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Summary

Defects are a universal feature of crystalline solids, dictating the key properties
and performance of many functional materials. Given their crucial importance
yet inherent difficulty in measuring experimentally, computational methods (such
as DFT and ML/classical force-fields) are widely used to predict defect behaviour
at the atomic level and the resultant impact on macroscopic properties. Here
we report doped, a Python package for the generation, pre-/post-processing,
and analysis of defect supercell calculations. doped has been built to implement
the defect simulation workflow in an efficient and user-friendly — yet powerful
and fully-flexible — manner, with the goal of providing a robust general-purpose
platform for conducting reproducible calculations of solid-state defect properties.

Statement of need

The materials science sub-field of computational defect modelling has seen con-
siderable growth in recent years, driven by the crucial importance of these species
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in functional materials and the major advances in computational methodologies
and resources facilitating their accurate simulation. Software which enables re-
searchers to efficiently and accurately perform these calculations, while allowing
for in-depth target analyses of the resultant data, is thus of significant value to
the community. Indeed there are many critical stages in the computational work-
flow for defects, which when performed manually not only consume significant
researcher time and effort but also leave room for human error — particularly
for newcomers to the field. Moreover, there are growing efforts to perform
high-throughput investigations of defects in solids (Broberg et al., 2023; Xiong
et al., 2023; Yuan et al., 2024), necessitating robust, user-friendly, and efficient
software implementing this calculation workflow.

Given this importance of defect simulations and the complexity of the workflow, a
number of software packages have been developed with the goal of managing pre-
and post-processing of defect calculations, including work on the HADES /METADISE
codes from the 1970s (Parker et al., 2004), to more recent work from Kumagai
et al. (2021), Broberg et al. (2018), Shen & Varley (2024), Neilson & Murphy
(2022), Arrigoni & Madsen (2021), Goyal et al. (2017), M. Huang et al. (2022),
Péan et al. (2017) and Naik & Jain (2018).1 While each of these codes have their
strengths, they do not include the full suite of functionality provided by doped —
some of which is discussed below — nor adopt the same focus on user-friendliness
(along with sanity-checking warnings and error catching) and efficiency with
full flexibility and wide-ranging functionality, targeting expert-level users and
newcomers to the field alike.
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Figure 1: Schematic workflow of a computational defect investigation using
doped.

1Some of these packages are no longer maintained, not compatible with high-throughput
architectures, and/or are closed-source/commercial packages.



doped

doped is a Python package for the generation, pre-/post-processing, and analysis
of defect supercell calculations, as depicted in Figure 1. The design philosophy
of doped has been to implement the defect simulation workflow in an efficient,
reproducible, and user-friendly — yet powerful and fully-customisable — manner,
combining reasonable defaults with full user control for each parameter in
the workflow. As depicted in Figure 1, the core functionality of doped is the
generation of defect supercells and competing phases, writing calculation input
files, parsing calculation outputs, and analysing/plotting defect-related properties.
This functionality and recommended usage of doped is demonstrated in the
tutorials on the documentation website.

Some key advances of doped include:

e Supercell Generation: When choosing a simulation supercell for charged
defects in materials, we typically want to maximise the minimum distance
between periodic images of the defect (to reduce finite-size errors) while
keeping the supercell to a tractable number of atoms/electrons to calculate.
Common approaches are to choose a near-cubic integer expansion of the
unit cell (Ong et al., 2013), or to use a cell shape metric to search for
optimal supercells (Larsen et al., 2017). Building on these and instead
integrating an efficient algorithm for calculating minimum image distances,
doped directly optimises the supercell choice for this goal — often identifying
non-trivial ‘root 2’/‘root 3’ type supercells. As illustrated in Figure 2a, this
leads to a significant reduction in the supercell size (and thus computational
cost) required to achieve a threshold minimum image distance.

— Over a test set of simple cubic, trigonal, orthorhombic, monoclinic
and face-centred cubic unit cells, the doped algorithm is found to give
mean improvements of 35.2%, 9.1% and 6.7% in the minimum image
distance for a given (maximum) number of unit cells as compared to
the pymatgen cubic supercell algorithm, the ASE optimal cell shape
algorithm with simple-cubic target shape, and ASE with FCC target
shape respectively — in the range of 2-20 unit cells. For 2-50 unit
cells (for which the mean values across this test set are plotted in
Figure 2a), this becomes 36.0%, 9.3% and 5.6% respectively. Given
the approximately cubic scaling of DFT computational cost with the
number of atoms, these correspond to significant reductions in cost
(~20-150%).

— As always, the user has full control over supercell generation in doped,
with the ability to specify/adjust constraints on the minimum image
distance, number of atoms or transformation matrix, or to simply
provide a pre-generated supercell if desired.

e Charge-state Estimation: Defects in solids can adopt various electronic
charge states. However, the set of stable charge states for a given defect is
typically not known a priori, so one must choose a set of possible defect
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Figure 2: Performance and example outputs from doped. (a) Average minimum
periodic image distance, normalised by the ideal image distance (i.e. for a close-
packed face-centred cubic (FCC) cell), vs. number of unit cells for supercell generation
algorithms in doped, ASE, and pymatgen. “SC” = simple cubic and “HCP” = hexagonal
close-packed. (b) Average performance of various charge state estimation routines.
“ICSD probabilities” refers to a model based oxidation state probabilities, as given by
their occurrence in the ICSD database. Asterisk indicates that pyCDT “false negatives
are underestimated as the majority of this test set used the pyCDT charge state ranges.
“Ox. state” = oxidation state. Example (c) Kumagai-Oba (eFNV) finite-size correction
plot, (d) defect formation energy diagram, (e) chemical potential / stability region, (f)
Fermi level vs. annealing temperature, (g)4defect/carrier concentrations vs. annealing
temperature and (h) Fermi level / carrier concentration heatmap plots from doped.
Automated plots of single-particle eigenvalues from DFT supercell calculations for (i)
V3, in CusSiSes and (j) Vi, in CdTe. (k) Automated site displacement analysis,
plotting atomic displacements with respect to the defect site against distance to the
defect site, for V, dl in CdTe. Data and code to reproduce these plots is provided in

the docs/J0SS folder of the doped GitHub repository.
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charge states to calculate — usually relying on some form of chemical
intuition. In this regard, extremal defect charge states that are calculated
but do not end up being stable can be considered ‘false positives’ or ‘wasted’
calculations,? while charge states which are stable but were not calculated
can be considered ‘false negatives’ or ‘missed’ calculations. doped builds on
other routines which use known elemental oxidation states to additionally
account for oxidation state probabilities, the electronic state of the host
crystal and charge state magnitudes. Implementing these features in
a simple cost function, we find a significant improvement in terms of
both efficiency (reduced false positives) and completeness (reduced false
negatives) for this charge state estimation, as shown in Figure 2b.?

Again, this step is fully-customisable. The user can tune the probability
threshold at which to include charge states or manually specify defect
charge states. All probability factors computed are available to the user
and saved to the defect JSON files for full reproducibility.

o Efficient Competing Phase Selection: Elemental chemical potentials
(a key term in the defect formation energy) are limited by the secondary
phases which border the host compound on the phase diagram. These
bordering phases are known as competing phases, and their total energies
must be calculated to determine the chemical potential limits. Only the
elemental reference phases and compounds which border the host on the
phase diagram need to be calculated, rather than the full phase diagram.

doped aims to improve the efficiency of this step by querying the Ma-
terials Project database (containing both experimentally-measured and
theoretically-predicted crystal structures), and pulling only compounds
which could border the host material within a user-specified error tolerance
for the semi-local DFT database energies (0.1 eV /atom by default), along
with the elemental reference phases. The necessary k-point convergence
step for these compounds is also implemented in a semi-automated fashion
to expedite this process.

— With the parsed chemical potentials in doped, the user can easily
select various X-poor/rich chemical conditions, or scan over a range
of chemical potentials (growth conditions) as shown in Figure 2eh.

¢ Automated Symmetry & Degeneracy Handling: doped automati-
cally determines the point symmetry of both initial (un-relaxed) and final
(relaxed) defect configurations, and computes the corresponding orienta-
tional (and spin) degeneracy factors. This functionality is also offered in the
form of standalone functions which do not require the defect calculations

2Note that unstable defect charge states which are intermediate between stable charge states
(e.g. X0 for a defect X with a (4+1/-1) negative-U level) should still be calculated and are not
considered false positives.

3Given sufficient data, a machine learning model could likely further improve the performance
of this charge state estimation.
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to have been generated/parsed with doped. This is a key pre-factor in the
defect concentration equation:

ND :gNs exp(fEf/kBT) (1)

where g is the product of all degeneracy factors, Ny is the concentration of
lattice sites for that defect, E is the defect formation energy and Np is the
defect concentration. g can affect predicted defect/carrier concentrations
by up to two or three orders of magnitude (Kavanagh, Scanlon, et al.,
2022; Mosquera-Lois, Kavanagh, Klarbring, et al., 2023), and is often
overlooked in defect calculations, partly due to the (previous) requirement
of significant manual effort and knowledge of group theory.

Automated Compatibility Checking: When parsing defect calcu-
lations, doped automatically checks that calculation parameters which
could affect the defect formation energy (e.g. k-point grid, energy cutoff,
pseudopotential choice, exchange fraction, Hubbard U etc.) are consistent
between the defect and reference calculations. This is a common source
of accidental error in defect calculations, and doped provides informative
warnings if any inconsistencies are detected.

Thermodynamic Analysis: doped provides a suite of flexible tools
for the analysis of defect thermodynamics, including formation energy
diagrams (Figure 2d), equilibrium & non-equilibrium Fermi level solving
(Figure 2f), doping analysis (Figure 2g,h), Brouwer-type diagrams etc.
These include physically-motivated (but tunable) grouping of defect sites,
full inclusion of metastable states, support for complex system constraints,
optimisation over high-dimensional chemical & temperature space and
highly customisable plotting. In-depth examples are provided in the
tutorials.

Finite-Size Corrections: Both the isotropic Freysoldt (FNV) (Freysoldt
et al., 2009) and anisotropic Kumagai (eFNV) (Kumagai & Oba, 2014)
image charge corrections are implemented automatically in doped, with
tunable sampling radii / sites (which may be desirable for e.g. layered
materials), automated correction plotting (to visualise/analyse convergence;
Figure 2¢), and automatic sampling error estimation.

Reproducibility & Tabulation: doped has been built to support and
encourage reproducibility, with all input parameters and calculation results
saved to lightweight JSON files. This allows for easy sharing of calculation
inputs/outputs and reproducible analysis. Several tabulation functions
are also provided to facilitate the quick summarising of key quantities as
exemplified in the tutorials (including defect formation energy contribu-
tions, charge transition levels (with/without metastable states), symmetry,
degeneracy and multiplicity factors, defect/carrier concentrations, chemical
potential limits, dopability limits, doping windows. ..) to aid transparency,
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reproducibility, comparisons with other works, and general analysis. The
use of these tabulated outputs in supporting information of publications is
encouraged.

¢ High-Throughput Compatibility: doped is built to be compatible with
high-throughput architectures such as atomate(2) (Mathew et al., 2017) or
AiiDA (Huber et al., 2020), aided by its object-oriented Python framework,
JSON-serializable classes and sub-classed pymatgen objects. Examples are
provided on the documentation website.

e ShakeNBreak: doped is natively interfaced with our defect structure-
searching code ShakeNBreak (Mosquera-Lois et al., 2022), seamlessly
incorporating this phase in the defect calculation workflow. This step
can optionally be skipped or an alternative structure-searching approach
readily implemented.

Some additional features of doped include directional-dependent site displace-
ment (local strain) analysis, deterministic & informative defect naming, molecule
generation for gaseous competing phases, multiprocessing for expedited genera-
tion & parsing, shallow defect analysis (via pydefect (Kumagai et al., 2021)),
Wyckof! site analysis (including arbitrary/interstitial sites), controllable defect
site placement to aid visualisation and more.

The defect generation and thermodynamic analysis components of doped are
agnostic to the underlying software used for the defect supercell calculations.
Direct calculation I/0 is fully-supported for VASP (Kresse & Furthmiiller, 1996),
while input defect structure files can be generated for several widely-used DFT
codes, including FHI-aims (Blum et al., 2009), CP2K (Kiihne et al., 2020),
Quantum Espresso (Giannozzi et al., 2009) and CASTEP (Clark et al., 2005) via
the pymatgen Structure object. Full support for calculation I/O with other DFT
codes may be added in the future if there is sufficient demand. Moreover, doped
is built to be readily compatible with other computational toolkits for advanced
defect characterisation, such as ShakeNBreak for defect structure-searching,
py-sc-fermi for advanced thermodynamic analysis under complex constraints
(Squires et al., 2023), easyunfold for analysing defect/dopant-induced electronic
structure changes (Zhu et al., 2024) or CarrierCapture.jl/nonrad for non-
radiative recombination calculations (Kim et al., 2020; Turiansky et al., 2021).

doped has been used to manage the defect simulation workflow in a number of
publications thus far, including Wang et al. (2024), Cen et al. (2023), Nicolson
et al. (2023), Li et al. (2024), Kumagai et al. (2023), Woo et al. (2023), Wang
et al. (2023), Mosquera-Lois & Kavanagh (2021), Mosquera-Lois, Kavanagh,
Walsh, et al. (2023), Mosquera-Lois et al. (2024), Y.-T. Huang et al. (2022),
Dou et al. (2024), Liga et al. (2023), Willis, Spooner, et al. (2023), Willis,
Claes, et al. (2023), Krajewska et al. (2021), Kavanagh et al. (2021), Kavanagh,
Savory, et al. (2022).
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