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We present three statistical descriptions for systems of classical particles and consider their exten-
sion to hybrid quantum-classical systems. The classical descriptions are ensembles on configuration
space, ensembles on phase space, and a Hilbert space approach using van Hove operators which
provides an alternative to the Koopman-von Neumann formulation. In all cases, there is a natural
way to define classical observables and a corresponding Lie algebra that is isomorphic to the usual
Poisson algebra in phase space. We show that in the case of classical particles, the three descriptions
are equivalent and indicate how they are related. We then modify and extend these descriptions to
introduce hybrid models where a classical particle interacts with a quantum particle. The approach
of ensembles on phase space and the Hilbert space approach, which are novel, lead to equivalent
hybrid models, while they are not equivalent to the hybrid model of the approach of ensembles on
configuration space. Thus, we end up identifying two inequivalent types of hybrid systems, making
different predictions, especially when it comes to entanglement. These results are of interest regard-
ing “no-go” theorems about quantum systems interacting via a classical mediator which address
the issue of whether gravity must be quantized. Such theorems typically require assumptions that
make them model dependent. The hybrid systems that we discuss provide concrete examples of
inequivalent models that can be used to compute simple examples to test the assumptions of the

“no-go” theorems and their applicability.

I. INTRODUCTION

The description of interactions between classical and
quantum systems is non-trivial. First of all, it is neces-
sary to define a common mathematical framework that
is general enough to include both classical and quantum
systems and allows for a sufficiently large class of inter-
actions between them. Furthermore, one needs to choose
which aspects of the classical and quantum subsystems
are considered to be essential and should be preserved
in a joint interacting hybrid system, and which consis-
tency conditions are required. Not surprisingly, different
models are possible, depending on how these issues are
handled, and many proposals are available in the litera-
ture (see [1] and the introduction of [2] for a discussion
of different models and a large list of references). Until
now, none of the proposed quantum-classical models is
free of difficulties and there is no consensus about the
best strategy to develop a satisfactory general theory of
hybrid systems.

Despite the difficulties, there are compelling reasons
to look for a general model of quantum-classical interac-
tions. For example: (1) to explore the possibility of new
physics at mesoscopic scales ﬂlj)], (2) to describe the mea-
surement of a quantum system by a classical apparatus
[3-18], (3) to describe the interaction between a quantum
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system and a classical gravitational field [9-11], and (4)
to develop better approximation techniques for complex
quantum systems [12-16][17).

Since different hybrid models are based on different as-
sumptions, it is of interest to compare their predictions
and to investigate under what circumstances they lead
to equivalent descriptions and whether there exist condi-
tions in which they can be mapped to each other. These
are open questions that so far have not been systemati-
cally studied (though there are exceptions for some par-
ticular cases |18]). Tt is one of our goals to establish this
for the three particular models that we focus on in this
paper. The first model is the approach of ensembles on
configuration space @] We also examine in detail the
approach of ensembles on phase space, a model that was
proposed recently m] Our third model is a Hilbert space
formulation which shares many common features with
the ensembles on phase space approach and differs from
previous formulations in the assumptions made about the
states and in the operator representation of observables
and generators of transformations.

The paper is structured as follows. In the next sec-
tion, we consider three statistical descriptions of classi-
cal systems of particles and show their equivalence. We
give the functional formulation of ensembles on configu-
ration space in section [ Al of ensembles on phase space
in section [[IB] and explain the Hilbert space approach
in section [[’Cl For each of them we provide the equa-
tions of motion, the definition of observables (and their
Lie algebra), and discuss their relation to standard sta-
tistical mechanics formulated via the Liouville equation.
In section [TDl we consider the realization of the Galilean
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symmetry in each model, as this symmetry will later be
required for the construction of hybrid models. We end
the section by discussing the equivalence between these
three classical models.

In sections [ITA] [TI Bl and [IIC] we extend the above
formalisms to quantum-classical hybrid systems, choos-
ing the interaction term so that the hybrid system is
Galilean invariant. We then examine in section [II D] un-
der which conditions the three hybrid descriptions are
equivalent. We find that the ensembles on phase space
and Hilbert space approach lead to equivalent descrip-
tions of hybrid systems. However, they are equivalent
to the hybrid formulation of ensembles on configuration
space only for some special cases.

Finally, in section [V we give a summary of our results
and discuss some implications.

II. THREE STATISTICAL MODELS OF
INTERACTING CLASSICAL PARTICLES

It is convenient to consider classical particles before
we extend our discussion to hybrid classical-quantum sys-
tems. This also gives us the opportunity to develop much
of the formalism and concepts needed later to describe
hybrid models as an extension of the classical ones. Fur-
thermore, the description of classical systems in the ap-
proaches that we present here is in itself a topic of inter-
est.

We consider three models of classical systems that
make use of two different mathematical formalisms. The
first two models are based on a probability density de-
fined over either configuration space HE] or phase space
@] They both introduce particle dynamics via a Hamil-
tonian formulation of fields (where the probability den-
sity is one of two conjugate fields). The third model
takes as its starting point a unitary representation of the
group of contact transformation. This approach, based
on the work of van Hove ﬂﬂ], leads to a particular Hilbert
space formulation in which the classical theory is refor-
mulated in the mathematical language of quantum me-
chanics while at the same time showing fundamental dif-
ferences in nature.

These three models differ from the usual descriptions
of particles in classical mechanics. Instead of points in
phase space (as in a Hamiltonian description) or in con-
figuration space (as in a Lagrangian or a Hamilton-Jacobi
description), the first two models utilize probability dis-
tributions, while the third one is formulated in terms of
complex probability amplitudes. Thus the models are
statistical ones. However, as we will show, there is a
close connection between these approaches and the usual
descriptions of particles in classical mechanics.

A. Ensembles on configuration space

In the approach of ensembles on configuration space,
we introduce a configuration space with coordinates q
and define a probability density P(q,t) which describes
the uncertainty of a single classical particle’s location at
time t. The probability density must satisfy P > 0 and

[dqP(q,t) =1.

1. Equations of motion

To derive the equations of motion, we introduce an en-
semble Hamiltonian functional H[P,], where S = S(q,t)
is an auxiliary field canonically conjugate to P. The
physical interpretation of S will be discussed below when
observables are introduced. The equations of motion take
the form

opP oH

o {PH}Y ps) = 59 (1)
oS oH

E = {Svﬂ}(RS) = _ﬁa (2)

where the brackets with subscript (P, S) denote the Pois-
son bracket of functionals with respect to P and S; i.e.,
{A,B}ps) = [ da (%‘;—g — %g—g) for two functionals
A[P,S] and B[P, S].

For the case of a single non-relativistic particle subject
to a potential V' (q), the classical ensemble Hamiltonian
is given by

’HC[P,S]_/qu<|VS|2+V>, ()

2M

which leads to the equations of motion

2
as |V 4V 8_P__V_<PV_S)' (4)
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The first equation is the Hamilton-Jacobi equation, the
second is the continuity equation that ensures that the
probability is conserved. One can show that the condi-
tion P > 0 is satisfied at all times if is initially satisfied

[19].

2. Observables, generators and ensemble averages

We associate a classical observable Op[P,S] to any
function of phase space F(q,p) by defining

Op = / dq P(q)F(q, V). (5)

As there is an algebra of observables defined via the
Poisson brackets {-,-}(p,g), all observables of this form
also play the role of generators of continuous transfor-
mations. Notice that the observables that correspond to



average values of the derivatives of S represent local en-
ergy and momentum densities, which gives a physical in-
terpretation to the most important quantities associated
with S [19]. To see this, we calculate

He oS
Ho = [dap e = - [dar S ——sjon. (o)
which shows that —P dS/0t is a local energy density.
Furthermore, f dq PV S is the canonical infinitesimal
generator of translations, since

§P(q) = doq- {P,/quVS} = —6q- VP, (7)
(P.S)

0S(q) = dq- {S,/quVS} =—-0q-V5S, (8)
(P.S)

under the action of the generator such that PV.S can be
considered a local momentum density HE]

Finally, in the Hamilton-Jacobi theory, the momentum
p is related to S by p = V.S, thus revisiting Eq. (&) we
find that the numerical value of a classical observable O
may be associated with the ensemble average of F(q,p).

3. Observables and conservation of probability

Changes in P induced by observables Op must pre-
serve both the normalization and positivity of the prob-
ability. We show now that this is indeed the case HE]

The infinitesimal transformation induced by an observ-
able Op[P, S| on P is given (for infinitesimal €) by

00
5P = E{P, OF}(P,S) =€ 5SF (9)

Thus, the normalization of the probability will be pre-
served if [ dq (P+d6P) = 1 or, equivalently, if [ dq 6P =

0. We have
00p
d
/ 1755

/dqéP =

— [ da (Or[P.S + - OrlP.S]) =0

(10)

as required, where the last equality follows because
Op[P, S] only depends on derivatives of S, as can be seen
from Eq. ([@). Furthermore,

00Fr
=9 (11)

ensures that the transformation generated by the observ-
able O will preserve the positivity of P HE] This result
follows from

00F

= 0 if P(q) =0,

Or - v [p%] (12)
_ _pv.[%]_vp.[%}:o,

where the last equality holds because P is non-negative,
thus it must reach a minimum for any point q’ at which
P(q’) = 0, which in turn implies that V,P|q—q = 0.

4. Lie algebra of observables

The fundamental importance of the definition of clas-
sical observables Op[P,S] of Eq. (@) derives from the
fact that the Poisson bracket for classical observables is
isomorphic to the phase space Poisson bracket m],

{04, 08} (ps) = Otamy,, ,,- (13)
where on the right side we have introduced the usual
Poisson bracket in phase space; ie., {A,B}gp =

dA OB _ 9A OB
2k (WW = D Bar
Thus the algebra of observables Op under the Pois-
son bracket {-, -}( P.S) reproduces precisely the algebra of
functions F(q, p) under the phase space Poisson bracket

{ '}(qm)'

) for functions A(q,p), B(q,p)-

B. Ensembles on phase space

We now consider the extension of the approach of en-
sembles on configuration space to a phase space descrip-
tion. To do this, we first need to introduce a probability
density on phase space, which we denote by o(q,p) to
distinguish it from the probability P(q) on configuration
space introduced previously. Moreover, we introduce the
corresponding canonically conjugate variable, which we
denote by o(q, p). We require that ¢ > 0 and [ dw o = 1,
where dw = dqdp is the phase-space measure.

1. Equations of motion

We assume once more that the equations of motion are
derived from an ensemble Hamiltonian H [, o] according
to

0o oH

ot {977'[}(970) = o (14)
oo OH

a = {077-[}(9)0) = _6_05 (15)

where now the Poisson bracket is defined by {u, v} (5,0) =
fdw (6# dv op Sv

S0d0 30 b0
Before we introduce the explicit form of the ensemble
Hamiltonian, let us look for appropriate equations of mo-
tion for p and o. Consider again a single non-relativistic
particle under the action of a potential with the stan-

) for functionals o, o], v[o, o]

dard phase-space Hamiltonian H = % + V and the
corresponding Lagrangian .& = % — V. Conservation

of probability requires that the Liouville equation

do

- + 1o H}(q,p) =0

ot (16)

is satisfied. Furthermore, in analogy to the approach of
ensembles on configuration space, we will identify o with



the action in phase spacem]. This assumption provides
us with a second equation,

do  Oo

E:E+{U7H}(q7p):$. (17)
The Hamiltonian and the Lagrangian given above lead
to the following two linear first-order partial differential
equations for ¢ and o,

do P

5 tVae 37~ Vae VoV =0, (18)
do P p’
E‘qua'ﬁ—va'qu:W—V (19)

These equations can be derived from the ensemble Hamil-
tonian

Help, o] =

p’ p
/dwg[(v—m)—i-vqaﬁ—vpaqu 5 (20)

as one can check by direct computation.

Egs. ([I8) and ([[3) are uncoupled equations that can
be solved separately for each of the canonically conju-
gate variables ¢ and o. The Liouville equation (I8) is
perhaps more fundamental in that it describes the evo-
lution of the density in phase space, which is usually the
quantity of interest. However, we are also interested in
the observables of the theory which, as we will see in the
next section, are functionals of both ¢ and o. Therefore,
it becomes necessary to address the question of deriving
appropriate solutions for Eq. ([9) which will then enter
into the expressions for the observables.

As is well-known ﬂﬁ], the classical action can be rep-
resented by

a:/(p~dq—Hdt), (21)

that is, as a functional expressed as an integral over the
classical trajectory of a particle. However, this way of ex-
pressing o is not appropriate for a theory of ensembles on
phase space: the classical action o should be expressed
as a function of coordinates and its definition should not
require a previous determination of classical trajectories.
To deal with this issue, we will take Eq. (I9) as as our
starting point and introduce a procedure that allows us
to derive an expression for o which satisfies these require-
ments.

The starting point is the observation that the first
order partial differential equation for o, Eq. ([I9), is
equivalent to the system of ordinary differential equa-

tions [24, 2]

gt dg; dp; .
= = — y 1 =
(pi/M) (aV/aQi)
do

~ (pPP2M V)

1,2,3

(22)

To see this, notice that Eq. (22) leads to the following
equalities,

2
dq=2dt, dp=-V,Vdt, do= (ﬂ - V) dt,

M 2M
(23)
but we also have
do
do = Edt—l-vqa ~dq+ V,o - dp
0
= [a_j +V,0 % — V0 qu] dt.  (24)

If we now set the right-hand side of the third equality of
Eqgs. ([23) equal to the right hand side of Eq.(24]), we get

Eq. (), as required.
Using the third and then the first equalities of Egs.

[23), we can express do as

~(Ipl? [Ie? (Ipl?
da—(2M V)d= |5, oip V)|t

d Pl ) 4 25
p-dq— W+ t, (25)

which we recognize as an equation for the differential of
the action, cf. [23]. From Eq. (23) it follows that

V40 =p, Vyo =0, (26)
as well as the equation that is satisfied by o,
do  |Vol|?
— V=0 27
or "o T ’ 27)
which is the Hamilton-Jacobi equation, as one would ex-

pect.

One can think of the procedure that we have fol-
lowed as equivalent to determining the solutions of Eq.
@) by projecting the classical system to configuration
space. Nevertheless, we have introduced this particular
approach because it generalizes to the case of hybrid sys-
tems.

2. Observables, generators and ensemble averages

While the functional form of the ensemble Hamilto-
nian soutof Eq. (20) might seem surprising, it turns
out that it can be derived directly from van Hove’s
Hilbert space representation of the generators of con-
tact transformations|26] [21], as we show in Appendix
[Al Guided by this observation, we introduce the follow-
ing general procedure to construct the set of observables:
Given a function F(q,p) in phase space, we define the
corresponding observable in the approach of ensembles
on phase space by

Orlo.o] = / dw o[(F - p- V,F) - {F,0}]

~ [dooltF-p-7,p)
(V4 F-Vyo — V,F-V,0)]. (28)



As in the previous case, we are dealing with a Hamilto-
nian formalism and we have an algebra of observables de-
fined via the Poisson brackets {-,-}(,,») available. Thus,
the OF|p, o] of Eq. (28] will play both the role of observ-
ables and the role of generators.

We now make use of the solution for o that we derived
in the previous section and in particular apply the results
of Eq. (26]) to the calculation of the numerical value of
Op. This leads to

O}’[Q7 0] = OF[Q7 U] |chr:p,vpa':0

- /dngF—p-va)

— (VoF - V0 = Vo F - V40)lg. g5 oo

_ / dwoF (29)

where the notation O is introduced to indicate that the
observable is calculated using Eqs. (28). Thus, with
our procedure for fixing o via Eqs. (@26) and (1), the
numerical value of the observable is always equal to the
average of its corresponding phase space function F(q,p).

3. Observables and conservation of probability

Just as in the case of observables defined for the ap-
proach of ensembles on configuration space, we require
that the changes in ¢ induced by the observables defined
in Eq. (28)) preserve both the normalization and positiv-
ity of the probability. This is indeed the case, and the
proofs are similar to the ones given in section [T A3 for
the case of ensembles on configuration space.

4. Lie algebra of observables

As a consequence of the definition of classical observ-
ables of Eq. (28)), the Poisson bracket for classical observ-
ables Op|o, 0] is isomorphic to the phase space Poisson
bracket,

{04,058} (4.0) = Otamy,, - (30)

The calculation is given in Appendix [Bl

C. Hilbert space formulations of classical
mechanics using van Hove operators

Koopman [27] and von Neumann [28] were the first
to show that one may formulate classical mechanics in
Hilbert space. Much later, van Hove derived a unitar
representation of the group of contact transformation ﬂﬁ]l
which provides the basis of the Hilbert space formulation
of classical mechanics that we present here. For previous
applications of van Hove operators in this context, see

references [29-31] .

1. Equations of motion

In the Hilbert space formulation of classical mechanics,
the states are given by phase-space valued wavefunctions
o(q, p,t), with the inner product defined by

(@l x) = / do ¢ (31)

There is some freedom in the choice of the equation of
motion for ¢, with different but related equations lead-
ing to the same classical dynamics @] In van Hove’s
approach, the dynamics is given by the Schrédinger-like
equation

m‘z—‘f =On¢, (32)

where the Hamiltonian operator for a non-relativistic
particle acting on ¢ is most conveniently written as

One = [(% - V(x)> +ih (VoV - V, - > vp)} 6.
(33)

We want to point out that the appearance of & in Eqgs.
B2) and @B3) it is not linked to any quantization pro-
cedure: the set of unitary representations of the group
of contact transformations of van Hove [21] constitutes
a continuous family of representations labeled by a real
parameter that he calls o and we have set this o = 1/h
to simplify the equations.

Introducing Madelung variables ¢ = \/Eei"/ " for the
classical wave function, the real and imaginary parts of

Eq. (32) read

do P

E = qu . va — M . Vq@, (34)
8 2

a—‘t’ - ;—M—V-l-VqV'VpU—%-VqO’, (35)

which are precisely the equations for the dynamics of
ensembles on phase space given by Eqgs. ([I8)) and (I9).

In particular, this means that the solutions o, o that
are valid for classical systems described by ensembles on
phase space are also solutions for the van Hove formu-
lation by setting ¢ = \/pe'/" [33. As Eqs. ([@8),(@)
and Eqs. (B4),([35) are equivalent, the approach that we
developed for ensembles on phase space gives us a way
of fixing the phase of the classical wave function: Just
as in the case of ensembles on phase space, o can be
considered a solution of the Hamilton-Jacobi equation
satisfying V,o = p and V0 = 0. However, while Eqs.
B4) and @) can be replaced by Eq. (B2) which has
the simple form of a linear operator acting on ¢, this
will no longer be the case if Eq. (B3] is replaced by the
Hamilton-Jacobi equation. Under these circumstances,
it becomes more convenient to use the representation in
terms of hydrodynamical variables ¢ and o rather than
the wavefunction representation.



2. Observables, generators and ensemble averages

In the Hilbert space approach using van Hove oper-
ators, a phase space function F'(q,p) is represented by
an operator @F, and the action of this operator on a
classical wavefunction is given by

Or¢ = [(F—p-VpF)+ih(VF -V, = V,F-V,)|¢
= (F —p- VPF) o+ iﬁ{F, ¢}{q7p}. (36)

One can check that the Hamiltonian operator, Eq. ([33),
results from evaluating Eq. ([B6) with the classical parti-

cle Hamiltonian H = % + V.

It is straightforward to calculate the relation between
the expectation values (¢|Op|¢) of the van Hove opera-
tors and the observables Op[o, o] for ensembles on phase
space. Using again the polar decomposition of the clas-
sical wave function, ¢ = /0 e@/" we find that

<¢|@F|¢> = OF[Qa 0]7 (37)

where Op|p,0] is given by Eq. ([28). When o satisfies
Eqs. 26) and 27), then

(60r|6) = (9O = / dwoF(ap)  (38)

and the numerical value of (¢|Op|¢) is precisely the en-
semble average of F(q,p) and it is independent of k, as
expected, where the operator O is defined by.

D> = F(q,p). (39)

Note that Eqs. ([26) and (27) cannot be expressed
in terms of linear operators acting on a wavefunction.
Thus, for practical calculations using the Hilbert space
approach, it might be convenient to work without re-
quiring that o satisfy these conditions. Instead, one can
consider the set of van Hove operators O augmented by
the set of operators O. This enlarged set of operators
closes under the commutator algebra, so no further op-
erators have to be introduced into the formalism. This
alternative approach is discussed in Appendix

8. Observables and conservation of probability

As in the previous two approaches, we must determine
that the changes in ¢ induced by the observables defined
in Eq. (B6) preserve both the normalization and posi-
tivity of the probability. This is straightforward in the
Hilbert space formulation. First we note that the proba-
bility density o = |¢|? is non-negative from its very defini-
tion. Additionally, as the operators defined by Eq. (B6)
are Hermitian in the Hilbert space of phase-space val-
ued wavefunctions, it follows that the infinitesimal uni-
tary transformations generated by Op will not change
the normalization of ¢ = |¢|%.

4. Lie algebra of van Hove operators

As was already pointed out by van Hove, the commu-
tator for operators O4 is isomorphic to the phase space
Poisson bracket,

1
ih
A proof is given in Appendix

[@A, @B} =Owm, (40)

5. Absence of an uncertainty principle

We have seen that the solutions o, o for ensembles
in phase space are mapped to the classical wavefunction
of van Hove, except for some pathological examples (e.g.,
where the square root of ¢ is not well-defined).. In partic-
ular, localized classical solutions for ensembles on config-
uration space that approximate delta functions are also
solutions for van Hove’s classical mechanics in Hilbert
space. However, the commutator algebra of the opera-
tors of van Hove is isomorphic to the Poisson algebra of
functions in phase space, so that we have

[0,

;O
@q@p - @qu
(e nd) (48)- (28 (-0
ih
in the one-dimensional case. o

This may seem puzzling since [Og, Op| = ih seems to be
in contradiction with the existence of localized solutions.
Nevertheless, as we show below, there is no contradiction
here because no uncertainty relation can be obtained from
Eq. {).

To understand this, it will be useful to start by review-

ing one of the standard ways of deriving the uncertainty
relation [34]. Consider the ket

@) = (O +iXOy)|9), (42)

where A is an arbitrary real parameter. We assume for
simplicity that the mean values of the position and mo-
mentum for the state |¢) are zero. Calculate

(01(Og — XD (O +iXO,)|9)
(00,04|¢) — N+ 2280, O, 6) > 0.(43)

(a]a)

As the last expression in Eq. (@3] is quadratic in A, the
condition that it be non-negative leads to

W0,0000@10,0,00) = (3) - )

What matters here there is a crucial difference between
the operators @@, P of quantum mechanics and the van



Hove operators O,, O, because

PP = p2, (45)
0,0, # O,z. (46)

As a matter of fact, we have

S
S
|

2 2
(q+z‘h§) =q +2th£—h26 (47)
P

op op?’
o 0\? 92
) (—zhaq) = —fﬂa =) (48)

which shows that @q@q and @p@p are not even van Hove
operators as they involve second derivatives, and all van
Hove operators have first derivatives only. As a conse-
quence, they are not associated with any classical observ-
ables. The derivation of the uncertainty relation requires
interpreting (¢|OyO4|0) and ($|O,Op|d) as expectation
values of the square of the position and the square of the
momentum, respectively, and this fails with the van Hove
operators.

As a result, there is no uncertainty relation for the van
Hove formulation of classical mechanics, despite the iso-
morphism between commutators of van Hove operators
and Poisson brackets of functions in phase space. To
put it in more technical terms: The set of van Hove ob-
servables Of does not form a product algebra. That is,
the product of two van Hove observables OrQO¢ is not
necessarily a van Hove observable. Given two arbitrary
van Hove observables Op and Og, the only general way
to get a third observable is through their commutator
#[0r, 0] = Op,gy-

a
)
<

I

D. Galilean invariance in the three approaches to
classical mechanics

Since Galilean invariance plays an important role in
non-relativistic systems, it is of interest to look at how
this symmetry is implemented in the different approaches

to classical mechanics that we have considered. We will
later look at this in the context of hybrid systems, where
complications can arise due to the interactions between
classical and quantum systems.

A realization of the Galilei algebra is given by the gen-
erators of translations II;, rotations L;, boosts G; and
time translation H. These operators satisfy the Lie alge-
bra

{H,IL;} =0, {H,L;} =0, (49)
{11;, Hj} =0, {L;, Hj} = g1l

{Li, Lj} = €ijp L, {Li,Gj} = €ijr Gy,
{Gi,G,} =0, {G;,11;} = M,
{G;,H} =T1,,

where the choice of brackets {-,-} will depend on the
model of classical mechanics that is being considered;
e., Poisson brackets {-,-},, when the generators are
represented by functions of phase space, commutators
115[ -] when the generators are represented by operators
in Hilbert space, etc. As is well known @ the repre-

sentation in terms of functions in phase space is

H = —|P|2 II; = ps, (50)

L; = eijpzipr G = Mgq; — tp;.

In this section, we presented rules to map phase space
functions F(q, p) to observables for all three approaches.
These rules provide an algebra that is isomorphic to the
one of functions in phase space. Therefore, it is sufficient
to write down the generators of the Galilean group in
terms of functions in phase space and then apply the
corresponding rules to get the generators for ensembles
on configuration space, ensembles on phase space and van
Hove’s Hilbert space formulation, respectively.

We find that Galilean invariance can be explicitly re-
alized in all the approaches that we consider. This pro-
cedure leads to the following generators, presented in the
table:

TABLE I. Explicit form of generators the three approaches.

Configuration  space Hilbert Space (van Hove
ensembles Phase space ensembles operators)
P(q), S(q) o(a,p), o(a,p) ¥(a,p)
'}P s { .}g7 e
B
I1; quP(aql) fdwg(aql) —z)‘iaql

Li|| [da P (Euk% aqk) Jdw oiji (Qj e — apJ pk) —iheijn (qg'% —pk%j)
G| [ daP (Mg —t32) [ [dwo(Ma— MZ2 —t32) [Mai+in (Mo + 12 )
7| da P2 VoS0 e (%o b — 2ot} [=ip Ve — 2ol




E. Equivalence of the three approaches

To discuss the equivalence of the three approaches of
representing statistical theories of classical mechanics, we
consider the equivalence of their algebras and solutions.

1. Isomorphism of the Lie algebras

As we have already discussed, for each of the three ap-
proaches we have rules to map functions F(q, p) in phase
space to observables (i.e., Op[P,S], Orlo,0] and Op).
The Lie algebra of observables with respect to the corre-
sponding brackets (i.e., {-,-}(p,s), {, }(0,0) and [-,]) is
in each case isomorphic to the Lie algebra for functions
in phase space in terms of the Poisson brackets {-, }4 p-
Hence, all approaches are equivalent from an algebraic
point of view.

2. Mapping of solutions

As already pointed out at the end of section [TC1] the
solutions p, o for classical systems described by ensembles
on phase space are also valid for the Hilbert space formu-
lation by setting ¢ = /0 e'?/"_ In both cases, we restrict
to solutions o = o(q, t) that satisfy the Hamilton-Jacobi
equation (7). Thus, these two approaches are equivalent
as far as the solutions are concerned.

Equivalence to the approach of ensembles on configura-
tion space can also be established by mapping the phase
space density o to a mixture of probability densities P
according to [19]

o(a,p,t) = / dex w(e)P(q, tar) 6(p — Vo S(a, £ ax)).

(51)
where w(a) is the probability of finding the mixture in
the state labeled by «, P(q,t|a) is a conditional proba-
bility given a, and the set of parameters a labeling both
the elements of the mixture and a complete solution of
the Hamilton-Jacobi equation ﬂﬁ] (a derivation follow-
ing Ref. @] is reproduced in Appendix [E]). In this way,
the phase space density o(q, p) is mapped to a mixture of
configuration space ensembles and both approaches are
equivalent.

III. THREE MODELS FOR INTERACTING
HYBRID CLASSICAL-QUANTUM SYSTEMS

To describe a mixed quantum-classical system, we add
a quantum particle to the classical particle and allow
them to interact. We first describe how this is done for
ensembles on configuration space and then adapt this
procedure to the other two approaches. Here and in what

follows, we use (g,p) to describe the phase-space coordi-
nates of the classical particle and x to denote the position
of the quantum particle.

A. Hybrid model in the approach of ensembles on
configuration space

We have given an account of the description of a classi-
cal particle using ensembles on configuration space in sec-
tion [[Al Before we introduce hybrid classical-quantum
ensembles, we present a summary of the ensemble de-
scription of a quantum particle ﬂﬁi]

The ensemble Hamiltonian for a quantum particle of

mass m is given by
+ V(x)) .

- VLS]2 B2 |V, PP
Hg[P,S]-/de( by R

(52)
This ensemble Hamiltonian leads to the equations
LS12 K2 V2P
8—5 = —|V sl +—vx\/_—V, (53)
ot 2m 2m /P
OP vSs
- - _v.|pX2). 54
ot v ( m ) (54)

If we introduce a wavefunction and write it in terms of
Madelung variables, ¢ = v Pe'¥/" Eqs. ([G3)-(G4) are
equivalent to the complex Schrédinger equation

oY h?
h— = —— V%) + V. 55
thor = =5 -V + Vi (55)
Given an operator F in the Schrédinger representation,
the quantum observable in the approach of ensembles on
configuration space is defined by the expectation value of
the corresponding operator,

(’)gM = /dxdx' P(x)P(x)el S =S/ (x| B x) .

(56)
which differs from the definition (&) of the corresponding
classical observables @] The fundamental importance
of the definition of quantum observable of Eq. (B0) de-
rives from the fact that the Poisson bracket for quantum
observables is isomorphic to the commutator in Hilbert
space,

{O%M, (’)]%M} — oM (57)

(ps)  [M.N]/in’

1. Equations of motion and Galilean invariance for hybrid
systems

We now can construct a hybrid theory in configuration
space by letting P and S depend on the joint space (q, x)
and postulating a Hamiltonian that is the sum of the free
classical and quantum Hamiltonians plus an interaction



term. We also require that the resulting hybrid model
is Galilean invariant, which restricts the possible choices
for the interaction terms to a scalar potential V' (|q — x]).
It can be shown that adding a rotationally and trans-
lationally invariant interaction is sufficient to guarantee
Galilean invariance of the theory @] Hence, the full
hybrid Hamiltonian can be written as

IVaSPP | [V Sa|?
P = dqdx P
HeolP.s) = [daaxp| Sl o B2L - oy)
h? |V, P|?
172 om +V(la—x|)|.
The resulting equations of motion are
9SS  |V,S|? V.S|12  h? V2P
—+| oSE | VSP 17 ””\/_+V:0, (59)
ot 2M 2m 2m /P

oP v, V.S\
§+vq-<PM>+vw-(Pm>_o. (60)

2. Conservation of probability

One can show that the ensemble Hamiltonian of
Eq.([52) preserves the positivity and the normalization
of the probability P(q,x) [19]. The probabilities for the
classical and quantum sectors are given by marginaliza-
tion,

Pe(q) = / xP(q,x),  Po(x) = / dq P(q,x), (61)

and are therefore always positive.

3. Observables of classical and quantum subsystems

The functionals of Egs. (@) and (B6) that represent
classical and quantum observables, respectively, have the
same functional form as before, except that now P and
S can be functions of both q and x. As in the purely
classical case, observables equal average values.

The classical observable corresponding to a phase space
function F(q, p) is defined by

Or = [ dadx PlaxF(a V8@ x).  (©2)

and the quantum observable corresponding to an opera-
tor F' is given by

o9M = / dqdxdx’ \/P(q,x)P(q,x) (63)

xe!l8(ax)=S(@x/h (/| frix) .

B. Hybrid model in the approach of ensembles on
phase space

We can construct a hybrid model where the classical
particle is described by phase-space coordinates with a
procedure similar to the one that we used in the last
subsection. That is, we add the ensemble Hamiltonians
of the classical particle and the quantum particle together
with an interaction term. However, there is a subtlety
involved here: contrary to the previous case, one cannot
simply require the interaction term to be rotationally and
translationally invariant to guarantee Galilean invariance

20, (36

1. Equations of motion and Galilean invariance

To derive appropriate equations of motion, we add a
Galilean invariant interaction term to the sum of the en-
semble Hamiltonians of the classical and quantum free
particles.

The Galilean invariant ensemble Hamiltonian for a hy-
brid system of two particles interacting via a potential
takes the form [2(]]

Heglps o] = (64)
2 2 2 2
P D |V.0| n? |Vl

dwd LA o
/“ XQ[V‘JU MO0 T om 12 om

+V(la=x|) = Vyo - VoV(la = x[)].

The equations of motion are

0 V.o

Sp+Vao 17 = Ve VoV + V. (QT> =0, (65)
do P p’

Ve =V YV - 2 (66)

|Vz‘7|2 _h_2V§\/§

V =0.
2m 2m \/E *

These equations are precisely the Madelung form @] of
the Hybrid system given in ﬂ%] The interpretation that
we give of ¢ and o is, however, a different one as a con-
sequence of conditions that we impose on the solutions.
Approaches to solving Egs. (68) and (66]) are discussed
in Appendix [[] where in particular we carry out a pro-
jection of Eq. (@6) to configuration space leading to

% + Vgol? | [Vao|?
ot 2M 2m
2 2
GV (h—v“/@>
2m /o

(67)

)

0=0(q,p=V,40,x)

which is a modified Hamilton-Jacobi equation with a
modified Bohm quantum potential term in analogy to

Eq. (£9).



2. Conservation of probability

One can show that the ensemble Hamiltonian of Eq.
(64)) preserves positivity and the normalization of the
probability o(q, p,x). The probabilities for the classical
and quantum sectors are given by marginalization,

Qc(q,p):/dxg(q,p,X), QQ(X):/de(q,p,X),

(68)
and are therefore always positive.

3. Observables of classical and quantum subsystems

The functionals that represent classical and quantum
observables have the same functional form as before, ex-
cept that now ¢ and ¢ can be functions of q, p and x.

The classical observable corresponding to a phase space
function F(q, p) is defined by

Orloo) = [ dudxol(F ~p-V,F) (69)
— (V4F - Vpo — V,F - V,0)].

In Appendix [E] we show that we can limit ourselves to
the set of solutions of the hybrid equations that satisfy
V40 = p and V,0 = 0 without restricting the space of
solutions. Thus, we restrict to this class of solutions, in
which the numerical value of the observables equals the
average value of the corresponding phase space function,

O%lo, 0] := Orlo, U]|qu:p)va:0 = /dwdng. (70)

_ The quantum observable corresponding to an operator
F is given by

ogM = / dwdxdx' \/P(q,p,x)P(q,p,x')
w eilS(a,p.x)—S(a,p.x")]/h (x| Ia Ix). (71)

As in the purely classical case, observables equal average
values (provided we follow the rules given above).

C. Hybrid model in the Hilbert space approach

For the Hilbert space approach, we follow a procedure
similar to those for the previous models. We introduce
a hybrid model by adding the Hamiltonian operators of
the classical particle, the quantum particle, and an inter-
action term.

1. Equations of motion and Galilean invariance

The Galilean invariant Hamiltonian operator acting on
a wavefunction ¢(q, p, x) for a hybrid system of two par-
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ticles interacting via a potential is given by

Loy [p? . P
iy = {W—Hh (qu-vq—ﬁ-vp) (72)

52v2 1%
V2 Vla-x)| v

This hybrid wave equation was first considered in Ref.
[29], see also Ref. [36].

2. Conservation of probability

The Hamiltonian operator of Eq. (72) is Hermitian, so
its action preserves the normalization of the probability.
The probability is always non-negative as it is given by
p = [)?

The probabilities for the classical and quantum sectors
are given by marginalization,

oc(aq,p) = /dx o(a,p,x), 0q(x)= /dw o(g, p, x),
(73)
and are therefore always positive.

3. Observables of classical and quantum subsystems

The operators that represent classical observables are
the van Hove operators of Eq. ([B6]). The operators that
represent quantum observables are the usual quantum
operators in the Schrodinger representation in configura-
tion space with coordinate x.

D. Comparison of hybrid theories

When the equations of motion, states, and observables
of two hybrid theories can be mapped to each other, we
consider the two theories to be equivalent. In this sec-
tion, we examine the equivalence or non-equivalence of
the three hybrid approaches that we discuss in this pa-
per.

1. Equivalence of hybrid theories in Hilbert space and of
ensembles on phase space

We first consider the equivalence of hybrid theories in
Hilbert space and of ensembles on phase space.

To see that the equations of motion are the same,
we write the wavefunction ¢ in Eq. (@) in terms of
Madelung variables. One can check that Eq. (2] be-
comes equivalent to Eqs. (63) and (G6). As the equa-
tions of motion are the same, the states in both hy-
brid theories will be the same, with the map from states
of ensembles on phase space to wavefunctions given by
0,0 = P = \/Eei"/h. Finally, for any operator F' of the



hybrid theory in Hilbert space, there is a corresponding
observable O%yb”d[g,a] = (Y[F[Y)y— sgeio/n for ensem-
bles on phase space.

2. Non-equivalence of hybrids theories of ensembles on
configuration space and on phase space

To show the non-equivalence of the hybrids theories of
ensembles on configuration space and on phase space, it
is sufficient to provide a counter-example. We consider
the energy and show that the corresponding observables
for the two approaches are not equal to each other. It
will be sufficient to focus on the terms proportional to
(IV2P[?/P?) and (|V,0|?/0?) that appear as contribu-
tions from the quantum particle to the ensemble Hamil-
tonians and which lead to a Bohm quantum potential
term in the equations of motion; see Egs. (B2)) and (64]).

Notice that the terms that are added to the ensemble
Hamiltonians in the case of hybrid systems; i.e.,

h? |V, P|?
ECS[p] _ q
Q [P] = v /dxqu { 72 } (74)
for the configuration space approach and
h? Vqol?
EPS[ 1 _ q
0wsig) = oo [ doaxe [FL] (zy

for the phase space approach, will also appear in the cor-
responding energy observables and thus will contribute
to the total energy of the hybrid system. Thus, non-
equivalence between QFC9[P] and QFF5[g] will lead to
observable differences.

It is straightforward to show that QF®S[P] and
QEPS ] are not equivalent in the general case. We write

o(q,p,x) =: P(q,x)P(p|q,x) (76)

where in the last equality we used the product rule of
probability theory to write o(q,p,x) as the product of
a prior probability P(q,x) and a conditional probability
P(p|q,x). Then we have

Vzo(x,p,q) = [V2P(q,x)] P(pla,x) + P(q,x) [V.P(pla,x)],

and

Q"% ]

- g_m / dwdx 0 [_|v;29| ] (77)

e bt ol [P )

— i [ dsaxrax Pelax) | ey
[VoP(pla,x)]” | , VaP(a,%) - Vo P(plg,¥)]
[P(plg,x)]? P(q,x)P(p|q, x)

= QEcs[p]+ g—m/dwdxp(q7x)P(p|q7x)

 [FPBla P, VPl ¥ePipia )

[P(pla,x)]? P(q,x)P(p|q,x)

75 QECS[PL
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where we used the definition of QFYI[P]
J dp P(p|lg,x) =1 in the third equality.

We conclude that the two hybrid theories, the one in
phase space and the one in configuration space, are not
equivalent.

and

8. A condition that leads to a state in which the hybrid
phase space and configuration space formulations are
equivalent

There is a case of interest in which the hybrid theories
coincide. If no entanglement between the classical and
quantum particles is assumed ﬂﬁ], we can write g as the
product

o(q,p,x) = oc(q,p)Po(x) (78)
= Pc(q)d(p — VySc(a)) Po(x),

where we used the relation S(q,x) = Sc(q) + So(x)
which is valid for non-entangled states. In this case,

h2 |V0]?
&m / d“’d"@{ 2
h2

=3 dwdx Pc(q)dé(p — V¢Sc(q))

V. Po(x |2]
[Po(x))?

QFP5g =

] (79)

x P (x)

_ QECS[P].

Thus, there is equivalence between all three theories con-
sidered in this paper when there is no entanglement be-
tween classical and quantum subsystems.

IV. DISCUSSION

In the first part of this paper, we present three statis-
tical descriptions of classical particles. These approaches
are ensembles on configuration space, ensembles on phase
space, and a Hilbert space formulation using van Hove
operators. In all of them, there is a natural way of defin-
ing observables and a corresponding Lie algebra (a func-
tional Poisson algebra or a commutator algebra) that
is isomorphic to the usual Poisson algebra of functions
of position and momentum in phase space. Finally, we
show that these three descriptions of classical particles
are equivalent; i.e., provide different representations of
the same underlying statistical theory.

While the approach of ensembles on configuration
space is known [19], the second approach, utilizing en-
sembles on phase space, was only proposed recently @]
The passage from ensembles on configuration space to
ensembles on phase space requires some care, especially
as it concerns the handling of the canonically conjugate
variable identified with the action (see section [IBT]), but
no fundamental difficulties arise. The third approach



that we consider, a Hilbert space description based on
van Hove operators, has particularly interesting features.
Unlike the Koopman-von Neumann formulation of clas-
sical mechanics in Hilbert space, here an observable and
its corresponding generator are represented by the same
operator, defined by the rule introduced by van Hove.
This leads to a consistent theory provided we identify the
phase of the classical wavefunction with the classical ac-
tion, using the same procedure as for ensembles on phase
space. When we do that, we find that the phase of the
wavefunction does not appear in the expectation values
of the van Hove operators, which are always equal to the
average value of the phase space function associated with
that operator. This Hilbert space formulation of classi-
cal mechanics provides an alternative to the well-known
Koopman-von Neumann formulation.

The formulation of classical mechanics using van Hove
operators clarifies certain issues concerning the represen-
tation of classical observables in Hilbert space. This is
of relevance to the question of “classicality” (that is, the
question of determining the defining properties of a clas-
sical system). As already pointed out by van Hove, the
commutator algebra of the operators is isomorphic to the
usual Poisson algebra of functions in phase space. This
implies that the operators associated with the classical
position and momentum do not commute, as is apparent
from the calculation of Eq. (Il). Nevertheless, it is not
possible to derive an uncertainty principle because the
operators do not form a product algebra: while the com-
mutator of two van Hove operators is another van Hove
operator, the product of two van Hove operators is not
necessarily a van Hove operator. Thus the widespread
belief that operators in Hilbert space representing clas-
sical observables must commute and that this property
can be used to distinguish what is classical from what is
quantum appears to be incorrect.

In the second part of the paper, the approaches are
modified and extended to describe a hybrid system where
a classical particle interacts with a quantum particle. For
this step, it is necessary to establish appropriate forms
of the classical-quantum interaction term and here the
requirement of Galilean invariance provides crucial guid-
ance m, @] The approach of ensembles on phase space
and the Hilbert space approach lead to equivalent hy-
brid models, but they are not equivalent to the hybrid
model of the approach of ensembles on configuration
space. Thus we end up identifying two inequivalent types
of hybrid systems.

The results that we have obtained for hybrid systems
are of interest with regard to various “no-go” theorems
about quantum systems interacting via a classical medi-
ator. The motivation for them comes mostly from efforts
to determine whether it is logically necessary to quantize
gravity. It is known that such “no-go” theorems are in
general model dependent HE] The hybrid systems that
we present in our paper provide concrete examples of in-
equivalent models that can be used to compute simple
examples with the aim of testing the assumptions of the
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“no-go” theorems and their applicability.

A detailed comparison to other hybrid models in the
literature is beyond the scope of this paper and will be
the topic of another publication.
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APPENDICES

Appendix A: Observables for ensembles in phase
space and their relation to van Hove’s operators

The van Hove operator Op associated with the phase
space function F'(q,p) acts on the classical wave func-
tion ¢ according to Eq. (@B@). To define corresponding
observables Op for ensembles on phase space, we intro-
duce Madelung variables, ¢ = \/Eew/ " and evaluate the
expectation value of the van Hove operator,

OF = <(§F>
= /dwg [F—V,F - (p—V40)— V¢F-V,o]
ih
-5 [ (TF a0+ VP Vy0)
= /dwg [F—V,F - (p—V40) =V F-V,o]

_ / dwo[F — V,F -p—{F,0}] (A1)

In particular, the choice F(q,p) = Ip® + V leads to Eq.

(20). "

Appendix B: The algebras of observables of
ensembles on phase space and of functions on phase
space

We show that the Lie algebras of observables of ensem-
bles on phase space and of functions on phase space are
isomorphic. For simplicity, we prove this result for the



one-dimensional case. We have

OF[Q? U]

00F OF
8—9 (F_p6_p> - {Faa}(q,p) )

905 _ 0 (0F\ 0 (0F
do  Ip Q(?q dq Qap '

We want to calculate the functional Poisson brackets be-
tween two observables, {OF, Og}( p.o): and show that it
equals the observable O(r ) that corresponds to the
function {F, G'} (4, ), where the Poisson bracket of F' and
G is evaluated in phase space. This establishes the iso-
morphism between the two algebras.

We need to calculate,

{Or, OG}(pya)

—/dw 60F 60c  60r 60¢
- do oo oo do

oF
:/dw {(F—pa—p—{ﬂa}(q’pg
1o} oG 0 oG
(a5 (e5) ~ 3 (e5)) | ¥ 06
1o} or oG
*/dWQ |:8_q <F_p8_p —{F:U}(q,p)> a_p

19} oF oG
_a_p (F_pa_p _{F7O-}(q,p)> a—q:| —F<—>G

(B2)

where “F <> 7 indicates that the previous expression is
repeated interchanging F' and G, and in the last equality
we integrated by parts assuming o — 0 at the boundaries.
After quite a bit of algebra, one can show that

{Or,0c}, ,

0
= /dw 0 l:{Fv G}(q,p) - a_p{Fv G}(q,p) - {{Fv G}v S}(qyp) )

(B3)

as required. This shows that the Lie algebra of the K
observables for ensembles on phase space is isomorphic to
the Lie algebra of the functions F(q,p) on phase space,

{OFu OG}(p,o’) = O{F'rG}(qu) : (B4)

Appendix C: The algebras of van Hove operators
and of observables of ensembles on phase space and
functions on phase space

In this Appendix, we show that the commutator al-
gebra of the van Hove operators is isomorphic to both
the Poisson algebra of phase space functions and to the
functional Poisson algebra of the observables defined for
ensembles on phase space.

fuao|(p-y25) - (200 o0
we b Op Oq Op Opdq)|’

(B1)
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1. The commutator algebra of the van Hove
operators is isomorphic to the Poisson algebra of
phase space functions

In this subsection of the Appendix, we omit the sub-
script (¢, p) when we write the Poisson brackets {-,-}(4.p)
of functions in phase space to simplify the notion. This
cannot lead to confusion because only one type of Poisson
brackets are needed here.

The commutator of two van Hove operators acting on
the classical wavefunction ¢ is given by

~I?[{FAG,¢}} — {G{F, ¢}}],

(C1)

where we introduced the notation I'r = (F'—p -V, F)
and used the result

OrOg¢ = T'plao +ih[[r{G, ¢} + Tc{F, ¢} + {F,Tc}d]
—h*{F,{G,¢}}. (C2)

We use Jacobi’s identity to write

{FAG, 01} —{GAF ¢}} = {F{G,0}} +{G.{¢, F'}}

= —{o.{F.G}} (C3)

which leads to

[Or,Oclé = ih[{F,Tc} = {G,Tr}] ¢ — W*{{F,G}, ¢}.
(C4)

The aim is to check that [@ 7, @G]qﬁ equals

ih@{F7G}¢ (C5)
= ih[{F,G} —p- V,{F,G}] ¢ - *{{F.G}, ¢}.

As the terms proportional to 22 match, it is only neces-



sary to examine the remaining terms. We have

i [{F,T} — {G,Tr}]

oG oOF
F,zpj—_} - {G,zpj—}
{ ; Op; 7 Jp;

o G (505))

= ih[{F,G} —p- Vu{F,G}] (06)
It follows then that

[OF, Ocl¢ = ihOF a1 9, (C7)
as required.

This proves that the commutator algebra of the van
Hove operators is isomorphic to the Poisson algebra of
phase space functions. Thus the formulation of classical
mechanics in Hilbert space of van Hove is, in an algebraic

sense, strictly equivalent to the usual one in phase space.

2. The commutator algebra of the van Hove
operators is isomorphic to the functional Poisson
algebra of the observables defined for ensembles on
phase space

In Appendix [A we defined Op, the observable of the
theory of ensembles on phase space that corresponds to
the phase space function F'(q,p), using the correspond-
ing operator of van Hove’s Hilbert space representation
of classical mechanics. As the van Hove operators are
Hermitian operators, we can write

OF = / dw ¢Op¢ = / dw (OFd)é (C8)

We write the classical wave function using Madelung vari-
ables, ¢ = /0 e'/"  Then the functional derivatives of
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Op are given by

00F 6(9F5_¢ 5(9F 5¢
So 09 do 6¢ 5@ (C9)
_ 0r 6 30 &
T 6p 20 59 20
508 00886 008 6
S = 5o 50 " 54 o0 (C10)
00k 00p >
= + R
HE =
and
{Or, 06} y,0)

_ /dw 00F 60¢  60F 60¢
B do Oo do  dp

i SO0r ¢ 00r ¢ 00¢ 00¢ -
i (o) (5o 59

8¢ 20 d¢ d¢
501? (]5 (5(/)1? (]5 (5OG 50_G
<5¢ 2g+ 8¢ 2g>< o¢ ot 5o ¢>]
1 (c&f& R
~ ih ép ¢ op 00
= ih 0F¢ Oc¢ — OF¢(OG¢))
= zlh dwqb( Foc—OGOF)¢
= Kiop,00) (C11)

Thus the functional Poisson Lie algebra of the O observ-
ables of the ensembles on phase space is isomorphic to the
commutator Lie algebra of the van Hove operators Op in
Hilbert space.

Appendix D: A closed set of operators for practical
calculations using the Hilbert space approach

For practical calculations, it might be convenient to solve
Eq. (B3), which is a linear operator equation, without im-
posing any non-linear conditions on the solution such as the
conditions of Egs. (26) and (27). However, to do this, it is
necessary to complement the set of van Hove operators Or
with an additional set of operators @}; that will provide the
correct expectation values for phase space functions F'(q, p).

We introduce two types of operators, both of them associ-
ated with a phase space function F(q,p). They act on the
classical wavefunction according to

Or¢ = [(F—p-Vpl) +ih(VeF - Vp =V, F V)|
= (F—=p-VpF)¢+il{F, ¢}, (D1)
Opd = Fo. (D2)

Both types of operators are Hermitian and form a closed al-
gebra,

[Or,0c] = ihOray,,.,, (D3)
[OF, Og] = 0
[Or,0¢] = ih@f{p,c}(q,w



thus no additional operators are generated by taking commu-
tators, and one can restrict to this set of operators. Further-
more, we have o

[OF,OF] =0, (D4)
so both have a common set of eigenvectors and Or and @%
can be simultaneously diagonalized. A similar closed set of
operators can be defined for the Koopman-von Neumann ap-
proach [3§].

One can give a physical interpretation to these operators.
The first type of operators, @p, are generators of transfor-
mations, but their numerical values do not equal the average
of F(q,p). The second type of operators, @F, are not gen-
erators but they have the property that (¢|Or|p) = J dwoF,
thus their numerical value equal the average value of F(q,p).

This approach to solving Eq. ([33)) gives us the tools to do
practical calculations while keeping the advantage of a linear
equation. The same approach works for ensembles on phase
space.

Appendix E: Phase space densities and mixtures on
configuration space ensembles

‘We summarize some results on how densities in phase space
can be mapped to mixtures on configuration space HE] For
simplicity, we consider a two-dimensional phase space. The
generalization to more dimensions is straightforward.

We write the phase space density (at some given time) in
the form

ola.n) = [ dddd od ¥ Sla—a) 6o —7) (BN
and we carry out the change of coordinates
_ 95(d.)
¢
where S is a complete solution of the Hamilton-Jacobi equa-
tion with parameter . The only restriction on S(q’, @) comes

from the requirement that the coordinate transformation of
Eq. (E2) be invertible. We have

(E2)

dq'dp’o(q',p")6(p — p') (E3)
= ddda s (¢, 88/9¢)8(p — 0S/dq")
=dq Bgoa| 2 q)é(p q),
which leads to
o(q,p) (E4)
—/d do | 25| o(d.08)04) 6(a — &) 6(p — 85/04)
= [ dq aga| 24 q') 6(q—q') o(p q

= [aa | 22 otq.05000) 560~ 95/00)
dqOa ’
‘We now evaluate

/dp o(q,p)

= /dpda

%S
= /da ‘aqaa‘ o(q,05/0q)

=: /da w(a)P(q|a), (E5)

o(q)

2

0°S
| o(a.05/04) o0~ 05/00)

15

where the last line defines a pair of new probabilities, w(a)
and P(q|a)[39]. Thus, we can set

‘ 2

| el 0500 = w(@P(a). (B0)

It is possible to give explicit expressions for both w(«) and
P(g|a). Integrating Eq. (EB) with respect to g on both sides

leads to
w(a) = /dq i 0(q,05/9q) (E7)
poJetele’ ' '

where we used [ dg P(g|la) =1 (see below). Using Eq. (EB)
again we get

1 |a%s
Palo) = s s | d@0s/o)  (E9)
9%s
= | 0(q,05/9q)
= . (E9)
Jda |4 o(a,05/dq)

Thus w(e) and P(g|e) are uniquely determined by o(q, p) and
S(gq, c).

Both w(a) and P(g|a) are non-negative and properly nor-
malized, as we now show. Since the integrand of Eq. (E7) is
non-negative, it follows that w(a) > 0, as required. One can
also show that [ do w(a) =1, since

1

/ dqdp 0(q,p) (E10)

2
/ dqda

where in the second equality we carried out the transforma-
tion of Eq. (E2) by replacing primed coordinates with un-
primed coordinates. Finally, inspection of Eq. (ES) shows
that P(gle) > 0 and [ dg P(gle) = 1.

Using Eq. (E6]), the expression for o(q, p), Eq. (E4), be-
comes

olq,p) = / do w(e)P(qla) 6(p — 95(g;0)/0g).  (B11)

| 0(0.05/00) = [ o u(e)

This shows that p(g,p) is indeed mapped to a mixture of
configuration space ensembles.

Notice that the functions P(g|a) and S(g, &) have only been
defined at a given instant of time. Given P(q|a) and S(q, &),
one can derive the corresponding time-dependent expressions
P(q|a,t) and S(q,a,t) by solving the equations of motion of
the ensemble on configuration space, Egs. (), with P(g|a)
and S(g, @) as initial conditions. This leads to an expression
of the form

ola.p.t) = / dov w(a)P(g,tla) 8(p — 0S(q,t; 0) /dg). (E12)

Appendix F: Solutions for ensembles on phase space
and for the Hilbert space approach with conditions
on o

In this Appendix, we show that we always have general so-
lutions for ensembles on phase space that satisfy Vqo = p and
Vpo = 0, for both the classical and hybrid cases. Whenever
these conditions hold, the numerical values of the functionals
Or|o, o] and the expectation values of the operators Or equal
the average of the phase space functions F(q, p).



1. The solutions for classical ensembles on phase
space

For classical ensembles on phase space, we need to consider

Eqgs. (I8) and ([9).

We first consider Eq. ([[3). As we showed in section [TB 2]
one can derive from Eq. ([I3) the following equation for the
differential of o,

do=p-dq— (LI;\L[ —|—V)

which can be recognized as the equation for the action in
differential form [23]. Notice that Eq. (ET) leads to the partial
differential equations

(F1)

Vir=p, Vo =0, (F2)
as well as the equation that is satisfied by o,
do  |Vaf? _
ot oM +V =0, (F3)

which can be recognized as the Hamilton-Jacobi equation.
This argument given above shows that the coordinate p is
redundant in the sense that it can be replaced by V40, where
o is a solution of Eq. ([3), which is well known. We will
consider complete solutions o(q; ) of the Hamilton-Jacobi
equation m] which depend on a vector of parameters a.

It is convenient at this point to introduce the integral pro-
jector defined by

E[f(a,p)] = /dp5(p—VqU(q;a))f(q7p)
= f(a,Veo(q; o)),

which projects from phase space to configuration space. The
projector depends on a function o(q; ). When we apply it
to Eq. (E), we obtain

(F4)

2

= {da ~Ppodat <|213\|4 + V) dt} (F5)
L2

=do — Vgeo(q;a) - dq + (W + V> dt

=0.

Thus we reproduce the previous result, as it leads to Eq. ([3)
for o(q; ). We will make use of this projector again when
we consider hybrid systems later in this Appendix.

Our strategy then is to require o to be a solution of
Eqs. (F2) and (E3), which we have shown are equivalent
to Eq. ([@@). Given this solution, the numerical values of
the Orlo, o] equal the average of the phase space functions
F(q,p). Finally, if we define the functionals C; := (V40 — p)
and C2 := (V,0), one can check that {C1,Hcp,0]}0,0) =
{C2, Help, o} o,0) = {C1,Ca}(p,0) = 0, which shows that the
conditions of Eq. (F2) do not lead to further conditions, as
expected.

We now consider Eq. (8], which is the Liouville equation,
satisfied by the phase space density p. As discussed in Ap-
pendix [E]l one can show that a density in phase space can
always be written as a mixture on configuration space ],

o(a,p,t) = / docw(a) P(a, t|e)d(p — Vo(a,t;a), (F6)
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where P(q,t|a) satisfies the continuity equation in configura-
tions space (i.e., the second equality of Eq. ) with S — o).
One can also show that the density in phase space defined by
Eq. (F9) satisfies Eq. (1), the Liouville equation [19].

2. The solutions for hybrid ensembles on phase
space

In the case of a hybrid system, the equations are given by
Egs. (G3) and (@6). We consider first Eq. (@6). This first-
order partial differential equation in o is equivalent to the
following set of ordinary differential equations,

gp= 4 _ dpi _dw
B R RE)
9q; m Oz,
do
= (F7)
lp|? \Vzv\z h2 vive
2pM + —V+3 Ve

To see this, notice that the last equality of Eq. (EX) leads to

Ip|” | |Vao]? h? Vi\/o
do = [ BL V4 dt F
7 <2M Fom Vo

but we also have

do = aUdif + Z (80 dq; + 8_Udpi + 8_0de)

api 8131
| 0o Jdo pi do OV Jdo 1 Oo
- [Bt +zi: (aqi M opog T ox maxiﬂ at
0o P |Vao|?
{E—quo-ﬁ—v VoV 4+ —— - dt. (F9)

If we now set the right-hand sides of Eqs. (E8) and (F9)
equal, we get Eq. (66), as required.

We want to show that we can follow essentially the same
procedure that we did for the classical case. Using the first
three equalities in Eq. (E7), we can express Eq. (E8)) as

2 2 2 V2

2M  2m ' 2m /o

2 2 2 v2
Il Voot B Vavie)
2M 2m 2m /o

:p~dq+an-dx—<

where we used the relations

., _ P, Ip? p|”
p-dq 2Mdt = dt 2Mdt 2]\4(11(13‘11)
2
Voo -dx— V2ol gy _ [Veol yy  [Veol® (F12)
2m m 2m
2
_ Neoly,
2m

We apply the projector of Eq. (F4) to Eq. (FIQ) and
follow essentially the same procedure as in the classical case,
this leads to the partial differential equation in configuration
space

do n |V 0
ot 2M 2m

=0, (F13)

o=0(q,p=Vq0,x)

2 2 VZ
4 Vaol® < f f)
2m /o

(F10)



which is a modified Hamilton-Jacobi equation with a modified
Bohm quantum potential term.

Our strategy then is, as in the classical case, to require
o to satisfy Voo = 0 and Eq. (FI3). Given this solution,
the numerical values of the Or|p, o] equal the average of the
phase space functions F'(q,p). Finally, if we define the func-
tionals C; := (V4o — p) and Cz := (V,0), one can check that
{Ci, Halp, o1} o0) = {Cas Helps o1} o0y = {C1,Co}(p,0) = 0,
which shows that the conditions of Eq. do no lead to
further conditions, as expected.
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3. Solutions for the Hilbert space formulation with
van Hove operators

Since the equations for ensembles on phase space (classical
and hybrid) are identical to the corresponding Hilbert space
equations that result from operating on the Madelung form of
the wavefunction, ¢ = \/Eei"/ﬁ, one can essentially make use
of the solutions that have already been derived for ensembles
on phase space.
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