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Abstract— In this paper, we present solvable, convex for-
mulations of H2-optimal state estimation and state-feedback
control problems for a general class of linear Partial Differ-
ential Equations (PDEs) with one spatial dimension. These
convex formulations are derived by using an analysis and
control framework called the ‘Partial Integral Equation’ (PIE)
framework, which utilizes the PIE representation of infinite-
dimensional systems. Since PIEs are parameterized by Partial
Integral (PI) operators that form an algebra, H2-optimal
estimation and control problems for PIEs can be formulated as
Linear PI Inequalities (LPIs). Furthermore, if a PDE admits a
PIE representation, then the stability and H2 performance of
the PIE system implies that of the PDE system. Consequently,
the optimal estimator and controller obtained for a PIE using
LPIs provide the same stability and performance when applied
to the corresponding PDE. These LPI optimization problems
can be solved computationally using semi-definite programming
solvers because such problems can be formulated using Linear
Matrix Inequalities by using positive matrices to parameterize
a cone of positive PI operators. We illustrate the application
of these methods by constructing observers and controllers for
some standard PDE examples.

I. INTRODUCTION

Various metrics are used to design observers and con-
trollers for dynamical systems such that the performance
with respect to the metric is optimal. For example, some
standard choice of metrics are quadratic cost function on state
and inputs, H∞-norm, H2-norm, etc. Among these proper-
ties, this paper focuses on optimal estimation and control
problems with H2-norm of the system as the metric because
H2-norm gives information on the system’s output behavior
in the presence of an impulse input, white noise input, or
initial conditions. Furthermore, H2-optimal control problems
are also a generalization of standard control problems, such
as Linear Quadratic Regulator (LQR) and Linear Quadratic
Gaussian (LQG).

The gains of the observer and controller for the closed-
loop Partial Differential Equation (PDE) that provide optimal
H2-performance have important applications in systems that
experience impulsive and stochastic noise inputs. Alterna-
tively, such optimal estimation/control problems also ap-
pear as sub-problems in applications such as sensor/actuator
placement to improve closed-loop performance. For example,
[1] deals with determining optimal sensor/actuator location
along with the observer and controller gains by solving a

This work was supported by the National Science Foundation under grants
No. 1739990 and 1935453

1 Sachin Shivakumar{sshivak8@asu.edu} and Matthew M.
Peet{mpeet@asu.edu} are with School for Engineering of Matter,
Transport and Energy, Arizona State University, USA

nonlinear optimization problem (Also, see [2] for an iter-
ative convex optimization formulation). Such simultaneous
optimization problems (finding sensor/actuator location and
observer/controller gains) have also appeared in applications
such a beam vibration control [3], [4], flow control [5], etc.

Despite the importance and various applications, finding
the estimator/controller that optimizes the H2-norm of the
closed-loop PDE system is difficult. This is because there
are no methods that are non-conservative and can find H2-
optimal estimators and controllers with provable properties.
This is primarily due to the inability to obtain provable H2-
norm bounds for most PDE systems, barring some specific
cases where an analytical expression for the transfer function
can be obtained [6] or when the PDE has finite number
of unstable modes [7], [8]. Since such PDEs are rare,
most of the existing methods rely on early or late-lumping
approximation of the PDE to find H2-optimal observers and
controllers — providing observer/controller gains that have
provable performance only when approximation errors are
zero.

Early-lumping approaches, such as [9], discretize the PDE
solution space (using Galerkin projection, spatial discretiza-
tion or modal decomposition), to obtain an Ordinary Dif-
ferential Equation (ODE) approximation of the PDE. These
approaches, however, do not have provable bounds on H2-
norm because approximating a PDE by an ODE lead to
approximation errors, as a result of which there may be
little or no relationship between the solutions of the original
problem and its approximation. In short, the bounds on H2-
norm are unprovable in the sense that the bounds so obtained
can exceed or fall short of the true H2-norm while not
providing any metric to determine the accuracy of the bound.

On the other hand, late-lumping approaches, such as [10],
[11], [12] (for Time delay systems, see [13]), do not approx-
imate the PDE, however, require solving an Operator-valued
Ricatti equation (ORE) with infinitedimensional, possibly
unbounded, operators – e.g., ORE for LQR control of the
heat equation woudl have second-order spatial differential
operators. Since the set of such operators is not algebraically
closed, one cannot easily parameterize the unknown opera-
tors to solve these OREs. Thus, the operators are projected
onto a finite-dimensional subspace prior to solving, which
often lead to conservative bounds on the H2-norm (or
unprovable bounds, if the truncation errors from projection
cannot be bounded).

The goal of this paper is to solve the problem of ‘finding
H2-optimal estimator/controller for PDEs’ while overcoming
the shortcomings of the existing methods, namely, conser-
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vatism or unprovability of the bounds on H2-norm. A method
was proposed in [14] to provably upper-bound the H2-norm
of a PDE system by utilizing an alternative representation
for PDEs called the Partial Integral Equation (PIE) represen-
tation — an equivalent representation defined by bounded
linear operators called Partial Integral (PI) operators.

The primary motivation behind the PIE representation is
the lack of a universal parameterization or representation
of analysis and control problems for PDE systems – an
inconvenience that is further compounded by the presence
of unbounded operators and auxiliary constraints. Although
[15] introduces a general parametric form for a large class
of PDEs, the number of parameters changes with the order
of derivatives in the PDE, the boundary conditions, etc.
To overcome this issue of varying number of parameters,
the PIE representation is used that has a fixed number of
parameters given by at most 12 Partial Integral (PI) operators.
Subsequently, it was proved that the analysis and control
problems for PIEs can be formulated are solvable convex
optimization problems with PI operator-valued constraints
called Linear PI Inequalities (LPIs). For e.g., exponential
stability and input-to-output L2-gain [15], H∞-optimal con-
troller synthesis [16], etc.

Inspired by the success of the PIE framework in other
analyses and control problems of PDEs, [14] used the PIE
representation and the LPIs to obtain upper-bounds on the
H2-norm for PDE and Time-Delay Systems (TDSs). Al-
though the method proposed therein was not conservative and
typically outperformed other existing methods, the results
were limited to finding the H2-norm and a generalized ob-
servability Gramian. While the results from [14] can indeed
be extended to construct state-estimators with H2-optimal
performance of the error system, one cannot use the results
for controller synthesis. Since the LPI optimization approach
uses parametrized Lyapunov functions to search for observer
and controller with provable properties for PIE systems, one
often runs into the bilinearity issue where the constraints
of the optimization problem are bilinear in the Lyapunov
function parameters and gains of the observer (or controller).
In the case of H2-optimal state estimation problem, one can
overcome the bilinearity via an invertible variable change.
However, the same technique cannot be used in the control
problem because the such an invertible variable change does
not exist — analogous to the ODE case. Thus, to resolve
the bilinearity in the H2-optimal control problem, one must
employ the dual PIE representation of a PDE as was done in
[16]. Although [16] proves that the H∞-norm of a PIE and its
dual are equal, there are no results on H2-norm equivalence.

Using input-to-output charactertization of H2-norm one
might claim the equivalence of H2-norm, however, such a
charactertization depends on transfer functions — a notion
that relies on the existence of well-defined solution map of
the system. In the case of PDEs, proving existence such
a map and finding the transfer function is often challeng-
ing. Thus, to avoid this reliance of proving existence and
uniqueness, we use a state-to-output characterization of H2-
norm that is identical to the input-to-output characterization

when the solution map of a PDE is a strongly continous
semigroup (see [14] for details). Hence, to utilize the dual
PIE representation for controller synthesis, we will first
establish equivalence of H2-norm of a PIE and its associated
dual in Sec. III. Once we establish this equivalence, we
can pose the controller synthesis problem for the dual PIE
(instead of the original PIE) and convexify the bilinear
constraints via an invertible variable change — similar to
the approach used in H∞-optimal state-feedback control in
[16].

To summarize, we will use PIE representation and dual
PIE representation presented in Secs. II-B and III-A, respec-
tively, to propose convex optimization formulations of H2-
optimal state estimation and state-feedback control problems
for a general class of linear PDEs in one spatial dimension
presented in Sec. II-C. These formulations are presented in
the form of LPI optimization problems in Sec. III, which can
be solved using semi-definite programming or PIETOOLS
[17], an open source MATLAB toolbox. We apply the results
of Sec. III to numerical examples in Sec. IV.

II. PRELIMINARIES

In this section, we will introduce the notation used in the
paper along with some rudimentary information on the PIE
framework used in the analysis and control of PDEs. We also
describe, through an example, the type of PDEs for which
the framework is applicable.

A. Notation

We denote the set of all real Lesbegue square-integrable
functions on the spatial domain [a, b] ⊂ R as Ln

2 [a, b].
Similarly Ln

2 [0,∞) denotes square-integrable real-valued
signals where [0,∞) is a temporal domain. For brevity,
RLm,n

2 [a, b] denotes the space Rm × Ln
2 [a, b] where for[

x1

x2

]
,

[
y1
y2

]
∈ RLm,n

2 , the inner-product is defined as〈[
x1

x2

]
,

[
y1
y2

]〉
RL2

:= xT
1 y1 + ⟨x2,y2⟩L2

.

Occasionally, we omit the domain and simply write Ln
2 or

RLm,n
2 . We also omit the inner-product subscripts whenever

it is clear from the context. For functions of time and space,
e.g. x(t, s), ẋ is used to denote the partial derivative ∂x

∂t and
∂sx to denote ∂x

∂s .
We use the bold font to indicate functions of space (or time

and space), e.g. x ∈ Ln
2 [a, b] and calligraphic font, e.g. A,

to represent bounded linear operators on Hilbert spaces, e.g.
A ∈ B(X) where X is a Hilbert space with inner product
⟨·, ·⟩X . For any A ∈ B(X), A∗ denotes the adjoint operator
satisfying ⟨x,Ay⟩X = ⟨A∗x,y⟩X for all x,y ∈ X . Lastly,
we define the truncation operator PT as

PT z(t) =

{
z(t), t ≤ T
0, otherwise, z ∈ L2e[R+].

B. Partial Integral Equations

Having introduced some standard notation, we will next
introduce some notation for PI operators that are used to
define PIE systems. PI operators are bounded linear operators



on RL2 and are elements of the ∗-algebra ΠΠΠ4, which is
defined as follows.

Definition 1. We say P ∈ ΠΠΠ4 ⊂ B(RLm1,n1

2 ,RLm2,n2

2 ) if
there exists a matrix P and polynomials Q1, Q2, R0, R1, and
R2 such that

P = Π
[

P Q1

Q2 {Ri}

] [
x
y

]
(s) :=

[
Px+

∫ b

a
Q1(s)y(s)ds

Q2(s)x+Ry(s)

]
,

(Ry) (s)=R0(s)y(s) +

s∫
a

R1(s, θ)y(θ)dθ +

b∫
s

R2(s, θ)y(θ)dθ.

Since the set of PI operators is closed under composition,
addition, and adjoint, explicit formulae for these operations
on PI operators can be obtained in terms of operations on
the parameters; See [15] for details and formulae.

The notation Π
[

P Q1

Q2 {Ri}

]
is used to indicate the PI

operator associated with the matrix P and polynomial param-
eters Qi, Rj . The dimensions (m1, n1,m2, n2) are inherited
from the dimensions of the matrices P ∈ Rn2×n1 and
polynomials R0(s) ∈ Rm2×m1 . When clear from context, we
will omit the dimensions of the domain and range and simply
use RL2. In the case where a dimension is zero, we use ∅ in
place of the associated parameter with zero dimension. For
example, if m1 = 0, we have an operator of the form

Π
[

∅ ∅
Q2 {Ri}

]
.

In this paper, we consider estimation and control problems
for the PIE systems of the form[

T ẋ(t)
z(t)

]
=

[
A B
C D

] [
x(t)
w(t)

]
, (1)

where T acts as a filter on the PIE state x, A is the
generator, B determines the influence of input w on the
dynamics, C determines the state contribution to the output
z, and D determines the input contribution to z. For systems
with finite-dimensional inputs and outputs, T ,A,B, C are PI
operators, and D is a matrix. We can define a set of minimal
requirements that a solution for a PIE of the above form must
satisfy as shown below.

Definition 2. Given PI operators T , A, B, C and matrix D,
we say {x, z} satisfy the system Σ(T ,A,B, C, D) for initial
conditions x0 ∈ RL2 and inputs w ∈ L2e[R+], if T x is
differentiable for all t ∈ R+, z ∈ L2e[R+], and x and z
satisfy the equations[

T ẋ(t)
z(t)

]
=

[
A B
C D

] [
x(t)
w(t)

]
, (2)

for all t ∈ R+ and (T x)(0) = x0.

Notation: Note that in Def. 2, we use the notation
Σ(T ,A,B, C, D) to denote a PIE system. Extending this
notation to special case of PIEs with one or more of the
null parameters, we will simply use ‘−′ in the corresponding
location. For example, Σ(T ,A,−, C,−) implies B = 0 and
D = 0 — i.e., there are no inputs.

C. GPDE: A generalized class of PDEs

The class of PDEs considered that may admit a PIE
representation includes PDEs that have: ODE coupling, nth
order spatial derivatives, integral terms, boundary terms,
inputs, and outputs. Using the differential operator notation
Dix := col(∂0

sx, · · · , ∂i
sx), Dirac operator ∆ax := x(a),

and integral operator I[a,b]x :=
∫ b

a
x(s)ds, we can compactly

represent such PDEs as[
ẋ
ẋ

]
= Axwu

x
w
u

+ Π
[

∅ Bx,x

∅ {Ai}

]
Dnx+Bbx

[
∆a

∆b

]
Dn−1x,

[
z
y

]
= Cxwu

x
w
u

+ Cb

[
∆a

∆b

]
Dn−1x+ I[a,b]CxD

nx,

Bb

[
∆a

∆b

]
Dn−1x+ I[a,b]BID

nx = Bxwu

x
w
u

 , (3)

where x is an ODE state (function of time) and x is n-
times spatially differentiable PDE state (function of time
and space). Following the typical 9-matrix representation
of ODEs [18], we separate outputs into two categories:
observed y and regulated z. Likewise, inputs are separated
into disturbance w and control u. The above parameterization
is general in the following sense:

• it allows nth-order derivatives Dn, boundary terms
∆, and integral terms I, all of which can impact the
dynamics (via Ai and Bbx), the outputs (via Cb and
Cx), and boundary conditions (via Bb and BI ).

• it allows coupling with ODE and influence of inputs via
Bx,x, Bbx, Axwu, and Bxwu.

In fact, this parameterization can be further extended to
PDEs with mixed orders of differentiability. While we will
refer to [15] for the full class of linear PDEs that admit
such a PIE representation Eq. (1), we include the following
example for illustration.

Example 3. Consider the vibration suppression problem for
a cantilevered Euler-Bernoulli beam

ẋ(t, s) =

[
0 −0.1
1 0

]
∂2
sx(t, s) +

[
1
0

]
w(t) +

[
1
0

]
u(t),[

1 0
]
x(t, 0) =

[
1 0

]
∂sx(t, 0) = 0,[

0 1
]
x(t, 1) =

[
0 1

]
∂sx(t, 1) = 0,

where we define the state as x = col(∂tη, ∂
2
sη) where η

is displacement, w is external disturbance and u is control
input. To regulate a combination of vibrations and control

effort we defined z(t) =
[∫ 1

0
η(t, s)ds u(t)

]T
. The goal is

to find the controller gains K : x(t) 7→ u(t) that minimizes
a certain objective (H∞-norm, H2-norm, LQR cost function,
etc.). For this PDE, we can find a PIE representation
Σ(T ,A,

[
B1 B2

]
, C,

[
D1 D2

]
) where B1 and B2 are the

parameters corresponding to the influence of the disturbance
w and control u on the dynamics. Likewise, D1 and D2

correspond to the contributions of w and u to the output z.
To illustrate, we derive the PIE representation from Cauchy’s



rule for repeated integration, which gives us the identity

x(s) = x(0) + s∂sx(0) +

∫ s

0

(s− θ)∂2
sx(θ)dθ.

Substituting the boundary conditions, we obtain the direct
relationship

x(s) =∫ s

0

[
(s− θ) 0

0 0

]
∂2
sx(θ)dθ +

∫ 1

s

[
0 0
0 (θ − s)

]
∂2
sx(θ)dθ.

Substituting this expression into the dynamics and denoting
x := ∂2

sx, we obtain the PIE representation

∂t


∫ s

0

[
(s− θ) 0

0 0

]
x(t, θ)dθ

+
∫ 1

s

[
0 0
0 (θ − s)

]
x(t, θ)dθ


=

[
0 −0.1
1 0

]
x(t, s) +

[
1
0

]
w(t) +

[
1
0

]
u(t).

Finally, by inspection, we identify the non-zero parameters
in the Partial Integral operators T ,A,Bi, C, Di as

T = Π
[

∅ ∅
∅ {0, R1, R2}

]
,A = Π

[
∅ ∅
∅ {R0, 0, 0}

]
,

Bi = Π
[

∅ ∅
Q2 {∅}

]
, C = Π

[
∅ Q1

∅ {∅}

]
, D2 =

[
0
1

]
,

where

R1(s, θ)=

[
s− θ 0
0 0

]
, R2(s, θ)=

[
0 0
0 θ − s

]
, Q2 =

[
1
0

]
,

R0(s)=

[
0 −0.1
1 0

]
, Q1(s)=

[
0 − s4

12 − s3

6 + s2

2
0 0

]
.

This tedious process of constructing the PIE representation
has been automated in the PIETOOLS software package
[19], [20] with a dedicated command line and GUI input
formats. Typically, given a coupled ODE-PDE with sufficient
boundary conditions, one can find a PIE representation of
the form Eq. (1) using either the Cauchy’s rule for repeated
integration or PIETOOLS.

D. A Side Note on H2-norm Definition

The H2-norm of a system can have two different equiva-
lent interpretations. One of the interpretations is deterministic
in the sense that H2-norm is defined as the system response
to an impulse input (or, equivalently, an initial condition
[14]) as shown below. For this purpose, consider an abstract
operator representation of a PDE with inputs u and outputs
y given by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (4)
where x(t) ∈ X ⊆ RL2, X is a the domain of the
infinitesimal generator A, and B : R → RL2 and C : X →
R are input and output operators, respectively.

Definition 4. Given a PDE of the form Eq. (4), suppose there
exists x differentiable for all t ≥ 0 that satisfies Eq. (4) for
any initial condition of the form x(0) = Bu0 where u0 ∈ R
and zero input (i.e., u = 0). Then, the H2-norm is given by

sup
∥u0∥=1

{
∥y∥L2

| {x, y} satisfy the PDE with u = 0,
x(0) = Bu0 , u0 ∈ R

}
.

Alternatively, one can define H2-norm as the largest
eigenvalue of a linear operator in Hardy space, H2, by using
the notion of transfer functions as shown below.

Definition 5. Given a PDE of the form Eq. (4), suppose G
that maps û to ŷ given by the relation ŷ(s) = G(s)û(s)
where ŷ and û are Laplace transforms of the output y and
input u. Then, H2-norm of the system Eq. (4) is ∥G∥H2

.

Although both these definitions of H2-norm are equivalent
when A generates a strongly continuous semigroup [14], we
will use the former version (Def. 4) as it is more suitable for
proving the results of this paper.

III. LINEAR PI INEQUALITIES

We proceed by acknowledging, but without formally stat-
ing, the fact that the PDE and PIE representations are
equivalent, i.e., the two representations have the same in-
ternal stability and input-output properties. See [15] for
more details. Relying on this equivalence of input-output
properties, we now formulate the H2-norm optimization
problems for PDEs using the PIE representation. Specifically,
in this section, we present convex optimization formulations
of H2-norm bounding, H2-optimal state estimator design,
and H2-optimal state feedback controller synthesis problems.

Since PIEs are defined by PI operators, these formula-
tions will naturally have decision variables and positivity
constraints involving PI operators – i.e., a Linear PI In-
equality (LPI) problem. For example, given a PIE system
Σ(T ,A,−,−,−), the following LPI is a test for stability:

P ≻ 0, A∗PT + T ∗PA ⪯ 0. (5)
Although the method to solve these problems is not described
here in detail, an overview is presented below.

In brief, these methods construct a positive PI operator
using a quadratic form involving a positive matrix and nth-
order basis of PI operators, Zn. For example, P ⪰ 0 if
there exists some matrix Q ≥ 0 such that P = Z∗

nQZn =
Z∗

nQ
1
2Q

1
2Zn ⪰ 0, where the basis Zn is constructed using

a vector of monomials in s upto order n, Zn, as

Zn

[
x
x

]
(s) =


x

Zn(s)x(s)∫ s

a
(Zn(s)⊗ Zn(θ))x(θ)dθ∫ b

s
(Zn(s)⊗ Zn(θ))x(θ)dθ

 . (6)

Thus, one can use positive matrices to parameterize positive
operators P and Q test the feasibility of the LPI Eq. (5) by
solving the constraint A∗PT + T ∗PA = −Q.

A. LPI for H2-norm Upper Bound

Before solving the estimator and controller design prob-
lems for PIEs, we will first revisit the duality property of
a PIE system. This is crucial because the duality property
enables us to pose the estimation and control problems as
duals of each other. Consequently, if we solve one of the
two mentioned problems, we can solve the other by solving
its dual. To show this duality between the two problems, we
recall the following dual relation between initial conditions



of Σ(T ,A,B, C, D) and its dual Σ(T ∗,A∗, C∗,B∗, DT )
from [16].

Theorem 6. Given x0, x̄0 ∈ RLm,n
2 , PI operators

T ,A,B, C, and matrix D, if {x, z} satisfies Σ(T ,A,B, C, D)
for initial conditions T x0 and zero inputs, and {x̄, z̄}
satisfies Σ(T ∗,A∗, C∗,B∗, DT ) for initial conditions T ∗x̄0

and zero inputs, then

⟨T ∗x̄0,x(t)⟩RL2
= ⟨x̄(t), T x0⟩RL2

, ∀ t ≥ 0. (7)

Proof. Proof can be found in Theorem 10 of [16].

Theorem 7. Suppose T , A, B, and C are PI operators. Then
the following statements are equivalent.

1) For any u0 ∈ Rq , if {x, z} satisfies the system
Σ(T ,A,B, C,−) for initial conditions Bu0 and zero
inputs then ∥z∥L2

≤ γ ∥u0∥R.
2) For any ū0 ∈ Rp, if {x̄, z̄} satisfies the system

Σ(T ∗,A∗, C∗,B∗,−) for initial conditions C∗ū0 and
zero inputs then ∥z̄∥L2

≤ γ ∥ū0∥R.

Proof. Suppose that {x, z} satisfy Σ(T ,A,B, C,−) for ini-
tial condition Bu0 for some u0 ∈ Rq and zero inputs.
Furthermore, let ∥z∥L2

≤ γ ∥u0∥R be valid for all {x, z}
that satisfy Σ(T ,A,B, C,−) for initial condition of the form
T x(0) = Bu0 for every u0 ∈ Rq and zero inputs. Let
x̄(t) ∈ RLm,n

2 and z̄(t) ∈ Rq satisfy Σ(T ∗,A∗, C∗,B∗,−)
for initial condition C∗ū0 for some ū0 ∈ Rp and zero inputs.
Then, from Eq. (7) of Theorem 6, we have
0 = ⟨T ∗x̄(0),x(t)⟩RL2

− ⟨x̄(t), T x(0)⟩RL2

= ⟨C∗ū0,x(t)⟩RL2
− ⟨x̄(t),Bu0⟩RL2

= ⟨ū0, Cx(t)⟩R − ⟨B∗x̄(t), u0⟩R = ūT
0 z(t)− z̄(t)Tu0.

Thus, for any t ≥ 0, we have the relationship ūT
0 z(t) =

z̄(t)Tu0. Squaring the left and right hand sides of the
equality, we obtain

(ūT
0 z(t))

T ūT
0 z(t) = (z̄(t)Tu0)

T z̄(t)Tu0. (8)
From Cauchy-Schwarz Inequality,

(ūT
0 z(t))

T ūT
0 z(t) ≤ ∥z(t)∥2R ∥ū0∥2R .

For any z̄(t) ∈ Rp, we know
∥z̄(t)∥2R = sup

∥u0∥=1

⟨z̄(t), u0⟩2R = sup
∥u0∥=1

(z̄(t)Tu0)
T z̄(t)Tu0

≤ sup
∥u0∥=1

∥z(t)∥2R ∥ū0∥2R .

Hence, integrating with respect to time (from [0,∞)) on both
sides, we have

∥z̄∥2L2
≤ sup

∥u0∥=1

∥z∥2L2
∥ū0∥2R ≤ γ2 ∥ū0∥2R .

Hence, γ is an upper bound on H2-norm for
Σ(T ∗,A∗, C∗,B∗,−). Since the dual and primal systems are
interchangeable, necessity follows from sufficiency.

As will be seen below, the above relationship leads to two
formulations of H2-norm analysis problem, which will later
be used to solve estimator and controller design problems.

Theorem 8. Suppose there exist ϵ > 0, γ > 0, PI operators
P ⪰ ϵI and Z , such that either of the following two

conditions hold:
8.1 T ∗PA+A∗PT + C∗C ⪯ 0, trace(B∗PB) ≤ γ2.
8.2 T PA∗ +APT ∗ + BB∗ ⪯ 0, trace(CPC∗) ≤ γ2.

Then, γ is an upper bound on the H2-norm of
Σ(T ,A,B, C,−).

Proof. The proof of Part 1 can be found in [14]. For Part 2,
we use the equivalence of a PIE and its dual representation.
Suppose there exists γ,P that satisfy ineq. (8.2). Then,
from [14, Theorem 5], we have that the H2-norm of the
PIE system Σ(T ∗,A∗, C∗,B∗,−) is upper-bounded by γ.
However, from Thm. 7, we have that H2-norm of a PIE
and its dual are equivalent. Thus, we have that the H2-norm
of the PIE system Σ(T ,A,B, C,−) is upper-bounded by γ.

B. LPI for H2-optimal Estimator

Given a PIE system
T ẋ(t) = Ax(t) + B1w(t),

z(t) = C1x(t), y(t) = C2x(t) +D21w(t), (9)
we can design a Luenberger observer, whose dynamics is
given by

T ˙̂x(t) = Ax̂(t) + L(ŷ(t)− y(t)),

ẑ(t) = C1x̂(t), ŷ(t) = C2x̂(t) +D21w(t), (10)
which leads an estimation error e = x̂ − x. We can then
write the dynamics of the estimation error as

T ė(t) = (A+ LC2)e(t)− (B1 + LD21)w(t),

ẑ(t) = C1e(t). (11)

Corollary 9. Suppose there exist ϵ > 0, γ > 0, matrix W ,
and PI operators P ⪰ ϵI and Z , such that

T ∗PA+A∗PT + T ∗ZC2 + C∗
2Z∗T + C∗

1C1 ⪯ 0,[
P −(PB1 + ZD21)

−(PB1 + ZD21)
∗ W

]
⪰ 0

trace(W ) ≤ γ2. (12)
Then, the H2-norm of Σ(T , (A+LC2),−(B1+LD21), C1,−)
is upper bounded by γ where L = P−1Z .

Proof. Suppose γ,P,Z are as stated above. Then, from the
first inequality in Eq. (12),

T ∗PA+A∗PT + T ∗ZC2 + C∗
2Z∗T + C∗

1C1
= T ∗P(A+ LC2) + (A+ LC2)∗PT + C∗

1C1 ≤ 0.

Using Schur’s Complement on the second inequality in
Eq. (12), we can say[

P −(PB1 + ZD21)
−(PB1 + ZD21)

∗ W

]
⪰ 0

implies
0 ⪯ W − (PB1 + ZD21)

∗P−1(PB1 + ZD21)

= W − (PB1 + ZD21)
∗P−1(PB1 + ZD21)

= W − (B1 + LD21)
∗P(B1 + LD21),

and trace(W − (B1 + LD21)
∗P(B1 + LD21)) ≥ 0. Since

trace(W ) ≤ γ2, we have
trace((B1 + LD21)

∗P(B1 + LD21)) ≤ trace(W ) ≤ γ2.



Clearly, from Part 1 of Thm. 8, we have that γ is an
upper bound on the H2-norm of the PIE system Σ(T , (A+
LC2),−(B1 + LD21), C1,−).

Thus, if one solves the LPI constraints Eq. (12) (convex
constraints) while minimizing the γ (convex objective func-
tion), we can find the estimator gains L whose error system
has the optimal H2 performance.

C. LPI for H2-optimal Controller
Similar to the approach taken to formulate the H2-optimal

estimator using Thm. 8, we can also formulate its dual
problem, the H2-optimal state-feedback control problem as
an LPI. In this context, we consider the PIE system without
observed output and distinguish between disturbance w and
control input u. Such a PIE can be represented as

T ẋ(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) +D12u(t). (13)
The goal is to find a state-feedback u(t) = Kx(t), such
that the H2 performance of the closed-loop system given
by Σ(T , (A+ B2K),B1, (C1 +D12K),−) is optimal. Since
controller synthesis is the dual problem for H2-optimal
estimator problem, we use the dual version of LPI in Thm. 8
(i.e., Eq. (8.2)) to formulate the LPIs for controller synthesis
as shown below.

Corollary 10. Suppose there exist ϵ > 0, γ > 0, matrix W ,
and PI operators P ⪰ ϵI and Z , such that

APT ∗ + T PA∗ + B2ZT ∗ + T Z∗B∗
2 + B1B∗

1 ⪯ 0,[
P (C1P +D12Z)∗

C1P +D12Z W

]
⪰ 0

trace(W ) ≤ γ2. (14)
Then, the H2-norm of Σ(T , (A+B2K),B1, (C1+D12K),−)
is upper bounded by γ where K = ZP−1.

Proof. The proof follows an approach similar to the proof
of Thm. 9. Hence, we will only provide an outline here.
Suppose γ,P,Z are as stated above. Then, from the first
inequality in Eq. (14), we have

T P(A+ B2K)∗ + (A+ B2K)PT ∗ + B1B∗
1 ≤ 0.

From second inequality in Eq. (14),
W − (C1 +D12K)P(C1 +D12K)∗ ⪰ 0.

Hence, trace((C1 + D12K)P(C1 + D12K)∗) ≤ γ2. Thus,
the H2-norm of the PIE system Σ(T , (A+B2K),B1, (C1 +
D12K),−) is upper bounded by γ.

Again, similar to solving for H2-optimal estimator, we
can solve the LPI constraints Eq. (14) while minimizing γ to
find the controller gains K and obtain the closed-loop system
that has the optimal H2 performance. However, to find the
gains (both estimator and controller) requires inversion of a
PI operator P — an iterative approach was described in [16]
and will not be discussed here.

IV. NUMERICAL EXAMPLES

We will use the Matlab toolbox that was developed to
solve LPI optimization problems, PIETOOLS, because the

toolbox offers convenient Matlab functions to convert PDEs
to PIE, declare PI decision variables, add LPI constraints,
and solve the resulting optimization problem. We refer to the
PIETOOLS User Manual [20] for details. For the following
two examples, namely, an unstable reaction-diffusion PDE
and a neutrally-stable Euler-Bernoulli beam, we will use
PIETOOLS toolbox to obtain PIE representation of the
PDEs. Then, we will apply the results from Cor. 9 and 10 to
find the H2-optimal observers and controllers. Utilizing the
helper functions in PIETOOLS to invert positive PI operators
and we construct the closed-loop observer and controller
systems, which are simulated using first-order backward
difference integration scheme for certain initial conditions
and no disturbance. For each example, we also provide a
numerical estimate of the H2-norm (i.e., ∥z∥L2

/ ∥u0∥R) as
observed in the simulations — i.e., by performing numerical
integration of the simultation output z(t)2 to obtain ∥z∥L2

.

A. Estimation and Control of Reaction-diffusion PDE

In this example, we consider the reaction-diffusion PDE
given by

ẋ(t, s) = 3x(t, s) + (s2 + 0.2)∂2
sx(t, s) +

s2 − 2s

2
w(t) + u(t),

z(t) =

[∫ 1

0
x(t, s)ds
u(t)

]
, y(t) = x(t, 1) + w(t),

x(t, 0) = ∂sx(t, 1) = 0. (15)

For the above PDE, we use PIETOOLS toolbox to obtain
a PIE representation and then solve the LPI optimization
problems in Cor. 9 and 10 to obtain the gains corresponding
to the H2-optimal estimator and state-feedback controller.
Then, the closed-loop PIE system is constructed and simu-
lated using the PIESIM module of the PIETOOLS toolbox
in MATLAB to find the system’s response under a zero
disturbance and initial conditions x(0, s) = s2−2s

2 (i.e.,
u0 = 1). The initial-condition response of the PDE. (15)
(without control and with H2-optimal state-feedback control)
are presented in Fig. 1. The H2-norm bound obtained by
solving the LPI in Thm. 10 is stated in the caption along
with the numerical estimate.

For the observer simulation, we initialize the observer
state at zero, while the PDE state is initialized as earlier.
In Fig. 2, we only show the response of the error system
— i.e., we plot the error between state-estimate (x̂) and
actual state (x), given by e = x̂ − x. Additionally, we
also plot the regulated output of the error system given by
ẑ(t)− z(t) =

∫ 1

0
e(t, s)ds.

B. Estimation and Control of Euler-Bernoulli Beam Equa-
tion

In this example, we consider the Euler-Bernoulli beam
equation introduced in Ex. 3,

ẋ(t, s) =

[
0 −0.1
1 0

]
∂2
sx(t, s) +

[
−0.5s2

0

]
w(t) +

[
1
0

]
u(t),[

1 0
]
x(t, 0) =

[
1 0

]
∂sx(t, 0) = 0,[

0 1
]
x(t, 1) =

[
0 1

]
∂sx(t, 1) = 0,



Fig. 1: This figure plots the response of the system Eq. (15)
without control (on the left) and with control input (on the
right) under zero disturbance and initial conditions x(0, s) =
s2−2s

2 while considering the regulated output as defined
in Eq. (15). H2-norm of the closed-loop system is 1.79
(numerical estimate 1.21).

Fig. 2: This figure plots the error (e = x̂ − x) in the state
estimate (on the left) and regulated error output (on the right)
of the state observer for the system Eq. (15). The observer is
initialized with zero initial conditions, whereas the PDE state
starts with an initial condition x(0, s) = s2−2s

2 and is under
zero disturbance. H2-norm of the observer error system is
1.37 (numerical estimate 0.23) where regulated and observed
outputs are as defined in Subsec. IV-A.

z(t) =

[∫ 1

0

[
0 1− s− s2

]
x(t, s)ds

u(t)

]
,

y(t) =
[
1 0

]
x(t, 1) + w(t). (16)

We obtain PIE representation as stated earlier and then solve
the LPI optimization problems in Cor. 9 and 10 to obtain the
gains corresponding to the H2-optimal estimator and state-
feedback controller. Then, the PIEs are simulated using the
PIESIM to find the system’s response under zero disturbance
w and initial conditions x(0, s) = col(−0.5s2, 0) (i.e., u0 =
1). Similar to the reaction-diffusion PDE example, we plot
initial-condition response of the PDE without control and
with H2-optimal state-feedback control in Fig. 3. The H2-
norm bound from Thm. 10 and the numerical estimate from
the simulation are stated in the caption.

In Fig. 4, we see the response of the error system for
PDE initial conditions stated above and zero observer initial
condition. In this case, we plot the error in only one of the
states and the regulated output in the other, given by ẑ(t)−
z(t) =

∫ 1

0
(1− s− s2)e2(t, s)ds.

Fig. 3: This figure plots the response of the system Eq. (16)
without control (on the left) and with control input (on the
right) under zero disturbance and initial conditions x(0, s) =
col(−0.5s2, 0) while considering the regulated output as
defined in Eq. (16). H2-norm of the closed-loop system is
0.78 (numerical estimate 0.29).

Fig. 4: This figure plots the first component of the error
(e1 = x̂1 − x1) in the state estimate (on the left) and
regulated error output (on the right) of the state observer
for the system Eq. (16). The observer is initialized with
zero initial conditions, whereas the PDE state starts with
an initial condition x(0, s) = col(−0.5s2, 0) and is under
zero disturbance. H2-norm of the observer error system is
0.57 (numerical estimate 0.48) where regulated and observed
outputs are as defined in Subsec. IV-B.

V. CONCLUSION

In this paper, we solved the H2-optimal estimation and
control problems for PDEs using the PIE framework devel-
oped for the analysis and control of PDE systems. Since
formulating a PDE analysis/control problem using the PIE
representation does not introduce any conservatism and leads
to solvable convex optimization problems called Linear PI
Inequalities (LPIs), we showed that H2 analysis, estimation
and control problems for PDEs can be solved using convex
optimization without conservatism. For this purpose, we
utilized an alternative definition of H2-norm of a system
that does not rely on the transfer function or impulse input;
Instead, we characterized H2-norm as the gain from an initial
condition to the output of the system. Using this alternative,
but equivalent, definition of H2-norm, we showed that a PIE
system and its corresponding dual PIE system have the same
H2-norm. Using this duality, we formulated two versions of
LPIs problems (a primal and dual) to upper bound the H2-



norm of the system that were later used to formulate H2-
optimal state estimator and state-feedback control problems
for PIEs as convex LPI optimization problems. By solving
these LPI optimization problems, we demonstrated the appli-
cation of this framework in estimator design and controller
synthesis for PDE numerical examples.
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