
Stability of Anomalous Hall Crystals in multilayer rhombohedral graphene

Zhihuan Dong, Adarsh S. Patri, and T. Senthil

Department of Physics, Massachusetts Institute of Technology, Massachusetts 02139, USA
(Dated: April 15, 2024)

Recent experiments showing an integer quantum anomalous Hall effect in pentalayer rhombohedral
graphene have been interpreted in terms of a valley-polarized interaction-induced Chern band. The
resulting many-body state can be viewed as an Anomalous Hall Crystal (AHC), with a further
coupling to a weak moiré potential. We explain the origin of the Chern band and the corresponding
AHC in the pentalayer system. To describe the competition between AHC andWigner Crystal (WC)
phases, we propose a simplified low-energy description that predicts the Hartree-Fock phase diagram
to good accuracy. This theory can be fruitfully viewed as ‘superconducting ring’ in momentum
space, where the emergence of Chern number is analogous to the flux quantization in a Little-Parks
experiment. We discuss the possible role of the moiré potential, and emphasize that even if in the
moiré-less limit, the AHC is not favored (beyond Hartree-Fock) over a correlated Fermi liquid, the
moiré potential will push the system into a ‘moiré-enabled AHC’. We also suggest that there is a
range of alignment angles between R5G and hBN where a C = 2 insulator may be found at integer
filling.

I. INTRODUCTION

In the last few years, the Integer Quantum Anoma-
lous Hall (IQAH) effect has been seen in a number of
moiré materials1–6. Microscopically, typically, the elec-
tronic bands of many of these moiré materials have a
well-defined Chern number that is equal and opposite in
the two valleys. When the bands are nearly flat, and
the total number of electrons is an odd integer per moiré
unit cell, the valley (and spin, if present) degree of free-
dom polarizes spontaneously7–10, leading to an insulat-
ing ground state with a net Chern number for occupied
bands, and hence to an IQAH effect.

The recent discovery11 of the IQAH (and a Fractional
Quantum Anomalous Hall (FQAH)) state in pentalayer
rhombohedral graphene (R5G) nearly aligned with a
hexagonal Boron-Nitride substrate (R5G/hBN) does not
fit this paradigm. Rather, the non-interacting band
structure is such that, even with spin and valley polar-
ization, the many-body state is metallic at a filling ν = 1
of the moire lattice. However, electron-electron interac-
tion effects, treated in a Hartree-Fock aproximation12–15,
lead to the appearance of a single-particle gap, and an
insulating many-body ground state (see also Ref. 16).
The occupied Hartree-Fock band has a non-zero Chern
number |C| = 1 which provides an explanation for the
observed IQAH at ν = 1. Furthermore, numerical
calculations12–15 of the many-body state at fractional fill-
ing, by considering the Coulomb interaction projected to
the ν = 1 Hartree-Fock band, find fractional quantum
Hall states in general agreement with the FQAH found
in the experiment. The physics of the QAH in pentalayer
graphene is thus quite different from the twisted Transi-
tion Metal Dichalcogenide (tTMD) system MoTe2 where
the first discovery of the FQAH was made17–20.

In this paper, we focus on the IQAH state and pro-
vide a deeper understanding of the emergence of the
interaction-induced Chern band at ν = 1. We will mostly

limit ourselves to the Hartree-Fock approximation, and
explain why the Chern band is stabilized. We will show
that there is a range of alignment angles for which the
non-interacting band already has Berry curvature close
to 2π. In this regime, with interactions, the Fock term
dominates and both opens up a band gap and modifies
the integrated Berry curvature to be exactly 2π to yield a
C = 1 Chern insulator. We give an intuitive explanation
to this phenomenon through an analogy to flux quanti-
zation in a superconducting ring but now in momentum
space. As the alignment angle is reduced (toward the
one in the devices of the experiments of Ref. 11), the
net Berry curvature of the non-interacting model within
the first Brillouin zone decreases to well below 2π. In
this regime, the Fock term is not enough to stabilize a
C = 1 insulator. However we show that the combination
of Hartree and Fock terms suffice, and we explain the
associated physics. Briefly, in this regime of alignment
angles, the Fock term opens up a band gap and gives an
insulator. However, the stabilization of the C = 1 in-
sulator over the C = 0 one is due to the Hartree term.
This is roughly because the charge distribution in the
Chern insulator is more homogenous than the trivial in-
sulator due to the impossibility of strongly localizing the
electrons in a Chern band.

It was noted in Ref. 13 and 14 (and reproduced in
our own calculations) that the Hartree-Fock calculation
produces a Chern insulator even in the absence of an ex-
plicit moiré potential. A natural interpretation is that
the continuous translation symmetry, present in the ab-
sence of the moiré potential, is spontaneously broken
to form some kind of crystalline state. However, since
the Hartree-Fock description of the crystal has occupied
bands with a net Chern number, this state should be
viewed as an ‘Anomalous Hall Crystal’21 (AHC). The
moiré potential will, at the very least, pin the AHC. From
this point of view, our results can be viewed as an expla-
nation (within Hartree-Fock) for what stabilizes the AHC
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over either an ordinary Wigner crystal (WC) or a Fermi
liquid (FL) metal.

To capture the competition between the AHC and the
WC in rhombohedral n-layer graphene (RnG), we pro-
pose a complementary simplified model that focuses on
the symmetry indices at the MBZ corners KM and KM ,
in the spirit of a ‘Landau’ theory. The ground state en-
ergy, expressed as a function of these indices, contains
the key information about the AHC - WC competition.
To get the parameters for the Landau theory, we first for-
mulate a crude treatment that focuses solely on a pseu-
dopotential interaction between the MBZ corners. We
show that although this correctly captures the Hartree
term, it does not faithfully describe the effect of the Fock
term in the full range of microscopic parameters. To rem-
edy this, we propose a modified low-energy model that
captures the physics of the entire MBZ boundary. This
model can be viewed as a superconducting ring, but in
momentum space, and gives an intuitive description of
the physics. This modification significantly improves our
prediction of the Hartree Fock phase diagram. Similar
momentum space “superconducting” analogies have been
invoked to understand Hartree-Fock physics in twisted
bilayer graphene problems before22,23.

The evolution between the Fermi liquid metal and the
ordinary Wigner crystal is, of course, one of the classic
problems in condensed matter physics. In the context of
RnG, the Hall crystal is another possible phase. It is well
known that the phase competition between the Fermi liq-
uid and the ordinary Wigner crystal is very poorly de-
scribed by Hartree-Fock theory which enormously overes-
timates the stability of the crystal. We might expect that
a similar situation also arises in RnG with the crystalline
phases (AHC or WC) much less stable than indicated by
Hartree-Fock theory. However, we suggest that even a
very small moiré potential can induce a phase transition
between a correlated Fermi liquid and the Hall crystal as
the latter gains commensuration energy. Thus, we expect
the Hartree-Fock calculation to be more reliable in the
presence of moiré than without. We dub the resulting
IQAH state a ‘moiré-enabled Anomalous Hall Crystal’.
Obviously, in the regime of the moiré-enabled AHC, if
we turn off the moiré potential, the system is a Fermi
liquid. In this situation, the moiré potential is impor-
tant in getting into the AHC state (through a first-order
transition out of the Fermi liquid), but ultimately the
gap in the AHC is determined by the Coulomb interac-
tion and not by the amplitude of the periodic potential.
We comment on some implications of this possibility.

We also consider the possibility of obtaining
interaction-induced Chern bands with higher Chern num-
bers. Indeed the naive expectation about RnG/hBN is
that, for the topologically non-trivial orientation of the
displacement field, the bands have (valley) Chern number
n. Though this expectation is not borne out 1, there is
a large Berry curvature in the non-interacting band that
is peaked in a ring in momentum space. The size of the
ring is set by the displacement field. Thus, with increas-

ing twist angle, a greater portion of this Berry curvature
will sit inside the moiré Brillouin zone. Then, if interac-
tions open up a band gap at moiré filling ν = 1, we might
expect a filled band with a higher Chern number. Com-
plicating this expectation, the non-interacting dispersion
loses its flatness also at the location of the ring. Hence,
a detailed calculation is required. We will show, within
the Hartree-Fock approximation for R5G/hBN, that if
the strength of the moiré potential or the Coulomb in-
teraction strength can be tuned, then C > 1 insulators
may be obtained at ν = 1, which then raises the pos-
sibility of exploring the physics at fractional filling of a
higher Chern band. Previously a C = 2 QAH state was
found1 in R3G/hBN at ν = 1 of the valence band, and a
C = 5 insulator at neutrality in spin-proximitized R5G
at neutrality24.

To set this work in a broader historical context, we note
that a number of previous theoretical and experimental
papers25–29 have explored the possibility that interaction
effects can induce Chern bands and lead to an integer
quantum hall effect in diverse situations. The mecha-
nisms identified in this paper are specific to RnG, and are
distinct from that in this prior literature. A particularly
interesting feature of the RnG system is the possibility
that, apart from time reversal, (approximate) transla-
tion symmetry is broken spontaneously as well, thereby
realizing a (moire-enabled) AHC. The case of continuous
translation symmetry breaking, accompanied by a quan-
tum Hall effect, in Landau levels was discussed in Ref.
21 which was itself motivated by the prior discussion of a
quantum Hall effect in a Wigner crystal driven by cooper-
ative ring exchange30,31. The coexistence of the quantum
Hall effect and crystal symmetry breaking is reminiscent
of the much discussed32,33 but elusive phenomenon of su-
persolidity in Helium-4. A recent experiment on bilayer
graphene has suggested evidence for an AHC phase34.
Finally, in moire systems, there are examples28,29 where
discrete translation symmetry of a lattice system is bro-
ken spontaneously and leads to a Chern insulator. In
these examples, the folding of the Brillouin zone due to
a commensurate charge density wave order captures the
pre-existing Berry curvature of the bare band within the
reconstructed first Brillouin zone. As we will see, the
mechanism in RnG/hBN is more intricate than these ex-
amples.

The remainder of the paper is organized as follows.
In Sec. II we describe the continuum models for R5G,
and highlight the limitations of a simple and popular
two-band model. Specifically, it fails to capture the re-
alistic Berry curvature distribution at small momentum,
which is critical to our understanding of the AHC. We
next overview the features of the Hartree-Fock phase
diagram in Sec. III, for varied twist angles and dis-
placement field energies, and provide an understanding
for the interaction-driven Chern bands. We next de-
tail the mechanism by which the AHC is favored over
the trivial WC in Sec. IV through a careful considera-
tion of the symmetry indices at high-symmetry points
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of the mini-Brillouin zone. We also provide a comple-
mentary argument in Sec. V via a Landau-like effec-
tive model. In Sec. VI, we propose the aforementioned
low-energy “superconducting ring” model which predicts
the microscopic mean-field phase diagram using the non-
interacting band structure. In Sec. VII, we discuss the
competition of the AHC and the Fermi liquid state in the
moiré-less setting within Hartree-Fock. In Sec. VIII, we
discuss features of the phase diagram beyond the Hartree-
Fock approximation, and comment on the fate of both the
moiré and non-moiré system depending on the interac-
tions and displacement field. We emphasize the presence
of a moiré -enabled AHC which expands (likely vastly)
the relevance of the physics of the AHC in the phase di-
agram. In Sec. IX we discuss possible routes for higher
Chern bands. Finally, we conclude in Sec. X and provide
some future directions of exploration.

II. STRUCTURE OF CONTINUUM BAND AT
LARGE DISPLACEMENT FIELD

Rhombohedral-stacked pentalayer graphene is the
structure formed by five layers of graphene vertically
aligned in the (ABCAB) sequence, with the Bl sublat-
tice of layer l aligned with the Al+1 sublattice of layer
l+ 1. The continuum 10-orbital Hamiltonian (in the ba-
sis of the Al, Bl sublattices for each of the five layers;
for a given valley K/K ′ and spin ↑/↓) involves tunneling
of Dirac fermions from each graphene monolayer (with
Dirac velocity γ0) to neighboring layers via hopping pro-
cesses t1,2,3,4 (see Eq. A1 in Appendix A) in the pres-
ence of on-site potentials and displacement field energies
(ud)

35. We present in Fig. 1 and Fig. 2 the (conduction)
continuum band structure, and the associated Berry cur-
vature and flux of the 10-band model.

The hierarchy of energy scales associated with the
inter-layer hopping processes is t1 > t3,4 ≫ t2. This
indicates the important role of t1 in the low-energy the-
ory. To develop an intuitive low-energy description of
this continuum model, and its corresponding non-trivial
topology, it is advantageous to consider various effective
models that are applicable in different momenta regimes.

We will drop the moiré potential in our discussion
of the Hartree-Fock calculation, and develop an under-
standing of the stabilization of the AHC as a function of
the electron density and the displacement field. We find
it convenient to parametrize the electron density in terms
of the alignment angle θ with the hBN substrate (even
though we turn off the moiré potential). If the moiré po-
tential were to be present, the twist angle θ determines
the size of the unit cell. The charge density of interest
corresponds to a lattice filling ν = 1 of this unit cell.
Consequently, θ can be used as a parametrization of the
density even in the absence of moiré .

Figure 1. Berry curvature distribution for (a) the 2-orbital
(A1B5) model, and (b) the 10-orbital model without warping
(t2 = t3 = t4 = 0), at ud = −35meV. We mark the edge of
MBZ at θ = 0.8◦ with silver lines, although no moiré potential
is turned on in the calculation.

A. Dangling edges of pentalayer graphene:
k5-two-orbital model

A preliminary understanding of the continuum band
near charge neutrality is achieved by focusing on the elec-
tronic occupation of the A1 and B5 orbitals. The remain-
ing eight orbitals are regarded as high-energy sites, with
a low-energy model derived from perturbatively integrat-
ing out these high-energy orbitals35. The justification
for this simplified model is that at small momentum k,
γ0k/t1 ≪ 1, and so the dominating interlayer hopping t1
pushes all other orbitals away from zero energy by form-
ing bonding and anti-bonding states so that the only low
energy degrees of freedom are A1 and B5 orbitals. The
effective low energy theory is obtained by performing a
fifth-order perturbation with small in-plane hopping γ0k,
leading to the effective model35–37,

H =

 2ud
γ5
0

t41
(kx + iky)

5

γ5
0

t41
(kx − iky)

5 −2ud

 . (1)

We note that we disregard the sub-dominant hopping
momentum corrections that involve lower powers of mo-
mentum k. This theory defines two momentum regimes:

(1)
u
1/5
d t

4/5
1

γ0
≪ k ≪ t1

γ0
, where the off-diagonal term dom-

inates, which leads to a ∼ k5 dispersion; and

(2) k ≪ u
1/5
d t

4/5
1

γ0
, where the displacement field dominates,

corresponds to an extremely flat band bottom (dictated
by ud) with a ∼ k10 dispersion.
The distribution of the Berry curvature associated with

this two-band model is given by,

γ(k) = − 25ud(t
4/5
1 /γ0)

8k8[
(t81/γ

10
0 )k10 + 4u2d

]3/2 . (2)

Indeed, the corresponding total Berry flux is −5π within
the first Brillouin zone (though there is no gap), which
is distributed in a ring-like region about k = 0 (see
Fig. 1(a)). The radius of this ring is given by the tran-
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Figure 2. Dispersion (top), Berry curvature distribution
(middle), and Berry flux integral (bottom) for various effec-
tive models of pentalayer graphene. Black, red, and blue
curves correspond to 10-band (Eq. A1 in Appendix A), 2-
band (Eq. 1), and 3-band models (Eq. 3), respectively. This
plot is obtained for ud = −35meV, and θ = 0.9◦.

sition momentum scale kring ∼ u
1/5
d t

4/5
1

γ0
, where the band

starts to become highly dispersive.
In the presence of the moiré potential, there is another

momentum scale, which depends on the twist angle θ.
We will characterize it with KM the momentum at the
corner of the moiré Brillouin zone (MBZ). At the range
where the IQAH is observed in current experiments(θ ∼
0.77◦, ud ∼ −35meV) kring is slightly above KM (as seen
in Fig. 1(a)). This indicates that the majority of the
Berry curvature arising from the A1 − B5 hybridization
lies outside the first MBZ.

B. Failure of k5-two-orbital model to capture flat
band bottom

The limitation of the k5-two-orbital model is brought
to the fore as the displacement field energy increases.
We recall from the above discussion that at relatively
weak displacement field energies (|ud| < 10meV) and mo-
menta, the band bottom is relatively flat. As such, the
k5-two-orbital model (in regime (2)) faithfully captures
the features of the 10-orbital model. As the displace-
ment field increases (see Fig. 2) and the flat-band region
expands to envelop the size of the moiré BZ, the band-
bottom (i.e. near k = 0) acquires an appreciable disper-
sion. This appreciable dispersion is missed by the above

simplistic two-orbital model. To see this, one notices that
the hybridization between B5 and B4 is linear in k (see
the 10-orbital model in Eq. A1 in Appendix A) and can
become much stronger than the effect of the k5 term at
small k. Therefore, it is more appropriate to begin with
the Hamiltonian projected to include this nearest orbital
i.e. in the B5, A5, and B4 orbitals38

H3 =

 2ud γ0(kx + iky) 0
γ0(kx − iky) 2ud t1

0 t1 ud

 . (3)

Diagonalizing this Hamiltonian in the limit of small k and
dominating t1, we find the eigenstates: |B5⟩ , |A5B

+
4 ⟩ =

1√
2
(|A5⟩+|B4⟩), and |A5B

−
4 ⟩ = 1√

2
(|A5⟩−|B4⟩). Written

in this eigenbasis basis, the Hamiltonian becomes

H̃3 =


2ud

γ0(kx+iky)√
2

γ0(kx+iky)√
2

γ0(kx−iky)√
2

t1 +
3ud

2
ud

2
γ0(kx−iky)√

2
ud

2 −t1 + 3ud

2

 (4)

At k = 0, the lowest conduction band state is |ψ0⟩ =
(1, 0, 0) = |B5⟩, as expected. For small k, the k-
dependent matrix elements can be treated within pertur-
bation theory. The leading correction to the eigenstate
of the lowest conduction band is,

|δψ1⟩ = −γ0k
∗

2

(
ud

t21 − u2d/4
|A5⟩+

2t1
t21 − u2d/4

|B4⟩
)

∼ −γ0k
∗

t1
|B4⟩ (5)

and its corresponding energy correction is,

δE2 = −γ
2
0 |k|2
2

(
1

t1 − ud/2
− 1

t1 + ud/2

)
∼ −udγ

2
0 |k|2
2t21

.

(6)
The leading correction to the dispersion in Eq. 6 sug-
gests a negative effective mass that scales with displace-
ment field. As such, the band bottom is not as flat in
the large displacement field energy as the k5-two-orbital
model would seem to indicate. We present in Fig. 2 the
conduction band bottom dispersion for the k5-two-orbital
model and the above perturbation theory modified ef-
fective three-orbital model (with the 10-orbital model’s
dispersion shown for comparison). As seen, the k5-two-
orbital model is ‘too flat’ in the small momentum re-
gion; the effective three-orbital has the required disper-
sion, consistent with the full 10-orbital model.
In addition to the modified dispersion, the correction

to the |B5⟩ eigenstate by Eq. 5 indicates that the Berry
curvature in the small k-regime resembles that of a mas-
sive Dirac cone. This entails a Berry phase of approxi-
mately −π distributed in the small region of k ∼ t1/γ0.
This is corroborated by the full 10-orbital model, where
γBZ , the Berry flux inside the MBZ, is slightly stronger
than −π (see Fig. 2); recall that at the larger displace-
ment fields discussed here, the ‘ring’ of Berry curvature
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Figure 3. Phase diagrams in θ − ud space. In (a) The colors
show the closest integer to γBZ/2π, where γBZ is defined in
the main text. Colors in (b) and (c) mark the Chern number
of mean field bands, obtained with Fock term only and full
Hatree-Fock, respectively. Here the metallic region is left un-
colored. Comparing (a) and (b), the boundary between C = 0
and C = −1 region in the Fock phase diagram closely tracks
that of the non-interacting phase diagram. The comparison
between (b) and (c) shows that the Hartree term extends the
stability of the C = −1 Hall crystal. These results are ob-
tained for the 10-orbital model with no warping term, and
with the moiré potential turned off. The angle θ should then
be viewed as a parametrization of the charge density. This re-
sult is obtained with 24×24 momentum mesh and projecting
to 4 lowest conduction bands. In Appendix G, we show the
results including 7-bands. These results are consistent except
for the regime of large ud and small θ, where the “Mexican
hat” dispersion is deep enough so that the wavefunction at
ΓM point is a linear combination of 6 MBZ neighboring the
first MBZ, thereby it is crucial to include 7 bands.

lies just outside the MBZ. While the ring-shaped feature
at larger momentum arising from B5 − A1 mixing also
contributes to γBZ , the described −π flux is predomi-
nantly due to the massive Dirac cone physics at small k
due to B5 −B4 mixing. In the following section, we will
see that this massive Dirac cone feature is crucial since
the γBZ of the non-interacting band, to a large extent,
determines the Hartree-Fock phase diagram.

III. OVERVIEW OF THE HARTREE-FOCK
PHASE DIAGRAM

In this section, we overview the phenomenology of the
mean-field findings of pentalayer graphene and explain
the physics for some parts of the phase diagram. In par-
ticular, we focus on the conduction band in the regime
of strong displacement field (ud ∼ −35meV) relevant to
current experiments on R5G. We consider the evolution
as twist angle θ (i.e. the charge density) decreases, and
ignore the moiré potential. The Hartree-Fock and Fock
phase diagrams are shown in Fig. 339. We focus on a
simplified model with no warping t2 = t3 = t4 = 0; the
warping effects are readily included and do not affect the
physical understanding we develop.

Extremal twist angle θ > 1.5◦: In this limit, KM >

kring, and so the majority of the continuum band Berry
curvature is contained within the first MBZ. We recall
that kring also marks the momentum scale at which
the continuum band becomes dispersive. As a result,
given that the band gap opening at the mean-field level
is bounded (from above) by the scale of interaction
U ∼ 20meV, the energy of the second conduction band
at the MM point may drop well below the energy of the
first conduction band at KM , which leads to a metal-
lic phase even when the translation symmetry is sponta-
neously broken.

Large twist angle 0.9◦ < θ < 1.5◦: In this case, where
the twist angle is larger than the experimental regime,
the MBZ boundary intersects the Berry curvature ring,
where the −5π Berry flux is concentrated. We find the
Berry flux enclosed by the first MBZ varies between −3π
and −π as θ decreases. With Fock term alone turned on,
the band gap opens, and we find the lowest conduction
band has C = −1, which is exactly the Chern number
expected from rounding γBZ/2π to its closest integer.
The inclusion of the Hartree term does not modify the
result qualitatively.
We note that in this regime an AHC with a higher

Chern number is potentially possible. For this to hap-
pen, we need the twist angle to be large enough to enclose
more than −3π flux, but at the same time not so large
that the band becomes too dispersive to be gapped out
by interaction. Whether or not such a higher Chern AHC
exists then depends on details of the model. Within the
current simplified model, no |C| > 1 phase is observed in
Fig. 3(c). Nonetheless, it is conceivable that some modi-
fication to the non-interacting model parameters (such as
including trigonal warping, or tuning the strength of the
Coulomb interaction) can favor the higher Chern AHC.
In addition, we can also contemplate tuning the strength
of the moiré potential to stabilize an interaction-induced
higher Chern band. We will explore these phenomena in
Sec. IX.

Intermediate twist angle 0.6◦ < θ < 0.9◦: This is the

regime most relevant to existing experiments11. Due to
the smaller MBZ, the enclosed Berry flux in the first BZ
is less than −π. With the Fock term alone, we find a triv-
ial insulator (WC), consistent with the smaller Berry flux
in the non-interacting band structure. However, with the
inclusion of the Hartree term, the C = −1 AHC state is
once again favored (as seen in Fig. 3). We emphasize that
this Hall crystal state is not a straightforward expecta-
tion from the non-interacting theory. In Sec. IV, we will
describe a mechanism, according to which the Hartree
term generically (for various displacement fields, number
of graphene layers, etc.) favors |C| = 1 AHC at a mod-
erate interaction strength (strong enough to gap out the
band, but not as strong compared to the dispersion in
higher MBZs, which is the regime most relevant to the
experiments).

Small twist angle θ < 0.6◦: Finally, at a very small
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twist angle, the MBZ is shrunk significantly and is unable
to enclose any substantial Berry curvature. As a result,
the low energy degrees of freedom in the continuum band
are almost entirely trivial and featureless i.e. the Bloch
function is almost completely polarized to |B5⟩. With
the spontaneous breaking of translational symmetry, a
Wigner crystal develops.

Small θ and higher displacement field |ud| > 40meV:
At a small twist angle, the ring-like feature is in the
second MBZ. Naively one may conclude that the Chern
number will be zero since |γBZ | < π. However, the
situation is more subtle as seen in Fig. 3(c). According
to Eq. 6, a large displacement field leads to strong
negative dispersion at small k. As a result, the lowest
conduction band is now mainly formed by the second
MBZ, which contains a significant part of the Berry
curvature “ring”. Then the Berry flux in the second
MBZ may well be close to −2π, which will get quantized
to −2π when the Fock term is turned on. So a C = −1
band is again expected at the level of the mean-field
calculation.

IV. ROLE OF HARTREE TERM: A PHYSICAL
PICTURE

The prevalence of the |C| = 1 AHC in the phase dia-
gram of Fig. 3 warrants an explanation for the mechanism
by which the Coulomb interaction favors |C| = 1 AHC
over C = 0 WC.
As noted above, when the underlying band has a to-

tal Berry curvature close to 2π within the area of the
first Brillouin zone, the Fock term alone yields a Chern-1
band, i.e, the Berry curvature is rounded to exactly 2π in
the Hartree-Fock band. We will explain this phenomenon
in a later section. In this section, however, we focus on
the role of the Hartree term in selecting the AHC. To
examine it in isolation, we compare the mean-field phase
diagrams with both Hartree and Fock and Fock-only in
Fig. 3 (b) and (c). The inclusion of the Hartree term ex-
pands the |C| = 1 region of the phase diagram to include
the experimentally relevant twist angle θ ≈ 0.77◦ and
displacement field ud ≈ 30meV. It is therefore essential
to understand the mechanism by which the Hartree term
favors the AHC over the WC.

We recall from topological band theory40,41 that the
Chern number is determined by the symmetry indices
at the invariant momentum under the point group. In
R5G, the corresponding point group is C3, with the in-
variant momentum ΓM , KM and K̄M . Therefore the real
question is how the interaction selects a particular set of
symmetry indices (IΓM

, IKM
, IK̄M

).
We first note that the Bloch function at ΓM almost

completely comes from the first MBZ, and is thus almost
fully polarized to the B5 orbital – the rapidly increasing
kinetic energy beyond the first MBZ prohibits substan-
tial hybridization with higher MBZs. Therefore, IΓM

= 0

if we define the C3 axis through the B5 site, which will be
our convention. This allows us to focus on the remain-
ing symmetry indices IKM

and IK̄M
, and ask how they

affect the Hartree energy. At these two momenta, the
kinetic energy again makes higher MBZs irrelevant and
only allows significant hybridization among three equiv-
alent corners of the first MBZ.
To develop some intuition for the Hartree energy, it

is instructive to consider the wavefunction amplitude in
real space. The full Bloch function in Eq. 7 possesses two
levels of structure

ψKM
(r, s) =

∑
G

αGe
iG·rus(KM +G). (7)

First is the structure in 10 atomic orbitals us, which con-
trols the profile at the scale of the pentalayer graphene
unit cell. The second is from the hybridization of differ-
ent MBZ αG, controlling the profile at the scale of the
moiré unit cell. For simplicity, let us consider the case
where the 10-orbital Bloch functions of KM and K̄M get
polarized to B5. Then the angular momentum (or C3

index) is completely attributed to the hybridization of
three plane wave components at the three equivalent KM

or K̄M points.
Now, we define the real-space hexagonal unit cell cen-

tered at the C3 axis. The Wyckoff positions are A,B,C,
respectively corresponding to the center and two corners
of the unit cell (see Fig. 4). Since the wavefunction is
symmetric under C3, the peak of the Bloch function must
be on A, B, or C. For a wavefunction with an angular
momentum of 0 under C3, its density may peak at A,
the symmetry center. (In fact, this is the only possibility
since the Bloch function at KM and K̄M must vanish at
two of the three Wyckoff positions. See Appendix B.) In
contrast, for a wavefunction with nonzero angular mo-
mentum under the C3, the wavefunction must be zero at
A. The intuition is that the angular momentum pushes
density away from the symmetry center, just like the ef-
fect of centrifugal force. In Appendix B, we show that
there is a one-to-one correspondence between the peak
position Rs = 0, 1, 2 corresponding to A,B,C, and the
C3 index Is = 0, 1, 2 at a MBZ corner KM and K̄M la-
beled by s = +1 and −1,

Rs ≡ sIs (mod 3). (8)

We also discuss the general scenario without B5-
polarization in Appendix B. Thus, the Chern number
is given by,

C ≡ IKM
+ IK̄M

≡ RKM
−RK̄M

(mod 3). (9)

Since the Hartree term always tends to keep the electrons
apart, RKM

̸= RK̄M
or C ̸= 0 state always gets favored

by Hartree energy. In Fig. 4 we demonstrate this picture
by plotting the density profile of Bloch function for a
C = −1 AHC and a C = 0 WC.
Finally, it is important to note that our above argu-

ments are valid in a relatively narrow range of twist angle
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Hartree+Fock
(𝐶 = −1)

Fock
(𝐶 = 0)

𝜌 𝑟

𝐴

𝐵 𝐶

Figure 4. Real-space B4 and B5 density profile for Bloch
functions at high symmetry momentum. With the Hartree
term included, the B5 orbitals repel and the density profile
is spread out to different regions of the moiré unit cell, while
the B4 orbitals overlap. Without the Hartree term, the Fock
energy is reduced by overlapping B5 orbitals. These results
are obtained for θ = 0.7◦, ud = −30meV, and with a very
weak moire potential CAA = CBB = 1meV to pin the wave-
function to high symmetry positions in the unit cell.

0.6◦ < θ < 0.9◦. When θ is too large, the first MBZ is
no longer completely within the flat region. Therefore
at MBZ boundaries, the Bloch function no longer has its
weight concentrated on B5 orbitals. On the other hand,
at a small θ and relatively large ud, the Bloch functions
near Γ may acquire strongly non-uniform density profiles
in real space, since ck and ck+G are not far away in en-
ergy and can hybridize strongly. In this case, it is no
longer justified to consider the subsystem of only K and
K̄ points.

V. SIMPLIFIED “LANDAU” MODEL FOR
COMPETING INSULATORS

In this part, we reformulate the story in the Sec. IV
in a more elegant way, in the spirit of a Landau theory.
We will focus on the interplay between Bloch states at
MBZ corners KM and K̄M , and show explicitly how the
C3 eigenvalues at these two high-symmetry points are
chosen to be non-trivial by the Coulomb interaction.

For any insulating state, the filling is nk = 1 at both
KM and K̄M points. Therefore, at the mean-field level
and assuming a C3-preserving ansatz, the low-energy
degrees of freedom describing the competition between
AHC and WC are two angular variables (classical ro-
tors), θ1 and θ2, associated with the two MBZ corners
KM and K̄M . Each rotor variable may take a value from
{0, 2π/3, 4π/3}, corresponding to C3 symmetry index of
0, 1, and 2. Note that, in our setting, the ΓM point of
the MBZ has a trivial C3 index. Thus it is sufficient to
focus on the two MBZ corners KM and K̄M .

Here we would like to add two remarks: (1) Although
C3 indices are only well-defined at the high-symmetry
points KM and K̄M , their values also determine the sur-
rounding measure-nonzero regions since the Bloch func-
tion is continuous in k-space. Therefore, it is conceivable
that these indices may be associated with the energy of
many-body state. (2) Although the C3 indices cannot
directly be thought of as order parameters since they
are not associated with symmetry breaking, they carry
sufficient information to distinguish the WC and AHC
phases. Therefore, as we focus on the competition be-
tween the two phases, we can still follow the spirit of Lan-
dau, by treating C3 indices θ1,2 as the relevant “macro-
scopic” variables for our simplified model, and then study
how the symmetry of the system constrains the ground
state energy as a function of θ1,2.
Note that the C3 index is defined modulo 3. The angu-

lar nature of θ1,2 demands that the ground state energy
be invariant under θ1 → θ1+2nπ, θ2 → θ2+2mπ, which
constrains the effective model to be of the form of a 2-site
and 3-state classical Potts model,

Heff =− J+ cos(θ1 + θ2 − ϕ+)− J− cos(θ1 − θ2 − ϕ−)

+ h1 cos(θ1 − ϕ1) + h2 cos(θ2 − ϕ2). (10)

In the absence of moiré potential, the Hamiltonian is fur-
ther constrained by a translational symmetry that trans-
lates the center of the hexagonal moiré unit cell to its
corner (see Fig. 11). This translation alters the C3 in-
dices at two MBZ corners in opposite directions, namely,
θ1 → θ1+2π/3, θ2 → θ2− 2π/3. The proof is detailed in
Appendix C. Therefore, the only term allowed by sym-
metry is

Heff = −J cos(θ1 + θ2 − ϕ) = −J cos

(
2πC

3
− ϕ

)
(11)

We note that in more generic settings, where all high
symmetry momenta are “activated” (meaning hybridiza-
tion between k and k + G is strong), the model should
involve three sites, which may have richer physics due to
frustration. But in this work, we will stick to this simple
and experimentally relevant two-site model. We empha-
size again that the simplified model Eq. 11 is different
from the standard Landau framework. This is not a the-
ory for low energy fluctuations; rather it only captures
the competition between the 9 local minima of energy to-
pography, which appear when C3 symmetry is enforced.
In the usual Landau framework, high-energy fluctuations
are integrated out to generate a low-energy effective Lan-
dau energy function. Here, in the same spirit, we find
energy minimum in the space of the C3 indices.

VI. APPROXIMATE CALCULATIONS OF
“LANDAU THEORY” PARAMETERS USING

SIMPLIFIED MODELS

In this section, we discuss methods to extract the Lan-
dau theory parameters from microscopics. We begin with
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the simplest treatment, which only considers the MBZ
corners, and study the pseudopotential that directly cou-
ples the respective “order parameters” θ1,2. We show this
treatment is insufficient to understand the microscopic
phase diagram, as it fails to account for the role of the
MBZ edges. In fact, the interaction mediated by the con-
necting edges dominates over the direct coupling between
corners. We demonstrate this through a modified low-
energy model, which resembles a superconducting ring
in momentum space.

A. Pseudopotential interactions for MBZ corners

Focusing on the direct interaction between MBZ cor-
ners, we derive the Landau parameters J and ϕ within
Hartree-Fock theory. This procedure amounts to rewrit-
ing the interaction in terms of pseudopotential in angular
momentum channels for the MBZ corners. The resulting
Hartree-Fock energy is

HHF = −2

3
ℜ
[(

−V (G)λ2K0,K1
+ V (K)λ2K0,K̄1

)
ei(θ1+θ2)

]
(12)

where V (q) is the interaction amplitude, and λk,k′ =
⟨uk|uk′⟩ is the form factor for the non-interacting con-

tinuum band. G⃗ is a vector that connects two C3 related
K-points in the MBZ while K⃗ is a vector that connects
two adjacent corners of the MBZ. These two terms come
from Hartree and Fock, respectively. Eq. 12 leads to a
Chern number

C ≡ −
3 arg

(
−V (G)λ2K0,K1

+ V (K)λ2
K0,K̄1

)
2π

(mod 3)

(13)

We leave the details of this calculation to Appendix D.
Using this, we confirm the intuition from Sec. IV that
the Hartree term favors AHC over WC throughout the
phase diagram (see Fig. 5(a)), which explains the shift of
phase boundary between Fig. 3(b) and (c).

However, this model turns out to make poor predic-
tions for the role of Fock terms. As we show in Fig. 5,
the predicted Fock and Hartree-Fock phase diagram from
this simplified model is far from the microscopic mean-
field calculations in Fig. 3(b) and (c).

B. Modified treatment for the Fock term:
superconducting ring in momentum space and Berry

curvature rounding

The pseudopotential model in Sec. VIA fails to cor-
rectly describe the microscopic phase diagram. Mean-
while, we have not yet provided a concrete explanation
for the Berry curvature rounding, which we invoked to
explain the Fock phase diagram (Fig. 3(b)). In this sec-
tion, we kill two birds with one stone by proposing a

𝜃	
de
g.

𝑢! 	[meV]

Hartree	+	FockFockHartree

Figure 5. Hartree, Fock and Hartree+Fock phase diagrams
based on the simplified pseudopotential Eq. 12.

modified low-energy model, which enables us to derive
the phenomenon of Berry curvature rounding. Therefore
this modified model captures the relevant physics and
predicts the microscopic Hartree-Fock phase diagram to
a significantly improved precision.
To make progress, we reflect on the approximations in

Sec. VIA and Appendix D. This treatment is crude in
the sense that we focused on the MBZ corners, and ap-
proximated the Bloch function in their neighborhood to
be uniform. This is incorrect since the microscopic low
energy degree of freedom is the phase of the crystalline or-

der parameter ΨG(k) = ⟨c†kck+G⟩ which is not restricted
to the corner regions, but instead remains appreciable
around the entire MBZ boundary. In the approximation
of Sec. VIA, the small momentum scattering contributes
completely trivial Fock energy, i.e. does not lift the de-
generacy between AHC and WC. This statement is again
risky: the Fock term is in fact dominated by the small-
q scattering, since both the Coulomb potential and the
form factor may decay rapidly with q.

V(q)

A(k′ ) − A(k′ + G0)

ΨG0(k) ΨG0(k + q)

J̃

A(k′ ) − A(k′ + G0)

ΨG0(K0) ΨG0(K̄1)

K0

K̄1

K̄0

K̄2

K1 K2

G0

G2

G1

δ

Figure 6. Superconducting ring model. (a) The crystalline
order parameter is distributed in a ring-shaped region in mo-
mentum space. The low energy theory is effectively a su-
perconducting ring subject to a background magnetic field,
defined by the Berry curvature of the unfolded band. (b) The
interaction between corners is generated by integrating out
the “superconducting wire” connecting them.

In the following, we propose a modified effective model
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to study the competition between AHC and WC by ac-
counting for all the edges of MBZ. This model demon-
strates the crucial role of small-q scattering. We show
that the model can be viewed as a momentum space ana-
log of a superconducting ring in a magnetic field which
gives an intuitive understanding of the Berry curvature
rounding phenomenon.

Within each edge, there is one specific order parameter
ΨG(k), which is treated as an XY field on a 1d wire.
The Fock term couples XY fields at different k’s, which
is identified as a Josephson coupling. In Appendix F we
show that this coupling is local in k-space. Crucially, the
Berry gauge connection of the continuum band enters the
Fock term through the form factor, so that this k-space
Josephson coupling is gauge invariant.

HFock = −
∑
k,q

Ṽ (q,k)Ψ∗
G(k+ q)ΨG(k)

ei
∫ k+q
k

dq′·(A(q′)−A(q′+G)) (14)

where Ṽ (q,k) is k-dependent because it has absorbed
the magnitude of form factor.

As a result, we identify this model as essentially a nar-
row superconducting ring under a background magnetic
field. Note that the effective gauge field is defined by
the non-interacting band, and is therefore not dynami-
cal. This situation is analogous to the Little-Parks exper-
iment where a superconducting thin cylinder is pierced
by a background magnetic field, such that the winding
of the superconducting order parameter is given by the
rounding of the piercing flux.

Finally, the effective model defined on the Hilbert
space of MBZ corner can be extracted by integrating out
the fluctuations in “superconducting” wires connecting
them (see Fig. 6(b)). We leave the detailed derivation of
this model to Appendix F and simply state the resulting
effective Hamiltonian

HFock[C] = J̃

(
C − 3m− ΦBZ

2π

)2

(15)

where m always takes the integer value that minimizes
EFock, which makes the Hamiltonian periodic under C →
C + 3. This shows that the Chern number is always
rounded to the closest integer to ΦBZ

2π , and also predicts
the analogous Little-Parks oscillation when ΦBZ is tuned.
Note that Eq. F21 is consistent with the C-dependence
predicted by the phenomenological model in Eq. 11.

VII. COMPETING FERMI LIQUID AND HALL
CRYSTAL PHASES

In the absence of the moiré potential, a natural can-
didate for the ground state (in addition to the afore-
mentioned Wigner/Hall crystal states) is the Fermi liq-
uid, which preserves translational symmetry. To pro-
vide a quantitative comparison of the crystal and liquid

states in the moiré-less setting, we examine their compe-
tition within the framework of Hartree-Fock theory. To
that end, the Hall crystal is signified by the breaking of
the translational symmetry by selecting (in momentum
space) a reciprocal lattice vector G. As a standard, we
take the reciprocal lattice vector to correspond to that of
a moiré unit cell with hBN aligned at the experimentally
relevant twist angle 0.77◦. In the framework of mean-

field theory, this corresponds to ⟨c†α,k+Gcβ,k⟩ ≠ 0, where

the Greek indices indicate a generalized spin/valley/band
degree of freedom. The Fermi liquid, on the other hand,
preserves continuous translation symmetry; this corre-

sponds to the mean-field density matrix ⟨c†α,kcβ,k⟩ ≠ 0.
At the level of Hartree-Fock, the Fermi liquid state is

found to be higher in energy than Hall crystal by ∼ 5meV
per unit cell (see Fig. 18 in Appendix H). This may
naively suggest that the moiré-less setting is partial to
the formation of the electronic crystal phase. However,
it is important to emphasize that the above quantita-
tive comparison is within the framework of Hartree-Fock
theory, and it is important to re-evaluate the FL-AHC
competition beyond Hartree-Fock as we elaborate below.

VIII. BEYOND HARTREE-FOCK: COMMENTS
ON THE TRUE PHASE DIAGRAM, AND ON

PHENOMENOLOGY

In jellium, Hartree-Fock theory famously severely
overestimates42,43 the stability of the Wigner Crystal. It
predicts that the WC crystal forms at an rs ≈ 1.2 − 1.4
(rs = l

a0
is the ratio of the inter-electron spacing l with

the Bohr radius a0, and is the standard measure of the ra-
tio of kinetic and Coulomb energies for quadratically dis-
persing bands). Detailed Monte Carlo calculations44,45,
however, show that the true transition to the WC does
not occur till an rtrues ≈ 30. For large values of rs < rtrues ,
the ground state is a strongly correlated Fermi liquid.
This state is stabilized relative to the WC by a very small
energy45 (about a fraction of O(10−3) over a large range
of rs). This tiny stabilization energy can be rationalized
by noting that, at short distances and short times, the
liquid behaves essentially the same as the solid and thus
the two states have the same potential energy. At late
times, however, the liquid can flow, and this presumably
leads to a slight lowering of the kinetic energy compared
to the crystal. This observation underlies a picture of the
strongly correlated Fermi liquid as an “almost localized’
or “nearly frozen” liquid46,47, as appreciated a long time
ago for ordinary liquids48.
Moiré-enabled AHC: Returning to R5G, we expect

a similar situation. Consider the phase diagram at a den-
sity where the Hall crystal is stabilized in the Hartree-
Fock approximation. Let g be a dimensionless parameter
that measures the ratio of Coulomb (U) and kinetic (W )

energies. The Coulomb scale is U = e2

ϵl where ϵ is the di-
electric constant, and l is the inter-electron spacing. The
scale W for the kinetic energy can be taken to be the
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g ∼ U/WCorrelated
Fermi Liquid
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Moiré-enabled
Hall Crystal

R5G/hBN

Figure 7. Schematic phase diagram showing the competition
between the Fermi liquid and the Hall crystal, both at zero
and non-zero moiré potential strength VM . The parameter
g is a measure of the ratio of Coulomb (U) to kinetic (W )
energies. Even if the Hall crystal is not the true ground state
(beyond Hartree-Fock), it can be stabilized by a weak moiré
potential, a state we denote the moiré-enabled Hall crystal’.
A possible location of R5G/hBN is indicated by the green
star at a not-too-high displacement field. The dashed green
lines indicate the possible fate of the system under increasing
displacement field. The evolution may either move the system
into the pristine AHC phase g > gtruec weakly pinned by the
moiré potential, or fall short and land in the FL phase with
g < gtruec .

bandwidth within the first MBZ with the moiré poten-
tial turned off. Then we expect that the true gtruec at
which the transition49 to the Hall crystal occurs to be
(substantively) larger than the Hartree-Fock gHF

c . This
is depicted schematically in Fig. 7. For gHF

c < g < gtruec ,
we expect that the ground state is a correlated Fermi liq-
uid that is ‘almost localized’. Further, we expect that
the ground state energy per particle of the Fermi liquid
is smaller by only a small amount compared to that of
the Hall crystal.

We leave the precise phase diagram as an interesting
target for future numerical work using, say, Variational
Monte Carlo methods. For now, consider the phase dia-
gram in the presence of a periodic moiré potential. The
expected small stabilization energy of the Fermi liquid
over the Hall crystal implies that even a weak moiré po-
tential will induce a transition from Fermi liquid to a
Chern insulator. This is because the Hall crystal gains
commensuration energy in the moiré potential which will
overcome the small energy by which the Fermi liquid is
stabilized. To see this, consider the energy (per particle)
of both the Fermi liquid and the Hall crystal. We denote
these EFL(g, VM ) and EHC(g, VM ) respectively. At the
(first order) FL-HC transition at VM = 0, we have

EFL(VM = 0, gtruec ) = EHC(VM = 0, gtruec ). (16)

As g decreases slightly below gc, we will have

EFL(VM = 0, g) = EHC(VM = 0, g)− a(gtruec − g) + · · ·
(17)

with a > 0, and the ellipses represent higher-order terms
in (gtruec − g). Now let us consider the energies when a
small VM is turned on. The crystal will lower its energy

at linear order in VM :

EHC(VM , g) = EHC(VM = 0, g)− bVM + · · · (18)

where now the ellipses represent higher order terms in
VM , and b > 0. However the Fermi liquid will only have
a change at quadratic order in VM :

EFL(VM , g) = EFL(VM = 0, g)− c(VM )2 + · · · (19)

with c > 0. Thus the Hall crystal will win over the Fermi
liquid when

bVM − cV 2
M > a(gtruec − g) (20)

It follows that the phase boundary will have the shape
shown in Fig. 7. (For a recent numerical study50 of a
similar phase competition between the FL and the ordi-
nary WC in TMD moire materials, see Ref.51). Further,
we expect that even somewhat far below gtruec , the criti-
cal VM needed to stabilize the Hall crystal is small. The
moiré induced FL to (pinned) Hall crystal state will be
first order (at least with a screened Coulomb interaction).

We call the Chern insulating state induced by VM a
‘moiré-enabled AHC’. This state is likely stable over a
much wider range of the phase diagram than the pristine
AHC which exists in the strictly translation-invariant
system.

We do not of course know where R5G/hBN sits in this
phase diagram, but it is conceivable that in a range of dis-
placement fields, it is in the moiré-enabled AHC regime
(denoted by green star in Fig. 7). If that is the case,
the moiré-less (i.e. unaligned R5G) will be a Fermi liq-
uid metal (with spin/valley polarization). Aligning with
hBN will, in a range of twist angles, push the system
across the phase boundary to the moiré-enabled AHC.
So long as the effective VM felt by the electrons in the
occupied layers is small (as is expected at the large dis-
placement fields needed to stabilize the QAH states in
R5G), the charge gap of the moiré-enabled AHC state
will be determined by the strength of the Coulomb inter-
action, and not by the strength of the moiré potential.
Thus, even if the moiré is needed to stabilize the Chern
insulator, the physics is still primarily determined by the
Coulomb interactions. The sole role of the moiré poten-
tial is to tip the delicate balance of energy between the
Fermi liquid and Hall crystal.

Note that increasing the displacement field has a num-
ber of different effects: it changes the ratio of kinetic
and Coulomb energies and thus increases g; it also re-
duces the effective VM as the conduction electrons get
driven further away from the aligned hBN side; finally, it
also changes the Berry curvature distribution. Changing
Berry curvature is not included in the schematic phase di-
agram Fig. 7; we have already discussed its role in deter-
mining the selection between the AHC and the ordinary
WC. In the context of Fig. 7, increasing |ud| thus corre-
sponds to both increasing g and decreasing VM . which
thus pushes the system closer to the pristine AHC, but
may also take it back to the FL.
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Doping away from commensuration: It is also
very interesting to ask what happens at densities that are
not commensurate with the moiré potential, assuming we
are at g < gtruec . For instance, consider decreasing the
density so that if any crystal forms it will have a larger
lattice spacing than the moiré potential. If the density
deviation from the commensurate value is small, we may
expect that the crystal pays the cost of the extra elastic
energy to lock its period to the moiré lattice so as to gain
commensuration energy. The density deficit will then be
accommodated by a non-zero density of vacancies (equiv-
alent, in a weak coupling picture, to ‘doping the Chern
band’). Such a state may still overcome the Fermi liq-
uid if the commensuration energy is big enough. These
vacancies (i.e the doped holes) can then form FQAH
states at the suitable fillings. Alternately, if g is not
close enough to gtruec , the Fermi liquid may win out at
the lower density and the system forms a metallic state.
The locking to the moiré potential becomes less likely
the lower the density is. Thus at low densities (well be-
low ν = 1) the primary competition will be between the
Fermi liquid and a crystal (either AHC or WC) that has
its natural intrinsic period. However, from the Hartree-
Fock calculations, we also know that at low density (i.e
low θ), the WC is favored over the AHC as the Berry
curvature in the first MBZ of the non-interacting band
is small. Thus at densities well below ν = 1, the two
main players will be the Fermi liquid and the WC with
the latter winning at the lowest densities. These expecta-
tions are qualitatively consistent with the phase diagram
reported in Ref. 11.

A more radical possibility is that of a fractional AHC,
where even for g > gtruec and in the absence of moiré , the
system prefers to lock in a specific density and accommo-
date any density deficit through vacancies that form an
FQAH state. While we are not aware of a strong reason
forbidding such a state to exist, it is likely not stable ener-
getically at densities so low that half the lattice is empty.
Thus, this possibility may not be supported in the cur-
rent experiments where FQAH states are seen down to
filling ν = 2/5; however it is an interesting possibility
that could be relevant as more RnG systems are studied.

Disorder effects: Finally, we briefly discuss what we
might expect in moiré-less R5G in the presence of weak
disorder. If the ground state in the clean limit is an
AHC, then it will be randomly pinned by the impuri-
ties (and long-range crystalline order will be lost). The
resulting state will be a disordered IQAH insulator. If
g < gtruec , and the ground state is a correlated Fermi liq-
uid, then locally near each impurity, we might expect, for
the same reason as above, that the delicate balance be-
tween FL and AHC is tipped in favor of the AHC beyond
a non-zero but small value. Thus we expect puddles of
randomly oriented AHC to nucleate within the metallic
state (ignoring Anderson localization effects which will
not set in up to parametrically larger scales for weak dis-
order). At stronger disorder strength, there will be a
transition to the disordered IQAH insulator.

In transport experiments, the sliding motion of the
ideal, clean AHC will lead to an infinite longitudinal con-
ductivity, and a finite Hall conductivity (so that the Hall
resistivity is zero). Once the AHC is pinned, either by
a periodic potential, or by disorder, the DC longitudi-
nal conductivity at low bias voltage will be zero while
the Hall conductivity will be quantized, exactly as ex-
pected of an IQAH insulator. In the clean Fermi liquid
metallic state, with very weak disorder, the Berry cur-
vature enclosed within the Fermi surface (ΦB) will lead

to an anomalous Hall conductivity σFL
xy = e2

h
ΦB

2π but this
will be much smaller than the longitudinal conductivity

σFL
xx = e2

h (KF lmf ) (KF is the Fermi momentum and lmf

is the mean free path) so that the Hall resistivity will be
small. As the disorder increases, there will be the puddles
of AHC nucleated by the disorder, which will presumably
lead to an enhanced, but not quantized, Hall resistivity.

IX. ROUTES TO HIGHER CHERN BANDS IN
ELECTRON-DOPED RNG

The discussion of the interaction-induced Chern
band/AHC in RnG has primarily focused on
fully/partially filling a |C| = 1 band12–14. In this
section, we examine the possibility of finding (within
Hartree-Fock) similar interaction-induced IQAH states
with |C| > 1 for electron-doped RnG. We explore two
routes where such a |C| > 1 state may occur. In the
calculations below, we have included the warping terms
that have been ignored so far.
Firstly, we consider the Hartree-Fock phase diagram

in R5G/hBN as a function of the twist angle (θ) and
the strength Vm of the moiré potential. Though naively
the microscopic moiré potential is fixed by the alignment
to the hBN, there is uncertainty on details like the lat-
tice relaxation that may modify it. Thus we simply take
the overall magnitude of VM as a tuning parameter to
illustrate the possibilities. We present in Fig. 8 the HF-
phase diagram for these moiré tuning parameters, where
we depict the Chern number, bandwidth, and gaps of
the active band. As seen, for the naive moiré strength,
the |C| = 1 state is the only state that is well isolated;
the ‘crossed’ out yellow boxes in the Chern number indi-
cate cases where the global bandgap is zero (< 0.5 meV),
while the direct band gap is still non-zero (i.e. there is an
indirect band gap and the system is metallic). However,
with an enhanced moiré potential to open up the band
gap, we can obtain high Chern number bands that are
well isolated. In these regions, the mean-field bandwidth
is ∼ 20 meV, with a direct gap of ∼ 5 − 10 meV (and
a global gap of 3 − 6 meV). In particular, topologically
non-trivial bands of |C| = {2, 5} are formed.
Secondly, we examine the regime of strong interactions

(enabled by imagining decreasing the dielectric constant
ϵ) without warping terms. We present in Fig. 9 the pos-
sible Chern numbers as a function of twist angle and
displacement field energy for enhanced electron-electron
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Figure 8. Hartree-Fock bands indicating Chern number and
bandwidth of the active band, global band gap, and direct
band gap to nearest conduction band for twist angles (θ) and
moiré potential strengths (Vm) of the full 10-orbital model
(including all warping terms). The displacement field energy
is ud = −36 meV, and the dielectric constant is ϵ = 8. The
Chern number is well-defined when the direct band gap is
non-zero (≥ 0.5meV). The ‘crossed’ out yellow boxes in the
Chern number indicate cases where the global bandgap is zero
(< 0.5meV), while the direct band gap is still non-zero (i.e.
there is an indirect band gap – the system is metallic). Phase
diagrams are for a mesh of 21×21, with 4 conduction bands
in total (1 active band and 3 remote bands above), and con-
structed using 19 moiré Brillouin zones, and generated using
at least six distinct initial mean-field ansatzes for a given pa-
rameter point.

interactions. Once again, in addition to |C| = 1 state,
higher Chern bands are found to develop, for increasing
twist angles.

These routes that lead to bands with enhanced Chern
number provide the intriguing possibility to realize in-
compressible states by fully/partially filling these higher-
Chern bands. We hope that these results provide enough
motivation for future experimental studies of the higher
twist angle region, and more detailed theoretical model-
ing.

X. DISCUSSION

In this work, we examined the origins of the
interaction-induced IQAH in R5G/hBN, and the closely
related AHC in moiré -less R5G. Focussing on an effective
continuum model of R5G, we trace the origin of |C| = 1
band to the appreciable flux contained about the zone
center and the crucial but differing roles played by the
Hartree and Fock interaction terms. At a slightly larger
alignment angle (or equivalently charge densities corre-
sponding to lattice filling ν = 1) than in current exper-
iments, the Fock term alone is enough to both open a
band gap and to endow the occupied band with Chern

𝜃	
de
g.

𝐷	[meV]

Figure 9. Phase diagrams in θ−ud space indicating the Chern
number, obtained with the same non-interacting parameters
as in Fig. 3, but with an enhanced interaction ϵ = 2 (as com-
pared to ϵ = 6). This result is obtained for the simplified
model without warping terms. We use a momentum mesh of
18× 18, and include 4 conduction bands.

number. At lower alignment angles, including the one in
current devices, the Fock term opens the gap while the
preference for the non-zero Chern number comes from
the Hartree term.

We reiterate that, though the ‘dangling edge’ model
of pentalayer graphene (effective k5-two-orbital model)
captures the ring-like feature of the continuum Berry cur-
vature, it importantly misses on the approximately −π-
Berry flux contained about k = 0, that becomes ever-
increasingly important at large displacement fields.

Examination of the continuum model, in the absence
of trigonal warping terms (that are included in quantita-
tive studies of multilayer graphene) and the moiré poten-
tial, provides a remarkably intuitive understanding of the
Hartree-Fock results. For large (0.9◦ < θ < 1.5◦) twist
angles, where the MBZ boundary intersects the Berry-
curvature ring, the MBZ contains appreciable Berry flux
(between π and 3π), leading the Fock term to merely
introduce band gaps and shunt the subsequent flux to
the closest integer. The rounding of Berry curvature is
analogous to the vortex quantization in the Little-Parks
experiment, as is made explicit by the “superconducting
ring” model.

At the intermediate twist angle regime, relevant for the
existing experiments11, the importance of the Hartree
interaction in developing a |C| = 1 band is under-
stood heuristically in terms of the topologically non-
trivial band possessing more spread-out charge distribu-
tion. Our simplified model provides a quantitative justi-
fication for this conclusion.

The ultimate fate of the non-moiré and the moiré
R5G relies on the competition of correlated Fermi liq-
uid, Wigner crystal, and anomalous Hall crystal states.
In addition to Hartree-Fock estimates of the energy dif-
ferences, we discussed simple expectations for what may
happen beyond Hartree-Fock. Specifically, even if a cor-
related FL, rather than the AHC, is the true ground
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state in moiré-less RnG, even a very weak moiré poten-
tial can tip the Hall crystal to be lower in energy over the
Fermi liquid state. This is because we anticipate that, in
the moiré-less setting (by analogy with the usual two-
dimensional electron fluid), the FL and AHC will likely
have very similar ground state energy, and the AHC can
gain commensuration energy from the periodic poten-
tial. This simple observation allows us to envision the
possibility that such a moiré-enabled AHC (if not the
pristine AHC itself) occupies a wide region of the phase
diagram (at the fixed density corresponding to ν = 1,
as a function of interaction strength and moiré potential
strength), even beyond Hartree-Fock. It is clearly im-
portant to study these questions with robust numerical
methods (such as Variational Monte Carlo) in the future.

Finally, by exploring the phase diagram at slightly
larger alignment angles than in current devices, we sug-
gest that it may be possible to stabilize interaction-
induced higher Chern bands/AHCs in electron-doped
RnG, which too will be interesting to study further in
the future.

While this paper was being written, three interesting
papers that overlap with ours - Ref. 52–54 - appeared.
Ref. 52 studies the competition between AHC and WC
through a pseudospin model defined in k-space. Ref. 53

studies a toy model with constant Berry curvature where
the Fock term alone stabilizes an AHC. Ref. 54 considers
the specific setting appropriate to RnG, and introduces
a hot-spot model for the MBZ corners to discuss the sta-
bility of the AHC with some rough similarities to our
discussion.

ACKNOWLEDGMENTS

We thank Ray Ashoori, Ilya Esterlis, Tonghang Han,
Long Ju, Kyung-Su Kim, Steve Kivelson, Zhengguang
Lu, Ashvin Vishwanath, Mike Zaletel and particularly
Boran Zhou and Ya-Hui Zhang for many inspiring dis-
cussions. We are especially grateful to Tomo Soejima
and Junkai Dong for illuminating discussions. TS was
supported by NSF grant DMR-2206305, and partially
through a Simons Investigator Award from the Simons
Foundation. This work was also partly supported by
the Simons Collaboration on Ultra-Quantum Matter,
which is a grant from the Simons Foundation (Grant No.
651446, T.S.). The authors acknowledge the MIT Super-
Cloud and Lincoln Laboratory Supercomputing Center
for providing HPC resources that have contributed to
the research results reported within this manuscript.

1 G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, et al.,
Nature 579, 56 (2020).

2 M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu,
K. Watanabe, T. Taniguchi, L. Balents, and A. Young,
Science 367, 900 (2020).

3 S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K. Watan-
abe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, et al.,
Nature Physics 17, 374 (2021).

4 H. Polshyn, J. Zhu, M. Kumar, Y. Zhang, F. Yang,
C. Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi,
A. MacDonald, et al., Nature 588, 66 (2020).

5 T. Li, S. Jiang, B. Shen, Y. Zhang, L. Li, Z. Tao, T. De-
vakul, K. Watanabe, T. Taniguchi, L. Fu, et al., Nature
600, 641 (2021).

6 B. A. Foutty, C. R. Kometter, T. Devakul, A. P. Reddy,
K. Watanabe, T. Taniguchi, L. Fu, and B. E. Feldman,
arXiv preprint arXiv:2304.09808 (2023).

7 Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and
T. Senthil, Physical Review B 99, 075127 (2019).

8 N. Bultinck, S. Chatterjee, and M. P. Zaletel, Physical
review letters 124, 166601 (2020).

9 Y.-H. Zhang, D. Mao, and T. Senthil, Physical Review
Research 1, 033126 (2019).

10 C. Repellin, Z. Dong, Y.-H. Zhang, and T. Senthil, Phys-
ical Review Letters 124, 187601 (2020).

11 Z. Lu, T. Han, Y. Yao, A. P. Reddy, J. Yang, J. Seo,
K. Watanabe, T. Taniguchi, L. Fu, and L. Ju, arXiv
preprint arXiv:2309.17436 (2023).

12 Z. Dong, A. S. Patri, and T. Senthil, arXiv preprint
arXiv:2311.03445 (2023).

13 B. Zhou, H. Yang, and Y.-H. Zhang, arXiv preprint
arXiv:2311.04217 (2023).

14 J. Dong, T. Wang, T. Wang, T. Soejima, M. P. Zale-
tel, A. Vishwanath, and D. E. Parker, arXiv preprint
arXiv:2311.05568 (2023).

15 Z. Guo, X. Lu, B. Xie, and J. Liu, arXiv preprint
arXiv:2311.14368 (2023).

16 Y. H. Kwan, J. Yu, J. Herzog-Arbeitman, D. K. Efe-
tov, N. Regnault, and B. A. Bernevig, arXiv preprint
arXiv:2312.11617 (2023).

17 J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtz-
mann, Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe,
Y. Ran, T. Cao, L. Fu, D. Xiao, W. Yao, and X. Xu,
Nature (2023), 10.1038/s41586-023-06289-w.

18 Y. Zeng, Z. Xia, K. Kang, J. Zhu, P. Knüppel, C. Vaswani,
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Appendix A: Full-10 band tight-binding model for pentalayer graphene

For clarity, we present the full-10 band tight-binding model (for a given valley K/K ′ and spin ↑ / ↓) for pentalayer
graphene (see also Ref.12):

H =



2ud v†0 v†4 v3 0 γ2

2 0 0 0 0

v0 2ud + δ γ1 v†4 0 0 0 0 0 0

v4 γ1 ud + ua v†0 v†4 v3 0 γ2

2 0 0

v†3 v4 v0 ud + ua γ1 v†4 0 0 0 0

0 0 v4 γ1 ua v†0 v†4 v3 0 γ2

2
γ2

2 0 v†3 v4 v0 ua γ1 v†4 0 0

0 0 0 0 v4 γ1 −ud + ua v†0 v†4 v3
0 0 γ2

2 0 v†3 v4 v0 −ud + ua γ1 v†4
0 0 0 0 0 0 v4 γ1 −2ud + δ v†0
0 0 0 0 γ2

2 0 v†3 v4 v0 −2ud


, (A1)

where we employ the basis of (A1, B1, A2, B2, A3, B3, A4, B4, A5, B5). We have also used the notation of vi =√
3
2 tl(±kx + iky) for the monolayer graphene form factors, where kx,y are small momenta expanded about the valley

of interest, and the layer is denoted by l. Note that γl ≡
√
3
2 tl. In the main text, γ1,2,3,4 are referred to as ‘warping

terms’, which correspond to the trigonal warping of rhombohedral graphene. We direct the reader to Ref. 12 for the
model parameter values.

Appendix B: Density profile of Bloch function at high symmetry momentum

In the following, we formulate a theory by establishing connections between the symmetry indices at the high-
symmetry momenta and the density profile of the corresponding Bloch functions.

To begin with, the eigenstate for the mean-field Hamiltonian at the KM point is

ψKM
(r) =

∑
i=1,2,3

αiψKi
(r) (B1)

where KM is the moiré K point measured from the graphene Dirac point KD corresponding to valley +, and Ki’s are
the three equivalent moiré K points. The 10-component wavefunction ψk(r) = ei(k+KD)ru0k(r) is the plane wave corre-
sponding to the lowest conduction band (denoted by 0) of the continuum model. Expressed in the 10-orbital basis de-
scribed in Sec. II, the periodic Bloch function is u0k(r) = (uA1k, uB1k, uA2k, uB2k, uA3k, uB3k, uA4k, uB4k, uA5k, uB5k)

T .
Alternatively, one can express the Bloch function u0 in real space, instead of the 10-orbital basis,

u0k(r) =
∑
n

u0n,k(r) =
∑
n,R

un(k)δ
2(r− rn −R), (B2)

where r is a 3-dimensional position vector, R labels the R5G unit cell, and rn is the displacement of the nth of the
orbital (in the 10-orbital basis) within the R5G unit cell.
The prominent C3 axis is defined to run through a B5 site at r = 0, and its corresponding operation is,

r → C3 ◦ r. (B3)

This operation transforms ψKM
(r) into

C3 ◦ ψKM
(r) = ψKM

(C3 ◦ r) =
∑

i=1,2,3

αiψKi
(C3 ◦ r). (B4)

We note that there is a gauge degree of freedom ψk → ψke
iθk . To fix a gauge, we demand that the plane wave solution

for the continuum model preserves C3, explicitly

ψk(C3 ◦ r) = ψC−1
3 ◦k(r), (B5)
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so that there is no ambiguity for k = Γ. With this gauge choice, from Eq. B4 we immediately get

C3 ◦ ψKM
(r) =

∑
i=1,2,3

αiψKi
(C3 ◦ r) =

∑
i=1,2,3

αi+1ψKi
(r) (B6)

where we have made the convention Ki+1 = C3 ◦ Ki. The conclusion from Eq. B6 is striking: the C3 operation
cyclically permutes the coefficients (α1, α2, α3). The C3 permutation has an eigenvalue of −1, 0, 1.
The eigenvalues of the C3 operation provide the location of the peak of the Bloch function (of KM ) in the moiré

unit cell. For this purpose, we separate out the fastly-varying momentum KD from the global phase,

ψKM
=
∑
i

αiψKi(r) = eiKDr
∑
i

αie
iKiru0Ki

(r), (B7)

to obtain the amplitude on orbital n, ∣∣ψn
KM

(r)
∣∣ = ∣∣∣∣∣∑

i

αie
iKirunKi

∣∣∣∣∣ . (B8)

From the gauge choice of Eq. B5, the C3 transformation on the periodic part of the Bloch function (unKi for i = 1, 2, 3)
generates a relative phase,

C3 ◦ ψKi
(r) = ei(Ki+KD)·(C3◦r)u0Ki

(C3 ◦ r)
= eiC

−1
3 ◦(Ki+KD)·ru0Ki

(C3 ◦ r)
= ei(Ki−1+KD)·r (eiGg·ru0Ki

(r)
)

(B9)

≡ ψC−1
3 ◦Ki

(r)

= ei(Ki−1+KD)·ru0Ki−1
(r). (B10)

To obtain Eq. B9, we have used the periodic nature of u0Ki
(r), and C3 ◦ r = r(mod R), and C−1

3 ◦KD = KD +Gg,
where Gg is a reciprocal lattice vector for the graphene lattice. Then it becomes clear that the bracketed term in
Eq. B9 is,

eiGg·ru0Ki
(r) = eiGg·r

∑
n,R

unKi
δ2(r− rn −R)

=
∑
n,R

eiGg·rnunKi
δ2(r− rn −R), (B11)

where we employ the delta-function constraint. Comparing Eq. B9 with B10, and combining with Eq. B11, we find
the relation between the 10-component Bloch state vector unk to its C3 transformed counterpart (un(C3◦k)),

un(C3◦k) = Snnunk (B12)

where S is a diagonal matrix S = e−iGg·rn = diag(ω2, ω1, ω1, 1, 1, ω2, ω2, ω1, ω1, 1), with ω = ei2π/3. This leads to,

unKi+1
= SnnunKi

. (B13)

Thus, for a Bloch state with C3 symmetry index L, we have the corresponding eigenvalues α = (1, ωL, ω2L). The
corresponding amplitude is,

ρnKM
(r) =

∣∣ψn
KM

(r)
∣∣2 ∼

∣∣∣∣∣∣
∑

j=1,2,3

ωjLSj
nne

iKjr

∣∣∣∣∣∣ |unK1 |2. (B14)

The peak location is where the three plane waves constructively interfere.
For example, for a state with C3 index L = 0, the density profile on orbital B5 (meaning Snn = 1) peaks at origin

r = 0, while for L = 1, the peak of B5 density shifts to a corner of the hexagonal moiré unit cell r1, which satisfies
eiKjr1 = ω−j , so that the j-dependent phase ejL gets canceled at r1. Similarly, the peak of density for orbital B5 and
B4 are located at different high symmetry locations in the hexagonal moiré unit cell (see Fig. 10)

Finally, note that KM and K̄M are connected through a C2 rotation. As their symmetry indices interpolate from
L = 0 to L = 1, the peaks for ρnKM

(r) and ρn
K̄M

(r) get shifted from the origin to opposite corners of the hexagonal

moiré unit cell. As a result, nontrivial C3 indices at KM and K̄M would reduce the Hartree energy between these two
Bloch states, due to minimizing the wavefunction overlap. This is why the Hartree term selects the set of symmetry
indices to be (LΓ, LK, LK̄) = (0, 1, 1), which gives C = −1.
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Hartree+Fock
(𝐶 = −1)

Fock
(𝐶 = 0)

𝜌 𝑟

𝐴

𝐵 𝐶

Figure 10. Real-space B4 and B5 density profile for Bloch functions at high symmetry momentum. With the Hartree term
included, the B5 orbitals repel and the density profile is spread out to different regions of the moiré unit cell, while the B4

orbitals overlap. Without the Hartree term, the Fock energy is reduced by overlapping B5 orbitals. These results are obtained
for θ = 0.7◦, ud = −30meV, and with a very weak moire potential CAA = CBB = 1meV to pin the wavefunction to high
symmetry positions in the unit cell.

Appendix C: Effect of Translation on the C3 indices

In this appendix, we explain how the translation operation transforms the C3 indices at KM and K̄M points.
This data is useful in containing the possible terms in the simplified model for competing crystalline states (see
Appendix D). Under C3 rotation, the wavefunction for moiré band transforms as

C3 |ψKM
⟩ = ωl |ψKM

⟩ (C1)

C3 |ψK̄M
⟩ = ωs |ψK̄M

⟩ (C2)

where l and s are the C3 indices for KM and K̄M . Under translation,

Ti |ψKM
⟩ = ωi |ψKM

⟩ (C3)

Ti |ψK̄M
⟩ = ω−i |ψK̄M

⟩ (C4)

where Ti+3 = Ti, C3TiC
−1
3 = Ti+1, i = 0, 1, 2 corresponds to the three equivalent corners of the moiré unit cell (see

Fig.11). Note

C3Ti = C3TiC
−1
3 C3 = Ti+1C3 (C5)

Therefore,

C3(Ti |ψKM
⟩) = Ti+1C3 |ψKM

⟩ = ωl+i+1 |ψKM
⟩ = ωl+1(Ti |ψKM

⟩) (C6)

C3(Ti |ψK̄M
⟩) = Ti+1C3 |ψK̄M

⟩ = ωs−i−1 |ψK̄M
⟩ = ωs−1(Ti |ψK̄M

⟩) (C7)

We have seen that the translations transform the C3 indices at (KM , K̄M ) into

Ti : (l, s) → (l + 1, s− 1) (C8)

Appendix D: Pseudopotential in angular momentum channels

Continuing from Sec. V in the main text, in this section we detail the derivation of constants J and ϕ in the
simplified model Eq. 11. We first provide a deliberately careful derivation. For readers who favor a more compact
derivation, we direct them to start from Eq. D17.
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Figure 11. Definition for translation vectors.

Figure 12. Labeling for MBZ corners.

We begin with the interacting term of Hamiltonian projected to the lowest conduction band of the continuum model

H =
∑

q,k,k′

Vqλk,k+qλk′,k′−qc
†
kc

†
k′ck′−qck+q (D1)

where λk,k′ = ⟨uk|uk′⟩ is the form factor. We focus on the terms within the Hilbert space of two MBZ corners KM

and K̄M . In the following, we will denote the two sets of equivalent momentum at two corners of BZ as Ki and K̄i,
where i = 0, 1, 2 and Ki+1 = C3Ki, Kn+3 = Kn.

H =
∑

nn′mm′

VKn−Kn′λKn,Kn′λKm,Km′ δ
2(Kn −Kn′ +Km −Km′)c†Kn

c†Km
cKm′ cKn′

+VKn−Kn′λKn,Kn′λK̄m,K̄m′ δ
2(Kn −Kn′ + K̄m − K̄m′)c†Kn

c†
K̄m

cK̄m′ cKn′

+VKn−K̄n′λKn,K̄n′λK̄m,Km′ δ
2(Kn − K̄n′ + K̄m −Km′)c†Kn

c†
K̄m

cKm′ cK̄n′

+VKn−K̄n′λKn,K̄n′λKm,K̄m′ δ
2(Kn − K̄n′ +Km − K̄m′)c†Kn

c†Km
cK̄m′ cK̄n′

+(K ↔ K̄)

=
∑

nn′mm′

VKn−Kn′λKn,Kn′λKm,Km′ (δnn′δmm′ + δnm′δn′m − δnn′mm′) c†Kn
c†Km

cKm′ cKn′

+VKn−Kn′λKn,Kn′λK̄m,K̄m′ (δnn′δmm′ + δnmδn′m′ − δnn′mm′) c†Kn
c†
K̄m

cK̄m′ cKn′

−VKn−K̄m′λKn,K̄m′λK̄m,Kn′ (δnn′δmm′ + δnmδn′m′ − δnn′mm′) c†Kn
c†
K̄m

cK̄m′ cKn′

+(K ↔ K̄) (D2)

where δnn′mm′ = 1 when n = n′ = m = m′ and δnn′mm′ = 0 otherwise. Now we transform to the angular momentum
basis

cl,+ =
1√
3

∑
n=0,1,2

cKn
ωln

cl,− =
1√
3

∑
n=0,1,2

cK̄n
ωln (D3)
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where ω = ei
2π
3 . The Hamiltonian becomes

H =
1

9

∑
ll′ss′,nn′mm′

VKn−Kn′λKn,Kn′λKm,Km′ (δnn′δmm′ + δnm′δn′m − δnn′mm′)ωln+sm−s′m′−l′n′
c†l+c

†
s+cs′+cl′+

+VKn−Kn′λKn,Kn′λK̄m,K̄m′ (δnn′δmm′ + δnmδn′m′ − δnn′mm′)ωln+sm−s′m′−l′n′
c†l+c

†
s−cs′−cl′+

−VKn−K̄m′λKn,K̄m′λK̄m,Kn′ (δnn′δmm′ + δnmδn′m′ − δnn′mm′)ωln+sm−s′m′−l′n′
c†l+c

†
s−cs′−cl′+

+(K ↔ K̄) (D4)

To get the effective 2-site and 3-state Potts model, in the following, we will focus on the terms that conserve the
fermion number in each corner. The first term of Eq.D4 becomes

H1 =
1

9

∑
ll′ss′,nn′

VKn−K′
n
|λn′−n,+|2ωn(l−s′)+n′(s−l′)c†l+c

†
s+cs′+cl′+

+
1

9

∑
ll′ss′,nm

V (0)ωn(l−l′)+m(s−s′)c†l+c
†
s+cs′+cl′+ − 1

9

∑
ll′ss′,n

V (0)ωn(l+s−s′−l′)c†l+c
†
s+cs′+cl′+

= −1

3

∑
ls,∆n,αβ

V∆nρα,+ρβ,+ω
(Rα−Rβ+l−l′)∆nδ3(l + s− s′ − l′)c†l+c

†
s+cs′+cl′+

+
∑
ls

V (0)c†l+c
†
s+cs+cl+ +

1

3

∑
ll′ss′

V (0)δ3(l + s− s′ − l′)c†l+c
†
s+cs′+cl′+ (D5)

where we have used

λKi,Ki+n = ⟨u(Ki)|u(Ki+n)⟩ =
∑
α

u∗α(Ki)uα(Ki+n) =
∑
α

|uα(K0)|2ωRα(n) =
∑
α

ρα,+ω
Rα(n) ≡ λn,+ (D6)

here α = 0, 1, 2, ..., 9 labels the 10 orbitals (B5, A5, B4, A4, ..., B1, A1), while Rα = (0, 1, 1, 2, 2, 3, 3, 4, 4, 5) is the
in-plane displacement of the 10 orbitals from B5 and

Vn = V (|K0 −Kn|) = V (G−Gδn0) = V (G) + (V (0)− V (G))δn0 (D7)

As well, we have assumed that the mean-field ansatz to which this term is acted on has a conserved angular momentum
(leading to l = s). This term does not lift the degeneracy between different angular momentum channels.
The second term of Eq.D4 is

H2 =+
1

9

∑
ll′ss′,n∆n

V∆nλ∆n,+λ∆n,−ω
(l+s)∆nωn(l+s−s′−l′)c†l+c

†
s−cs′−cl′+

+
1

9

∑
ll′ss′,nm

V (0)ωn(l−l′)+m(s−s′)c†l+c
†
s−cs′−cl′+ − 1

9

∑
ll′ss′,n

V (0)ωn(l+s−s′−l′)c†l+c
†
s−cs′−cl′+

=+
1

3

∑
ll′ss′,∆n,αβ

V (G)ρα,+ρβ,−ω
(Rα+Rβ+l+s)∆nδ3(l + s− s′ − l′)c†l+c

†
s−cs′−cl′+

+
1

3

∑
ls,αβ

(V (0)− V (G))δ3(l + s− s′ − l′)c†l+c
†
s−cs′−cl′+

+
∑
ls

V (0)c†l+c
†
s−cs−cl+ − 1

3

∑
ll′ss′

V (0)δ3(l + s− s′ − l′)c†l+c
†
s−cs′−cl′+ (D8)

after a mean-field decoupling, only the first line is non-trivial

H2 =
∑
ls,αβ

V (G)ρα,+ρβ,−δ3(Rα +Rβ + l + s)⟨c†l+cl+⟩⟨c
†
s−cs−⟩+ const.

=
2

3
V (G)

∑
αβ

ρα,+ρβ,− cos

(
θ1 + θ2 +

2(Rα +Rβ)π

3

)
+ const. (D9)
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This is the Hatree term for inter-MBZ-corner interaction. When the orbital weight ρα is polarized to B5 (α = 0), this
term is maximized for l+s ≡ −(α+β) ≡ 0 (mod 3). Note that l+s (mod 3) is associated with the Chern number. So
this term penalizes C = 0. As soon as the orbital weights shift to B4(α = β = 1), this term penalizes s+ l ≡ 1(mod
3) instead.

The third line of Eq. D4 becomes

H3 =− 1

9

∑
ll′ss′,nm

VKn−K̄m
|λKn,K̄m

|2ωn(l−l′)+m(s−s′)c†l+c
†
s−cs′−cl′+

− 1

9

∑
ll′ss′,nn′

VKn−K̄n′λKn,K̄n′λK̄n,Kn′ω
n(l+s)−n′(l′+s′)c†l+c

†
s−cs′−cl′+

+
1

9

∑
ll′ss′,n

VKn−K̄n
|λKn,K̄n

|2ωn(l+s−s′−l′)c†l+c
†
s−cs′−cl′+

=− 1

3

∑
ll′ss′,∆n

V ′
∆n|λ′∆n|2ω(s−s′)∆nδ3(l + s− s′ − l′)c†l+c

†
s−cs′−cl′+

− 1

3

∑
ll′ss′,∆n

V ′
∆nλ

′2
∆nω

(l′+s′)∆nδ3(l + s− s′ − l′)c†l+c
†
s−cs′−cl′+

+
1

3

∑
ll′ss′

V ′
0 |λ′0|2δ3(l + s− s′ − l′)c†l+c

†
s−cs′−cl′+

=−
∑
ll′ss′

V (K)|λ′1|2δ(s− s′)δ3(l + s− s′ − l′)c†l+c
†
s−cs′−cl′+

− 1

3

∑
ll′ss′

V (K)
∑
∆n

λ′2∆nω
(l′+s′)∆nδ3(l + s− s′ − l′)c†l+c

†
s−cs′−cl′+

− 1

3

∑
ll′ss′

(2V (2K)|λ′0|2 − V (K)|λ′1|2 − V (K)λ′20 )δ3(l + s− s′ − l′)c†l+c
†
s−cs′−cl′+

+
1

3

∑
ll′ss′

V (2K)|λ′0|2δ3(l + s− s′ − l′)c†l+c
†
s−cs′−cl′+ (D10)

where

V ′
n = V (Ki − K̄n+i) = V (Ki +Kn+i) = V (K) + (V (2K)− V (K))δn0 (D11)

λKi,K̄i+n
= ⟨u(Ki)|u(K̄i+n)⟩ =

∑
α

u∗α(Ki)uα(K̄i+n) =
∑
α

u∗α(K0)uα(K̄0)ω
Rαn =

∑
α

ρ′α(−1)RαωRαn ≡ λ′n (D12)

At the mean-field level, only the second line of Eq. D10 is non-trivial, which reduces to

H3 = −1

3
V (K)

∑
ls,∆n

λ′2∆nω
(l+s)∆n⟨c†l+cl+⟩⟨c

†
s−cs−⟩+ const.

= −1

3
V (K)

∑
ls,αβ

ρ′αρ
′
β(−1)Rα+Rβ

∑
∆n

ω(s+l+Rα+Rβ)∆n⟨c†l+cl+⟩⟨c
†
s−cs−⟩

= −V (K)
∑
ls,αβ

ρ′αρ
′
β(−1)Rα+Rβδ3(s+ l +Rα +Rβ)⟨c†l+cl+⟩⟨c

†
s−cs−⟩

= −2

3
V (K)

∑
αβ

ρ′αρ
′
β(−1)Rα+Rβ cos

(
θ1 + θ2 +

2π(Rα +Rβ)

3

)
+ const. (D13)

This is the Fock term between KM and K̄M .
The total Hamiltonian

H =
2

3

∑
αβ

(
V (G)ραρβ − V (K)ρ′αρ

′
β(−1)Rα+Rβ

)
cos

(
θ1 + θ2 +

2π(Rα +Rβ)

3

)
+ const. (D14)



21

At a large displacement field and small twist angles, although there is significant hybridization between B5 and B4 at
BZ corners, the density is still predominantly on B5 orbital. As a simple consideration, consider the extreme scenario
where the charge is polarized to the B5 orbital, ρ0 = ρ′0 = 1, then

H2 =
2

3
(V (G)− V (K)) cos (θ1 + θ2) + const. (D15)

Since V (K) > V (G), Fock term dominates. Then C ≡ l + s = 3(θ1+θ2)
2π ≡ 0 (mod 3) is lower in energy than C = 1

and C = −1. We note that this finding is inconsistent with Berry curvature rounding. Since for layer-polarized Bloch
function, the Berry flux in MBZ is zero. This issue will be resolved in the Appendix F.

At slightly larger twist angles, density starts to leak into the B4 orbital. The leading correction comes from the
ρ0ρ1 term. We take the assumption of approximate C6 symmetry, which means

ρ′a = |u∗a(K0)ua(K̄0)| = ρa (D16)

As a result, the Fock term gets suppressed by the inter-layer terms with a ̸= b (mod 2), which may allow the Hartree
term to take over and favor C = ±1. This corresponds to the intermediate twist angle regime (0.6◦ < θ < 0.9◦), as
seen in Fig. 14.

Figure 13. Hartree and Fock terms in the pseudopotential model. The red and orange arrows are non-trivial inter-corner
scattering processes. The dotted arrows are scattering processes that do not lift degeneracy between different angular momentum
channels.

The important terms that determine the Chern number can be seen more explicitly, by considering the responsible
terms with the form factors intact. From Fig. 13 the Hartree term is

H2 =VKn−Kn′λKn,Kn′λK̄m,K̄m′ δnmδn′m′ωln+sm−s′m′−l′n′
c†l+c

†
s−cs′−cl′+

=
1

9

∑
ll′ss′

∑
n,∆n=±1

V∆nλ∆n,+λ∆n,−ω
(l+s)∆nωn(l+s−s′−l′)c†l+c

†
s−cs′−cl′+ + const.

∼1

3

∑
ll′ss′

V (G)
(
λ0,1λ0̄,1̄ω

(l+s) + h.c.
)
δ3(l + s− s′ − l′)c†l+c

†
s−cs′−cl′+

=
1

3

∑
ls

V (G)2ℜ
(
λ20,1ω

(l+s)
)
⟨c†l+cl+⟩⟨c

†
s−cs−⟩, (D17)

and the Fock term is

H3 =− VKn−K̄m′λKn,K̄m′λK̄m,Kn′ δnmδn′m′ωln+sm−s′m′−l′n′
c†l+c

†
s−cs′−cl′+

=− 1

9

∑
ll′ss′

∑
n,∆n=±1

V ′
∆nλ

′2
∆nω

(l′+s′)∆nωn(l+s−s′−l′)c†l+c
†
s−cs′−cl′+ + const.

∼− 1

3

∑
ll′ss′

V (K)
(
λ0,1̄λ0̄,1ω

(l′+s′) + h.c.
)
δ3(l + s− s′ − l′)c†l+c

†
s−cs′−cl′+

=− 1

3

∑
ls

V (K)2ℜ
(
λ20,1̄ω

(l+s)
)
⟨c†l+cl+⟩⟨c

†
s−cs−⟩ (D18)



22

Thus, the total Hamiltonian becomes

HMF = H2 +H3 = −2

3
ℜ
[(

−V (G)λ20,1 + V (K)λ20,1̄

)
ei(θ1+θ2)

]
. (D19)

The ground state of Potts model has a corresponding Chern number

C ≡ 3(θ1 + θ2)

2π
≡ −

3 arg
(
−V (G)λ20,1 + V (K)λ20,1̄

)
2π

(mod 3). (D20)

We present in Fig. 14 the Hartree, Fock, and Hartree+Fock phase diagrams of this simplified pseudopotential model.
As seen, the Hartree solution favors C = −1 over a wide range of parameter space, while the Fock term, prefers C = 0.

𝜃	
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eg
.]

𝑢![meV]	

Hartree	+	FockFockFree(continuum) 𝐶

𝜃	
de
g.

𝑢! 	[meV]

Hartree	+	FockFockHartree

Figure 14. Comparison between microscopic mean field and simplified model based on MBZ corners. Top row: phase diagram
from microscopic mean-field. (Same as Fig. 3 in main text.) Bottom row: Hartree, Fock and Hartree+Fock phase diagrams
based on the simplified pseudopotential model Eq. D19.

Appendix E: Failure of the pseudopotential treatment

In the previous section, we only consider the degree of freedom at the MBZ corners K and K̄. This treatment is
justified by asserting that the wavefunction evolves smoothly so that in a small region close to each corner of MBZ,
the wavefunction of the normalized band is roughly the same as that on the exact corner. The extension of this region
is defined by the relative strength of interaction and kinetic energy, namely the radius q ∼ U/v(K), where U is the
Coulomb interaction and v(K) is the velocity at the corner. Within this region, the Coulomb energy dominates over
kinetic energy, so that the Bloch function is approximately an equal-weight superposition of three continuum band
wavefunctions cK0+k, cK1+k, cK2+k.
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The Chern number is eventually determined by symmetry index on the exact K and K̄ points. So we focus on the
mean-field Hamiltonian for these momenta

HFock(K0) = −
∑
k′,G

V (K0 +G− k′)λk′,K0+GλK0,k′−G⟨c†k′ck′−G⟩c†K0
cK0+G (E1)

To show the correction to the pseudopotential model, we focus on the scattering matrix element between K0 and
K1. This corresponds to the process marked by orange arrows in Fig. 13(b). Therefore we restrict to k′ = K̄0 + q′,
K0 +G = K1

HFock(K0,K1) = −
∑
q′

V (K1 − K̄0 − q′)λK̄0+q′,K1
λK0,K̄1+q′⟨c†

K̄0+q′cK̄1+q′⟩ (E2)

Now rewrite this using the basis of the Fock-renormalized band

ψn
k =

∑
G

vn∗G (k)ck+G ≡
∑
G

vn∗(k+G)ck+G (E3)

so that ψn
k+g = ψn

k . Here n is the band index, which will be suppressed since we are focusing on the mean-field ansatz
of an insulator, where only the lowest band is filled. Then using the inverse transform,

ck+G =
∑
n

vnG(k)ψn
k =

∑
n

vn(k+G)ψn
k (E4)

The Fock Hamiltonian (associated with these two corners) becomes

HFock(K0,K1) = −
∑
q′

V (K1 − K̄0 − q′)λK̄0+q′,K1
λK0,K̄1+q′v∗(K̄0 + q′)v(K̄1 + q′)⟨ψ†

K̄0+q′ψK̄1+q′⟩

= −
∑
q′

V (K1 − K̄0 − q′)λK̄0+q′,K1
λK0,K̄1+q′v∗(K̄0 + q′)v(K̄1 + q′)

= −
∑
q′

V (K1 − K̄0 − q′)
∑
αβ

v∗(K̄0 + q′)u∗α(K̄0 + q′)uα(K1)u
∗
β(K0)uβ(K̄1 + q′)v(K̄1 + q′)

= −
∑
q′

V (K1 − K̄0 − q′)
∑
αβ

ξ∗α(K̄0 + q′)uα(K1)u
∗
β(K0)ξβ(K̄1 + q′)

≡ −
∑
q′

V (K1 − K̄0 − q′)
∑
αβ

Fαβ(q)uα(K1)u
∗
β(K0) (E5)

where we have used the Bloch function of the renormalized band

ξα,G(k) = vG(k)uα(k+G) for k ∈ BZ (E6)

which has been extended to k beyond BZ by defining ξα,G(k) ≡ ξα(k+G)

ξα(k) = v(k)uα(k) for ∀k (E7)

Expanding F (q′) around q′ = 0,

Fαβ(q
′) = ξ∗α(K̄0 + q′)ξβ(K̄1 + q′)

≈ ⟨ξ(K̄0 + q′)|ξ(K̄0)⟩⟨ξ(K̄1)|ξ(K̄1 + q′)⟩ξ∗α(K̄0)ξβ(K̄1)

= λ̃K̄0+q′,K̄0
λ̃K̄1,K̄1+q′ξ∗α(K̄0)ξβ(K̄1)

= |λ̃K̄0+q′,K̄0
|2ξ∗α(K̄0)ξβ(K̄1)

≈ e−g̃µνq
′
µq

′
ν ξ∗α(K̄0)ξβ(K̄1) (E8)

where λ̃ and g̃ are the form factor and quantum metric of the normalized band. In the second line, we made the
approximation by only keeping the projection of the two vectors ξ∗α(K̄0 + q′) and ξβ(K̄1 +q′) to their counterpart at
q′ = 0. The result should be interpreted as the “fidelity” of representing a corner region with Bloch function exactly
on the high symmetry points. The exponential suppression shows that this treatment is crude for the ansatz that
violates Berry curvature rounding.
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Appendix F: k-space superconducting ring model and connection to Berry curvature rounding

Although we aim to eventually derive a simplified model defined on the BZ corners, the microscopic low energy
degrees of freedom are not restricted to the corners. Instead, they live on the entire BZ boundary. We demonstrate in
this section, that the emergent theory for these fluctuations is essentially an XY field coupled to a background gauge
field, analogous to a superconducting ring (along BZ boundary) under a background magnetic field (parent Berry
curvature). Then, the rounding of Berry curvature is analogous to the Little-Parks effect, where the winding of XY
order parameter around a narrow superconducting ring is given by rounding the magnetic flux piercing the ring. This
analogy becomes exact when the long-wavelength component of interaction dominates.

Consider the mean-field phase diagram as the interaction is turned up. At weak interaction, we get a fermi liquid
with no translation symmetry breaking. With moderate interaction, the translation breaks weakly, and we find a
semi-metal with compensating particle and hole pockets. The mean-field periodic potential is not strong enough to
open a global(indirect) band gap. Nevertheless, the Chern number for the lowest mean field band is still well-defined
in this regime. If we keep increasing the interaction, no gap closing happens until the band gap fully opens. Unless
there is a discontinuous transition at the mean-field level, the resulting insulating phase at strong interaction must
have the same Chern number as in the semi-metal phase at moderate interaction. Therefore, one can predict the fate
of Chern number at strong interaction regime by studying the intermediate regime, where interaction is just enough
to open a direct band gap.

V(q)

A(k′ ) − A(k′ + G0)

ΨG0(k) ΨG0(k + q)

J̃

A(k′ ) − A(k′ + G0)

ΨG0(K0) ΨG0(K̄1)

K0

K̄1

K̄0

K̄2

K1 K2

G0

G2

G1

δ

Figure 15. Superconducting ring model. The interaction between corners is generated by integrating out the superconducting
wire connecting them.

In this regime, VG ≪ KvF , the active degree of freedom is not just on the corners of BZ, but instead on a hexagonal
ring along the BZ boundary, with a width of δ ∼ VG/vF ≪ K. That is to say, in the language of the pseudopotential
model, the K and K̄ corner regions are highly anisotropic. The structure of the active hexagon ring consists of two
types of regions: (1) corners, where 3 momenta are hybridized, and (2) edges, where only 2 momenta are hybridized
significantly. Note that region (1) has a radius of δ, which limits its area to be O(δ2), much smaller than region (2),
whose area is of O(Kδ). Therefore we will minimize the energy in region (2) first.

For a hexagonal BZ, there are three segments in the region (2). We will focus on one of them, the edge between
K0 and K̄1, for example. The Fock term is

HFock = −
∑
k,q

V (q)λk,k+qλ
∗
k+G,k+q+G⟨c†k+q+Gck+q⟩⟨c†kck+G⟩

= −
∑
k,q

V (q)λk,k+qλ
∗
k+G,k+q+GΨ∗

G(k+ q)ΨG(k) (F1)

Here for unscreened Coulomb V (q) ∼ 1/q, and G = K1 −K0. We note this theory is a 1d superconducting wire with
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Josephson coupling in k-space. Now expand the form factor for small q

λk,k+q = ⟨k|k+ q⟩ ≈ exp

{
−1

2
gµν(k)qµqν

}
exp

{
i

∫ k+q

k

dq′ ·A(q′)

}
(F2)

Then the small-q contribution from Fock term becomes

HFock = −
∑
k

∑
q≪K

V (q) exp

{
−1

2
(gµν(k) + gµν(k+G)) qµqν

}
exp

{
i

∫ k+q

k

dq′ · (A(q′)−A(q′ +G))

}
Ψ∗

G(k+ q)ΨG(k)

= −
∑
k

∑
q≪K

Ṽ (q,k) exp

{
i

∫ k+q

k

dq′ · (A(q′)−A(q′ +G))

}
Ψ∗

G(k+ q)ΨG(k) (F3)

where we define Ṽ (q,k) = V (q) exp
{
− 1

2 (gµν(k) + gµν(k+G)) qµqν
}
. This is essentially a 1d Josephson array under

a background gauge field. Note the Josephson coupling Ṽ (q,k) decays rapidly with q as a Gaussian. Therefore, this
problem is local in momentum space. This justifies the small-q expansion in Eq. F2. In other words, the small-q
coupling in Eq. F3 indeed dominates the Fock term and should be minimized first. Then we find the ground state
phase configuration

ΨG(k) = ΨG(K0) exp

{
i

∫ k

K0

dq′ · (A(q′)−A(q′ +G))

}
(F4)

Plugging in k = K̄1, we find a constraint between ΨG(K0) ≡ Ψ(K0,K0+G) = Ψ(K0,K1) and ΨG(K̄1) = Ψ(K̄1, K̄1+
G) ≡ Ψ(K̄1, K̄0) = Ψ(K̄0, K̄1)

∗. Namely,

Ψ(K̄0, K̄1)
∗ = Ψ(K0,K1) exp

{
i

∫ K̄1

K0

dq′ · (A(q′)−A(q′ +G))

}

= Ψ(K0,K1) exp

{
i

∫ K̄1

K0

+

∫ K1

K̄0

dq′ ·A(q′)

}
(F5)

So the sum of phases of Ψ(K̄0, K̄1) and Ψ(K0,K1) is fixed.

Im
(
lnΨ(K̄0, K̄1) + ln(Ψ(K0,K1)

)
= −

{∫ K̄1

K0

+

∫ K1

K̄0

}
dq′ ·A(q′) (F6)

It is easy to show that the gauge-invariant C3 indices at high symmetry points are given by the sum of the three
phases, which is also gauge-invariant

C3(K) =
1

2π
Im (lnΨ(K0,K1) + lnΨ(K1,K2) + lnΨ(K2,K0))

C3(K̄) =
1

2π
Im
(
lnΨ(K̄0, K̄1) + lnΨ(K̄1, K̄2) + lnΨ(K̄2, K̄0)

)
(F7)

Then the Chern number will be

C = C3(K) + C3(K̄) (F8)

= Im
(
lnΨ(K0,K1) + lnΨ(K1,K2) + lnΨ(K2,K0) + lnΨ(K̄0, K̄1) + lnΨ(K̄1, K̄2) + lnΨ(K̄2, K̄0)

)
= − 1

2π

{∫ K̄1

K0

+

∫ K2

K̄1

+

∫ K̄0

K2

+

∫ K1

K̄0

+

∫ K̄2

K1

+

∫ K0

K̄2

}
dq′ ·A(q′) =

ΦBZ

2π
(F9)

To obtain this result, we do not even need to assume C2. Obviously, this result makes sense only when ΦBZ/2π ∈ Z
since the Chern number must be an integer. This is because we have assumed the SC wire to be at its ground state.
However, when the Berry flux is not an integer multiple of 2π, there is frustration. The correct treatment is integrating
out the phase fluctuation in the middle of the wire and constructing a theory for the order parameter at K and K̄
(see Fig. 15(b)).
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We may start by writing down the effective coupling Hamiltonian for the two endpoints of a 1D SC wire. This is
done by considering the energy cost of twisting the phases on two ends θ1,2. The leading gauge-invariant term is

HFock[Ψ1,Ψ2] = −J |Ψ|2 cos
(
θ1 − θ2 +

∫ 2

1

dq′ · (A(q′)−A(q′ +G))

)
= −J

2
Ψ1Ψ

∗
2 exp

{
i

∫ 2

1

dq′ · (A(q′)−A(q′ +G))

}
+ h.c.

= −J
2
Ψ1Ψ

∗
2 exp

{
i

∫ 2

1

+

∫ 2̄

1̄

dq′ ·A(q′)

}
+ h.c. (F10)

This resembles Eq. F3, but J is a phenomenological parameter generated by integrating the degree of freedom on the
1D line.

As an example, we explicitly derive the HFock[Ψ1,Ψ2] for a generic potential V (q). To do this, we start with
Eq. F3, expand to O(q2) and carry out the q integral,

HFock[Ψ] = −
∑
k

∑
q≪K

Ṽ (q,k) exp

{
i

∫ k+q

k

dq′ · (A(q′)−A(q′ +G))

}
Ψ∗

G(k+ q)ΨG(k)

= −
∫

dk

2π

∫
dq

2π

Ṽ (q,k)q2

2
|n̂ · (∇− iA(k) + iA(k+G))Ψ|2

= −
∫

dk

2π
˜̃V (k) |(∇n − iAn(k) + iAn(k+G))Ψ|2 (F11)

where n̂ is the unit vector along the wire. We have denoted ∇n = n̂ · ∇, and An = n̂ ·A. We focus on the phase of
Ψ(k) = ρ(k)eiθ(k):

HFock[θ] = −
∫

dk

2π
˜̃V (k)ρ(k)2 (∇nθ −An(k) +An(k+G))

2
(F12)

To make progress, we ignore the k dependence of ˜̃V and ρ̃. Then, integrate out θ(k) by demanding δH
δθ = 0,

∇n (∇nθ −An(k) +An(k+G)) = 0 (F13)

Under the boundary conditions eiθ(K0) = eiθ0 , eiθ(K̄1) = eiθ1̄ (mind the 2π ambiguity in phase), this implies

∇nθ −An(k) +An(k+G) =
1

K

(
θ1̄ − θ0 + 2mπ −

∫ K̄1

K0

dk · (A(k)−A(k+G))

)
(F14)

or

θ(k) = θ0 +

∫ k

K0

dk · (A(k)−A(k+G)) +
|k−K0|

K

(
θ1̄ − θ0 + 2mπ −

∫ K̄1

K0

dk · (A(k)−A(k+G))

)
(F15)

where m ∈ Z. Plugging in Eq. F3,

HFock[θ0, θ1̄] = −
∫
dk

2π

∫
dq

2π
Ṽ (q,k)ρ(k)2 exp

{
−i q
K

(
θ1̄ − θ0 + 2mπ −

∫ K̄1

K0

dk′ · (A(k′)−A(k′ +G))

)}

= −
∫
dk

2π

∫
dq

2π
Ṽ (q,k)ρ(k)2 exp

{
−i q
K

(
θ1̄ − θ0 + 2mπ −

(∫ K̄1

K0

+

∫ K1

K̄0

)
dk′ ·A(k′)

)}

= −
∫
dk

2π

∫
dq

2π
Ṽ (q,k)ρ(k)2 exp

{
−i q
K

∆01̄

}
(F16)

where we have defined V0(q) ≡
∫

dk
2π Ṽ (q,k)ρ(k), and the gauge-invariant phase difference between two corners

∆01̄ = θ1̄ − θ0 + 2mπ −
(∫ K̄1

K0

+

∫ K1

K̄0

)
dk′ ·A(k′) (F17)
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with m taking the integer that minimizes |∆01̄|. For concreteness, we explicitly evaluate the integral using a toy model

with V0(q) = V ρ2e−gq2 , then

HFock[θ0, θ1̄] = −V ρ2
∫
dq

2π
exp

{
−gq2 − iq

∆01̄

K

}
= −V ρ2

√
π

g
exp

{
− ∆2

01̄

4gK2

}
≈ V ρ2∆2

01̄

4gK2

√
π

g
+ const. (F18)

We note that this leading quadratic term in ∆01̄ is expected for arbitrary V0(q), which can be shown by expanding
Eq. F3. Using C3 and combining the contribution from all edges of MBZ, similar to the discussion in Eq. F9, we

Figure 16. Schematic Fock phase diagram, the numbers label (C(mod 3),m) in Eq. F21.

identify the following

C =
3

2π
(θ0 − θ1̄)

ϕBZ = −3

(∫ K̄1

K0

+

∫ K1

K̄0

)
dk′ ·A(k′) (F19)

Therefore,

∆01̄ = −2πC − ΦBZ

3
+ 2mπ (F20)

The C3 symmetry demands the contribution from three edges to be exactly the same. Then, we find the Fock energy
as a function of the Chern number

HFock = H01̄
Fock +H12̄

Fock +H20̄
Fock = 3H01̄

Fock =
V ρ2π5/2

3g3/2K2

(
C − 3m− ΦBZ

2π

)2

+ const. (F21)

The phase diagram is plotted in Fig. 16. We not only derive the rounding but also predict the Little-Parks effect:
The Hall crystal/Wigner crystal becomes less stable when parent Berry flux approaches (2n+1)π, which may become
useful when discussing physics at lower densities. At reduced fillings and without a moiré potential, as we discussed
in Sec. VIII, the correlated fermi liquid is almost frozen, i.e. it behaves like a crystal at short distances and short
times. It is natural to assume that the WC/AHC short-range order has a lattice constant set by electron density.
However, the picture in Fig. 16 suggests a route for the Fock energy to shrink the WC/AHC lattice so that the new
BZ (with an area larger than the electron density) encloses a Berry flux quantized to an integer multiple of 2π. The
outcome of this competition between two crystalline orders is unclear to us, since the energy of the shrunk crystal
also depends on the fate of the doped vacancies. We leave this to future study.
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Appendix G: 7-band Fock-only and Hartree-Fock phase diagrams

We present in Fig. 17 the Fock-only and Hartree-Fock phase diagrams computed with a 7-conduction band projec-
tion. This provides a consistency (and convergence) check with our 4-band projection results presented in the main
text. As seen, the Hartree correction to the Fock-only phase diagram expands the region of |C| = 1 in parameter
space, in agreement with the results in the main text.
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Figure 17. Chern number of mean-field band obtained with Fock only [Left] and Hartree-Fock [right], respectively. These
results are obtained from the 10-orbital model and the same parameters as Fig. 3, with the exception of using 7-bands in the
mean-field projection.

Appendix H: Comparison of Fermi liquid and Hall crystal: Hartree Fock energies

We present in Fig. 18 the Hartree-Fock energy difference of the translation symmetry preserving Fermi liquid and
translation symmetry breaking Hall crystal for wavevector GM associated with moiré twist angle of 0.77◦ for ud = −36
meV. As seen, for a range of displacement field energies, the Fermi liquid state is higher in energy than the Hall crystal.
As alluded to in the main text, this energy difference is not altogether surprising, as the Hartree-Fock framework is
biased towards finding translation symmetry broken (and gapped) phases of matter.
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Figure 18. Energy difference of translation symmetry preserving Fermi liquid and translation symmetry breaking Hall crystal
for wavevector G⃗M associated with moiré twist angle of 0.77◦ for ud = −36 meV.


	Stability of Anomalous Hall Crystals in multilayer rhombohedral graphene
	Abstract
	Introduction
	Structure of continuum band at large displacement field
	Dangling edges of pentalayer graphene: k5-two-orbital model
	Failure of k5-two-orbital model to capture flat band bottom

	Overview of the Hartree-Fock Phase Diagram
	Role of Hartree term: a physical picture
	Simplified ``Landau" model for competing insulators
	Approximate calculations of ``Landau theory" parameters using simplified models
	Pseudopotential interactions for MBZ corners
	Modified treatment for the Fock term: superconducting ring in momentum space and Berry curvature rounding

	Competing Fermi liquid and Hall Crystal Phases
	Beyond Hartree-Fock: comments on the true phase diagram, and on phenomenology
	Routes to higher Chern bands in electron-doped RnG
	Discussion
	Acknowledgments
	References
	Full-10 band tight-binding model for pentalayer graphene
	Density profile of Bloch function at high symmetry momentum
	Effect of Translation on the C3 indices 
	Pseudopotential in angular momentum channels
	Failure of the pseudopotential treatment
	k-space superconducting ring model and connection to Berry curvature rounding
	7-band Fock-only and Hartree-Fock phase diagrams
	Comparison of Fermi liquid and Hall crystal: Hartree Fock energies


