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Abstract

The Lp-discrepancy is a classical quantitative measure for the irreg-
ularity of distribution of an N -element point set in the d-dimensional
unit cube. Its inverse for dimension d and error threshold ε ∈ (0, 1) is
the number of points in [0, 1)d that is required such that the minimal
normalized Lp-discrepancy is less or equal ε. It is well known, that the
inverse of L2-discrepancy grows exponentially fast with the dimension
d, i.e., we have the curse of dimensionality, whereas the inverse of L∞-
discrepancy depends exactly linearly on d. The behavior of inverse of
Lp-discrepancy for general p ̸∈ {2,∞} was an open problem since many
years. Recently, the curse of dimensionality for the Lp-discrepancy was
shown for an infinite sequence of values p in (1, 2], but the general result
seemed to be out of reach.

In the present paper we show that the Lp-discrepancy suffers from
the curse of dimensionality for all p in (1,∞) and only the case p = 1 is
still open.

This result follows from a more general result that we show for the
worst-case error of positive quadrature formulas for an anchored Sobolev
space of once differentiable functions in each variable whose first mixed
derivative has finite Lq-norm, where q is the Hölder conjugate of p.

Keywords: Discrepancy, numerical integration, curse of dimensionality,
tractability, quasi-Monte Carlo
MSC 2010: 11K38, 65C05, 65Y20

1 Introduction and main result

For a set P consisting of N points x1,x2, . . . ,xN in the d-dimensional unit-
cube [0, 1)d the local discrepancy function ∆P : [0, 1]d → R is defined as

∆P(t) =
|{k ∈ {1, 2, . . . , N} : xk ∈ [0, t)}|

N
− volume([0, t)),

for t = (t1, t2, . . . , td) in [0, 1]d, where [0, t) = [0, t1)× [0, t2)× . . .× [0, td). For
a parameter p ∈ [1,∞] the Lp-discrepancy of the point set P is defined as the
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Lp-norm of the local discrepancy function ∆P , i.e.,

Lp,N(P) :=

(∫
[0,1]d

|∆P(t)|p dt
)1/p

for p ∈ [1,∞),

and
L∞,N(P) := sup

t∈[0,1]d
|∆P(t)| for p = ∞.

Traditionally, the L∞-discrepancy is called star-discrepancy and is denoted by
D∗

N(P) rather than L∞,N(P). The study of Lp-discrepancy has its roots in
the theory of uniform distribution modulo one; see [1, 4, 9, 10] for detailed
information. It has a close relation to numerical integration, see Section 2.

Since one is interested in point sets with Lp-discrepancy as low as possible
it is obvious to study for d,N ∈ N the quantity

discp(N, d) := min
P

Lp,N(P),

where the minimum is extended over all N -element point sets P in [0, 1)d. This
quantity is called the N -th minimal Lp-discrepancy in dimension d.

Traditionally, the Lp-discrepancy is studied from the point of view of a
fixed dimension d and one asks for the asymptotic behavior for increasing
sample sizes N . The celebrated result of Roth [15] is the most famous result
in this direction and can be seen as the initial point of discrepancy theory. For
p ∈ (1,∞) it is known that for every dimension d ∈ N there exist positive reals
cd,p, Cd,p such that for every N ≥ 2 it holds true that

cd,p
(logN)

d−1
2

N
≤ discp(N, d) ≤ Cd,p

(logN)
d−1
2

N
.

Similar results, but less accurate, are available also for p ∈ {1,∞}. See the
above references for further information. The currently best asymptotical lower
bound in the L∞-case can be found in [2].

All the classical bounds have a poor dependence on the dimension d. For
large d these bounds are only meaningful in an asymptotic sense (for very
large N) and do not give any information about the discrepancy in the pre-
asymptotic regime (see, e.g., [14] or [3, Section 1.7] for discussions). Nowadays,
motivated from applications of point sets with low discrepancy for numerical
integration, there is dire need of information about the dependence of discrep-
ancy on the dimension.

This problem is studied with the help of the so-called inverse of Lp-discrepancy
(or, in a more general context, the information complexity; see Section 2).
This concept compares the minimal Lp-discrepancy with the initial discrepancy
discp(0, d), which is the Lp-discrepancy of the empty point set, and asks for
the minimal number N of nodes that is necessary in order to achieve that the
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N -th minimal Lp-discrepancy is smaller than ε times discp(0, d) for a threshold
ε ∈ (0, 1). In other words, for d ∈ N and ε ∈ (0, 1) the inverse of the N -th
minimal Lp-discrepancy is defined as

Ndisc
p (ε, d) := min{N ∈ N : discp(N, d) ≤ ε discp(0, d)}.

The question is now how fast Ndisc
p (ε, d) increases, when d → ∞ and ε → 0.

It is well known and easy to check that for the initial Lp-discrepancy we
have

discp(0, d) =

{
1

(p+1)d/p
if p ∈ [1,∞),

1 if p = ∞.
(1)

Here we observe a difference in the cases of finite and infinite p. While for
p = ∞ the initial discrepancy equals 1 for every dimension d, for finite values
of p the initial discrepancy tends to zero exponentially fast with the dimension.

For p ∈ {2,∞} the behavior of the inverse of N -th minimal Lp-discrepancy
is well understood. In the L2-case it is known that for all ε ∈ (0, 1) we have

(1.125)d(1− ε2) ≤ Ndisc
2 (ε, d) ≤ 1.5dε−2.

Here the lower bound was first shown by Woźniakowski in [16] (see also [13, 14])
and the upper bound follows from an easy averaging argument, see, e.g., [14,
Sec. 9.3.2].

In the L∞-case it was shown by Heinrich, Novak, Wasilkowski and Woźnia-
kowski in [6] that there exists an absolute positive constant C such that for
every d ∈ N and ε ∈ (0, 1) we have

Ndisc
∞ (ε, d) ≤ Cdε−2.

The currently smallest known value of C is 6.23401 . . . as shown in [5]. On the
other hand, Hinrichs [7] proved that there exist numbers c > 0 and ε0 ∈ (0, 1)
such that for all d ∈ N and all ε ∈ (0, ε0) we have

Ndisc
∞ (ε, d) ≥ cdε−1.

So while the inverse of L2-discrepancy grows exponentially fast with the
dimension d, the inverse of the star-discrepancy depends only linearly on the
dimension d. One says that the L2-discrepancy suffers from the curse of dimen-
sionality. In information based complexity theory the behavior of the inverse
of star-discrepancy is called “polynomial tractability” (see, e.g., [14]). Hence
the situation is clear (and quite different) for p ∈ {2,∞}. But what happens
for all other p ̸∈ {2,∞}? This question was open for many years.

Quite recently we proved in [12] that the Lp-discrepancy suffers from the
curse for all values p of the form

p =
2ℓ

2ℓ− 1
with ℓ ∈ N.
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Figure 1: Plot of Cp for p ∈ [1, 50]. Note that C1 = 1 and limp→∞ Cp = 1. We
have C2 = 1.0022 . . ., C3 = 1.00248 . . ., C4 = 1.00238 . . ..

We used ideas that only work if q (the Hölder conjugate of p) is an even
integer and therefore could not handle other values of p. Now, with a different
approach, we solve the question for all p ∈ (1,∞).

Theorem 1. For every p in (1,∞) there exists a real Cp that is strictly larger
than 1, such that for all d ∈ N and all ε ∈ (0, 1/2) we have

Ndisc
p (ε, d) ≥ Cd

p (1− 2ε).

We have

Cp =

(
1

2
+

p+ 1

p

1 + 2p/(p+1) − 21/(p+1)

4

)−1

> 1.

In particular, for all p in (1,∞) the Lp-discrepancy suffers from the curse of
dimensionality.

Figure 1 shows the graph of Cp for p ∈ [1, 50]. An improvement will be
given in Section 3.

The result will follow from a more general result about the integration prob-
lem in the anchored Sobolev space with a q-norm that will be introduced and
discussed in the following Section 2. This result will be stated as Theorem 3.
We end the paper with three open problems.

2 Relation to numerical integration

It is well known that the Lp-discrepancy is related to multivariate integration
(see, e.g., [14, Chapter 9]). Since this relation is essential for the present
approach we repeat the brief summary from [12, Section 2]. From now on let
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p, q ≥ 1 be Hölder conjugates, i.e., 1/p + 1/q = 1. For d = 1 let W 1
q ([0, 1]) be

the space of absolutely continuous functions whose first derivatives belong to
the space Lq([0, 1]). For d > 1 consider the d-fold tensor product space which
is denoted by

W 1
q := W (1,1,...,1)

q ([0, 1]d)

and which is the Sobolev space of functions on [0, 1]d that are once differentiable
in each variable and whose first derivative ∂df/∂x has finite Lq-norm, where
∂x = ∂x1∂x2 . . . ∂xd. Now consider the subspace of functions that satisfy the
boundary conditions f(x) = 0 if at least one component of x = (x1, . . . , xd)
equals 0 and equip this subspace with the norm

∥f∥d,q :=
(∫

[0,1]d

∣∣∣∣ ∂d

∂x
f(x)

∣∣∣∣q dx

)1/q

for q ∈ [1,∞),

and

∥f∥d,∞ := sup
x∈[0,1]d

∣∣∣∣ ∂d

∂x
f(x)

∣∣∣∣ for q = ∞.

That is, consider the space

Fd,q := {f ∈ W 1
q : f(x) = 0 if xj = 0 for some j ∈ [d] and ∥f∥d,q < ∞}.

Now consider multivariate integration

Id(f) :=

∫
[0,1]d

f(x) dx for f ∈ Fd,q.

We approximate the integrals Id(f) by linear algorithms of the form

Ad,N(f) =
N∑
k=1

ajf(xk), (2)

where x1,x2, . . . ,xN are in [0, 1)d and a1, a2, . . . , aN are real weights that we
call integration weights. If a1 = a2 = . . . = aN = 1/N , then the linear
algorithm (2) is a so-called quasi-Monte Carlo algorithm, and we denote this
by AQMC

d,N .
Define the worst-case error of an algorithm (2) by

e(Fd,q, Ad,N) = sup
f∈Fd,q

∥f∥d,q≤1

|Id(f)− Ad,N(f)| . (3)

For a quasi-Monte Carlo algorithm AQMC
d,N it is well known that

e(Fd,q, A
QMC
d,N ) = Lp,N(P),
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where Lp,N(P) is the Lp-discrepancy of the point set

P = {1− xk : k ∈ {1, 2, . . . , N}}, (4)

where 1 − xk is defined as the component-wise difference of the vector con-
taining only ones and xk, see, e.g., [14, Section 9.5.1] for the case p = 2.

For general linear algorithms (2) the worst-case error is the so-called gen-
eralized Lp-discrepancy

e(Fd,q, Ad,N) = Lp,N(P ,A),

where P is like in (4) and A consists of exactly the coefficients from the given
linear algorithm (see [14]). Here for points P = {x1,x2, . . . ,xN} and corre-
sponding coefficients A = {a1, a2, . . . , aN} the discrepancy function is

∆P,A(t) =
N∑
k=1

ak1[0,t)(xk)− t1t2 · · · td

for t = (t1, t2, . . . , td) in [0, 1]d and the generalized Lp-discrepancy is

Lp,N(P ,A) =

(∫
[0,1]d

|∆P,A(t)|p dt
)1/p

for p ∈ [1,∞),

with the usual adaptions for p = ∞. If a1 = a2 = . . . = aN = 1/N , then we
are back to the classical definition of Lp-discrepancy from Section 1.

From this point of view we now study the more general problem of nu-
merical integration in Fd,q rather than only the Lp-discrepancy (which corre-
sponds to quasi-Monte Carlo algorithms – although with suitably “reflected”
points). We consider linear algorithms where we restrict ourselves to non-
negative weights a1, . . . , aN (thus QMC-algorithms are included in our setting).

We define the N -th minimal worst-case error as

eq(N, d) := min
Ad,N

|e(Fd,q, Ad,N)|

where the minimum is extended over all linear algorithms of the form (2) based
on N function evaluations along points x1,x2, . . . ,xN from [0, 1)d and with
non-negative weights a1, . . . , aN ≥ 0. Note that for all d,N ∈ N we have

eq(N, d) ≤ discp(N, d). (5)

The initial error is
eq(0, d) = sup

f∈Fd,q
∥f∥d,q≤1

|Id(f)| .

We call f ∈ Fd,q a worst-case function, if Id(f/∥f∥d,q) = eq(0, d).
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Lemma 2. Let d ∈ N and let q ∈ (1,∞] and p ∈ [1,∞) with 1/p + 1/q = 1.
Then we have

eq(0, d) =
1

(p+ 1)d/p

and the worst-case function in Fd,q is given by hd(x) = h1(x1) · · ·h1(xd) for
x = (x1, . . . , xd) ∈ [0, 1]d, where h1(x) = 1− (1− x)p. Furthermore, we have∫ 1

0

h1(t) dt =
p

p+ 1
and ∥h1∥1,q =

p

(p+ 1)1/q
.

For a proof of Lemma 2 see [12].
Note that for all Hölder conjugates q ∈ (1,∞] and p ∈ [1,∞) and for all

d ∈ N we have
eq(0, d) = discp(0, d).

Now we define the information complexity as the minimal number of func-
tion evaluations necessary in order to reduce the initial error by a factor of ε.
For d ∈ N and ε ∈ (0, 1) put

N int
q (ε, d) := min{N ∈ N : eq(N, d) ≤ ε eq(0, d)}.

We stress that N int
q (ε, d) is a kind of restricted complexity since we only allow

positive quadrature formulas.
From (5), (1) and Lemma 2 it follows that for all Hölder conjugates q ∈

(1,∞] and p ∈ [1,∞) and for all d ∈ N and ε ∈ (0, 1)d we have

N int
q (ε, d) ≤ Ndisc

p (ε, d).

Hence, Theorem 1 follows from the following more general result.

Theorem 3. For every q in (1,∞) put

Cp =

(
1

2
+

p+ 1

p

1 + 2p/(p+1) − 21/(p+1)

4

)−1

,

where p is the Hölder conjugate of q. Then Cp > 1 and for all d ∈ N and
ε ∈ (0, 1/2) we have

N int
q (ε, d) ≥ Cd

p (1− 2ε). (6)

In particular, for all q in (1,∞) the integration problem in Fd,q suffers from
the curse of dimensionality for positive quadrature formulas.

Proof. The proof of Theorem 3 is based on a suitable decomposition of the
worst-case function h1 from Lemma 2. This decomposition depends on q and
p, respectively, and will determine the value of Cp in (6).
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Figure 2: Decomposition functions h1,1, h1,2,(0) and h1,2,(1) for p = 3 and de-
composition point a = 1/2.

For a decomposition point a in (0, 1) that will be determined in a moment
define the functions

h1,1(x) =
1− (1− a)p

a
min(x, a),

h1,2,(0)(x) = 1[0,a](x)
(
(1− (1− x)p)− x

a
(1− (1− a)p)

)
,

h1,2,(1)(x) = 1[a,1](x) ((1− (1− x)p)− (1− (1− a)p)) .

Then we have h1(x) = h1,1(x) + h1,2,(0)(x) + h1,2,(1)(x). See Figure 2 for an
illustration.

We choose the decomposition point a such that

∥h1,1 + h1,2,(0)∥1,q = ∥h1,1 + h1,2,(1)∥1,q =: α.

We have

∥h1,1 + h1,2,(0)∥q1,q =
∫ a

0

|p(1− x)p−1|q dx = pq
1− (1− a)p+1

p+ 1

and

∥h1,1 + h1,2,(1)∥q1,q =
∫ 1

a

|p(1− x)p−1|q dx = pq
(1− a)p+1

p+ 1
.

Thus we have to choose

a = 1− 1

21/(p+1)
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and then

α =
1

21/q
p

(p+ 1)1/q
=

∥h1∥1,q
21/q

.

Obviously, α < ∥h1∥1,q. Put

β := max

(∫ 1

0

h1,1(x) + h1,2,(0)(x) dx,

∫ 1

0

h1,1(x) + h1,2,(1)(x) dx

)
Then we have β <

∫ 1

0
h1(x) dx = p

p+1
.

Consider a linear algorithm Ad,N based in nodes x1, . . . ,xN and non-
negative weights a1, . . . , aN ≥ 0. Then for i ∈ {1, . . . , N} we define functions

Pi(x) =
d∏

k=1

(h1,1(xk) + h1,2,(zk)(xk)), x = (x1, . . . , xd) ∈ [0, 1]d,

where zk ∈ {0, 1}, k ∈ {1, . . . , d} are chosen in a way, such that

Pi(xi) = hd(xi).

The functions Pi are tensor products and therefore we have the simple formulas

∥Pi∥d,q = αd and

∫
[0,1]d

Pi(x) dx ≤ βd

for every i ∈ {1, . . . , N}.
In order to estimate the error of Ad,N we consider the two functions hd and

f ∗ =
N∑
i=1

Pi.

For every i ∈ {1, . . . , N} we have

hd(xi) ≤ f ∗(xi),

because Pk ≥ 0 for all k and Pi(xi) = hd(xi). This and the use of non-negative
quadrature weights implies that

Ad,N(hd) ≤ Ad,N(f
∗).

Now for real y we use the notation (y)+ := max(y, 0). Then we have the error
estimate

e(Fd,q, Ad,N) ≥

(∫
[0,1]d

hd(x) dx−
∫
[0,1]d

f ∗(x) dx
)
+

2max(∥hd∥d,q, ∥f ∗∥d,q)
, (7)
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which is trivially true if
∫
[0,1]d

hd(x) dx ≤
∫
[0,1]d

f ∗(x) dx and which is easily

shown if
∫
[0,1]d

hd(x) dx >
∫
[0,1]d

f ∗(x) dx, because then(∫
[0,1]d

hd(x) dx−
∫
[0,1]d

f ∗(x) dx

)
+

≤
∫
[0,1]d

hd(x) dx− Ad,N(hd) + Ad,N(f
∗)−

∫
[0,1]d

f ∗(x) dx

≤ ∥hd∥d,q e(Fd,q, Ad,N) + ∥f ∗∥d,q e(Fd,q, Ad,N)

≤ 2max(∥hd∥d,q, ∥f ∗∥d,q) e(Fd,q, Ad,N).

From the triangle inequality we obtain

∥f ∗∥d,q ≤ Nαd = N
∥hd∥d,q
2d/q

,

and we also have ∫
[0,1]d

f ∗(x) dx ≤ Nβd.

Inserting into (7) yields

e(Fd,q, Ad,N) ≥

(∫
[0,1]d

hd(x) dx−Nβd
)
+

2∥hd∥d,q max(1, N/2d/q)
.

Since the right hand side is independent of x1, . . . ,xN and a1, . . . , aN we obtain

eq(N, d) ≥

(∫
[0,1]d

hd(x) dx−Nβd
)
+

2∥hd∥d,q max(1, N/2d/q)
. (8)

Put γ := 1
β

∫ 1

0
h1(x) dx = 1

β
p

p+1
. Then we have γ > 1.

Now let ε ∈ (0, 1/2) and assume that eq(N, d) ≤ ε eq(0, d). This and
eq(0, d)∥hd∥d,q = ( p

p+1
)d implies that

2ε

(
p

p+ 1

)d

max

(
1,

N

2d/q

)
≥

(∫
[0,1]d

hd(x) dx−Nβd

)
+

.

If N ≤ min(2d/q, γd), then we obtain(
p

p+ 1

)d

−Nβd =

∫
[0,1]d

hd(x) dx−Nβd

=

(∫
[0,1]d

hd(x) dx−Nβd

)
+

≤ 2ε

(
p

p+ 1

)d

max

(
1,

N

2d/q

)
=2ε

(
p

p+ 1

)d

.
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Hence

N ≥
(
1

β

p

p+ 1

)d

(1− 2ε) ≥ (min(21/q, γ))d(1− 2ε).

If N ≥ min(2d/q, γd), then we trivially have

N ≥ (min(21/q, γ))d(1− 2ε).

This yields
N int

q (ε, d) ≥ (min(21/q, γ))d(1− 2ε),

and we are done.
It remains to compute the values for Cp := min(21/q, γ). Obviously, Cp > 1,

since γ > 1. For a = 1− 1
21/(p+1) we have∫ 1

0

h1,1(x) + h1,2,(0)(x) dx =

∫ a

0

1− (1− x)p dx+

∫ 1

a

1− (1− a)p dx

= a− 1− (1− a)p+1

p+ 1
+ (1− a)(1− (1− a)p)

=
1

2

p

p+ 1

and∫ 1

0

h1,1(x) + h1,2,(1)(x) dx =

∫ a

0

1− (1− a)p

a
x dx+

∫ 1

a

1− (1− x)p dx

=
a(1− (1− a)p)

2
+ 1− a− (1− a)p+1

p+ 1

=
1

2

p

p+ 1
+

1 + 2p/(p+1) − 21/(p+1)

4
.

Hence

β =
1

2

p

p+ 1
+

1 + 2p/(p+1) − 21/(p+1)

4
.

Therefore

γ =
1

1
2
+ p+1

p
1+2p/(p+1)−21/(p+1)

4

and

Cp = min(21/q, γ) = min(21−1/p, γ) = γ =
1

1
2
+ p+1

p
1+2p/(p+1)−21/(p+1)

4

.
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3 Remark and open problems

There are many spaces where the curse of dimensionality is present for high
dimensional integration, see the recent survey paper [11]. For p = ∞ the
discrepancy is tractable and this property does not hold for many unweighted
spaces; for a recent example see Krieg [8].

The value of Cp in Theorem 1 and 3 (see also Figure 1) can be improved
with the following “spline” method:

For y ∈ [0, 1] define the linear splines

sy(x) =

{
1−(1−y)p

y
x if x < y,

1− (1− y)p if x ≥ y.

Then sy ∈ F1,q, sy ≥ 0 and sy(y) = h1(y), the worst-case function from
Lemma 2. Put

α := max
y∈[0,1]

∥sy∥1,q and β := max
y∈[0,1]

∫ 1

0

sy(x) dx.

It is easily shown that

α = max
y∈[0,1]

1− (1− y)p

y1/p
and β = max

y∈[0,1]
(1− (1− y)p)

(
1− y

2

)
.

Furthermore, it is elementary but tedious to show that α < ∥h1∥1,q. On the
other hand, since for every y ∈ [0, 1] we have 0 ≤ sy(x) < h1(x), it is clear

that β <
∫ 1

0
h1(x) dx. This yields that

C̃p := min

(
∥h1∥1,q

α
,
1

β

∫ 1

0

h1(x) dx

)
> 1. (9)

Now we modify the approach in the proof of Theorem 3 in the following way:
As before, consider a linear algorithm Ad,N based in nodes x1, . . . ,xN in [0, 1]d

and with non-negative weights a1, . . . , aN ≥ 0. Let xi,j be the j-th coordinate
of the point xi, i ∈ {1, . . . , N} and j ∈ {1, . . . , d}. For i ∈ {1, . . . , N} we
define functions

Pi(x) := sxi,1
(x1)sxi,2

(x2) · · · sxi,d
(xd), x = (x1, . . . , xd) ∈ [0, 1]d.

Consider the two functions hd and f ∗ :=
∑N

i=1 Pi. Since Ad,N uses only
non-negative weights we have

Ad,N(f
∗) =

N∑
i=1

ai

N∑
j=1

Pj(xi) ≥
N∑
i=1

aiPi(xi)

=
N∑
i=1

aisxi,1
(xi,1)sxi,2

(xi,2) · · · sxi,d
(xi,d) =

N∑
i=1

aihd(xi) = Ad,N(hd).

12



In the same way as in the proof of Theorem 3 we obtain

e(Fd,q, Ad,N) ≥

(∫
[0,1]d

hd(x) dx−
∫
[0,1]d

f ∗(x) dx
)
+

2max(∥hd∥d,q, ∥f ∗∥d,q)

≥

(∫
[0,1]d

hd(x) dx−Nβd
)
+

2max(∥hd∥d,q, Nαd)
,

where we used that ∥f ∗∥d,q ≤ Nαd and
∫
[0,1]d

f ∗(x) dx ≤ Nβd. This yields

eq(N, d) ≥

(∫
[0,1]d

hd(x) dx−Nβd
)
+

2max(∥hd∥d,q, Nαd)
.

From here it follows in the same way as in the proof of Theorem 3 that

N int
q (ε, d) ≥ C̃d

p (1− 2ε) where C̃p > 1 is given in (9).

This re-proves Theorem 3 (and Theorem 1). The advantage of Cp in The-
orem 1 and 3 is that it is stated explicitly for any p ∈ (1,∞). The value of

C̃p can be computed numerically for every p ∈ (1,∞). Experiments show a

strong improvement of C̃p over Cp. See the following table and Figure 3:

p 2 3 4 5
Cp 1.0022 . . . 1.00248 . . . 1.00238 . . . 1.0022 . . .

C̃p 1.06066 . . . 1.07231 . . . 1.07276 . . . 1.07005 . . .

p 10 20 30 100
Cp 1.00148 . . . 1.00086 . . . 1.0006 . . . 1.00019 . . .

C̃p 1.05327 . . . 1.035 . . . 1.02627 . . . 1.0101 . . .

Figure 3 shows the strong improvement of C̃p over Cp. The blue line is the
graph from Figure 1.

We end the paper with three open problems.

1. In order to estimate the error of quadrature formulas, we only considered
two functions hd and f ∗ =

∑N
i=1 Pi. The reason is that we have an exact

formula for the norm of Pi, while the norms of “better” fooling functions
are difficult to estimate. Our first Open Problem is to improve the lower
bounds by finding bigger values for the constant Cp in the main result

and C̃p.

2. The proof in [12] only works for even q. However, for even q, it is more
general since we prove the lower bound for all quadrature formulas, the

13



Figure 3: Plot of C̃p compared to Cp for p ∈ [1, 50]. Note that C̃1 = C1 = 1.

weights ai do not have to be positive. Hence we ask, this is Open Problem
2, whether the curse also holds for all p ∈ (1,∞) for arbitrary quadrature
formulas. We guess that the answer is yes, but our attempts to prove it
failed.

3. We already mentioned that the problem is still open for p = 1. Our
technique does not work in this case and we even do not guess an answer
to this third Open Problem.
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