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Abstract. Automated X-ray image segmentation would accelerate re-
search and development in diagnostic and interventional precision medicine.
Prior efforts have contributed task-specific models capable of solving
specific image analysis problems, but the utility of these models is re-
stricted to their particular task domain, and expanding to broader use
requires additional data, labels, and retraining efforts. Recently, founda-
tion models (FMs) — machine learning models trained on large amounts
of highly variable data thus enabling broad applicability — have emerged
as promising tools for automated image analysis. Existing FMs for med-
ical image analysis focus on scenarios and modalities where objects are
clearly defined by visually apparent boundaries, such as surgical tool
segmentation in endoscopy. X-ray imaging, by contrast, does not gener-
ally offer such clearly delineated boundaries or structure priors. During
X-ray image formation, complex 3D structures are projected in transmis-
sion onto the imaging plane, resulting in overlapping features of varying
opacity and shape. To pave the way toward an FM for comprehensive
and automated analysis of arbitrary medical X-ray images, we develop
FluoroSAM, a language-aligned variant of the Segment-Anything Model,
trained from scratch on 1.6M synthetic X-ray images from a wide va-
riety of human anatomies, X-ray projection geometries, energy spectra,
and viewing angles. FluoroSAM is trained on data including masks for
128 organ types and 464 non-anatomical objects, such as tools and im-
plants. In real X-ray images of cadaveric specimens, FluoroSAM is able
to segment bony anatomical structures based on text-only prompting
with 0.51 and 0.79 DICE with point-based refinement, outperforming
competing SAM variants for all structures. FluoroSAM is also capable
of zero-shot generalization to segmenting classes beyond the training set
thanks to its language alignment, which we demonstrate for full lung
segmentation on real chest X-rays.

Code, data, and model weights are available.
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Fig. 1: Overview of the FluoroSAM dataset. (a) Virtual C-arm views are sampled
uniformly on the hemisphere. We project the segmentation maps for 128 organs
and up to 15 out of 464 devices placed at random in the field of view. (b) Flu-
oroscopic images are transmissive by nature, with many overlapping masks but
SAM is designed for nested masks that align with visually evident boundaries,
(annotated here by hand). CLAHE applied for visualization.

1 Introduction

X-ray imaging is a workhorse imaging modality for diagnostic and interventional
healthcare. There is enormous opportunity for quantitative, comprehensive, and
automated segmentation of X-ray images to accelerate research and development
in precision medicine [3, 4, 8, 14, 16, 25, 26, 29]. Prior efforts have contributed
machine learning techniques for X-ray image analysis that perform well within
a narrow scope, but fail to apply broadly to a large swath of possible uses. Ex-
tending these techniques to new applications requires labeled data in addition
to personnel effort for retraining of models, that may or may not be available
in sufficient quantities, thus inhibiting progress. Recently, foundation models
(FMs) have emerged as a promising direction for overcoming these limitations
[2, 5, 18, 20, 22]. FMs are characterized by scalable training strategies, often
accomplished through self-supervision, that enable learning from very big and
highly diverse data. Because of this, they exhibit strong generalizability and ro-
bust performance, resulting in a tendency to outperform more specialized models
on downstream tasks [1]. However, due to the transmission imaging nature of
X-ray, FMs — even the ones specialized for medical imaging [22] — often fail to
generalize to this modality [9]. Further, the scarcity of X-ray data (beyond chest
X-rays [3, 7, 10]) and accompanying labels inhibits development of an X-ray
domain-specific model.

The Segment-Anything Model (SAM) is an attractive candidate for this task
because of its flexibility and compatibility with human-in-the-loop workflows
[18]. Given a user prompt, including points, bounding boxes, or text, SAM pre-
dicts a segmentation mask for semantically meaningful objects. Trained on a
large scale dataset of over 1B masks, the original SAM is a powerful tool for
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automated and collaborative image segmentation, and it has been successfully
fine-tuned on a variety of medical imaging modalities [22]. However, although
models like MedSAM [22] are able to segment certain structures in chest X-
ray images, they suffer from an adherence to well-defined boundaries, which are
typical of masks in other imaging modalities. At the same time, point-based
prompting suffers from a high degree of ambiguity (see Fig. 1b) while box-based
prompting requires expert user input, limiting the potential for automation. In
the context of X-ray, text-based prompting is most desirable as it 1) allows for
interaction-free segmentation given pre-defined prompts while 2) preserving the
flexibility of zero-shot generalization and point prompt-based refinement; and 3)
can unambiguously express the desired segmentation among many overlapping
but highly disparate structures.

Recent advances in simulation [16, 26] and sim-to-real transfer [8, 16, 26]
introduce the possibility of training FMs for X-ray image analysis in a fully
supervised manner. This opens the door to a language-aligned FM in the X-
ray domain, since perfect knowledge of simulated objects allows for automatic
annotation of mask descriptions. Here, we use a physics-based simulation pipeline
[26] to synthesize a large scale, full body dataset of 1.6M digitally reconstructed
radiographs (DRRs), uniformly sampled over a wide variety of human anatomies,
X-ray geometries, energy spectra, and viewing angles. Anatomical masks of 128
organs are projected from automatic segmentations of each CT image, using
TotalSegmentator [28]. To encourage generalizability, we simulate alongside each
patient model a subset of implants, surgical tools, and other devices commonly
found in X-ray, associated with comprehensive text descriptions.

Based on this novel dataset, which to the best of our knowledge is the largest
publicly available X-ray dataset, we present FluoroSAM, a language-aligned FM
for automatic and interactive segmentation of objects and anatomical structures
in medical X-ray images. During training, FluoroSAM uses organ names and de-
vice descriptions as the initial prompts, augmented using a large-language model
to encourage flexbility. Subsequent point-based prompts allow for refinement of
the initial segmentation. This approach allows for fully automated image segmen-
tation by relying solely on text-based prompting, as well as for interactive work-
flows initiated by an initial prompt of “bone,” “organ,” or “device,” for example
and then followed by point prompts, allowing for flexibility in downstream ap-
plications. We evaluate FluoroSAM’s zero-shot sim-to-real performance on real
diagnostic and interventional X-ray images, including publicly available chest
X-ray data and internally collected X-ray images of cadaveric torsos.

2 Methods

The FluoroSAM dataset is a large-scale, synthetic dataset of X-ray images of
all human anatomies with a wide variety of medical devices and implants, in-
cluding more than 63M masks with descriptions. Based on this dataset, we train
FluoroSAM, a SAM-style FM trained with text and point prompting for organs
and devices. Taking an innovative approach to text prompting in this space,
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FluoroSAM uses a large language model (LLM) to augment descriptions during
training, ensuring flexibility and compatibility with diverse inputs.

2.1 A Large Scale Dataset for X-ray Image Analysis

First, we describe our DRR sampling strategy given a single human anatomical
model defined by a CT image. We segment the CT using TotalSegmentator
V2 [28], yielding 117 bone and soft tissue structures in the base model. We
also segment the appendicular bones (11 classes) and body, which is used for
view sampling, for a total of 128 organ masks. All segmentations are converted
to meshes using marching cubes for downstream efficiency. Following this, we
sample the detector size and source-to-detector distance D for a virtual C-arm
uniformly in [180,500] and [700, 1200]mm, respectively, based on commercially
available systems. With a 10% probability, we instead sample a mini C-arm
geometry, in the range of [100,500] and [300,400]mm, respectively. For each
view, we sample a point of interest p uniformly within the body mesh and a
principle ray direction f uniformly on the hemisphere, pointing in the anterior
direction, omitting rays within 25° of the S/I axis. (These are not obtainable
because the C-arm would collide with the table.) The X-ray source (or camera
center) s is randomly offset from the point of interest to obtain the distribution
of C-arm views shown in Fig. 1a.

For each view, then, we randomly place up to 15 surgical tools in the field of
view, with a tendency toward fewer tools. The tools are chosen from among 464
tool mesh models available from [21] (111), collected from GrabCAD (296), or
hand-modeled internally (57) and manually annotated with a text description,
e.g. “cannulated 110mm screw with a 6.5mm diameter and 16mm thread.” These
are placed along the field of view with random location and orientation. We
project digitally reconstructed radiographs (DRRs) from the patient CT and
tool mesh models using a modified version of the DeepDRR simulator [26], which
has been shown to support sim-to-real transfer for X-rays [8, 11, 15, 15]. Using
this version, we simultaneously obtain realistic X-ray tansmission images and
corresponding projected segmentations for each organ or tool present, enabling
synchronous dataset generation of 448 x 448 images at a rate of ~ 4 images / s on
an RTX 2080 Ti, using less than 4 GB of GPU memory. To increase throughput,
which is rate-limited by the time required to obtain multi-organ segmentations in
CTs, we parallelize simulation across 4 instances. Each annotation is associated
with a base description, either from the TotalSegmentator class name or the
original tool description.

At the time of submission the FluoroSAM dataset contains over 1.6M images
synthesized from 1,699 CT scans. Because of compute constraints, this is only
a portion of the CT scans available, including 747 scans from the New Mexico
Decedent Image Database (410 head and neck, 37 torso, and 300 lower extrem-
ity scans) [6]; 108 scans of various regions from the TotalSegmentator dataset
[28]; and 844 torso scans from internal collection at an emergency medicine de-
partment. We project up to 1000 images per scan, which are later filtered for
tools that collide with the detector due to random orientations (roughly 5% of
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Fig.2: FluoroSAM’s training pipeline, which uses an EfficientViT [20] image
encoder, MedCLIP [27] text encoder, and GPT-3.5 for augmentation [2].
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Fig. 3: When using only point prompts, SAM tends to over-segment fluoroscopic
images. While an initial bounding box prompt helps, additional points simply
confuse the network. MedSAM tends to segment an oval inside the prompt.
FluoroSAM, by contrast, is able to propose a reasonable mask based only on
text prompting and, crucially, incorporate new points to refine its prediction.

images). This results in a total of 1,672,969 X-ray images containing 63,625,805
masks, with 2 - 100 masks per image (~38 on average), generated over approxi-
mately four weeks. This is comparable to the size of similar datasets for training
foundation models, such as the MedSAM aggregated dataset of 1,570,263 image-
mask pairs [22]. Finally, we split the FluoroSAM dataset according to an 90/5/5
split, so that no base CT scans overlap between training, validation, and testing.

2.2 A Language-aligned Foundation Model for X-ray Image
Segmentation

Language alignment is crucial for the segment-anything task in X-ray. SAM and
its variants predict three masks corresponding to the whole, part, or sub-part
of an object, as in Fig. 1b, running backpropagation only for the mask with the
lowest loss. X-ray images, on the other hand, often contain overlapping projec-
tions of many anatomical and non-anatomical objects. MedSAM [22] mitigates
this ambiguity for other medical imaging domains by only allowing for bounding
box prompts. For general X-ray imaging, however, this approach is undesirable
because it (a) makes automatic or even non-expert prompting all but impossi-
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ble, (b) precludes refinement of the initial mask using points, (c) still features
significant ambiguity.

Thus, we train FluoroSAM with a text description as the first prompt, fol-
lowed by points. We use the MedCLIP [27] text encoder with frozen weights
to embed each description to 512, followed by a linear layer resizing it to the
transformer dimension 256. To prevent overfitting on the MedCLIP embeddings
of our original descriptions, we apply LLM-based augmentation to descriptions
at training time, making up to 20 variations for each description by removing
nonessential information or adding commands. For example, the class name “L4
vertebra” becomes (a) “Lumbar vertebrae 4,” (b) “Fourth lumbar vertebrae,”
(c) “Identify the L4 vertebrae,” (d) “Find the vertebrae labeled as L4,” etc. We
use the gpt-3.5-turbo from OpenAl to perform these augmentations [2], which
are cached after the initial request. The full text of instructions and examples
provided to the LLM for each prompt are provided in the supplement.

Because the effective resolution of our synthetic X-ray images is limited by
the spatial resolution of the original CT images, we restrict our image size to
4482. Masks are predicted at 2242 and upscaled via transposed convolution to
the original image size, which is comparable to the original SAM output size. We
train FluoroSAM from scratch using a bl EfficientViT [20] image encoder and
the frozen MedCLIP [27]. For subsequent prompts, we follow the strategy in the
original SAM model, using the previous mask as an additional prompt, followed
by up to 8 point embeddings. Following [8], we use strong domain randomiza-
tion to enable sim-to-real transfer, including coarse dropout, inversion, blurring,
Gaussian contrast adjustment [15], random windowing, and CLAHE histogram
equalization. At inference time, we window the negative log transformed images
to the 99*" percentile and scale to [—1,1]. No text augmentation is performed
at inference. We use a batch size of 96 images with up to 16 masks per image,
randomly chosen from among the available masks, and train for 6 epochs on 4
A100 GPUs with 80 GB of memory each. The initial learning rate was 0.001,
reduced by a factor of 10 at epoch 3 and 5.

3 Evaluation

FluoroSAM Test Set. We first compare FluoroSAM’s performance on a with-
held test set of 47,190 synthetic X-rays. Given only a text prompt, FluoroSAM
predicts a qualitatively reasonable mask and attains a 0.43 4+ 0.26 DICE across
all classes, with 0.85+0.11 after further prompting. With two points, comparable
to MedSAM and SAM’s initial box prompt, it achieves superior performance,
with a 0.68 + 0.20 DICE compared to 0.60 + 0.22 and 0.58 + 0.19, respectively.
Fluoroscopic Cadaver Study. To explore FluoroSAM’s performance on real
X-ray images, we collect a dataset with 464 fluoroscopic images of the lower torso
using the Brainlab Loop-X imaging device. Images for all cadaveric specimens
were acquired from -30 to 30° in the cranial/caudal direction and -90 to 90°
in the orbital angle, with random spacing. These images were registered auto-
matically via optical tracking with the Brainlab Curve platform, which enabled
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Fig. 4: FluoroSAM incorporates prompts to refine its prediction for real X-ray im-
ages. MedSAM and SAM both achieve comparable performance to FluoroSAM
with box prompts, but they do not improve with further prompting.

gold-standard 2D /3D registration with CBCT scans taken before and after flu-
oroscopic acquisitions. We then obtain 3D organ segmentations using TotalSeg-
mentator [28] and project 2D masks onto each image as shown in Fig. 3 and
5a (GT). In some cases, TotalSegmentator struggled with soft tissue structures,
possibly because of natural decomposition not present in its training set.

We find that FluoroSAM is an effective tool for segmenting structures in real
fluoroscopic images. We observe qualitatively reasonable masks based on text
prompts alone, with a DICE score of 0.39 on hard tissues and 0.26 overall. Flu-
oroSAM is able to effectively incorporate new information from point prompts,
achieving a DICE of 0.9 £ 0.15 on hard and 0.73 4 0.15 on soft tissue, whereas
SAM does not effectively learn from new prompts, as evident in Fig 3. Likewise
MedSAM, although trained on diagnostic X-ray images, consistently predicts
an oval-shaped mask inside the bounding box prompt, achieving a DICE of
0.51 + 0.21 overall. This trend can be seen in Fig. 4, where the performance
of FluoroSAM aligns with MedSAM and SAM when comparable information is
available, but only FluoroSAM is able to incorporate new information.
Zero-shot Lung Segmentation on Chest X-rays. FluoroSAM’s language
alignment allows for segmentation of objects not seen during training, such as
whole long segmentation in Chest X-rays [3]. Using only text prompts, Fluo-
roSAM proposes a reasonable segmentation of either lung with 0.52+0.21 DICE,
despite never training on the full lung class, only the individual lobes. Further
refinement with point prompts enables 0.90 4+ 0.04 DICE, as seen in Fig. 5b.

4 Discussion and Conclusion

The generalizability of FMs makes it tempting to apply them wherever suitable
datasets can be found. Here, we make the case for a FM seemingly out of step
with the current trend, i.e. to ingest as much data as possible, and instead
focus on a single imaging modality. Yet, X-ray imaging of the full human body
and from various viewing directions represents an enormous variety of images
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Fig. 5: (a) FluoroSAM’s failure modes on text-only prompts include fine details
and soft tissue structures, but it exhibits promising zero- and few-shot perfor-
mance on whole lung segmentation, not included during training.

with markedly different features than visible light or tomographic imaging. The
potential applications of a model like FluoroSAM are significant, as exemplified
by proliferation of specialized models for X-ray image analysis in chest X-ray
diagnosis [3, 5, 24], dental exams [25], forensics [23], intelligent surgical systems
[11-16], and AI-driven educational curricula [17, 19]. Within this broad spectrum
of applications, the benefits of language alignment for X-ray imaging have so
far been limited to diagnostic systems, where text descriptions are available as
the byproduct of routine clinical workflows [5, 10]. The success of these systems
demonstrates the potential for language-aligned models to analyze X-ray images,
and we hope that by adding a large scale, full-body dataset, we will spur further
innovation in this space.

Given the large scale data available, the choice of a SAM framework is sen-
sible but not certain. On one hand, it allows for training strategies that focus
on known objects, by only providing true positive masks during training. This
avoids learning on false negatives in the data, such as implants not segmented
by TotalSegmentator [28], but it does limit text-only prompts to small varia-
tions on the 128 organs and 464 tools seen during training. More complicated
prompts like “Show me the bone fragment below that screw,” necessitate first
recognizing the desired object (a bone fragment rather than a screw), identifying
the disambiguating object (the screw), and finally segmenting a bone fragment,
which is not among the data available during training. We use LLM-based text
augmentation to avoid overfitting on the finite number of descriptions available
from the FluoroSAM dataset, but this approach would not support full lan-
guage understanding. Rather, FluoroSAM allows the user to express the kind
of desired object—a bone rather than an implant or soft tissue—which enables
unambiguous point-based prompting.
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5 Conclusion

We have introduced FluoroSAM, a foundation model trained from scratch on
63M masks for X-ray image segmentation. We have evaluated its performance
on synthetic and real cadaveric X-ray images as well as its zero-shot generaliz-
ability for lung segmentation on chest X-ray images, of which it saw no examples
during training. Thanks to its built-in language alignment, FluoroSAM is able to
automatically segment anatomical and non-anatomical objects with reasonable
accuracy, and its compatibility with point-based prompting allows for further
refinement. Although out initial models show room for improvement, possibly
due to lack of convergence at very small learning rates, we are continuing to
train on the same and newly simulated data, and we look forward to making
foundational-grade models available to the community in X-ray-enabled health-
care research.
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Text Augmentation Detalils.
The full text of instructions for text augmentation prompting are below:

You are a data scientist trying to create a consistent
but varied set of descriptions for training a text—
aligned deep neural network for detecting and
segmenting objects in X—ray images. In subsequent
messages, I will give you a comprehensive description
of an anatomical or surgical object, such as an organ
or an instrument. Your job is to generate a set of
descriptions that are consistent with the original
description but varied enough to provide a diverse
training set. There are several ways to do this, each
of which you should use, either alone or in
combination, to generate a diverse set of descriptions

You should also use your creativity to come up with
other methods for generating diverse descriptions.
Here are some examples of the methods you should use:

Remove some or all of the nonessential information about
the object.

Add some nonessential information that would not confuse
the network.

Stay close to the original description, but change some
of the nonessential information.

Convert the description to a command, such as ”Find the |
object],” ”"Identify the [object],” or any other
similar commands.

Convert the description to a question, such as "What is
the [object]?,” ”"Where is the [object]?,” or any other
similar questions.

When responding to each query, list 5 — 20 variations in
plain text, separated by newlines. Do not explain your
decisions. Do not provide any additional text, other
than the varied descriptions. Do not number the
descriptions or use bullet points to separate them.
Putting them on different lines is fine.

Finally , it is okay if you feel you do not have enough
information, I’m sure you will do your best as the

expert surgical data annotator that you are.

Here are some examples to get you started:



2 Anonymous

input:
cannulated 110mm screw with a 6.5mm diameter and 16mm
thread

output:

cannulated screw

Show me the cannulated screw.

screw

The one—ten screw.

Where is the screw?

Where is the long screw?

Find the screw with the 16mm thread.
Find the screw.

The orthopaedic screw.

input:
orthopedic drill with a K—wire adaptor

orthopedic drill

drill

the drill

Show me the drill.

drill with K—wire adaptor
Orthopedic drill with adapter
Drill for orthopedic procedure

Organ and Device Segmentation on Full Body Synthetic X-ray

All Classes Bone Tissue
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Fig.1: On synthetic X-ray images from a wide variety of views onto the full
body, FluoroSAM outperforms SAM and MedSAM, and it shows the ability to
improve based on additional information.



