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Abstract

An isoperimetric inequality for lower order nonzero Neumann eigenvalues of the
Witten-Laplacian on bounded domains in a Euclidean space or a hyperbolic space has
been proven in this paper. About this conclusion, we would like to point out two
things:

• It strengthens the well-known Szegő-Weinberger inequality for nonzero Neumann
eigenvalues of the classical free membrane problem given in [J. Rational Mech.
Anal. 3 (1954) 343–356] and [J. Rational Mech. Anal. 5 (1956) 633–636];

• Recently, Xia-Wang [Math. Ann. 385 (2023) 863–879] gave a very important
progress to the celebrated conjecture of M. S. Ashbaugh and R. D. Benguria
proposed in [SIAM J. Math. Anal. 24 (1993) 557–570]. It is easy to see that our
conclusion here covers Xia-Wang’s this progress as a special case.

In this paper, we have also proposed two open problems which can be seen as a gener-
alization of Ashbaugh-Benguria’s conjecture mentioned above.

1 Introduction

Let (Mn, 〈·, ·〉) be an n-dimensional (n ≥ 2) complete Riemannian manifold with the metric
g := 〈·, ·〉. Let Ω ⊆ Mn be a domain in Mn, and φ ∈ C∞(Mn) be a smooth1 real-valued
function defined on Mn. In this setting, on Ω, the following elliptic operator

∆φ := ∆− 〈∇φ,∇·〉

0∗ Corresponding author
MSC 2020: 35P15, 49Jxx, 35J15.
Key Words: Witten-Laplacian, Neumann eigenvalues, Laplacian, the free membrane problem, isoperimetric
inequalities.

1 In fact, one might see that φ ∈ C2 is suitable to derive our main conclusions in this paper. However, in
order to avoid a little bit boring discussion on the regularity of φ and following the assumption on conformal
factor e−φ for the notion of smooth metric measure spaces in many literatures (including of course those
cited in this paper), without specification, we prefer to assume that φ is smooth on the domain Ω.
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can be well-defined, where ∇, ∆ are the gradient and the Laplace operators on Mn, re-
spectively. The operator ∆φ w.r.t. the metric g is called the Witten-Laplacian (also called

the drifting Laplacian or the weighted Laplacian). The K-dimensional Bakry-Émery Ricci
curvature RicKφ on Mn can be defined as follows

RicKφ := Ric + Hessφ−
dφ⊗ dφ

K − n− 1
,

where Ric denotes the Ricci curvature tensor on Mn, and Hess is the Hessian operator on
Mn associated to the metric g. Here K > n + 1 or K = n + 1 if φ is a constant function.
When K = ∞, the so-called ∞-dimensional Bakry-Émery Ricci curvature Ricφ (simply,

Bakry-Émery Ricci curvature or weighted Ricci curvature) can be defined as follows

Ricφ := Ric + Hessφ.

These notions were introduced by D. Bakry and M. Émery in [2]. Many interesting results
(under suitable assumptions on the Bakry-Émery Ricci curvature) have been obtained, and
we prefer to mention briefly several ones:

• For Riemannian manifolds2 (Mn, g) endowed with a weighted measure dη := e−φdv,
where dv denotes the Riemannian volume element (or Riemannian density) w.r.t. the
metric g, Wei and Wylie [19] proved mean curvature and volume comparison results
when the Bakry-Émery Ricci curvature Ricφ is bounded from below and φ or |∇φ| is
bounded, improving the classical ones (i.e., when φ is constant). As described by J.
Mao (the corresponding author here) in [14, pp. 31-32], one might have an illusion
that smooth metric measure spaces are not necessary to be studied since they are sim-
ply obtained from corresponding Riemannian manifolds by adding a conformal factor
to the Riemannian measure. However, they do have many differences. For instance,
when Ricφ is bounded from below, the Myer’s theorem, Bishop-Gromov’s volume com-
parison, Cheeger-Gromoll’s splitting theorem and Abresch-Gromoll’s excess estimate
cannot hold as in the Riemannian case. Moreover, in order to let readers have a deep
impression and a nice comprehension on those differences, Mao [14, page 32] has also
repeated briefly an interesting example (given in [19, Example 2.1]) to make an expla-
nation therin. More precisely, for the metric measure space (Rn, gRn, e−φdvRn), where
gRn is the usual Euclidean metric of the Euclidean n-space Rn, and dvRn denotes the
Euclidean volume density related to gRn , if φ(x) = λ

2
|x|2 for x ∈ Rn, then Hess = λgRn

and Ricφ = λgRn . Therefore, from this example we know that unlike in the case of
Ricci curvature bounded from below uniformly by some positive constant, a metric
measure space is not necessarily compact provided Ricφ ≥ λ and λ > 0. Hence, it is
meaningful to study geometric problems in smooth metric measure spaces.

• Perelman’s W-entropy formula for the heat equation associated with the Witten Lapla-
cian on complete Riemannian manifolds via the Bakry-Émery Ricci curvature tensor
has been investigated by Li [10]. In fact, under the assumption that the m-dimensional
Bakry-Émery Ricci curvature is bounded from below, Li [10, Theorem 2.3] obtained

2 Without specifications, generally, in this paper same symbols have the same meanings.
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an analogue of Perelman’s entropy formula for the W-entropy of the heat kernel of
the Witten Laplacian on complete Riemannian manifolds with some natural geometric
conditions. In particular, by this fact, he proved a monotonicity theorem and a rigid-
ity theorem for the W-entropy on complete Riemannian manifolds with nonnegative
m-dimensional Bakry-Émery Ricci curvature.

• Mao and his collaborators [8, Theorems 4.1 and 4.4, Corollary 4.2] investigated the
buckling problem of the drifting Laplacian, and firstly obtained some universal in-
equalities for eigenvalues of the same problem on bounded connected domains in the
Gaussian shrinking solitons

(
Rn, gRn, e−

|x|2

4 dvRn,
1

2

)

and some general product solitons of the type

(
Σ× R, g, e−

κt2

2 dv, κ
)
,

where Σ is an Einstein manifold with constant Ricci curvature κ, and t ∈ R is the
parameter defined along the line {x}×R, x ∈ Σ. Besides, as interpreted in [8, Remark

4.3], for a self-shrinker, if the weighted function φ was chosen to be φ = |x|2

4
, then the

drifting Laplacian considered in [8] degenerates into the operator L := ∆− 1
2
〈x,∇(·)〉

which was introduced by Colding-Minicozzi [7] to study self-shrinker hypersurfaces.
For the Dirichlet eigenvalue problem of the operator L, Cheng-Peng [6] have obtained
some universal inequalities. From this viewpoint, [8, Theorem 4.1 and Corollary 4.2]
can be regarded as conclusions for the buckling problem of the operator L.

Except [8, 14], Mao also has some other interesting works related to the Witten-Laplacian –
see, e.g., [9, 13, 15, 16, 23].

Using the conformal measure dη = e−φdv, the notion, smooth metric measure space
(Mn, g, dη), can be well-defined, which is actually the given Riemannian manifold (Mn, g)
equipped with the weighted measure dη. Smooth metric measure space (Mn, g, dη) some-
times is also called the weighted measure space. For the smooth metric measure space
(Mn, g, dη), one can define a notion, weighted volume (or φ-volume), as follows:

|Mn|φ :=

∫

Mn

dη =

∫

Mn

e−φdv.

On a compact smooth metric measure space (Ω, 〈·, ·〉, dη), one can naturally consider the
Neumann eigenvalue problem of the Witten-Laplacian ∆φ as follows

{
∆φu+ µu = 0 in Ω ⊂Mn,
∂u
∂~ν

= 0 on ∂Ω,
(1.1)

where ~ν is the unit normal vector along the smooth3 boundary ∂Ω. The eigenvalue problem
(1.1) can also be called the free membrane problem of the operator ∆φ. It is not hard to

3 The smoothness assumption for the regularity of the boundary ∂Ω is strong to consider the eigenvalue
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check that the operator ∆φ in (1.1) is self-adjoint w.r.t. the following inner product

(̃f1, f2) :=

∫

Ω

f1f2dη =

∫

Ω

f1f2e
−φdv,

with f1, f2 ∈ W̃ 1,2(Ω), where W̃ 1,2(Ω) is the Sobolev space w.r.t. the weighted measure dη,
i.e. the completion of the set of smooth functions C∞(Ω) under the following Sobolev norm

‖̃f‖1,2 :=

(∫

Ω

f 2dη +

∫

Ω

|∇f |2dη

)1/2

.

Then using similar arguments to those of the classical free membrane problem of the Lapla-
cian (i.e., the discussions about the existence of discrete spectrum, Rayleigh’s theorem, Max-
min theorem, etc. These discussions are standard, and for details, please see for instance
[4]), it is not hard to know:

• The self-adjoint elliptic operator −∆φ in (1.1) only has discrete spectrum, and all the
elements (i.e., eigenvalues) in this discrete spectrum can be listed non-decreasingly as
follows

0 = µ0,φ(Ω) < µ1,φ(Ω) ≤ µ2,φ(Ω) ≤ · · · ↑ +∞. (1.2)

For each eigenvalue µi,φ(Ω), i = 0, 1, 2, · · · , all the possible nontrivial functions u
satisfying (1.1) are called eigenfunctions belonging to µi,φ(Ω). Since the first equation
in (1.1) is linear, the space of µi,φ(Ω)’s eigenfunctions should be a vector space. This
vector space of µi,φ(Ω) is called eigenspace. Each eigenspace has finite dimension, and
usually the dimension of each eigenspace is called multiplicity of the eigenvalue. It
is easy to know that eigenfunctions of the first eigenvalue µ0,φ(Ω) = 0 are nonzero
constant functions, and correspondingly, the eigenspace of µ0,φ(Ω) = 0 has dimension
1. Eigenvalues in the sequence (1.2) are repeated according to its multiplicity. By
applying the standard variational principles, one can obtain that the k-th nonzero
Neumann eigenvalue µk,φ(Ω) can be characterized as follows

µk,φ(Ω) = inf

{∫
Ω
|∇f |2e−φdv∫
Ω
f 2e−φdv

∣∣∣∣∣f ∈ W̃ 1,2(Ω), f 6= 0,

∫

Ω

ffie
−φdv = 0

}
, (1.3)

where fi, i = 0, 1, 2, · · · , k − 1, denotes an eigenfunction of µi,φ(Ω). Specially, the first
nonzero Neumann eigenvalue µ1,φ(Ω) of the eigenvalue problem (1.1) satisfies

µ1,φ(Ω) = inf

{∫
Ω
|∇f |2dη∫
Ω
f 2dη

∣∣∣∣∣f ∈ W̃ 1,2(Ω), f 6= 0,

∫

Ω

fdη = 0

}
. (1.4)

problem (1.1) of the Witten-Laplacian. In fact, a weaker regularity assumption that ∂Ω is Lipschitz contin-
uous can also assure the validity about the description of the discrete spectrum of the eigenvalue problem
(1.1). However, the Lipschitz continuous assumption might not be enough to consider some other geometric
problems involved Neumann eigenvalues of (1.1). Therefore, in order to avoid a little bit boring discussion
on the regularity of the boundary ∂Ω (which is also not important for the topic investigated in our paper
here), we prefer to assume that ∂Ω is smooth. This setting leads to the situation that some conclusions
of this paper may still hold under a weaker regularity assumption for the boundary ∂Ω, readers who are
interested in this situation could try to seek the weakest regularity.
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For convenience and without confusion, in the sequel, except specification we will write
µi,φ(Ω) as µi,φ directly. This convention would be also used when we meet with other
possible eigenvalue problems.

In this paper, we focus on the Neumann eigenvalue problem (1.1) of the Witten-Laplacian
and can prove an isoperimetric inequality for the sums of the reciprocals of the first (n− 1)
nonzero Neumann eigenvalues of the Witten-Laplacian on bounded domains in Rn or a
hyperbolic space. However, in order to state our conclusions clearly, we need to impose an
assumption on the function φ as follows:

• (Property I) Furthermore, φ is a function of the Riemannian distance parameter
t := d(o, ·) for some point o ∈ hull(Ω), and φ is also a non-increasing convex function
defined on [0,∞).

Here hull(Ω) stands for the convex hull of the domain Ω. Clearly, if a given open Rieman-
nian n-manifold (Mn, g) was endowed with the weighted density e−φdv with φ satisfying
Property I, then φ would be a radial function defined on Mn w.r.t. the radial distance t,
t ∈ [0,∞). Especially, when the given open n-manifold is chosen to be Rn or Hn (i.e., the
n-dimensional hyperbolic space of sectional curvature −1), we additionally require that o is
the origin of Rn or Hn.

Theorem 1.1. Assume that the function φ satisfies Property I. Let Ω be a bounded domain
with smooth boundary in Rn, and let BR(o) be a ball of radius R and centered at the origin
o of Rn such that |Ω|φ = |BR(o)|φ, i.e.

∫
Ω
dη =

∫
BR(o)

dη. Then

1

µ1,φ(Ω)
+

1

µ2,φ(Ω)
+ · · ·+

1

µn−1,φ(Ω)
≥

n− 1

µ1,φ(BR(o))
. (1.5)

The equality case holds if and only if Ω is the ball BR(o).

By applying the sequence (1.2), i.e. the monotonicity of Neumann eigenvalues of the
Witten-Laplacian, from (1.5) one has:

Corollary 1.2. Under the assumptions of Theorem 1.1, we have

µ1,φ(Ω) ≤ µ1,φ(BR(o)), (1.6)

with equality holding if and only if Ω is the ball BR(o). That is to say, among all bounded
domains in Rn having the same weighted volume, the ball BR(o) maximizes the first nonzero
Neumann eigenvalue of the Witten-Laplacian, provided the function φ satisfies Property I.

Remark 1.3. The spectral isoperimetric inequality (1.6) in Corollary 1.2 has already been
proven by the authors in [5] by suitably constructing the trail function. However, we still
prefer to list it here to show the close relation between (1.5) and (1.6), and show of course
the significance of the spectral isoperimetric inequality (1.5) as well.

Remark 1.4. (1) Topologically, the Euclidean n-space Rn is two-points homogenous, so
generally it seems like there is no need to point out the information of the center for the ball
BR(o) when describing the isometry conclusion in Theorem 1.1. However, for the eigenvalue
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problem (1.1), by (1.3) one knows that even on Euclidean balls, the Neumann eigenvalues
µi,φ also depend on the weighted function φ (except the situation that φ is a constant func-
tion). This implies that for Euclidean balls with the same radius but different centers, they
might have different Neumann eigenvalues µi,φ since generally the radial function φ here has
different distributions on different balls. Therefore, we need to give the information of the
center for the ball BR(o) when we investigate the possible rigidity for the equality case of
(1.5).
(2) A slightly sharper version of (1.5) has also been obtained – for details, see Theorem 3.1
in Section 3 below.
(3) As we know, if φ = const. is a constant function, then the Witten-Laplacian ∆φ degen-
erates into the Laplacian ∆, and correspondingly the eigenvalue problem (1.1) becomes the
classical free membrane problem of the Laplacian ∆ as follows

{
∆u+ µu = 0 in Ω ⊂Mn,
∂u
∂~ν

= 0 on ∂Ω.
(1.7)

Clearly, the Laplacian −∆ in (1.7) only has the discrete spectrum, and all the eigenvalues
in this discrete spectrum can be listed non-decreasingly as follows

0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ · · · ↑ +∞.

The corresponding Neumann eigenvalues µk can be characterized similarly as (1.3)-(1.4) with
φ = const. instead. Now, we would like to recall some results on isoperimetric inequalities
of Neumann eigenvalues of the eigenvalue problem (1.7). For simply connected bounded
domains Ω ⊂ R2, by using the conformal mapping techniques, Szegő [18] obtained

µ1(Ω)A(Ω) ≤ µ1(D)A(D) = πp21,1, (1.8)

where D stands for a disk in the plane R2, and A(·) denotes the area of a given geometric
object. Later, this result was improved by Weinberger [20] to the higher dimensional case,
that is, for bounded domains Ω ⊂ Rn, n ≥ 2, he proved

µ1(Ω) ≤

(
wn

|Ω|

)2/n

p2n/2,1, (1.9)

where wn, |Ω| denote
4 the volume of the unit ball in Rn and the volume of Ω, respectively.

Here pv,k in (1.8)-(1.9) stands for the k-th positive zero of the derivative of x1−vJv(x), with
Jv(x) the Bessel function of the first kind of order v. The equality case in (1.8) (or (1.9)) if
and only if Ω is a disk (or a ball in Rn). Clearly, from the Szegő-Weinberger’s isoperimetric
inequality (1.9), one knows:

• (Fact A) Among all bounded domains in Rn having the same volume, the ball maxi-
mizes the first nonzero Neumann eigenvalue of the Laplacian.

4 Similarly, without confusion, in the sequel | · | would denote the volume of a given geometric object.
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It is not hard to see that Fact A was covered by Corollary 1.2 as a special case (corresponding
to φ = const.). Szegő and Weinberger found that Szegő’s proof of (1.8) for simply connected
domains in R2 can be improved to get the estimate

1

µ1(Ω)
+

1

µ2(Ω)
≥

2A(Ω)

πp21,1
(1.10)

for such domains. Brasco and Pratelli [3] made a quantitative improvement of (1.8) – for
any bounded domain with smooth boundary Ω ⊂ Rn, they have proven

w2/n
n p2n/2,1 − µ1(Ω)|Ω|

2/n ≥ c(n)A(Ω),

where c(n) is a positive constant depending only on n, and A(n) is the so-called Fraenkel
asymmetry defined by

A(n) :=

{
|Ω△B|

|Ω|

∣∣∣∣∣B is a ball in Rn such that |Ω| = |B|

}
,

with Ω△B the symmetric difference of Ω and B. An interesting quantitative improvement
of (1.10) obtained by Nadirashvilli [17] states that there exists a constant C > 0 such that
for every smooth simply connected bounded open set Ω ⊂ R2, it holds

1

|Ω|

(
1

µ1(Ω)
+

1

µ2(Ω)

)
−

1

|B|

(
1

µ1(B)
+

1

µ2(B)

)
≥

A(Ω)2

C
,

with B any disk in R2. Is it possible to improve (1.10) to the higher dimensional case? The
answer is affirmative. In fact, for any bounded domain Ω ⊂ Rn (with smooth boundary),
Ashbaugh and Benguria [1] obtained the estimate

1

µ1(Ω)
+

1

µ2(Ω)
+ · · ·+

1

µn(Ω)
≥

n

n + 2

(
|Ω|

wn

)2/n

. (1.11)

Some interesting generalizations to (1.11) have been done – see, e.g., [12, 21]. Based on the
estimate (1.11), Ashbaugh and Benguria [1] proposed an important open problem as follows:

• Conjecture I. ([1]) For any bounded domain Ω with smooth boundary in Rn, we have

1

µ1(Ω)
+

1

µ2(Ω)
+ · · ·+

1

µn(Ω)
≥

n

p2n/2,1

(
|Ω|

wn

)2/n

,

with equality holding if and only if Ω is a ball in Rn.

Conjecture I is still open until now. Recently, Xia-Wang [22] gave a very important progress
to this celebrated conjecture, and actually they proved that

1

µ1(Ω)
+

1

µ2(Ω)
+ · · ·+

1

µn−1(Ω)
≥
n− 1

p2n/2,1

(
|Ω|

wn

)2/n

(1.12)

holds for any bounded domain Ω ⊂ Rn with smooth boundary, where the equality holds if
and only if Ω is a ball in Rn. Clearly, the isoperimetric inequality (1.12) gives a partial answer
to Conjecture I and also supports its validity. It is not hard to see that our conclusion
in Theorem 1.1 here covers Xia-Wang’s spectral isoperimetric inequality (1.12) as a special
case (corresponding to φ = const.).
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Theorem 1.5. Assume that the function φ satisfies Property I. Let Ω be a bounded domain
in Hn, and let BR(o) be a geodesic ball of radius R and centered at the origin o of Hn such
that |Ω|φ = |BR(o)|φ. Then

1

µ1,φ(Ω)
+

1

µ2,φ(Ω)
+ · · ·+

1

µn−1,φ(Ω)
≥

n− 1

µ1,φ(BR(o))
. (1.13)

The equality case holds if and only if Ω is isometric to the geodesic ball BR(o).

Similarly, by applying the sequence (1.2), from (1.13) one has:

Corollary 1.6. Under the assumptions of Theorem 1.5, we have

µ1,φ(Ω) ≤ µ1,φ(BR(o)), (1.14)

with equality holding if and only if Ω is isometric to BR(o). That is to say, among all bounded
domains in Hn having the same weighted volume, the geodesic ball BR(o) maximizes the
first nonzero Neumann eigenvalue of the Witten-Laplacian, provided the function φ satisfies
Property I.

Remark 1.7. Similar to the Euclidean case, the spectral isoperimetric inequality (1.14) in
Corollary 1.6 has already been proven by the authors in [5] by suitably constructing the trail
function. However, we still prefer to list it here to show the close relation between (1.13)
and (1.14), and show of course the significance of the spectral isoperimetric inequality (1.13)
as well.

Remark 1.8. (1) Similar to (1) of Remark 1.4, except the situation that φ is a constant
function, one also needs to give the information of the center for the geodesic ball BR(o)
mentioned in Theorem 1.5 and Corollary 1.6.
(2) When investigating spectral isoperimetric inequalities (1.13)-(1.14), there is no essential
difference between Hn and a hyperbolic n-space with constant curvature not equal to −1.
(3) Ashbaugh and Benguria [1] also proposed another important open problem as follows:

• Conjecture II. ([1]) Let Mn(κ) be an n-dimensional complete simply connected Rie-
mannian manifold of constant sectional curvature κ ∈ {1,−1}, and Ω be a bounded
domain in Mn(κ) which is contained in a hemisphere in the case that κ = 1. Let BΩ

be a geodesic ball in Mn(κ) such that |Ω| = |BΩ|. Then

1

µ1(Ω)
+

1

µ2(Ω)
+ · · ·+

1

µn(Ω)
≥

n

µ1(BΩ)
,

with equality holding if and only if Ω is isometric to BΩ.

Conjecture II is still open until now. Recently, Xia-Wang [22] also gave a very important
progress to this celebrated conjecture, and actually they proved that

1

µ1(Ω)
+

1

µ2(Ω)
+ · · ·+

1

µn−1(Ω)
≥

n− 1

µ1(BΩ)
(1.15)



9

holds for any bounded domain Ω ⊂ Hn with smooth boundary, and for a geodesic ball
BΩ ⊂ Hn with |Ω| = |BΩ|. Moreover, the equality in (1.15) holds if and only if Ω isometric to
BΩ in Hn. Clearly, the isoperimetric inequality (1.15) gives a partial answer to Conjecture

II and also supports its validity. It is not hard to see that our conclusion in Theorem 1.5 here
covers Xia-Wang’s spectral isoperimetric inequality (1.15) as a special case (corresponding
to φ = const.).

Based on the deriving process of our main conclusions in Theorems 1.1 and 1.5, we would
like to propose the following two open problems, which we think it should be suitable to call
them the Ashbaugh-Benguria type conjecture.

Question A. Consider the eigenvalue problem (1.1) with choosing Mn to be Mn = Rn,
and assume that the function φ satisfies Property I. Let Ω be a bounded domain with
smooth boundary in Rn, and let BR(o) be a ball of radius R and centered at the origin o of
Rn such that |Ω|φ = |BR(o)|φ. Then

1

µ1,φ(Ω)
+

1

µ2,φ(Ω)
+ · · ·+

1

µn−1,φ(Ω)
+

1

µn,φ(Ω)
≥

n

µ1,φ(BR(o))
.

The equality case holds if and only if Ω is the ball BR(o).
Question B. Consider the eigenvalue problem (1.1) with choosing Mn to be Mn = Hn,

and assume that the function φ satisfies Property I. Let Ω be a bounded domain with
smooth boundary in Hn, and let BR(o) be a geodesic ball of radius R and centered at the
origin o of Hn such that |Ω|φ = |BR(o)|φ. Then

1

µ1,φ(Ω)
+

1

µ2,φ(Ω)
+ · · ·+

1

µn−1,φ(Ω)
+

1

µn,φ(Ω)
≥

n

µ1,φ(BR(o))
.

The equality case holds if and only if Ω is isometric to BR(o).

Remark 1.9. Obviously, Theorems 1.1 and 1.5 give a partial answer to the Ashbaugh-
Benguria type conjecture and also support its validity.

This paper is organized as follows. By suitably constructing trial functions, we success-
fully give a proof to Theorems 1.1 and 1.5 in Section 2. BTW, since originally the proof
of Theorem 1.1 is highly similar to that of Theorem 1.5, this leads to the situation that
we prefer to unify those two proofs into a single one, which finally appears as its present
version shown in Section 2. A refined result of Theorem 1.1 would be given in Section 3 –
see Theorem 3.1 for details.

2 A proof of Theorems 1.1 and 1.5

First, we would like to recall a property of the eigenfunction corresponding to the first
nonzero Neumann eigenvalue of the Witten-Laplacian on geodesic balls (in space forms) if
the function φ is radial w.r.t. some chosen point. This property has been carefully proven
in [5, Appendix], and readers can check all the details therein.
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Lemma 2.1. ([5, Theorem 4.1]) Assume that BR(o) is a geodesic ball of radius R and cen-
tered at some point o in the n-dimensional complete simply connected Riemannian manifold
Mn(κ) with constant sectional curvature κ ∈ {−1, 0, 1}, and that φ is a radial function w.r.t.
the distance parameter t := d(o, ·), which is also a non-increasing convex function. Then the
eigenfunctions of the first nonzero Neumann eigenvalue µ1,φ(BR(o)) of the Witten-Laplacian
on BR(o) should have the form T (t)xi

t
, i = 1, 2, · · · , n, where T (t) satisfies

{
T ′′ +

(
(n−1)Cκ

Sκ
− φ′

)
T ′ + (µ1,φ(BR(o))− (n− 1)S−2

κ ) T = 0,

T (0) = 0, T ′(R) = 0, T ′|[0,R) 6= 0.
(2.1)

Here Cκ(t) = (Sκ(t))
′ and

Sκ(t) =





sin t, if Mn(κ) = Sn
+,

t, if Mn(κ) = Rn,
sinh t, if Mn(κ) = Hn,

with Sn
+ the n-dimensional hemisphere of radius 1.

Remark 2.2. From [5, Appendix], it is not hard to know that xi, i = 1, 2, · · · , n, are
coordinate functions of the globally defined orthonormal coordinate system set up in Mn(κ).

A proof of Theorems 1.1 and 1.5. Due to the fact that φ is radial w.r.t. o, one can
define a radial function f as follows

f(t) =

{
T (t), if 0 ≤ t ≤ R,
T (R), if t > R,

(2.2)

where R is the radius of the (geodesic) ball BR(o) satisfying the volume constraint |Ω|φ =
|BR(o)|φ. The origin o would be chosen as follows: in fact, by the Brouwer fixed point
theorem and using a similar argument to that of Weinberger given in [20], one can always
choose a suitable origin o ∈ hull(Ω) such that

∫

Ω

f(t)
xi
t
dη = 0, i = 1, 2, · · · , n. (2.3)

Denote by {e1, e2, · · · , en} the orthonormal basis (of Rn or Hn) corresponding to the coor-
dinates x1, x2, · · · , xn. Then (2.3) can be rewritten as

∫

Ω

〈x, ei〉
f(t)

t
dη = 0, i = 1, 2, · · · , n, (2.4)

with 〈·, ·〉 denoting the inner product. Denote by ui the eigenfunction corresponding to the
i-th Neumann eigenvalue µi,φ of the eigenvalue problem (1.1). Then (2.4) implies that

〈x, ei〉
f(t)

t
⊥ u0

in the sense of L2-norm w.r.t. the weighted density dη. Our purpose now is to construct
suitable trail function ψi for the eigenvalue µi,φ such that ψi is orthogonal to the preceding
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eigenfunctions u0, u1, · · · , ui−1. That is to say, ψi ⊥ span{u0, u1, · · · , ui−1} in the sense of
L2-norm w.r.t. the weighted density dη. Define an n× n matrix Q = (qij)n×n with qij given
by

qij :=

∫

Ω

〈x, ei〉
f(t)

t
ujdη, i, j = 1, 2, · · · , n.

Using the orthogonalization of Gram and Schmidt (QR-factorization theorem), one knows
that there exist an upper triangle matrix M = (Mij)n×n and an orthogonal matrix U =
(aij)n×n such that M = UQ, which implies

Mij =
n∑

k=1

aikqkj =

∫

Ω

aik〈x, ek〉
f(t)

t
ujdη, 1 ≤ j < i ≤ n.

Set e′i =
∑n

k=1 aikek, i = 1, 2, · · · , n, and then
∫

Ω

〈x, e′i〉
f(t)

t
ujdη = 0 (2.5)

holds for j = 1, 2, · · · , i− 1 and i = 2, 3, · · · , n. BTW, it is easy to see that {e′1, e
′
2, · · · , e

′
n}

is also an orthonormal basis (of Rn or Hn), which is actually formed by making an orthog-
onal transformation to the orthonormal basis {e1, e2, · · · , en}. Denote by y1, y2, · · · , yn the
coordinate functions corresponding to the basis {e′1, e

′
2, · · · , e

′
n}, that is, yi = 〈x, e′i〉. Then

from (2.5) one has
∫

Ω

yi
f(t)

t
ujdη = 0, j = 1, 2, · · · , i− 1 and i = 2, 3, · · · , n. (2.6)

For convention and by the abuse of notations, we prefer to use xi as coordinate functions
– based on this, we still write yi as xi, i = 2, 3, · · · , n. Then in this setting, (2.6) can be
rewritten as

∫

Ω

xi
f(t)

t
ujdη = 0, j = 1, 2, · · · , i− 1 and i = 2, 3, · · · , n. (2.7)

Together with (2.3) and (2.7), one has that there exists an orthonormal basis {e1, e
′
2, e

′
3, · · · , e

′
n}

such that the coordinate functions x1, x2, · · · , xn corresponding to this basis satisfy
∫

Ω

xi
f(t)

t
ujdη = 0, j = 0, 1, 2, · · · , i− 1 and i = 1, 2, 3, · · · , n. (2.8)

Here the eigenfunction u0 of the eigenvalue µ0,φ can be chosen as u0 = 1/
√
|Ω|φ. Set in (2.8)

that

ψi := xi
f(t)

t
, i = 1, 2, 3, · · · , n,

and then one has∫

Ω

ψiujdη = 0, j = 0, 1, 2, · · · , i− 1 and i = 1, 2, 3, · · · , n. (2.9)

Hence, our purpose of constructing trail functions ψi, i = 1, 2, 3, · · · , n, has been achieved.
To prove our main conclusions, we also need the following truth.
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Lemma 2.3. The function f(t)
Sκ(t)

is monotone decreasing in the bounded domain Ω with

smooth boundary in Rn (or Hn).

Proof. By (2.1) and the definition of the function f , we observe first that

lim
t→0

f(t)

Sκ(t)
= f ′(0).

Without loss of generality, we may assume f > 0. Since

d

dt

(
f(t)

Sκ(t)

)
=
f ′(t)− Cκ(t)

Sκ(t)
f(t)

Sκ(t)
,

similarly, one has

lim
t→0

(
f ′(t)−

Cκ(t)

Sκ(t)
f(t)

)
= 0, f ′(R)−

Cκ(R)

Sκ(R)
f(R) < 0.

If there exists a point t0 such that f ′(t0)−
Cκ(t0)
Sκ(t0)

f(t0) > 0, then there exists t1 such that

f ′(t1)−
Cκ(t1)

Sκ(t1)
f(t1) > 0,

d

dt

(
f ′(t)−

Cκ(t)

Sκ(t)
f(t)

)
(t1) = 0. (2.10)

Combining the first equation in (2.1) and (2.10) yields at point t1 that

−
nCκ

Sκ

f ′ − µ1,φf + φ′f ′ +
nf

S2
κ

= 0. (2.11)

Therefore, due to φ′ ≤ 0, it follows from (2.11) that

(
f ′ −

f

CκSκ

)
(t1) ≤ 0.

So, we have

(
f ′ −

Cκ

Sκ
f

)
(t1) ≤

(
f

SκCκ
−
fCκ

Sκ

)
(t1)

=

(
f(1− C2

κ)

SκCκ

)
(t1)

≤ 0.

This is contradict with
(
f ′ − Cκ

Sκ
f
)
(t1) > 0. Hence, we have d

dt
( f(t)
Sκ(t)

) < 0, and then f(t)
Sκ(t)

is

monotone decreasing.
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By the characterization (1.3) and (2.9), one can obtain

µi,φ(Ω)

∫

Ω

f 2x
2
i

t2
dη ≤

∫

Ω

(
f ′2x

2
i

t2
+ f 2

∣∣∣∇
(xi
t

)∣∣∣
2

S−2
κ (t)

)
dη, (2.12)

where ∇ is the gradient operator defined on the unit (n − 1)-sphere Sn−1. By a direct
calculation to (2.12), one has

∫

Ω

f 2x
2
i

t2
dη ≤

1

µi,φ(Ω)

∫

Ω

(f ′)2
x2i
t2
dη +

1

µi,φ(Ω)

∫

Ω

f 2
∣∣∣∇
(xi
t

)∣∣∣
2

S−2
κ (t)dη

=
1

µi,φ(Ω)

∫

Ω∩BR(o)

(f ′)2
x2i
t2
dη +

1

µi,φ(Ω)

∫

Ω

f 2
∣∣∣∇
(xi
t

)∣∣∣
2

S−2
κ (t)dη

≤
1

µi,φ(Ω)

∫

BR(o)

(f ′)2
x2i
t2
dη +

1

µi,φ(Ω)

∫

Ω

f 2
∣∣∣∇xi

t

∣∣∣
2

S−2
κ (t)dη

=
1

µi,φ(Ω)

1

n

∫ R

0

∫

Sn−1(1)

(f ′)2Sn−1
κ (t) e−φdSdt

+
1

µi,φ(Ω)

∫

Ω

f 2
∣∣∣∇
(xi
t

)∣∣∣
2

S−2
κ (t)dη

=
1

µi,φ(Ω)

1

n

∫

BR(o)

(f ′)2dη +
1

µi,φ(Ω)

∫

Ω

f 2
∣∣∣∇
(xi
t

)∣∣∣
2

S−2
κ (t)dη, (2.13)

where dS stands for the volume element on the (n− 1)-sphere Sn−1(1) of radius 1. By [22],
one knows

n∑

i=1

1

µi,φ(Ω)

∣∣∣∇
(xi
r

)∣∣∣
2

≤

n−1∑

i=1

1

µi,φ(Ω)
. (2.14)

Therefore, combining (2.13) with (2.14), and then doing summation over the index i from 1
to n, we can obtain

∫

Ω

f 2dη ≤

n∑

i=1

1

nµi,φ(Ω)

∫

BR(o)

(f ′)2dη +

n−1∑

i=1

1

µi,φ(Ω)

∫

Ω

f 2S−2
κ (t)dη. (2.15)

On the other hand, still from (2.14), one has

n∑

i=1

1

µn,φ(Ω)

∣∣∣∇
(xi
r

)∣∣∣
2

≤

n∑

i=1

1

µi,φ(Ω)

∣∣∣∇
(xi
r

)∣∣∣
2

≤

n−1∑

i=1

1

µi,φ(Ω)
,

which implies

1

nµn,φ(Ω)
≤

1

n(n− 1)

n−1∑

i=1

1

µi,φ(Ω)
.

Substituting the above inequality into (2.15) results in

∫

Ω

f 2(t)dη ≤

n−1∑

i=1

1

(n− 1)µi,φ(Ω)

[∫

BR(o)

(f ′)2(t)dη +

∫

Ω

(n− 1)f 2(t)S2
κ(t)dη

]
. (2.16)
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Applying Lemma 2.3 and [5, Lemma 4.4 and Appendix], one has

∫

Ω

f 2(t)dη ≥

∫

BR(o)

f 2(t)dη,

∫

Ω

f 2(t)

S2
κ(t)

dη ≤

∫

BR(o)

f 2(t)

S2
κ(t)

dη.

Putting the above fact into (2.16), we have

1

n− 1

n−1∑

i=1

1

µi,φ(Ω)
≥

∫
BR(o)

f 2(t)dη
∫
BR(o)

[
(f ′)2 + (n− 1) f

2(t)
S2
κ(t)

]
dη

=
1

µ1,φ(BR(o))
,

which implies (1.5) or (1.13) directly. This completes the proof of Theorems 1.1 and 1.5.

3 A sharper estimate

In the last section, we would like to give a more shaper estimate (for the sums of the
reciprocals of the first (n − 1) nonzero Neumann eigenvalues of the Witten-Laplacian on
bounded domains in Rn) than (1.5) shown in Theorem 1.1. In fact, we can prove:

Theorem 3.1. Assume that Ω is a bounded domain in Rn with smooth boundary, and that
the function φ satisfies Property I. Then

µ1,φ(BR(o))−
n− 1

1
µ1,φ(Ω)

+ 1
µ2,φ(Ω)

+ · · ·+ 1
µn−1,φ(Ω)

≥

∫
BR(o)\B1

[
(f ′)2 + (n− 1)f

2

t2

]
dη − f 2(R)

∫
B2\BR(o)

[
(n− 1) 1

t2

]
dη

∫
BR(o)

f 2dη
, (3.1)

where (as in Theorem 1.1) BR(o) is a ball of radius R and centered at the origin o of Rn such
that |Ω|φ = |BR(o)|φ, f is the function defined by (2.2), and B1, B2 are two balls centered at
the origin o and satisfying |B1|φ = |Ω ∩ BR(o)|φ, |B2 \ BR(o)|φ = |Ω \BR(o)|φ, respectively.
The equality in (3.1) holds if and only if Ω is the ball BR(o).

Proof. By Lemma 2.3, we have f ′ − 1
t
f ≤ 0 and f ′ ≥ 0 in [0, R], which implies

(f ′)2 −
f 2

t2
≤ 0.

Since |∇xi

t
|2 = 1−

x2

i

t2
and (f ′)2 − f2

t2
≤ 0, with the help of trail functions ψi, i = 1, 2, · · · , n,

constructed in Section 2 and by using a similar argument of deriving the inequality (2.31)
in [22], it is not hard to get

n− 1
n−1∑
i=1

1
µi,φ

∫

Ω

f 2dη ≤

∫

Ω

[
(f ′)2 + (n− 1)

f 2

t2

]
dη. (3.2)
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Since f is increasing, we can deduce from [5, Lemma 4.4 and Appendix] by the rearrangement
technique the following:

∫

Ω

f 2dη ≥

∫

BR(o)

f 2dη. (3.3)

Putting the above expression into (3.2) yields

n− 1∑n−1
i=1

1
µi,φ

∫

BR(o)

f 2dη ≤

∫

Ω

[
(f ′)2 + (n− 1)

f 2

t2

]
dη. (3.4)

Since f(t)xi

t
, i = 1, 2, · · · , n, are the eigenfunctions corresponding to the eigenvalue µ1,φ(BR(o)),

one can obtain from the characterization (1.4) that

µ1,φ(BR(o))

∫

BR(o)

f 2dη =

∫

BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη. (3.5)

Combining (3.4) and (3.5) results in

(
µ1,φ(BR(o))−

n− 1∑n−1
i=1

1
µi,φ

)∫

BR(o)

f 2dη ≥

∫

BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη −

∫

Ω

[
(f ′)2 + (n− 1)

f 2

t2

]
dη. (3.6)

On one hand,

∫

Ω

[
(f ′)2 + (n− 1)

f 2

t2

]
dη =

∫

(Ω\BR(o))∪(Ω∩BR(o))

[
(f ′)2 + (n− 1)

f 2

t2

]
dη

=

∫

Ω\BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

∫

Ω∩BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη. (3.7)

By [5], it is not hard to show that (f ′)2 + (n− 1)f
2

t2
is monotone decreasing along the radial

direction of (Ω ∩ BR(o)) \B1, which implies

∫

Ω∩BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη =

∫

Ω∩BR(o)∩B1

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

∫

(Ω∩BR(o))\B1

[
(f ′)2 + (n− 1)

f 2

t2

]
dη

≤

∫

Ω∩BR(o)∩B1

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

[
(f ′)2(R1) + (n− 1)

f 2(R1)

R2
1

] ∫

(Ω∩BR(o))\B1

dη. (3.8)
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Similarly, one can obtain

∫

B1

[
(f ′)2 + (n− 1)

f 2

t2

]
dη =

∫

B1∩Ω∩BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

∫

B1\(Ω∩BR(o))

[
(f ′)2 + (n− 1)

f 2

t2

]
dη

≥

∫

B1∩Ω∩BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

[
(f ′(R1))

2 + (n− 1)
f 2(R1)

R2
1

] ∫

B1\(Ω∩BR(o))

dη, (3.9)

where R1 is the radius of the ball B1. One has from the assumption |Ω ∩ BR(o)|φ = |B1|φ
that

∫

Ω∩BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη ≤

∫

B1

[
(f ′)2 + (n− 1)

f 2

t2

]
dη. (3.10)

Since f(t) = T (R) is constant when t > R, by a direct calculation one has

∫

Ω\BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη

=

∫

(Ω\BR(o))∩(B2\BR(o))

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

∫

(Ω\BR(o))\(B2\BR(o))

[
(f ′)2 + (n− 1)

f 2

t2

]
dη

=

∫

(Ω\BR(o))∩(B2\BR(o))

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

[
(f ′(R))2 + (n− 1)

f 2(R)

R2

] ∫

(Ω\BR(o))\(B2\BR(o))

dη. (3.11)

Similarly, one can get

∫

B2\BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη

=

∫

(B2\BR(o))∩(Ω∩BR(o))

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

∫

(B2\BR(o))\(Ω\BR(o))

[
(f ′)2 + (n− 1)

f 2

t2

]
dη

=

∫

(B2\BR(o))∩(Ω∩BR(o))

[
(f ′)2 + (n− 1)

f 2

t2

]
dη +

[
(f ′(R))2 + (n− 1)

f 2(R)

R2

] ∫

(B2\BR(o))\(Ω\BR(o))

dη. (3.12)
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One has from the assumption |Ω \BR(o)|φ = |B2 \BR(o)|φ that
∫

Ω\BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη =

∫

B2\BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη. (3.13)

Putting (3.7)-(3.13) into (3.6) yields
(
µ1,φ(BR(o))−

n− 1∑n−1
i=1

1
µi,φ

)∫

BR(o)

f 2dη ≥

∫

BR(o)\B1

[
(f ′)2 + (n− 1)

f 2

t2

]
dη −

∫

B2\BR(o)

[
(f ′)2 + (n− 1)

f 2

t2

]
dη,

which implies (3.1) directly by using (2.2) first and then multiplying both sides of the above

inequality by
(∫

BR(o)
f 2dη

)−1

. The equality case of the estimate (3.1) would follow by (3.3)

where the equality can be attained if and only if Ω is the ball BR(o).

Remark 3.2. The estimate (3.1) is sharper than (1.5) in Theorem 1.1, since the quantity
in the RHS of (3.1) is nonnegative. This is because

∫

BR(o)\B1

[
(f ′)2 + (n− 1)

f 2

t2

]
dη − f 2(R)

∫

B2\BR(o)

(n− 1)
1

t2
dη

≥

[
(f ′(R))2 + (n− 1)

f 2(R)

R2

] ∫

BR(o)\B1

dη −
(n− 1)f 2(R)

R2

∫

B2\BR(o)

dη

= (n− 1)
f 2(R)

R2

(∫

BR(o)\B1

dη −

∫

B2\BR(o)

dη

)

= (n− 1)
f 2(R)

R2
(|BR(o) \B1|φ − |B2 \BR(o)|φ)

= (n− 1)
f 2(R)

R2
(|BR(o)|φ − |B1|φ − (|B2|φ − |BR(o)|φ))

= (n− 1)
f 2(R)

R2
(2|BR(o)|φ − (|B1|φ + |B2|φ))

= (n− 1)
f 2(R)

R2
(2|Ω|φ − (|Ω ∩BR(o)|φ + |Ω \BR(o)|φ + |BR(o)|φ))

= 0.
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