH(E)) = Bp(Op′(CH(E))).

From Table 3, we see that Op′(CH(E)) ∈ Lie(p) and Bp(Op′(CH(E))) has dimension
mE − 1, which is strictly less than n − 1. Therefore, Lk∆(H)(E) is NG(E)-homotopy
equivalent to a spherical complex of dimension strictly less than n − 1, so the
inclusion Lk∆(H)(E) →֒ ∆(H) is homotopy equivalent to a constant map by Lemma
A.1, for all E ∈ Fg. We get the desired conclusions by Theorem 2.1(2). �

Now we can prove our main result:

Theorem 5.15. Let p be a prime and G a finite group with an SCNLp-subgroup H of Lie
rank n. ThenAp(G) is homotopy equivalent to a wedge of spheres of dimension at most n.

Write mE for the Lie rank of Op′(CH(E)) if E ∈ Fg. Set m∗E = mE − 1 if some element of
F f commutes with E, and m∗E = mE otherwise. The dimensions of the spheres that appear
in the wedge decomposition ofAp(G) are as follows:

(1) If F f = ∅ then (n − 1)-spheres appear.
(2) If F f , ∅ then n-spheres appear.
(3) If E ∈ Fg then spheres of dimension m∗E + 1 appear.

Finally, if F f , ∅, we have the following G-module decomposition in homology. Let Gd f

be the group of Proposition 5.8. Then

H̃∗(Ap(Gd f ),Z) = H̃n(Ap(Gd f ),Z)

= Ker



⊕

E∈F f /G

IndG
NG(E)

(
H̃n−1(Ap(CH(E)),Z)

)
i
−→ H̃n−1(Ap(H),Z)


 ,

where i is the G-equivariant surjective map induced by the inclusions CH(E) ≤ H, and
for m ≥ 0 we have

H̃m(Ap(G),Q) = H̃m(Ap(Gd f ),Q) ⊕
⊕

E∈Fg/G

IndG
NG(E)

(
H̃m−1(Ap(CGd f

(E),Q)
)
,

where H̃m−1(Ap(CGd f
(E),Q)

)
, 0 if and only if m − 1 = m∗

E
.

Proof. Let G and H be as in the statement, and Fp := {E ∈ FG(H) : |E| = p}. By
Theorems 5.9 and 5.14, we may assume F f ,Fg , ∅.

By Proposition 5.8, Gd f is normal in G and FGd f
(H)′ = F f . We also claim that

FG(Gd f )
′ = Fg. Indeed, the containment Fg ⊆ FG(Gd f ) is clear, and thus it remains

to see that elements ofFG(Gd f ) have order p. But this follows by Proposition 5.8(1).
With these observations in mind, we apply Proposition 3.7 with K = Gd f to get

a G-homotopy equivalence:

Ap(G) ≃G

(
(∆Bp(H))F f

)
Fg

=
(
∆(H)F f

)
Fg

.
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Finally, let E ∈ Fg, so Op′(CH(E)) ∈ Lie(p) by Proposition 5.7(2) and Table 3, and
denote its rank by mE.

Assume first that CGd f
(E) contains field automorphisms of order p (i.e. E com-

mutes with some subgroup in F f ). Then these induce field automorphisms of

order p on Op′(CH(E)) ≤ CGd f
(E). Since Op′(CH(E)) is an SCNLp-subgroup of CGd f

(E)
(see Table 3 and compare with Table 1), by Theorem 5.9 the poset Bp(CGd f

(E)) has
the homotopy type of a wedge of spheres of dimension mE. Suppose now that
CGd f

(E) contains no field automorphism of order p (but we still haveF f , ∅). Then

Bp(CGd f
(E)) ≃ Bp(CH(E)) = Bp(Op′(CH(E))) is spherical of dimension mE − 1. In any

case, mE < n, and therefore

Lk∆(H)F f
(E) ≃ Bp(CGd f

(E))

has the homotopy type of a spherical complex of dimension strictly less than
n = dim∆(H)F f

, and ∆(H)F f
is spherical by Theorem 5.9. Again, by Theorem

2.1(2), we conclude that (
∆(H)F f

)
Fg

is homotopy equivalent to a wedge of spheres, and from the wedge decomposition
in such a theorem we conclude that the dimensions described in the statement
are correct. Also, the G-module decomposition as in the statement follows from
Theorem 2.1(2) and Theorem 5.9. �

We illustrate the previous theorem in a very particular situation.

Example 5.16. Suppose p = 2, and let G be a finite group with H = F∗(G) of type
Dn, n ≥ 4, over a field of even order. Note H is an SCNLp-subgroup of G. We
assume that F f ,Fg are non-empty, and write H = Dn(q2) with q = 2a. It follows
that H is simple of order

|H| = q2n(n−1)(q2n − 1)

n−1∏

i=1

(q4i − 1).

In particular G ≤ Aut(H) is almost simple and Inndiag(H) = H ≤ G.
Now, if x ∈ G is an order-2 field automorphism of H, then any other order-2

field automorphism y ∈ Aut(H) of H is H-conjugate to x, and hence y ∈ H〈x〉 ≤ G
(see Proposition 5.7). That is, G contains every order-2 field automorphism of H,
and so every element of E ∈ Fg commutes with some element of F f . So, for any
E ∈ Fg, CG(E) contains order-2 field automorphisms and CH(E) has Lie rank n− 1,
i.e. m∗E = n − 1. Since the elements of Fg give rise to n-spheres by Theorem 5.15,
Ap(G) is homotopy equivalent to a wedge of n-spheres.

Finally, we show that χ̃(Ap(G)) = (−1)n dim H̃n(Ap(G),Q) , 0: for E ∈ F f ,
Ap(HE) ⊆ Ap(G) and the former has non-zero homology in degree n by Theorem

6.6 of [PS] (see also Corollary 6.5), and indeed H̃n(Ap(HE),Z) ⊆ H̃n(Ap(G),Z) by
Theorem 5.15, we see (−1)nχ̃(Ap(G)) ≥ (−1)nχ̃(Ap(HE)) > 0.
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A straightforward computation with the ranks of the centralisers yields the
following corollary on the fundamental group. This complements the results
obtained in [MiP].

Corollary 5.17. Let p be a prime and G a group with an SCNLp-subgroup H. Then
Ap(G) has free fundamental group.

Moreover, ifAp(G) is connected then π1(Ap(G)) is non-trivial if and only if one of the
following holds:

(1) H has Lie rank 1 and G contains field automorphisms of order p;
(2) H has Lie rank 2 and G contains no field automorphisms of order p;
(3) H = A2(2a), p = 2, and there exists E ∈ Fg such that no element of F f commutes

with E.

Recall that Ap(G) is disconnected if and only if G has a strongly p-embedded
subgroup, and such groups have been classified during the proof of the CFSG
(see e.g. Chapter 7, Section 6 of [GLS]).

6. Euler characteristic

Recall that Quillen’s conjecture states that if Op(G) = 1 then Ap(G) is not con-
tractible [Q]. In fact, under Op(G) = 1 one usually tries to show that Ap(G) has
non-zero rational homology. For example, Quillen established this stronger con-
clusion for solvable groups, and this is the approach followed by M. Aschbacher
and S.D. Smith [AS] to prove the conjecture for a wide class of groups. In some
special cases, it was even shown that Op(G) = 1 leads to a non-zero Lefschetz
module for Ap(G), which in particular implies that Ap(G) is not Q-acyclic. For
instance, this is the case for almost simple groups by the results of [AK]. So far,
Quillen’s conjecture remains open, and we refer to [PS] for recent developments.

In view of [AK], it is tempting to ask if for an almost simple group G one
has indeed χ̃(Ap(G)) , 0. For instance, this automatically holds if one of the p-
subgroup posetsAp(G) orBp(G) is spherical and non-contractible. This is the case
for G a group of Lie type in characteristic p since ∆Bp(G) = ∆(G) is the building of
the group (see Remark 5.1).

In light of these observations, we propose:

Conjecture 6.1. If G is an almost simple group, then χ̃(Ap(G)) , 0.

To support this conjecture, in this section we show that χ̃(Ap(G)) , 0 for a
large class of almost simple groups (see Corollary 6.8), starting with those with
F∗(G) ∈ Lie(r), for some prime r.

Below we show that χ̃(Ap(G)) , 0 for any group G containing an SCNLr-
subgroup for a prime r , p. The proof is adapted from Proposition 8.2 of [PS].

Lemma 6.2. Let r be a prime and G a group that contains an SCNLr-subgroup. If p , r
and Op(G) = 1, then χ̃(Ap(G)) , 0.

Proof. The proof is essentially the same as in Proposition 8.2 of [PS] in the case
F∗(G) ∈ Lie(r) is simple.
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Let H be an SCNLr-subgroup of G. We will invoke the consequences of the
Borel-Tits theorem, so we suppose first that H 6� PSp4(2) (since such a theorem
does not apply for this group), and also Op(G) = 1 (in particular Z(H) = CG(H) is
a p′-group). We take Q to be a Sylow r-subgroup of H and show that Ap(G)Q is
empty. Indeed, if this holds, then an elementary counting argument shows that

χ̃(Ap(G)) ≡ χ̃(Ap(G)Q) ≡ −1 (mod r),

proving our assertion.
We shall prove thatAp(G)Q is empty. Take E an elementary abelian p-subgroup

of G normalised by Q. We show that E = 1. Write K for the image of a subgroup
K of G in the quotient G/Z(H). Since Z(H) has order prime to p and r, we see

that Q � Q normalises E � E, so it is enough to show the assertion for Z(H) = 1.
Then E = 1 follows from Proposition 8.2 of [PS] when H is simple. Hence we
may assume that H is as in the first column of Table 1, with Z(H) = 1. Moreover,
the same argument given in [PS] applies to the cases H = A1(2), A1(3), 2A2(2),
2B2(2), and 2G2(3) since the proof of [PS, Proposition 8.2] invokes the conclusion
“Or(M) , 1” of Proposition C of [SST] (with p there our prime r here), which for
these groups also holds by Lemma 2.1 of [SST], and the Borel-Tits theorem which
also applies to these cases.

Therefore we are reduced to the cases G = H = G2(2) = Aut(PSU3(3)) and
G = H = 2F4(2), with r = 2, and here Ap(G)Q = ∅ by direct computations (for
instance in GAP).

Finally, χ̃(Ap(G)) , 0 for the case H � PSp4(2) � Sym6, r = 2, and p = 3, 5
follows by straightforward computations using that [H,H] � PSL2(9) (see Example
6.3). �

Example 6.3. Let G be an almost simple group such that F∗(G) = Alt6 � PSL2(9).
Therefore Bp(G) = Bp(F∗(G)) for odd primes p = 3, 5.

Now, if p = 3 then χ̃(A3(G)) = χ̃(∆(PSL2(9))) = 9. On the other hand, since
a Sylow 5-subgroup S of Alt6 is cyclic of order 5, for p = 5 the poset B5(G) =
B5(Alt6) is disconnected with one connected component per Sylow 5-subgroup.
Since NG(S) � D10, the Dihedral group of order 10, we conclude that χ̃(A5(G)) =
|G|/|NG(S)| − 1 = 35.

Finally, for p = 2, the different possibilities for G are as follows: if G � Alt6,
Sym6 or the Mathieu group M10, then χ̃(B2(G)) = −16; and otherwise, G � PGL2(9)
or Aut(Alt6) with χ̃(B2(G)) = −160. In any case, B2(G) is spherical of dimension 1.

Next, we study the equicharacteristic case p = r and show that χ̃(Ap(G)) , 0
if G contains an SCNLp-subgroup, except possibly for some particular cases. We
will use the following expression for the Euler characteristic, derived from the
conclusions of Theorem 5.15.
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Corollary 6.4. Let p be a prime and G a group that contains an SCNLp-subgroup H of
Lie rank n. Then:

χ̃(Ap(G)) = (−1)n−1|H|p−
∑

E∈F f /G

|G|

|NG(E)|
(−1)n−1|CH(E)|p−

∑

E∈Fg/G

|G|

|NG(E)|
χ̃(Ap(CGd f

(E))).

In particular, if r , p is a prime such that r | |G|/|NG(E)| for all E ∈ F f ∪ Fg then
χ̃(Ap(G)) , 0.

Proof. Apply Theorem 5.15 and then use the fact that

χ̃(Ap(CH(E))) = (−1)n−1|CH(E)|p

for E = 1 or E ∈ F f (notice the Lie rank of Op′(CH(E)) always equals the Lie rank
of H by Lemma 5.2). �

The non-vanishing of the Euler characteristic for the case Fg = ∅ and G almost
simple follows from the previous work [PS] and the results given in this article.
Below we extend this conclusion to any group G with a not necessarily simple
SCNLp-subgroup.

Corollary 6.5. Let p be a prime and G a group that contains an SCNLp-subgroup and
Fg = ∅. Then χ̃(Ap(G)) , 0.

Proof. If F f = ∅, thenAp(G) ≃ ∆(H), which has non-zero reduced Euler character-
istic equals to |H|p. Thus we assume that F f , ∅.

By Theorem 5.9,Ap(G) is homotopy equivalent to a wedge of spheres of dimen-
sion n, where n is the Lie rank of H, so

χ̃(Ap(G)) = (−1)n dim H̃n(Ap(G),Q).

The result then follows by [AK, Theorem 3], or else by the argument given below.

Let G = G/Z(H). Thus H = H/Z(H) is the adjoint version of H, and The-

orem 6.6 from [PS] shows that Ap(G) has non-zero homology in degree n (in-

deed that theorem is proved for H simple, but a straightforward computation

shows that it also holds when H is as in the first column of Table 1). Since

H̃∗(Ap(G),Q) ⊆ H̃∗(Ap(G),Q) (cf. [AS, Lemma 0.12]), we conclude thatAp(G) has
non-zero homology in degree n. Therefore χ̃(Ap(G)) , 0. �

Alternatively, with the above notation, one can also prove that if Fg = ∅, then
there is a suitable prime r , 2, 3, p such that r | |G|/|NG(E)| for E ∈ F f and hence
apply Corollary 6.4. We will follow this approach in some cases where Fg , ∅.
Note that if Fg , ∅ then p = 2, 3 and H is one of the groups in the first column
of Table 3. Indeed, we may take such a prime r to be a Zsigmondy prime. Recall
that Zsigmondy’s theorem states that for integers a > b > 0 and n ≥ 3, there exists
a prime r such that r | an − bn and r ∤ am − bm for all 1 ≤ m < n, if and only if
(n, a, b) , (6, 2, 1).
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Proposition 6.6. Let p be a prime and G a group with an SCNLp-subgroup H. Assume
F f = ∅ when p = 2 and H = An(4a) (n ≥ 2) or E6(4a). Then χ̃(Ap(G)) , 0.

Proof. Denote the Lie rank of H by n. We may assume that Fg , ∅, otherwise the
result follows from Corollary 6.5. Also note that p = 2 or 3, and the latter occurs
only if H � D4(3a).

For E ∈ F f ∪ Fg, let mE be the Lie rank of Op′(CH(E)). Then we have

χ̃(Ap(CH(E))) = (−1)mE−1pxE ,

for a certain positive integer xE. We also have χ̃(Ap(H)) = (−1)n−1pxH , xH ≥ 1. Thus
χ̃(Ap(G)) , 0 if, for example, F f = ∅ and n − 1,mE have the same parity for all
E ∈ Fg (see Theorem 5.14). By Table 3, this is the case if p = 2, F f = ∅ and

(6.1) H = PSp4(22a+1), Dn(2a) (n ≥ 4), An(2a) (n ≥ 2 and n ≡ 0, 1 (mod 4)).

In case H = Dn(2a), n ≥ 4, and F f , ∅, we have χ̃(Ap(G)) , 0 by Example 5.16.
To establish the non-vanishing of the Euler characteristic in the remaining cases,

namely H is not as in Eq. (6.1), and further F f = ∅ if p = 2 and H = An(4a) or
E6(4a), we invoke Corollary 6.4 and show that there is a prime r such that

(6.2) r , 2, 3 and r | |G|/|NG(E)| for all E ∈ F f ∪ Fg.

We split the proof in cases according to the possibilities for H as in the first
column of Table 3. For the proof, we note that, if E ∈ Fg ∪ F f or E = G,

(6.3) |NG(E)| = qxE

E
· dE · fgE · aE ·

∏

i∈IE

(qi
E − bi

E),

for certain bE ∈ {1,−1} and qE a power of p, except for E ∈ F f ∪Fg and Op′(CH(E)) �
3D4(q) where an extra term q8 + q4 + 1 appears. The remaining terms in Eq. (6.3)
are as follows. For E ∈ F f ∪ Fg put CE := Op′(CH(E)), and for E = G put CE := H.
We have a map qE : NG(E)→ Aut(CE) such that

dE := |q−1
E (Inndiag(CE))|/|CE|, and fgE := |NG(E)|/(|CE| · dE).

When E ∈ Fg ∪F f we have NG(E) = CG(E).L with L a subgroup of the cyclic group
of size p− 1, and then aE = |L| (so aE = 1 or 2). We set aG := 1. In any case, we have
that fgE divides fgG, and also yE :=

∏
i∈IE

(qi
E
− bi

E
) divides yG :=

∏
i∈IG

(qi
G
− bi

G
). We

will take then a prime r dividing yG/yE and not dividing dE.

Case 1. If H � D4(3a) and p = 3, then there exists a prime r satisfying Eq. (6.2).

Proof. Let q = 3a and q′ = q1/3 (if 3 | a). Then

yG = (q4 − 1)(q2 − 1)(q4 − 1)(q6 − 1),

and

yE =



(q′4 − 1)(q′2 − 1)(q′4 − 1)(q′6 − 1) E ∈ F f ,

(q6 − 1)(q2 − 1) E ∈ Fg,CE � G2(q),

(q′8 + q′4 + 1)(q′6 − 1)(q′2 − 1) E ∈ Fg,CE �
3D4(q′).
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For E ∈ F f ∪ Fg we have

yG/yE =



(q′8 + q′4 + 1)2(q′4 + q′2 + 1)(q′12 + q′6 + 1) E ∈ F f ,

(q4 − 1)2 E ∈ Fg,CE � G2(q),

(q′2 + 1)(q4 − 1)(q6 − 1) E ∈ Fg,CE �
3D4(q′).

On the other hand, dE = 1 for any E ∈ Fg, and dE ∈ {1, 2, 4} if E ∈ F f . If q′ is not
defined, so only the case of G2(q) centralisers arises, we can take r to be any odd
prime dividing q4−1. When q′ is defined, we note that (q′8+q′4+1)(q′4−1) = q4−1,
and so q′8 + q′4 + 1 divides yG/yE for all E ∈ F f ∪ Fg. Thus we can take r to be any
prime dividing q′8 + q′4 + 1 (and since the latter is odd we see that r , 2, 3). In any
case, we have r , 2, 3 and r | |G|/|NG(E)| for any E ∈ F f ∪ Fg, i.e. r satisfies Eq.
(6.2). �

Case 2. If H = F4(22a+1) and p = 2, then there exists a prime r satisfying Eq. (6.2).

Proof. Here F f = ∅. For E ∈ Fg, cE = 1, and if q = 22a+1, then we have

yG/yE = (q6 − 1)(q4 + 1)(q3 − 1)(q + 1).

Note also that dE = 1. Hence we take any prime r dividing q3 − 1 (and r , 3 since
q is an odd power of 2). �

Case 3. If H = E6(2a) and p = 2, then there exists a prime r satisfying Eq. (6.2).

Proof. Let q = 2a and q′ = q1/2 (if 2 | a). Then

yG = (q12 − 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1).

By hypothesis we assume F f = ∅ if q′ is defined, so we only consider E ∈ Fg, and
hence

yE =

{
(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1) CE � F4(q),

(q′12 − 1)(q′9 + 1)(q′8 − 1)(q′6 − 1)(q′5 + 1)(q′2 − 1) CE �
2E6(q′).

Note that |Outdiag(F4(q))| = 1 and |Outdiag(2E6(q′))| = (3, q′ + 1). Thus we need
to take a prime r > 3. Now,

yG/yE =

{
(q9 − 1)(q5 − 1) CE � F4(q),

(q′12 + 1)(q′9 − 1)(q′8 + 1)(q′6 + 1)(q′5 − 1)(q′2 + 1) CE �
2E6(q′).

In the case q′ is defined, we take then a Zsigmondy prime r for q′9 − 1, and since
3 | q′2 − 1 we have r , 2, 3. If q′ is not defined, so only the case F4(q) occurs, we
take a Zsigmondy prime for q9 − 1, and again r , 2, 3. �

Case 4. Let H = An(2a) and p = 2, with n ≥ 3. Then there exists a prime r satisfying
Eq. (6.2).
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Proof. Let q = 2a, and q′ = q1/2 if 2 | a. Again, in the case q′ is defined we are
assuming F f = ∅. We have two types of automorphisms E ∈ Fg, namely those
with symplectic centraliser and those with unitary centraliser. In the symplectic
case, |Outdiag(PSp2[(n+1)/2](q))| = 1. On the other hand, for the unitary case we

have |Outdiag(PSUn+1(q′))| = (n + 1, q′ + 1). This implies that dG divides q − 1,
and dE divides q′ + 1 for E ∈ Fg. Thus we will take a prime r , 2, 3 such that in
addition r ∤ q − 1 (and hence r ∤ q′ + 1). Here

yG =

n+1∏

i=2

(qi − 1)

and

yE =

{∏[(n+1)/2]

i=1
(q2i − 1) CE � C[(n+1)/2](q),∏n+1

i=2 (q′i − (−1)i) CE �
2An(q′).

Then

yG/yE =



(q3 − 1)

n+1∏

i=5 : i odd

(qi − 1) CE � C[(n+1)/2](q),

n+1∏

i=2

(qi − 1)

(q′i − (−1)i)
=

n+1∏

i=2

(q′i + (−1)i) CE �
2An(q′).

If q′ is defined, we take a Zsigmondy prime r | q′3 − 1, so r ∤ q′2 − 1 = q − 1 and
r , 2, 3. In the case q′ is not defined, we take any prime r | q3 − 1 and r ∤ qi − 1 for
i = 1, 2, and again r , 2, 3. �

We have treated all the cases in the first column of Table 3, concluding the proof
of this proposition. �

From these computations and Theorem 5.15, we conclude:

Corollary 6.7. Let p be a prime and G a group that contains an SCNLr-subgroup H, for
some prime r. If H = An(4a) (n ≥ 2) or E6(4a), with p = r = 2, assume further that either
F f or Fg is empty. Then χ̃(Ap(G)) , 0.

In particular, if G is an almost simple group such that F∗(G) is not a sporadic
group or an alternating group, then χ̃(Ap(G)) , 0, except possibly for the cases
described in Corollary 6.7. Note that the case of the Tits group is covered in
Example 5.4.

Assume now that F∗(G) is a sporadic simple group. For p odd, we haveAp(G) =
Ap(F∗(G)). Hence, if the p-rank of F∗(G) is at most 2, thenAp(F∗(G)) is a graph and
χ̃(Ap(G)) , 0. By Table 5.6.1 of [GLS], we see then that for p ≥ 5 we have that
χ̃(Ap(G)) , 0 except possibly for G = Co1 (p = 5), Ly (p = 5), F5 (p = 5), F2 (p = 5)
and F1 (p = 5, 7), where the p-rank is at least 3.

On the other hand, to show that χ̃(Ap(G)) , 0 one can similarly as in the proof of
Proposition 6.6 exhibit a suitable prime r that divides the index of the normaliser
of any element ofAp(G) (or of any element of Bp(G)).
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To be more precise, suppose X is a finite G-poset. Then a standard counting
argument with the chains of a poset shows that

(6.4) χ̃(X) = −1 −
∑

x∈X

χ̃(X<x) = −1 −
∑

x∈X/G

|G : StabG(x)| · χ̃(X<x),

where x is the G-orbit of x. Thus, if k := gcd
(
|G : StabG(x)| : x ∈ X/G

)
, 1,

we have that χ̃(X) ≡ −1 , 0 (mod k). Now, if X = Bp(G) for a sporadic simple
group G, then |G : StabG(R)| is the index of the normaliser of a radical p-subgroup
R ∈ Bp(G). To show that k , 1 one may employ, for example, the classification
of radical p-subgroups and their normalisers, which was concluded in 2005 by
Yoshiara (see [Y1, Y2]).

For instance, if p = 7 and G = F∗(G) = F1 is the Monster sporadic group, then
the orders of the normalisers of radical 7-subgroups can be read off from Theorem
7 of [Y1], and it is not hard to check that these normalisers cannot contain a Sylow
2-subgroup. Therefore, r = 2 divides the indices of these normalisers, i.e. r | k
above, and this shows that χ̃(B7(F1)) , 0 by using Eq. (6.4) with X = B7(G).

Indeed this approach shows that Ap(G)Q is empty for a suitable Sylow r-
subgroup with r , p. One can also check this by looking at the local ranks:
after fixing the prime p, if there exists a prime r such that the p-local r-rank of G is
strictly less than the r-rank of G, then a p-local subgroup cannot contain a Sylow
r-subgroup of G, soAp(G)Q is empty for Q a Sylow r-subgroup. For example, this
is the case for p = 2 and r = 3 or 5 in many of the sporadic simple groups (cf.
Tables 5.6.1 and 5.6.2 of [GLS]).

On the other hand, the argument given in [AK] already shows that χ̃(Ap(G)) , 0
if p ≥ 5 and F∗(G) = Altn for n ≥ 7. Also χ̃(Ap(G)) , 0 if F∗(G) = Altn with n = 5 or
6 since Alt5 = PSL2(5) and Alt6 = PSL2(9) (cf. Example 6.3).

By the preceding discussion, Corollary 6.7 and the Classification, we conclude:

Corollary 6.8. If G is an almost simple group then χ̃(Ap(G)) , 0, except possibly in the
following cases:

(1) F∗(G) is a sporadic simple group, p ≤ 5 and the p-rank of F∗(G) is at least 3;
(2) F∗(G) � Altn is an alternating group and p ≤ 3;
(3) F∗(G) � An(4a) (n ≥ 2) or E6(4a), p = 2, and F f are Fg non-empty.

Appendix A. Homotopy theorems

In this appendix, we gather some basic tools to study the homotopy type of
spaces and the behaviour of continuous maps. Throughout this section, G will
denote a (not necessarily finite) group.

Lemma A.1. Let X,Y be CW-complexes. Assume that Y is k-connected for some k ≥ 0
and that X is homotopy equivalent to a CW-complex of dimension ≤ k. Then any
continuous map X→ Y is homotopic to a constant map.

Proof. Let h : Z → X be a homotopy equivalence where Z is CW-complex of
dimension at most k, and let f : X → Y be any continuous map. Then f is
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homotopic to a constant map if and only if f h is. Now, {∗} → Y is a k-equivalence,
so the composition induces a surjection [Z, {∗}] → [Z,Y] of the homotopy classes
of maps (see Whitehead’s Theorem in Chapter 10, Section 3 of [M]). But [Z, {∗}]
consists only of one map, so every map Z → Y is null-homotopic. Therefore, f h
is null-homotopic. �

We will use the following variation of Quillen’s fibre theorem (cf. Proposition
A.1 of [PS]).

Theorem A.2 (Quillen’s fibre theorem). Let f : X → Y be a map between posets of
finite height, and let n ≥ −1. If f−1(Y≤y) ∗ Y>y is n-connected for all y ∈ Y then f is an
(n + 1)-equivalence.

If in addition X,Y are G-complexes, f is G-equivariant and f−1(Y≤y) ∗Y>y is StabG(y)-
contractible for all y ∈ Y, then f is a G-homotopy equivalence.

We will also invoke the following well-known consequence of the Hurewicz
theorem and Whitehead’s theorem:

Theorem A.3. Let X be a CW-complex of dimension n. If X is simply connected and

H̃m(X,Z) = 0 for all m < n then X is homotopy equivalent to a (possibly empty) wedge
of spheres of dimension n.

For equivariant homotopy types, we will use the following equivariant version
of Whitehead’s theorem:

Theorem A.4 (Equivariant Whitehead). Let X,Y be G-CW-complexes together with a
G-equivariant continuous map f : X → Y. Then f is a G-homotopy equivalence if and
only if f : XH → YH is a homotopy equivalence for every subgroup H ≤ G.

Recall that if X,Y are G-posets and f , g : X → Y are G-equivariant order-
preserving maps such that f (x) ≤ g(x) for all x ∈ X, then f , g induce G-homotopy
equivalent maps in the geometric realisations.

Proposition A.5. Let K be a finite dimensional G-complex, L ≤ K a full G-invariant
subcomplex, and n ≥ −1. Assume that for all σ ∈ K \ L, the link LkL(σ) is (n − |σ|)-
connected (resp. StabG(σ)-contractible). Then the inclusion L →֒ K is an n-equivalence
(resp. a G-equivalence).

Proof. Regard K and L as posets via their face posets, and we remove the empty
simplex (otherwise we get contractible posets). Let N be the subposet of K
consisting of simplices containing some vertex in L. Then the map r : N → L
that takes σ ∈ N to the non-empty simplex σ ∩ L := {v ∈ σ : v ∈ L} ∈ L is
well-defined, G-equivariant and order-preserving (here we are using that L is a
full subcomplex). Moreover, if i : L →֒ N is the inclusion then ri is the identity
of L and ir(σ) ≤ σ, so r and i are G-homotopy equivalences. Now, the inclusion
L →֒ K factorises through N at the face poset level, so it is enough to show that
N →֒ K is an n-equivalence (resp. a G-equivalence).

Note that K \ N is exactly the face poset of K \ L. For σ ∈ K \ L, we have
N≥σ = {τ ∈ K : τ ∩ L , ∅, τ ≥ σ}, and for τ ∈ N≥σ we have r(τ) ∈ LkL(σ). The
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map r above restricts therefore to a map r : N≥σ → LkL(σ) which is also a StabG(σ)-
homotopy equivalence with inverse given by τ ∈ LkL(σ) 7→ τ ∪ σ ∈ N≥σ. This
shows that

N≥σ ∗ K<σ ≃StabG(σ) LkL(σ) ∗ S|σ|−2,

which is (n− |σ|)+ (|σ| − 3)+ 2 = (n− 1)-connected (resp. StabG(σ)-contractible). By
Quillen’s fibre Theorem A.2 we conclude that N →֒ K is an n-equivalence (resp.
a G-homotopy equivalence), so the composition L →֒ N →֒ K is an n-equivalence
(resp. a G-homotopy equivalence). �

Lemma A.6 (“Gluing lemma”). Suppose we have a commutative diagram of topological
spaces with continuous maps

X

��

A
f

oo //

��

Y

��

X′ A′
f ′

oo // Y′

such that the vertical arrows are homotopy equivalences and f , f ′ are cofibrations. Then
the map induced on the pushouts X ∪A Y→ X′ ∪A′ Y′ is a homotopy equivalence.

Proof. See Lemma 2.1.3 of [MaP] or 7.5.7 of [Br]. �
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