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Abstract

In this paper, by mainly using the rearrangement technique and suitably construct-
ing trial functions, under the constraint of fixed weighted volume, we can successfully
obtain several isoperimetric inequalities for the first and the second Dirichlet eigen-
values, the first nonzero Neumann eigenvalue of the Witten-Laplacian on bounded
domains in space forms. These spectral isoperimetric inequalities extend those classi-
cal ones (i.e. the Faber-Krahn inequality, the Hong-Krahn-Szegő inequality and the
Szegő-Weinberger inequality) of the Laplacian.

1 Introduction

The study of extremum problems of prescribed functionals is of great significance in Math-
ematics. For instance, a famous isoperimetric problem, which might be known for nearly
all the mathematicians, in the n-dimensional (n ≥ 2) Euclidean space Rn is to study the
following extremum problem:

min
{
|∂Ω|

∣∣∣|Ω| = const.
}

(1.1)

for bounded domains Ω ⊂ Rn with smooth boundary ∂Ω, where, by the abuse of notations,
| · | stands for the Hausdorff measure of a given geometric object. The above extremum
problem can be asked in another way as follows:

• Among all bounded domains in Rn with fixed volume, which one minimizes the area
functional of the boundary?
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This classical problem has been answered completely and one knows that the unique min-
imizer of the area functional should be a ball with the volume equal to |Ω| = const. – see,
e.g., [34, Chapter 1] for an interesting derivation for classical isoperimetric inequalities in
Euclidean space by using the Schwarz symmetrization. In fact, for any bounded domain Ω
in Rn with smooth boundary, one has:

|∂Ω|n

|Ω|n−1
≥

|Sn−1|n

|Bn|n−1
, (1.2)

with equality holding if and only if Ω is a Euclidean ball. Obviously, the RHS of (1.2)
is independent of the choice of radius for the Euclidean n-ball Bn and the corresponding
Euclidean (n−1)-sphere Sn−1. That is to say, the quantity |Sn−1|n/|Bn|n−1 is scale invariant.
So, for convenience and simplification, we denote by Bn, Sn−1 the unit Euclidean n-ball and
the unit Euclidean (n− 1)-sphere, respectively. By (1.2), one easily knows that:

• Among all bounded domains in Rn having the same volume, Euclidean balls minimize
the boundary area.

• Among all bounded domains in Rn having the same boundary area, Euclidean balls
maximize the volume.

Clearly, (1.2) gives the answer to the problem (1.1) completely – for a ball BΩ with |BΩ| =
|Ω| = const., it follows that1

|∂Ω| ≥ |∂BΩ|, (1.3)

with equality holding if and only if Ω is a ball in Rn (which is congruent with BΩ). Following
the convention in [11], we prefer to call (1.2)-(1.3) the geometric isoperimetric inequalities.

The purpose of this paper is to investigate isoperimetric inequalities from the viewpoint
of spectral quantities of the Witten-Laplacian. However, in order to state our conclusions
clearly, we prefer to first recall several classical results of the Laplacian.

Let (Mn, 〈·, ·〉) be an n-dimensional (n ≥ 2) complete Riemannian manifold with the
metric g := 〈·, ·〉. Let Ω ⊂ Mn be a bounded domain in Mn with smooth2 boundary ∂Ω.
Denote by ∆, ∇ the Laplace and the gradient operators on Mn associated with the metric
g, respectively.3 On Ω, one can consider the Dirichlet eigenvalue problem of the Laplacian
as follows

{
∆u+ λu = 0 in Ω ⊂Mn,

u = 0 on ∂Ω,
(1.4)

1 Clearly, ∂BΩ stands for the boundary sphere of the ball BΩ.
2 The smoothness assumption for the regularity of the boundary ∂Ω is strong to consider the eigenvalue

problems (1.4) and (1.8). For instance, a weaker regularity assumption that ∂Ω is Lipschitz continuous can
also assure the validity about the description of discrete spectrum of the Neumann eigenvalue problem (1.8)
of the Laplacian on the 4th page of this paper. However, the Lipschitz continuous assumption might not
be enough to consider some other geometric problems involved Neumann eigenvalues of (1.8). Therefore, in
order to avoid a little bit boring discussion on the regularity of the boundary ∂Ω (which is also not important
for the topic investigated in our paper here), without specification, we prefer to assume that ∂Ω is smooth
in this paper. This setting leads to the situation that some conclusions of this paper may still hold under a
weaker regularity assumption for the boundary ∂Ω, readers who are interested in this situation could try to
seek the weakest regularity.

3 Without specifications, generally, in this paper same symbols have the same meanings.
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which is also known as the fixed membrane problem of the Laplacian. In fact, for the
eigenvalue problem (1.4), when Mn is chosen to be R3, this system can be used to describe
the vibration of a membrane with boundary fixed, and this is the reason why it is called
fixed membrane problem. Because of this physical background, eigenvalues of a prescribed
eigenvalue problem of some self-adjoint differentiable elliptic operator are called frequencies.
It is well-known that the operator −∆ in (1.4) only has the discrete spectrum and all the
elements (i.e., eigenvalues) can be listed non-decreasingly as follows

0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ · · · ↑ ∞. (1.5)

For each eigenvalue λi(Ω), i = 1, 2, · · · , all the nontrivial functions satisfying (1.4) form a
vector space, which has finite dimensional and is called eigenspace of λi(Ω). Moreover, all
the elements in this eigenspace are called eigenfunctions belonging to λi(Ω). The dimension
of this eigenspace is called multiplicity of the eigenvalue λi(Ω). Each eigenvalue λi(Ω) in the
sequence (1.5) is repeated according to its multiplicity. By variational principle, the k-th
Dirichlet eigenvalue λk(Ω) is characterized as follows

λk(Ω) = inf

{∫
Ω
|∇f |2dv∫
Ω
f 2dv

∣∣∣∣∣f ∈ W 1,2
0 (Ω), f 6= 0,

∫

Ω

ffidv = 0

}
,

where dv denotes the Riemannian volume element ofMn, and fi, i = 1, 2, · · · , k−1, denotes
an eigenfunction of λi(Ω). Here, as usual, W 1,2

0 (Ω) is the Sobolev space with compact
support, i.e. the completion of the set of smooth functions (with compact support) C∞

0 (Ω)
under the following Sobolev norm

‖f‖1,2 :=

(∫

Ω

f 2dv +

∫

Ω

|∇f |2dv

)1/2

. (1.6)

See, e.g., [11] for the above fundamental facts of the eigenvalue problem (1.4). Besides, for
convenience and without confusion, in the sequel, except specification we will write λi(Ω) as
λi directly. This convention would be also used when we meet with other possible eigenvalue
problems.

Similar to (1.1), for bounded domains Ω ⊂ Rn with smooth boundary ∂Ω, n ≥ 2, it
should be interesting and important to ask the following extremum problem:

min
{
λk(Ω)

∣∣∣|Ω| = const.
}

(1.7)

for each k = 1, 2, 3, · · · . In fact, (1.7) is a natural and classical isoperimetric problem in
the study of Spectral Geometry. To the best of our knowledge, for k = 1, 2, there exist
affirmative answers to the problem (1.7) as follows:

• (Faber-Krahn inequality, [16, 22]) λ1(Ω) ≥ λ1(BΩ), and the equality holds if and only
if Ω is a ball in Rn (which is congruent with BΩ, |BΩ| = |Ω| = const.). That is to say,
among all bounded domains in Rn having the same volume, Euclidean balls minimize
the first Dirichlet eigenvalue of the Laplacian.
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• (Hong-Krahn-Szegő inequality, [20, 23]) λ2(Ω) ≥ λ1(B̃Ω), where B̃Ω is a ball in Rn such

that 2|B̃Ω| = const. = |Ω|. That is to say, the minimum of the second Dirichlet eigen-
value of the Laplacian on bounded domains Ω (whose volume equals some prescribed
positive constant) should be equal to the first Dirichlet eigenvalue of the Laplacian on

a ball B̃Ω with |B̃Ω| = |Ω|/2.

Hong-Krahn-Szegő inequality implies that under the constraint that the volume of bounded
domains is fixed, the second Dirichlet eigenvalue (of the Laplacian) is minimized by two balls
of the same volume. However, if one additionally requires that Ω is connected, then under
the constraint of volume fixed (|Ω| = const.), this minimizer of λ2(Ω) cannot be attained but
can be approximated by the domain Ωǫ, obtained by joining the union of the two congruent
balls (whose volumes equal |Ω|/2) by a thin pipe of width ǫ (sufficiently small) – see [19] for
the precise description of this interesting example and see, e.g., [7, 9] for the strict proof of
this approximation (as ǫ → 0). In two dimensional case, it has long been conjectured that
the ball minimizes λ3(Ω), but there did not have much progress in this direction. For higher
order Dirichlet eigenvalues, not much is known. However, there is an interesting result we
prefer to mention, that is, Berger [2] proved that for planar bounded domain Ω ⊂ R2, the
i-th (i > 4) Dirichlet eigenvalue λi(Ω) is not minimized by any union of disks.

For a bounded domain Ω (with smooth boundary) on a given complete Riemannian n-
manifold Mn, one can also consider the Neumann eigenvalue problem of the Laplacian as
follows

{
∆u+ λu = 0 in Ω ⊂Mn,
∂u
∂~v

= 0 on ∂Ω,
(1.8)

which is also known as the free membrane problem of the Laplacian. In fact, for the eigenvalue
problem (1.8), whenMn is chosen to be R3, this system can be used to describe the vibration
of a membrane with free boundary, and this is the reason why it is called free membrane
problem. It is well-known that the operator −∆ in (1.8) only has the discrete spectrum and
all the eigenvalues can be listed non-decreasingly as follows

0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ · · · ↑ ∞. (1.9)

The eigenvalue µ0(Ω) = 0 has nonzero constant functions as its eigenvalues. Each eigenvalue
µi(Ω) in the sequence (1.9) is repeated according to its multiplicity (which is finite and
actually equals the dimension of µi(Ω)’s eigenspace). By variational principle, the k-th
nonzero Neumann eigenvalue µk(Ω) is characterized as follows

µk(Ω) = inf

{∫
Ω
|∇f |2dv∫
Ω
f 2dv

∣∣∣∣∣f ∈ W 1,2(Ω), f 6= 0,

∫

Ω

ffidv = 0

}
,

where fi, i = 0, 1, · · · , k − 1, denotes an eigenfunction of µi(Ω). Here, as usual, W 1,2(Ω)
is the Sobolev space, i.e. the completion of the set of smooth functions C∞

0 (Ω) under the
Sobolev norm ‖ · ‖1,2 defined by (1.6).

Similar to (1.7), for bounded domains Ω ⊂ Rn with smooth boundary ∂Ω, n ≥ 2, the
following extremum problem

max
{
µk(Ω)

∣∣∣|Ω| = const.
}

(1.10)
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can be asked for each k = 1, 2, 3, · · · . To the best of our knowledge, for k = 1, 2, there exist
affirmative answers to the problem (1.10) as follows:

• (Szegő-Weinberger inequality, [37, 38]) µ1(Ω) ≤ µ1(BΩ), and the equality holds if and
only if Ω is a ball in Rn (which is congruent with BΩ, |BΩ| = |Ω| = const.). That
is to say, among all bounded domains in Rn having the same volume, Euclidean balls
maximize the first nonzero Neumann eigenvalue of the Laplacian.

• (Bucur-Henrot [8]) Let Ω ⊂ Rn be a bounded open set such that the Sobolev space
W 1,2(Ω) is compactly embedded4 in L2(Ω). Then

|Ω|2/nµ2(Ω) ≤ 22/n|B|2/nµ1(B), (1.11)

where B is any ball in Rn. If equality in (1.11) occurs, then Ω coincides a.e. with
the union of two disjoint, equal balls. Clearly, the quantity 22/n|B|2/nµ1(B) is scale
invariant. Using (1.11) directly, one has µ2(Ω) ≤ 22/nµ1(BΩ), with a ball BΩ satisfying
|BΩ| = |Ω| = const., which gives an affirmative answer to the problem (1.10) for k = 2.

For higher order (k ≥ 3) Neumann eigenvalues, not much is known. However, recent years,
some works have shown numerical approaches which propose candidates for the optimizers
for Dirichlet/Neumann eigenvalues of the Laplacian and related spectral problems, and which
also suggest conjectures about their qualitative properties – see, e.g., [1, 4, 33] for details.

As mentioned above, in some situation, the eigenvalue problems (1.4) and (1.8) have
physical backgrounds, and hence eigenvalues in discrete spectrum are called frequencies.
So, sometimes, spectral isoperimetric inequalities introduced above are also called physical
isoperimetric inequalities. There is also one more thing we prefer to say here, that is,
spectral isoperimetric inequalities mentioned above hold may not only in Euclidean spaces
but also some curved spaces – for instance, at least one also has the Faber-Krahn inequality
in hyperbolic spaces and spheres. In fact, a more general version of Faber-Krahn inequality
says that (see, e.g., [11, Chapter IV]):

• Let Mn(κ) be the complete, simply connected, n-dimensional (n ≥ 2) space form of
constant sectional curvature κ, and let D denote a geodesic disk in Mn(κ). For a
complete Riemannian n-manifold Mn, n ≥ 2, and each open set Ω, consisting of a
finite disjoint union of regular5 domains in Mn, and satisfying

|Ω| = |D|. (1.12)

(If κ > 0, then only consider those Ω for which |Ω| < |Mn(κ)|.) If, for all such Ω in
Mn, equality (1.12) implies the geometric isoperimetric inequality

|∂Ω| ≥ |∂D|, (1.13)

4 In fact, the regularity that ∂Ω is Lipschitz continuous is sufficient such that W 1,2(Ω) is compactly em-
bedded in L2(Ω). Therefore, the smoothness assumption for the boundary ∂Ω is much enough to investigate
the maximum of µ2(Ω) under the constraint of fixed volume.

5 Here, following the convention in [11], “regular” means that the domain considered has compact closure
and smooth boundary, while the word “normal” also in this statement means that the domain considered
has compact closure and piecewise smooth boundary.
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with equality in (1.13) if and only if Ω is isometric to D, then we also have, for every
normal domain Ω in Mn, that equality (1.12) implies the inequality

λ1(Ω) ≥ λ1(D), (1.14)

with equality in (1.14) if and only if Ω is isometric to D.

This fact can be simply summarized as “under the constraint of volume fixed, the geometric
isoperimetric inequality (1.13) would imply the physical isoperimetric inequality (1.14)”. It
is known that in space forms, (1.13) holds once |Ω| = |D|. Hence, in space forms, one
has the physical isoperimetric inequality (1.14) under the volume constraint (1.12). From
this example, one might have a recognition that geometric isoperimetric inequalities have a
close relation with physical isoperimetric inequalities (of differential operators). A natural
question is “except space forms, whether one could find other spaces on which the geometric
isoperimetric inequality (1.13) holds under the volume constraint (1.12)?”. One might refer
to [11, Chapter IV] for some interesting progresses on this question.

In the sequel, we will show that how to extend the Faber-Krahn inequality, the Hong-
Krahn-Szegő inequality and the Szegő-Weinberger inequality of the Laplacian to the case of
the Witten-Laplacian.

For a given complete Riemannian n-manifold (n ≥ 2) with the metric g, let Ω ⊂ Mn be
a bounded domain (with boundary ∂Ω) in Mn, and φ ∈ C∞(Mn) be a smooth6 real-valued
function defined on Ω. In this setting, one can define the following elliptic operator

∆φ := ∆− 〈∇φ,∇·〉

on Ω, which is called theWitten-Laplacian7 (also called the drifting Laplacian or the weighted
Laplacian) w.r.t. the metric g. Consider the Dirichlet eigenvalue problem of the Witten-
Laplacian as follows

{
∆φu+ λu = 0 in Ω ⊂Mn,

u = 0 on ∂Ω,
(1.15)

and it is not hard to check that the operator ∆φ in (1.15) is self-adjoint w.r.t. the following
inner product

˜(h1, h2) :=

∫

Ω

h1h2dη =

∫

Ω

h1h2e
−φdv, (1.16)

with h1, h2 ∈ W̃ 1,2
0 (Ω), where W̃ 1,2

0 (Ω) is the Sobolev space with compact support w.r.t. the
weighted measure dη := e−φdv, i.e. the completion of the set of smooth functions (with
compact support) C∞

0 (Ω) under the following Sobolev norm

‖̃f‖1,2 :=

(∫

Ω

f 2dη +

∫

Ω

|∇f |2dη

)1/2

. (1.17)

6 In fact, one might see that φ ∈ C2(Ω) is suitable to derive our main conclusions in this paper. However,
in order to avoid a little bit boring discussion on the regularity of φ and following the assumption on
conformal factor e−φ for the notion of smooth metric measure spaces in many literatures (including of course
those cited in this paper), without specification, we prefer to assume that φ is smooth on the domain Ω.

7 It is interesting and important to study geometric problems related to the Witten-Laplacian – we refer
to [12, Introduction] for a detailed explanation. Except the paper here, the corresponding author, Prof. J.
Mao, also has some other interesting works related to the Witten-Laplacian – see, e.g., [15, 25, 28, 29, 31, 39].
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Then using similar arguments to those of the classical fixed membrane problem of the Lapla-
cian (i.e., the discussions about the existence of discrete spectrum, Rayleigh’s theorem, Max-
min theorem, etc. These discussions are standard, and for details, please see for instance
[11]), it is not hard to know:

• The self-adjoint elliptic operator −∆φ in (1.15) only has discrete spectrum, and all the
eigenvalues in this discrete spectrum can be listed non-decreasingly as follows

0 < λ1,φ(Ω) < λ2,φ(Ω) ≤ λ3,φ(Ω) ≤ · · · ↑ +∞. (1.18)

Each eigenvalue λi,φ, i = 1, 2, · · · , in the sequence (1.18) according to its multiplicity
(which is finite and equals to the dimension of the eigenspace of λi,φ). By applying
the standard variational principles, one can obtain that the k-th Dirichlet eigenvalue
λk,φ(Ω) can be characterized as follows

λk,φ(Ω) = inf

{∫
Ω
|∇f |2e−φdv∫
Ω
f 2e−φdv

∣∣∣∣∣f ∈ W̃ 1,2
0 (Ω), f 6= 0,

∫

Ω

ffie
−φdv = 0

}
, (1.19)

where fi, i = 1, 2, · · · , k − 1, denotes an eigenfunction of µi,φ(Ω). Moreover, the first
Dirichlet eigenvalue λ1,φ(Ω) of the eigenvalue problem (1.15) satisfies

λ1,φ(Ω) = inf

{∫
Ω
|∇f |2dη∫
Ω
f 2dη

∣∣∣∣∣f ∈ W̃ 1,2(Ω), f 6= 0

}
. (1.20)

On Ω, one can also define a notion weighted volume (or φ-volume) as follows:

|Ω|φ :=

∫

Ω

dη =

∫

Ω

e−φdv.

Using the constraint of fixed weighted volume, we can obtain several spectral isoperimet-
ric inequalities for the first and the second Dirichlet eigenvalues of the Witten-Laplacian.
However, in order to state our conclusions clearly, we need to impose an assumption on the
function φ as follows:

• (Property 1) Furthermore, φ is a function of the Riemannian distance parameter
t := d(o, ·) for some point o ∈ Mn.

Clearly, if a given open Riemannian n-manifold (Mn, g) was endowed with the weighted
density e−φdv with φ satisfying Property 1, then φ would be a radial function defined on
Mn w.r.t. the radial distance t, t ∈ [0,∞). Especially, when the given open n-manifold is
chosen to be Rn or Hn (i.e., the n-dimensional hyperbolic space of sectional curvature −1),
we additionally require that o is the origin of Rn or Hn.

First, we have the following Faber-Krahn type inequality for the Witten-Laplcian in the
Euclidean space.

Theorem 1.1. Assume that the function φ satisfies Property 1 (with Mn chosen to be
Rn) and is concave. Let Ω be a bounded domain with smooth boundary in Rn, and let BR(o)
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be a ball of radius R and centered at the origin o of Rn such that |Ω|φ = |BR(o)|φ, i.e.∫
Ω
dη =

∫
BR(o)

dη. Then

λ1,φ(Ω) ≥ λ1,φ(BR(o)),

and the equality holds if and only if (up to measure zero) Ω is the ball BR(o), which lies
entirely in the region BR(h) defined by (1.21).

Remark 1.2. (1) Unlike the Neumann case described in Theorems 1.11 and 1.12 below, for
the Dirichlet case we do not need to require that the point o locates in the convex hull of
the domain Ω in Theorem 1.1. The same situation also happens in Theorem 1.3,
(2) From the introduction on the Faber-Krahn inequality of the Laplacian, one knows that
under the volume constraint (1.12), the geometric isoperimetric inequality (1.13) makes an
important role in the derivation process. What about the Witten-Laplacian case? Does
some weighted geometric isoperimetric inequality play an important role also? The answer
is affirmative. We would like to recall a recent breakthrough of Chambers [10] to the Log-
Convex Density Conjecture. Given a positive function h in Rn, n ≥ 2, one can define the
weighted perimeter and weighted volume of a set A ⊂ Rn of locally finite perimeter as

Per(A) =

∫

∂A

hdHn−1, Vol(A) =

∫

A

hdHn,

where following the usage of notations in [10], Hm indicates the m-dimensional Hausdorff
measure, and ∂A denotes the essential boundary of A. Such positive function h is called a
density on Rn. If one fixes a positive weighted volume m > 0, does there exist a set A ⊂ Rn

such that Vol(A) = m and

Per(A) = inf
Q⊂Rn,Vol(Q)=m

Per(Q)?

Rosales, Cañete, Bayle and Morgan considered this problem and gave a partial answer that
in Rn with the density ec|x|

2
, c > 0, round balls about the origin uniquely minimize perimeter

for given volume (see [35, Theorem 5.2]). Moreover, they showed that for any radial, smooth
density h = ef(|x|), balls around the origin are stable8 if and only f is convex ([35, Theorem
3.10]). This fact motivates the following conjecture (3.12 in their article), first stated by
Kenneth Brakke:

• (Log-Convex Density Conjecture) In Rn with a smooth, radial, log-convex9 density,
balls around the origin provide isoperimetric regions of any given volume.

Chambers [10, Theorem 1.1] gave an answer to the above conjecture as follows:

• (Fact A) Given a density h(x) = ef(|x|) on Rn with f smooth, convex and even,
balls around the origin are isoperimetric regions with respect to weighted perimeter and
volume.

8 Here “stable” means that Per′′(0) ≥ 0 under smooth, volume-conserving variations.
9 Clearly, for a density h here, the log-convex assumption means (log h)′′ ≥ 0.
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Moreover, Chambers [10, Theorem 1.2] characterized the uniqueness of isoperimetric regions
as follows:

• (Fact B) Up to sets of measure 0, the only isoperimetric regions are balls centered at
the origin, and balls that lie entirely in

BR(h) = {x
∣∣|x| ≤ R(h)}, (1.21)

where R(h) = sup{|x|
∣∣h(x) = h(0)}.

Fact A and Fact B would make an important role in the proof of Theorem 1.1 – see Sub-
section 2.1 for details.
(3) Since Chambers’ weighted geometric isoperimetric inequality in Rn (i.e. Fact A) makes
an important role in the proof of Theorem 1.1, which implies that similar to the potential
precondition of [10, Theorem 1.1], we also need to require that the boundary ∂Ω has finite
area (or following the convention in [10], “perimeter”) here. However, we think this setting
is so natural when considering the isoperimetric problems, we prefer not to list it out indi-
vidually in every statement of our main conclusions in this paper. But, of course, ∂Ω should
have this natural setting throughout the paper, which we do not mention again anymore.

We can prove the following:

Theorem 1.3. Let Sn
+ be an n-dimensional hemisphere of radius 1, and let Ω ⊂ Sn

+ be a
bounded domain whose boundary ∂Ω has positive constant mean curvature. Assume that the
function φ satisfies Property 1 (with Mn chosen to be Sn

+) and moreover φ = − log cos t,
where the point o mentioned in Property 1 should additionally be required to be the base
point of Sn

+. Then

λ1,φ(Ω) ≥ λ1,φ(BR(o)),

where BR(o) denotes a geodesic ball of radius R and centered at the base point o of Sn
+ such

that |Ω|φ = |BR(o)|φ. The equality holds if and only if Ω is isometric to the geodesic ball
BR(o).

Remark 1.4. (1) When investigating the above Faber-Krahn type isoperimetric inequality,
there is no essential difference between Sn

+ and a hemisphere with radius not equal to 1.
(2) In order to let readers who might not know the concept “the base point” clearly, we prefer
to give an explanation here. It is better to start the explanation with spherically symmetric
manifolds, which is also called generalized space forms (suggested in the work of Katz-Kondo
[21]). We refer readers to [17, 26, 32] for a detailed description about the accurate definition,
the basic properties and some interesting applications of spherically symmetric manifolds.
The corresponding author has used spherically symmetric manifold as the model space to
derive some interesting comparison theorems (for volume, eigenvalues of different types, heat
kernel, and some other geometric quantities) – see, e.g., [17, 27, 30, 39]. In fact, one has:

• ([17, Definition 2.1]) For a given complete n-manifold Mn, a domain D = expp([0, l)×
Sn−1
p ) ⊂ Mn \Cut(p), with l < inj(p), is said to be spherically symmetric with respect

to a point p ∈ D, if and only if the matrix A(t, ξ) satisfies A(t, ξ) = f(t)I, for a function
f ∈ C2([0, l)) with f(0) = 0, f ′(0) = 1 and f |(0,l) > 0.
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Here Sn−1
p denotes the unit sphere of the tangent space TpM

n, Cut(p) stands for the cut-locus
of the point p, inj(p) denotes the injectivity radius at p, ξ ∈ Sn−1

p , and A(t, ξ) : ξ⊥ → ξ⊥

is the path of linear transformations well-defined in [17, Section 2]. A standard model for
spherically symmetric manifolds is given by the quotient of the warped product [0, l)×f S

n−1

with the metric

ds2 = dt2 + f 2(t)|dξ|2, ∀p ∈ Sn−1
p , 0 < t < l,

where usually |dξ|2 denotes the round metric of the unit (n− 1)-sphere Sn−1. In this model,
all pairs (0, ξ) are identified with the single point p, which is called the base point of the
spherically symmetric domain D = [0, l)×fS

n−1. Clearly, as revealed already in (2.12) of [17],
a space form with constant sectional curvature κ is also a spherically symmetric manifold
and in this particular situation the warping function f satisfies

f(t) =





sin(
√
κt)√
κ

, l = π√
κ

κ > 0,

t, l = +∞ κ = 0,
sinh(

√
−κt)√

−κ
, l = +∞ κ < 0.

(3) Since o is required to be the base point of Sn
+, then for the domain Ω ⊂ Sn

+ in Theorem
1.3, the range of the Riemannian distance parameter t = d(o, ·) should be (0, π/2), which
implies that the choice of the function φ = − log cos t makes sense. Besides, in fact, Sn

+

can be modeled as [0, π/2]×sin t S
n−1 with the metric dt2 + (sin t)2|dξ|2, and its base point o

should be the vertex of Sn
+.

We can also get the following:

Theorem 1.5. Assume that the function φ satisfies Property 1 (with Mn chosen to be
Hn) and is strictly concave, where the point o mentioned in Property 1 should additionally
be required to be the origin of Hn. Let Ω ⊂ Hn be a bounded domain with boundary. Then

λ1,φ(Ω) ≥ λ1,φ(BR(o)),

where BR(o) denotes a geodesic ball of radius R and centered at the origin o of Hn such that
|Ω|φ = |BR(o)|φ. The equality holds if and only if Ω is isometric to the geodesic ball BR(o).

Remark 1.6. (1) The hyperbolic space Hn can be modeled as [0,∞) ×sinh t S
n−1 with the

metric

dt2 + (sinh t)2|dξ|2.

Since hyperbolic spaces are two-point homogenous, the base point of Hn is not unique and
any point ofHn can be chosen as the base point, which is different with the case of hemisphere
Sn
+. However, for Hn once its globally defined coordinate system was set up, the origin o

would be determined uniquely w.r.t. this system. As shown above, in order to get the main
conclusion in Theorem 1.5, we need to assume that φ is radial w.r.t. some fixed point and is
also concave, which leads to the situation that in the statement of Theorem 1.5, it is better
to choose the point o to be the origin of Hn (not the base point), and correspondingly φ is
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concave w.r.t. the radial Riemannian distance parameter t = d(o, ·).
(2) As mentioned before, one knows two facts: (a) under the constraint of fixed volume,
the Faber-Krahn inequality for the first Dirichlet eigenvalue of the Laplacian also holds
in hyperbolic spaces; (b) under the constraint of fixed weighted volume, Fact A (i.e., a
weighted geometric isoperimetric inequality in Rn) makes an important role in the proof of
the Faber-Krahn type inequality for the Witten-Laplcian in Rn (i.e. Theorem 1.1). So, it is
natural to ask:

• Could one expect to get a hyperbolic version of Fact A which makes a contribution in
the proof of Theorem 1.5?

The answer is affirmative. In fact, Li-Xu [24, Theorem 1.1] obtained a partial result to
the hyperbolic version of Fact A for specified density through suitably applying Chambers’
result [10] by projecting the hyperbolic space onto Rn and employing a comparison argument.
Very recently, L. Silini [36] solved the above question completely. For an arbitrary base point
o ∈ Hn, and a density h given by h := ef(d(o,·)), where h : R → R is a smooth, (strictly)
convex, even function, and, similar as before, d(o, ·) denotes the Riemannian distance to
the point o on Hn, one can define the weighted perimeter and volume of a set with finite
perimeter E ⊂ Hn as follows

Ph(E) =

∫

∂∗E

hdHn−1, Vh(E) =

∫

E

hdHn,

where following the usage of notations in [36], ∂∗E denotes the reduced boundary of E, and
Hm indicates the m-dimensional Hausdorff measure. Silini [36, Theorem 1.1] proved the
following:

• (Fact C) For any strictly radially log-convex density h, geodesic balls centered at o ∈ Hn

uniquely minimize the weighted perimeter for any given weighted volume with respect
to Ph and Vh.

Fact C would make an important role in the proof of Theorem 1.5 – see Section 3 for details.
Using a comparison argument between Hn

C = U(n, 1)/U(n) (i.e. the n-dimensional complex
hyperbolic space of constant curvature −1) and H2n, together with Fact C, Silini [36] can
get further:

• In Hn
C, geodesic balls are uniquely isoperimetric in the class of Hopf-symmetric sets for

all volumes.

This conclusion gives a partial answer to an open conjecture proposed by Gromov-Ros in
[18] as follows:

• (Conjecture)Geodesic balls are isoperimetric for all volumes in the complex hyperbolic
space Hn

C.

Silini’s above result on the isoperimetric problem for the class of Hopf-symmetric sets in
Hn

C might inspire readers to try to extend the spectral isoperimetric inequality in Theorem
1.5 to a more general space, which we think it is possible. However, due to the structure
of this paper, here we just focus on investigating spectral isoperimetric inequalities for the
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Witten-Laplacian on bounded domains in space forms.
(3) As explained in [36, Remark 1.7], since technical difficulties arising from the presence
of regions with constant weight, for simplicity it was decided to to assume the weight to
be strictly log-convex rather than simply log-convex in extending the proof of Brakke’s
conjecture from the Euclidean space to the hyperbolic space. This is the reason why in
Theorem 1.5 we assume that the radial function φ is strictly concave (i.e., −(log φ)′′ > 0).
Besides, if the domain Ω has a constant weight (i.e., a constant density), then the Witten-
Laplacian degenerates into the classical Laplacian, and correspondingly, in Hn one naturally
has the Faber-Krahn inequality for the first Dirichlet eigenvalue. In this situation, it is
no need to write down Theorem 1.5 any more. Based on this truth, in Theorem 1.5 it is
acceptable to assume that the radial function φ is strictly concave.

Inspired by the technique used in [3], under other assumptions on φ and the constraint
of weighted volume fixed, we can also get the following Faber-Krahn type inequality for the
Witten-Laplcian in the Euclidean space, which can be seen as a complement to Theorem
1.1.

Theorem 1.7. Assume that the function φ satisfies Property 1 (with Mn chosen to be
Rn), φ is monotone non-increasing, and for z ≥ 0, the function

(
e−φ(z

1
n ) − e−φ(0)

)
z1−

1
n

is convex. Let Ω be a bounded domain with Lipschitz boundary in Rn, and let BR(o) be a
ball of radius R and centered at the origin o of Rn such that |Ω|φ = |BR(o)|φ. Then

λ1,φ(Ω) ≥ λ1,φ(BR(o)).

Remark 1.8. Since φ satisfies Property 1 and moreover when Mn is chosen to be Rn, we
additionally require that o is the origin of Rn, so o corresponds to z = 0, and then φ(0) is
actually the value of the function φ at the origin o.

For the second Dirichlet eigenvalue of the Witten-Laplacian, we can obtain the following
Hong-Krahn-Szegő type inequalities.

Theorem 1.9. Assume that the function φ satisfies Property 1 (with Mn chosen to be
Rn) and is concave. Let Ω be a bounded domain with smooth boundary in Rn, and let BR̃(o)

be a ball of radius R̃ and centered at the origin o of Rn such that |Ω|φ/2 = |BR̃(o)|φ, i.e.
1
2

∫
Ω
dη =

∫
B

R̃
(o)
dη. Then

λ2,φ(Ω) ≥ λ1,φ(BR̃(o)).

That is to say, under the assumptions for φ described above, the minimum of the second
Dirichlet eigenvalue of the Witten-Laplacian on bounded domains Ω in Rn (whose weighted
volume equals some prescribed positive constant) should be equal to the first Dirichlet eigen-

value of the Witten-Laplacian on a ball BR̃(o) (of radius R̃ and centered at the origin o ∈ Rn)
such that |Ω|φ/2 = |BR̃(o)|φ.
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Theorem 1.10. Assume that the function φ satisfies Property 1 (with Mn chosen to be
Hn) and is strictly concave, where the point o mentioned in Property 1 should additionally
be required to the origin of Hn. Let Ω ⊂ Hn be a bounded domain with boundary. Then

λ2,φ(Ω) ≥ λ1,φ(BR̃(o)),

where BR̃(o) denotes a geodesic ball of radius R̃ and centered at the origin o of Hn such
that |Ω|φ/2 = |BR̃(o)|φ. That is to say, under the assumptions for φ described above, the
minimum of the second Dirichlet eigenvalue of the Witten-Laplacian on bounded domains Ω
in Hn (whose weighted volume equals some prescribed positive constant) should be equal to

the first Dirichlet eigenvalue of the Witten-Laplacian on a geodesic ball BR̃(o) (of radius R̃
and centered at the origin o ∈ Hn) such that |Ω|φ/2 = |BR̃(o)|φ.

For a bounded domain Ω (with boundary ∂Ω) on a given n-dimensional (n ≥ 2) complete
Riemannian manifold Mn, we can also consider the following Neumann eigenvalue problem
of the Witten-Laplacian

{
∆φu+ µu = 0 in Ω ⊂Mn,
∂u
∂~ν

= 0 on ∂Ω,
(1.22)

and it is easy to check that the operator ∆φ in (1.22) is self-adjoint w.r.t. the inner product

(1.16) with h1, h2 ∈ W̃ 1,2(Ω), where W̃ 1,2(Ω) is the Sobolev space w.r.t. the weighted measure

dη, i.e. the completion of the set of smooth functions C∞(Ω) under the Sobolev norm ‖̃ · ‖
defined by (1.17). Then using similar arguments to those of the classical free membrane
problem of the Laplacian (see, e.g., [11]), it is not hard to know:

• The operator −∆φ in (1.22) only has discrete spectrum, and all the eigenvalues in this
discrete spectrum can be listed non-decreasingly as follows

0 = µ0,φ(Ω) < µ1,φ(Ω) ≤ µ2,φ(Ω) ≤ µ3,φ(Ω) ≤ · · · ↑ +∞. (1.23)

Each eigenvalue µi,φ, i = 0, 1, 2, · · · , in the sequence (1.23) according to its multiplicity
(i.e., the dimension of the eigenspace of µi,φ). Specially, the zero eigenvalue µ0,φ has
multiplicity 1 and has nonzero constant function as its eigenfunction. By applying
the standard variational principles, one can obtain that the k-th Dirichlet eigenvalue
µk,φ(Ω) can be characterized as follows

µk,φ(Ω) = inf

{∫
Ω
|∇f |2e−φdv∫
Ω
f 2e−φdv

∣∣∣∣∣f ∈ W̃ 1,2(Ω), f 6= 0,

∫

Ω

ffie
−φdv = 0

}
, (1.24)

where fi, i = 1, 2, · · · , k − 1, denotes an eigenfunction of µi,φ(Ω). Moreover, the first
nonzero Neumann eigenvalue µ1,φ(Ω) of the eigenvalue problem (1.22) satisfies

µ1,φ(Ω) = inf

{∫
Ω
|∇f |2dη∫
Ω
f 2dη

∣∣∣∣∣f ∈ W̃ 1,2(Ω), f 6= 0,

∫

Ω

fdη = 0

}
. (1.25)
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In fact, the above facts have been explained more clearly in [12, Section 1]. Here we prefer
to keep writing down the above content for two reasons: the one is for the completion
of the brief introduction to the eigenvalue problem (1.22) here; the other one is that the
characterization (1.25) would be used to derive spectral isoperimetric inequalities for the
first nonzero Neumann eigenvalue µ1,φ(·) below.

We can prove the following Szegő-Weinberger type inequalities for the Witten-Laplacian.

Theorem 1.11. Let Ω be a bounded domain with smooth boundary in Rn. Assume that
the function φ satisfies Property I (with Mn chosen to be Rn and additionally the point
o required to be in the convex hull of Ω, i.e. o ∈ hull(Ω)), and φ is also a non-increasing
convex function defined on [0,∞). Let BR(o) be a ball of radius R and centered at the origin
o of Rn such that |Ω|φ = |BR(o)|φ, i.e.

∫
Ω
dη =

∫
BR(o)

dη. Then

µ1,φ(Ω) ≤ µ1,φ(BR(o)),

with equality holding if and only if Ω is the ball BR(o).

Theorem 1.12. Let Ω be a bounded domain with smooth boundary in Hn. Assume that the
function φ satisfies Property I (with Mn chosen to be Hn and additionally o ∈ hull(Ω)),
and φ is also a non-increasing convex function defined on [0,∞). Let BR(o) be a geodesic
ball of radius R and centered at the origin o of Hn such that |Ω|φ = |BR(o)|φ. Then

µ1,φ(Ω) ≤ µ1,φ(BR(o)),

with equality holding if and only if Ω is isometric to the geodesic ball BR(o).

Remark 1.13. (1) In fact, in our very recent work [12, Theorems 1.1 and 1.5], we can
prove an isoperimetric inequality for the sums of the reciprocals of the first (n− 1) nonzero
Neumann eigenvalues of the Witten-Laplacian on bounded domains in Rn or Hn, which
together with the monotonicity of Neumann eigenvalues (i.e. the sequence (1.23)) yields
directly our Theorem 1.11 and Theorem 1.12 here. This fact has been already pointed out
in [12, Corollaries 1.2 and 1.6], and readers can check there for details.
(2) Based on two reasons, we keep writing down Theorem 1.11 and Theorem 1.12 here. The
one is for the completion of the whole structure of this paper, and the other one is that our
approach here for proving Theorem 1.11 and Theorem 1.12 is somehow different from the
one used in [12].
(3) Different with the Dirichlet case, we need to require that o ∈ hull(Ω) in Theorem 1.11
and Theorem 1.12. This is because we have to use the Brouwer fixed point theorem to make
sure the existence of an orthonormal frame field such that the origin of the coordinate system
(corresponding to the orthonormal frame field) locates in the convex hull of Ω, and then all
the computations involved trail functions constructed are valid. See the proofs of Theorem
1.11 and Theorem 1.12 in Section 3 for details.

The paper is organized as follows. The proofs of the Faber-Krahn type inequalities,
the Hong-Krahn-Szegő type inequalities and the Szegő-Weinberger type inequalities for the
Witten-Laplcian will be given in Sections 2, 3 and 4 respectively. In Section 5, we will give
the detailed information about the first nonzero Neumann eigenvalue and its eigenfunctions
of the Witten-Laplacian on prescribed (geodesic) balls in space forms.
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2 The Faber-Krahn type inequalities for the Witten-

Laplcian

2.1 The Euclidean case

Assume that f is an eigenfunction corresponding to the first Dirichlet eigenvalue λ1,φ(Ω).
Since f does not change sign on Ω, without loss of generality, we can assume f > 0 on Ω
(see Lemma 3.1 below for the explanation). Consider the sets Ωs := {x ∈ Ω|f(x) > s}, and
let Ω∗

s be balls in Rn with center at the origin o and satisfying |Ωs|φ = |Ω∗
s|φ. Let BR(o) be

a ball of radius R and centered at o of Rn such that |Ω|φ = |BR(o)|φ, i.e.
∫
Ω
dη =

∫
BR(o)

dη.

Define a function f ∗ on BR(o) having the following properties:

• f ∗ is a radial decreasing function;

• f ∗ takes the value s on the boundary sphere ∂Ω∗
s of the ball Ω∗

s (for a fixed s).

It is not hard to see that Ω0 = Ω and correspondingly Ω∗
0 = BR(o). The existence of the

balls Ω∗
s can be assured by using the Schwarz symmetrization. Readers can check e.g. [3, 19]

for details on how to use symmetrization to get balls Ω∗
s under the constraint of having the

same weighted volume.
Now, we make an agreement on the notations used right below. Denote by d̂v the

(n−1)-dimensional Hausdorff measure of the boundary associated to the Riemannian volume

element10 dv, and this convention will be used throughout the paper. Similarly, d̂η = e−φd̂v
would be the weighted volume element of the boundary. Besides, for convenience, set G(s) :=
∂Ωs, St(s) := (G(s))∗ = G∗(s) = ∂Ω∗

s which denotes the sphere with center at the origin and
radius t(s). The following formula is known as the co-area formula (see, e.g., [6, 11]):

• For any continuous function h defined on Ω, one has

∫

Ω

hdv =

∫ sup f

0

∫

G(s)

h|∇f |−1d̂vsds, (2.1)

where following the above agreement d̂vs denotes the volume element of the hypersur-
face G(s) = f−1(s).

Clearly, taking h = |∇f |2 and then applying the co-area formula, one has

∫

Ω

|∇f |2dv =

∫ sup f

0

∫

G(s)

|∇f |d̂vsds.

Denote by the Schwarz symmetric rearrangement mapping t : [0, sup f ] → [0, R], with R
the radius of the BR(o), and ψ the inverse transformation of t, where t additionally satisfies
t(0) = R, t(sup f) = 0.

10 In fact, for domains Ωs and Ω = Ω0, they should have the same volume element dv. However, in order
to emphasize that the domain Ωs depends on s, we prefer to additionally write the volume element of Ωs as
dvs (except s = 0).
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Lemma 2.1. If Ω is a bounded region in Rn, and φ satisfies Property 1 (with Mn chosen
to be Rn), then

∫

Ω

f 2dη =

∫

BR(o)

(f ∗)2dη, (2.2)

where BR(o) ⊂ Rn is the ball defined as in Theorem 1.1.

Proof. By a direct calculation, one can obtain
∫

BR(o)

(f ∗)2dη =

∫ R

0

∫

∂Bt(o)

(f ∗)2e−φ(t)d̂vtdt

=

∫ R

0

ψ2(t)

∫

∂Bt(o)

e−φ(t)d̂vtdt

= −

∫ sup f

0

ψ2(t(s))t′(s)

(∫

∂Bt(s)(o)

e−φ(t(s))d̂vt

)
ds

= −

∫ sup f

0

s2
(
−

∫

G(s)

|∇f |−1e−φ|G(s) d̂vs

)
ds

=

∫

Ω

f 2dη,

which implies (2.2) directly.

Now, together with Fact A and Fact B, we can get:

Proof of Theorem 1.1. Applying the co-area formula, we have
∫

Ω

|∇f |2e−φdv =

∫ sup f

0

∫

G(s)

|∇f |e−φd̂vsds. (2.3)

We can obtain by using the Cauchy-Schwarz inequality that

∫

G(s)

|∇f |e−φ|G(s)d̂vs ≥

(∫
G(s)

e−φ|G(s) d̂vs

)2

∫
G(s)

|∇f |−1e−φ|G(s) d̂vs
. (2.4)

By Fact A and Fact B, we have
∫
G(s)

e−φ|G(s) d̂vs ≥
∫
G∗(s)

e−φ(t(s))d̂vs, with equality holding

if and only if G(s) \ E(s) = G∗(s), where the set E(s) denotes a set of measure zero.
Substituting this fact into (2.4) yields

∫

G(s)

|∇f |e−φ|G(s)d̂vs ≥

(∫
G∗(s)

e−φ(t(s))d̂vs

)2

∫
G(s)

|∇f |−1e−φ|G(s) d̂vs
. (2.5)

On the other hand, one has

∫

G∗(s)

|∇f ∗|e−φ(t(s))d̂vs =

(∫
G∗(s)

e−φ(t(s))d̂vs

)2

∫
G∗(s)

|∇f ∗|−1e−φ(t(s))d̂vs
,
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since |∇f ∗| and e−φ(s) are constant on the sphere G∗(s). We notice that

|Ωr|φ =

∫

Ωr

e−φdv =

∫ sup f

r

∫

G(s)

|∇f |−1e−φ|G(s) d̂vsds,

and so it follows that

(|Ωr|φ)
′ (s) = −

∫

G(s)

|∇f |−1e−φ|G(s) d̂vs,

which implies

−

∫

G(s)

|∇f |−1e−φ|G(s) d̂vs =
d

ds
|Ωs|φ =

d

ds
|Ω∗

s|φ. (2.6)

Since

|Ω∗
s|φ =

∫ t(s)

0

∫

∂Bz(o)

e−φ(z)d̂vzdz,

one has

d

ds
|Ω∗

s|φ = t′(s)

∫

St(s)

e−φ(t(s))d̂vs. (2.7)

Putting (2.6)-(2.7) into (2.5) results in

∫

G(s)

|∇f |e−φ|G(s)d̂vs ≥

(∫
G∗(s)

e−φ(t(s))d̂vs

)2

∫
G(s)

|∇f |−1e−φ|G(s) d̂vs

=

∫
St(s)

e−φ(t(s))d̂vs

−t′(s)
.

Therefore, by substituting the above inequality into (2.3), one can obtain

∫

Ω

|∇f |2dη =

∫ sup f

0

∫

G(s)

|∇f |e−φ|G(s) d̂vsds

≥ −

∫ sup f

0

∫
St(s)

e−φ(t(s))d̂vs

t′(s)
ds

= −

∫ sup f

0

(ψ′(t(s)))
2
t′(s)

∫

St(s)

e−φ(t(s))d̂vsds

=

∫ R

0

(ψ′(t))
2

∫

St(s)

e−φ(t(s))d̂vsdt

=

∫

BR(o)

|∇f ∗|2dη. (2.8)
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The equality case in (2.8) implies that
∫
G(0)

e−φ|G(0) d̂v =
∫
G∗(0)

e−φ(t)d̂v holds. So, one has

G(0) \ E(0) = G∗(0), that is, Ω \ E(0) = BR(o). Moreover, this domain should lie entirely
in the region BR(h) defined by (1.21). Furthermore, by Lemma 2.1, we have

λ1,φ(Ω) =

∫
Ω
|∇f |2dη∫
Ω
f 2dη

≥

∫
BR(o)

|∇f ∗|2dη
∫
BR(o)

(f ∗)2dη
≥ λ1,φ(BR(o)),

which completes the proof of Theorem 1.1.

Proof of Theorem 1.7. Use an almost the same argument as that in the above proof of The-
orem 1.1 except replacing the usage of Fact A and Fact B by the following fact:

• ([3]) Assume that the function a : [0,+∞) → [0,+∞) satisfies a(t) is non-decreasing

for t ≥ 0, (a(z
1
n )− a(0))z1−

1
n is convex, z ≥ 0, and assume that Ω ⊂ Rn is a bounded

open set with Lipschitz boundary ∂Ω. Then

∫

∂Ω

a(|x|)dx ≥

∫

∂Ω∗

a(|x|)dx,

where ∂Ω∗ is a sphere with center at the origin and enclosing the weight volume equal
to that of Ω.

Then the conclusion in Theorem 1.7 would follow naturally by choosing a(t) = e−φ(t).

2.2 The hemisphere case

As we know, the Schwarz symmetrization can also be carried out on hemispheres and hy-
perbolic spaces. For convenience, we will continue to use notions and also the notations
introduced at the beginning of Subsection 2.1 to investigate the Faber-Krahn type inequali-
ties for the Witten-Laplcian in the hemisphere case and the hyperbolic case.

Lemma 2.2. Assume that the function φ satisfies Property 1 (with Mn chosen to be Sn
+),

where the point o mentioned in Property 1 should additionally be required to be the base
point of Sn

+. Then we have

∫

Ω

f 2dη =

∫

BR(o)

(f ∗)2dη,

where BR(o) ⊂ Sn
+ is the geodesic ball defined as in Theorem 1.3.

Proof. Formally, the computation for the assertion in Lemma 2.2 is almost the same as that
for (2.2), and so we omit the details here.

We also need the following fact:
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Lemma 2.3 ([5]). Let Ω ⊂ Sn
+ be a compact n-dimensional domain with smooth boundary

∂Ω. Let H be the normalized mean curvature of ∂Ω. Let V (x) = cos distSn(x, o). If H is
positive everywhere, then11

∫

∂Ω

V

H
dA ≥ n

∫

Ω

V dΩ. (2.9)

The equality in (2.9) holds if and only if Ω is isometric to a geodesic ball.

Now, we have:

Proof of Theorem 1.3. Applying the co-area formula, we have

∫

Ω

|∇f |2 cos tdv =

∫ sup f

0

∫

G(s)

|∇f | cos(t|G(s))d̂vsds. (2.10)

We can obtain by using the Cauchy-Schwarz inequality that

∫

G(s)

|∇f | cos(t|G(s))d̂vs ≥

(∫
G(s)

cos(t|G(s))d̂vs

)2

∫
G(s)

|∇f |−1 cos(t|G(s))d̂vs
. (2.11)

By Lemma 2.3 and the assumption thatH is a positive constant, one has
∫
G(s)

cos(t|G(s))d̂vs ≥∫
G∗(s)

cos t(s)d̂vs, and then (2.11) becomes

∫

G(s)

|∇f | cos(t|G(s))d̂vs ≥

(∫
G∗(s)

cos t(s)d̂vs

)2

∫
G(s)

|∇f |−1 cos(t|G(s))d̂vs
. (2.12)

On the other hand, one has

∫

G∗(s)

|∇f ∗| cos t(s)d̂vs =

(∫
G∗(s)

cos t(s)d̂vs

)2

∫
G∗(s)

|∇f ∗|−1 cos t(s)d̂vs
,

since |∇f ∗| and cos t(s) are constant on the sphere G∗(s). Notice that

|Ωr|φ =

∫

Ωr

cos t(r)dv =

∫ sup f

r

∫

G(s)

|∇f |−1 cos(t|G(s))d̂vsds,

and so it follows that

(|Ωr|φ)
′ (s) = −

∫

G(s)

|∇f |−1 cos(t|G(s))d̂vs,

11 In (2.9), the Hausdorff measures of the domain Ω and its boundary ∂Ω are given by dΩ, dA respectively.
This usage of notations does not match the agreement made at the beginning of Subsection 2.1, and the
reason is that we prefer to list here the original statement of the conclusion in Lemma 2.3 proven firstly in
the reference [5].
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which implies

−

∫

G(s)

|∇f |−1 cos(t|G(s))d̂vs =
d

ds
|Ωs|φ =

d

ds
|Ω∗

s|φ. (2.13)

Since

|Ω∗
s|φ =

∫ t(s)

0

∫

∂Bz(o)

cos zd̂vzdz,

one has

d

ds
|Ω∗

s|φ = t′(s)

∫

St(s)

cos t(s)d̂vs. (2.14)

Putting (2.13)-(2.14) into (2.12) results in

∫

G(s)

|∇f | cos(t|G(s))d̂vs ≥

(∫
G∗(s)

cos t(s)d̂vs

)2

∫
G(s)

|∇f |−1 cos(t|G(s))d̂vs

=

∫
St(s)

cos t(s)d̂vs

−t′(s)
.

Therefore, by substituting the above inequality into (2.10), one has

∫

Ω

|∇f |2dη =

∫ sup f

0

∫

G(s)

|∇f | cos(t|G(s))d̂vsds

≥ −

∫ sup f

0

∫
St(s)

cos t(s)d̂vs

t′(s)
ds

= −

∫ sup f

0

(ψ′(t(s)))
2
t′(s)

∫

St(s)

cos t(s)d̂vsds

=

∫ R

0

(ψ′(t))
2

∫

St(s)

cos t(s)d̂vsdt

=

∫

BR(o)

|∇f ∗|2dη.

Together with Lemma 2.2, it follows that

λ1,φ(Ω) =

∫
Ω
|∇f |2dη∫
Ω
f 2dη

≥

∫
BR(o)

|∇f ∗|2dη
∫
BR(o)

(f ∗)2dη
≥ λ1,φ(BR(o)). (2.15)

Especially, if the equality in (2.15) was achieved, then the equality in (2.11) and (2.12) can be
attained simultaneously, and the rigidity assertion in Theorem 1.3 follows by using Lemma
2.3 directly. This completes the proof of Theorem 1.3.
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2.3 The hyperbolic case

Proof of Theorem 1.5. It is not hard to see that similar to Lemma 2.1, in the hyperbolic case
one also has the L2 integral (w.r.t. the weighted density dη) unchanged after the Schwarz
symmetrization under the constraint of fixed weighted volume. Then using an almost the
same argument as that in the proof of Theorem 1.1, together with the help of Fact C (i.e.,
the geometric isoperimetric inequality in Hn under the constraint of fixed weighted volume),
we can get the spectral isoperimetric inequality and the rigidity in Theorem 1.5.

3 The Hong-Krahn-Szegő type inequalities for theWitten-

Laplcian

For the Dirichlet eigenvalue problem (1.15), we know from Section 1 that its admissible space

is the Sobolev space W̃ 1,2
0 (Ω). Using the inner product (1.16), one can define the L2 space

L̃2(Ω) w.r.t. the weighted density as follows: we say that u ∈ L̃2(Ω) if

∫

Ω

u2e−φdv <∞.

Before giving the proof of the Hong-Krahn-Szegő type inequalities for the second Dirichlet
eigenvalue of the Witten-Laplcian, we need the following facts.

Lemma 3.1. (Nodal domain theorem for the Witten-Laplacian, [13]) For the Dirichlet eigen-
value problem (1.15), its eigenvalues consist of a non-decreasing sequence (1.18). Denote by
fi be an eigenfunction of the i-th eigenvalue λ1,φ, i = 1, 2, 3, · · · , and {f1, f2, f3, · · · } forms

a complete orthogonal basis of L̃2(Ω). Then each k = 1, 2, 3, · · · , the number of connected
components of the nodal domain of fk is less than or equal to k.

Remark 3.2. By Lemma 3.1, one easily knows that the eigenfunction f1 does not change
sign on Ω, and λ1,φ has multiplicity 1. Without loss of generality, we can assume f1 > 0 on
Ω. Besides, the nodal domain of eigenfunction f2 of the second Dirichlet eigenvalue λ2,φ has
precisely two components.

Lemma 3.3. ([14]) Domain monotonicity of eigenvalues with vanishing Dirichlet data also
holds for the Dirichlet eigenvalues of the weighted Laplacian.

Now, we have:

A proof of Theorem 1.9 or 1.10. By Lemma 3.1, one knows that the eigenfunction f2 has
two nodal domains and its nodal set lies inside Ω. Denote by Γ the nodal set of f2. Γ divides
the domain Ω into two parts D1 and D2. Without loss of generality, assume that f2|D1 > 0
and f2|D2 < 0. Then it is easy to see that

{
∆φf2 + λ2,φ(Ω)f2 = 0 in D1,

f2 = 0 on ∂D1,
(3.1)
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and
{

∆φf2 + λ2,φ(Ω)f2 = 0 in D2,

f2 = 0 on ∂D2,
(3.2)

In fact, the nodal set Γ also divides the boundary ∂Ω into two parts, and let us call them C1
and C2. It is not hard to see that C1 and Γ surround one of D1 and D2, and without loss of
generality, let us say D1. This implies that the boundary ∂D1 of D1 satisfies ∂D1 = C1 ∪ Γ.
Correspondingly, one has ∂D2 = C2 ∪ Γ. From (3.1) and (3.2), one knows that f2 satisfies
the eigenvalue problem (1.15) with Ω = D1 or Ω = D2, and moreover, f2 does not change
sign on Di, i = 1, 2. Hence, we have λ1,φ(D1) = λ2,φ(Ω) = λ1,φ(D2), and f2 can be treated
as an eigenfunction of λ1,φ(Di), i = 1, 2. Denote by BRi

(o) the (geodesic) ball in Rn (or
Hn) centered at the origin o and radius Ri such that its weighted volume equals that of Di,
i = 1, 2, that is, |BRi

(o)|φ = |Di|φ. Then by Theorem 1.1 (or Theorem 1.5), we know that

λ2,φ(Ω) ≥ λ1,φ(BR1(o)), λ2,φ(Ω) ≥ λ1,φ(BR2(o))

hold simultaneously. Hence, one has

λ2,φ(Ω) ≥ max{λ1,φ(BR1(o)), λ1,φ(BR2(o))}.

Wemay suppose that |D1|φ ≤ |D2|φ. So, R1 ≤ R2, and by Lemma 3.3 we have λ1,φ(BR1(o)) ≥
λ1,φ(BR2(o)). Therefore, in this setting, finding the greatest lower bound for the second eigen-
value λ2(Ω) among domains with the fixed weighted volume |Ω|φ = const., it is sufficient to
minimize λ1,φ(BR1(o)). Since |D1|φ ≤ |D2|φ and |D1|φ+|D2|φ = |Ω|φ, the maximal possibility

for the weighted volume of D1 is that |D1|φ = |Ω|φ/2. Hence, there exists R̃ > 0 such that
|BR̃(o)|φ = |Ω|φ/2, and by Lemma 3.3, in this situation, the eigenvalue λ1,φ(BR̃(o)) minimizes
the eigenvalue functional λ1,φ(BR1(o)) as R1 changes. Hence, one has λ2,φ(Ω) ≥ λ1,φ(BR̃(o)),
and the eigenvalue λ1,φ(BR̃(o)) equals the minimum value of the eigenvalue functional λ2,φ(Ω)
under the constraint of weighted volume |Ω|φ = const. fixed. This completes the proof.

4 The Szegő-Weinberger type inequalities for theWitten-

Laplcian

This section devotes to giving isoperimetric inequalities for the first nonzero Neumann eigen-
value of the Witten-Laplacian under the constraint of weighted volume fixed. Before that,
we need the following fact.

Theorem 4.1. Assume that BR(o) is a geodesic ball of radius R and centered at some point
o in the n-dimensional complete simply connected Riemannian manifold Mn(κ) with constant
sectional curvature κ ∈ {−1, 0, 1}, and that φ is a radial function w.r.t. the distance param-
eter t := d(o, ·), which is also a non-increasing convex function. Then the eigenfunctions of
the first nonzero Neumann eigenvalue µ1,φ(BR(o)) of the Witten-Laplacian on BR(o) should
have the form T (t)xi

t
, i = 1, 2, · · · , n, where T (t) satisfies

{
T ′′ +

(
(n−1)Cκ

Sκ
− φ′

)
T ′ + (µ1,φ(BR(o))− (n− 1)S−2

κ ) T = 0,

T (0) = 0, T ′(R) = 0, T ′|[0,R) 6= 0.
(4.1)
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Here Cκ(t) = (Sκ(t))
′ and

Sκ(t) =





sin t, if Mn(κ) = Sn
+,

t, if Mn(κ) = Rn,
sinh t, if Mn(κ) = Hn,

with Sn
+ the n-dimensional hemisphere of radius 1.

The proof of the above fact is a little bit long, and looks like it does not have close relation
with the main content of this section. Hence, we prefer to leave the proof in Appendix –
Section 5.

Remark 4.2. it is not hard to see in Section 5 that xi, i = 1, 2, · · · , n, are coordinate
functions of the globally defined orthonormal coordinate system set up in Mn(κ).

We construct an auxiliary function h(t) such that

h(t) =

{
T (t), 0 ≤ t ≤ R,

T (R), T > R.
(4.2)

Lemma 4.3. Assume that the function φ satisfies Property I (with Mn chosen to be Rn

and additionally the point o required to be in the convex hull of Ω, i.e. o ∈ hull(Ω)). Assume
that T (t) is monotonically non-decreasing determined by the system (4.1). Then h(t) is
monotonically non-decreasing, and (h′)2 + (n− 1)h2/t2 is monotonically non-increasing.

Proof. First, it is easy to check that h(t) defined by (4.2) is non-decreasing. Besides, by a
direct calculation, one has

d

dt

[
(h′)2 +

(n− 1)h2

t2

]
= 2h′h′′ + 2(n− 1)

thh′ − h2

t3
.

Together with (4.1), we have

d

dt

[
(h′)2 +

(n− 1)h2

t2

]
= −2µ1,φ(BR(o))hh

′ − (n− 1)
(th′ − h)2

t3
+ 2(h′)2φ′ ≤ 0,

which implies the second assertion of the lemma directly.

Lemma 4.4. Assuming Ω is a bounded domain in Rn (or Hn) with smooth boundary. If
|Ω|φ = |BR(o)|φ, with BR(o) be the (geodesic) ball defined as in Theorem 1.11 (or Theorem
1.12), and the non-constant functions u(t) and v(t) defined on [0,+∞) are monotonically
non-increasing and non-decreasing, respectively, then

∫

Ω

v(|x|)dη ≥

∫

BR(o)

v(|x|)dη,

∫

Ω

u(|x|)dη ≤

∫

BR(o)

u(|x|)dη.

The equality holds if and only if Ω = BR(o) (or Ω is isometric to BR(o)).
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Proof. Assume that Q = Ω ∩ BR(o), and then we have

∫

Ω

v(|x|)dη =

∫

Q

v(|x|)dη +

∫

Ω\Q
v(|x|)dη

≥

∫

Q

v(|x|)dη + v(R)

∫

Ω\Q
dη.

Similarly, one has

∫

BR(o)

v(|x|)dη =

∫

Q

v(|x|)dη +

∫

BR(o)\Q
v(|x|)dη

≤

∫

Q

v(|x|)dη + v(R)

∫

BR(o)\Q
dη.

Since |Ω|φ = |BR(o)|φ, then
∫
Ω\Q dη =

∫
BR(o)\Q dη, and substituting this fact into the above

two inequalities yields

∫

Ω

v(|x|)dη ≥

∫

BR(o)

v(|x|)dη.

Specially, when the equality holds, one has

∫

Ω\Q
v(|x|)dη = v(R)

∫

Ω\Q
dη,

∫

BR(o)\Q
v(|x|)dη = v(R)

∫

BR(o)\Q
dη

simultaneously. Since the non-constant function v is non-increasing, Ω is the ball BR(o) (or
Ω is isometric to BR(o)). The situation for the non-constant function u can be dealt with
similarly.

Now, we have:

Proof of Theorem 1.11. Define f(t) := h(t)xi

t
, where i is chosen to be an integer of the set

{1, 2, · · · , n}. Then applying the Brouwer’s fixed point theorem and choosing a suitable
coordinate origin o ∈ hull(Ω), we can assure

∫
Ω
fdη = 0. This can be done by using a very

similar argument to that on [38, pp. 634-635]. In fact, one can also check our another work
[12] where we have given a detailed explanation on how to get the suitable coordinate system
such that

∫
Ω
fdη = 0. By the characterization (1.25), and by using a similar calculation to

(2.9)-(2.10) on [38, page 635], one has

µ1,φ(Ω) ≤

∫
Ω

[
(h′)2 + (n−1)h2

t2

]
dη

∫
Ω
h2dη

.

On the other hand, by Lemma 4.3 and Lemma 4.4, we have

∫

Ω

[
(h′)2 +

(n− 1)h2

t2

]
dη ≤

∫

BR(o)

[
(h′)2 +

(n− 1)h2

t2

]
dη
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and
∫

Ω

h2dη ≥

∫

BR(o)

h2dη.

Therefore, we have

µ1,φ(Ω) ≤

∫
Ω

[
(h′)2 + (n−1)h2

t2

]
dη

∫
Ω
h2dη

≤

∫
BR(o)

[
(h′)2 + (n−1)h2

t2

]
dη

∫
BR(o)

h2dη
= µ1,φ(BR(o)),

which together with the description of the equality case in Lemma 4.4 implies the assertion
of Theorem 1.11 directly.

Proof of Theorem 1.12. We still use f(t) as the trail function, but now the distance should
be the Riemannian distance in the hyperbolic space Hn. In the hyperbolic case, using a
similar argument to that in the proof of Theorem 1.11, we have

µ1,φ(Ω) ≤

∫
Ω

[
(h′)2 + (n−1)h2

(sinh t)2

]
dη

∫
Ω
h2dη

. (4.3)

On the other hand,

d

dt

[
(h′)2 +

(n− 1)h2

(sinh t)2

]
= 2h′h′′ + 2(n− 1)

hh′ sinh t− h2 cosh t

(sinh t)3.

Putting (4.1) and using the facts sinh t ≥ 0, cosh t ≥ 1 for t ≥ 0, one has

d

dt

[
(h′)2 +

(n− 1)h2

(sinh t)2

]

= −2µ1,φ(BR(o))hh
′ + 2(h′)2φ′ −

2(n− 1) cosh t

sinh t
(h′)2

−
2(n− 1) cosh t

sinh3 t
h2 +

4(n− 1)

sinh2 t
hh′

≤ −2µ1,φ(BR(o))hh
′ + 2(h′)2φ′ −

2(n− 1)

sinh t
(h′)2

−
2(n− 1)

sinh3 t
h2 +

4(n− 1)

sinh2 t
hh′

= −2µ1,φ(BR(o))hh
′ + 2(h′)2φ′ − 2(n− 1)

(h′)2 sinh2 t+ h2 − 2hh′ sinh t

sinh3 t

= −2µ1,φ(BR(o))hh
′ + 2(h′)2φ′ − 2(n− 1)

(h′ sinh t− h)2

sinh3 t
≤ 0.

Then, by applying Lemma 4.4, we have

∫

Ω

[
(h′)2 +

(n− 1)h2

sinh2 t

]
dη ≤

∫

BR(o)

[
(h′)2 +

(n− 1)h2

sinh2 t

]
dη
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and
∫

Ω

h2dη ≥

∫

BR(o)

h2dη.

Therefore, from (4.3) we can obtain

µ1,φ(Ω) ≤

∫
Ω

[
(h′)2 + (n−1)h2

sinh2 t

]
dη

∫
Ω
h2dη

≤

∫
BR(o)

[
(h′)2 + (n−1)h2

sinh2 t

]
dη

∫
BR(o)

h2dη
= µ1,φ(BR(o)),

which together with the description of the equality case in Lemma 4.4 implies the assertion
of Theorem 1.12 directly.

5 Appendix

Now, in this section we give a proof of Theorem 4.1 in details. Assume that f is an eigen-
function of the Witten-Laplace operator ∆φ, and f can be decomposed into T (t)G(ξ), where
t := d(o, ·) stands for the Riemannian distance to the point o, and ξ ∈ Sn−1

o ⊂ ToM
n(κ). A

simple calculation gives us that

0 = ∆φf + µf = S1−n
κ (Sn−1

κ T ′)′G− S2
κTvlG− φ′T ′G+ µTG,

where vl denotes the closed eigenvalue of the Laplacian on the unit (n− 1)-sphere Sn−1, i.e.,
vl = l(l+n−2), l = 0, 1, 2, · · · . Simplifying the above equation gives us a second-order ODE
as follows

T ′′ +

[
(n− 1)Cκ

Sκ
− φ′

]
T ′ +

(
µ−

vl
S2
κ

)
T = 0, (5.1)

where Cκ(t) = S ′
κ(t). For the Neumann eigenvalue problem of the Witten-Laplacian ∆φ, in

order to ensure the smoothness of the function T , we have:

• When l = 0, T ′(0) = 0;

• T (t) ∼ tl, l = 1, 2, · · · ;

• T satisfies the Neumann boundary condition T ′(R) = 0.

Choosing a relatively small positive number ǫ and letting p(t) = e
∫
t

ǫ
(
(n−1)Cκ

Sκ
−φ′)ds, we can

simplify (5.1) into a Sturm-Liouville equation

(pT ′)′ + (µ− vlS
−2
κ )pT = 0. (5.2)

Assume that for a fixed vl, µl,j,φ, j = 1, 2, · · · , is the j-th eigenvalue related to vl, and Tl,j,φ
denotes an eigenfunction belonging to µl,j,φ. Here the purpose that we put the symbol φ in
the subscript of µl,j,φ is to emphasize that theoretically µl,j,φ, Tl,j,φ have close relation with
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the function φ since the function p(t) in the equation (5.2) depends on φ′(t). In this setting,
the equation (5.2) can be rewritten as

(pT ′
l,j,φ)

′ +
(
µl,j,φ − vlS

−2
κ

)
pTl,j,φ = 0, (5.3)

which implies

∫ R

0

Tl,j,φ Tl,k,φpdt = 0, when µl,j,φ 6= µl,k,φ. (5.4)

Moreover, one can normalize T such that

∫ R

0

Tl,j,φTl,j,φpdt = 1.

For an equation of the form similar to (5.3), we have the following fact.

Lemma 5.1. Assume that functions f and g satisfy separately the equations

(pf ′)′ + (α− σ(t))pf = 0, (5.5)

(pg′)′ + (β − τ(t))pg = 0, (5.6)

and also the boundary conditions given as in the system (4.1). Then we have

p(fg′ − f ′g)(t) =

∫ t

0

[α− β + (τ − σ)] pfgdt.

Proof. Multiplying both sides of the equation (5.5) by g, multiplying both sides of the
equation (5.6) by f , and then making difference yields

(pf ′)′g − (pg′)′f + [α− β + (τ(t)− σ(t))] pfg = 0.

Integrating both sides of the above equality from 0 to t, and using the boundary conditions
given as in the system (4.1), one can get the assertion of Lemma 5.1 directly.

By the standard Sturm-Liouville theory for second-order ODEs, we know that Tl,j,φ has
exactly j − 1 zeros on the interval (0, R). So, Tl,1,φ keeps its sign unchanged on (0, R).
Without loss of generality, we may assume that Tl,1,φ and Tk,1,φ are both greater than 0,
where l < k. Then, by Lemma 5.1, when t = R, we have µl,1,φ(R) < µk,1,φ(R), l < k. Since
for the eigenvalue problem (1.22), we know from its sequence (1.23) that µ1,φ = µ0,1,φ = 0.
Hence, if one wants to get the first non-zero Neumann eigenvalue µ1,φ of the Witten-Laplacian
on BR(o), one only needs to know exactly which one is smaller between µ0,2,φ and µ1,1,φ.

The following lemma is important and fundamental.

Lemma 5.2. When l ≥ 1, T ′
l,j,φ has only j − 1 zeros in the interval (0, R).

Proof. From (5.3), one has

pT ′′
l,j,φ + p′T ′

l,j,φ + µl,j,φpTl,j,φ − vlS
−2
κ pTl,j,φ = 0. (5.7)
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Since Tl,1,φ has no zero points on the interval (0, R), we can assume that Tl,1,φ is greater
than 0. According to the boundary conditions, if T ′

l,1,φ is not constantly greater than 0 on
the interval (0, R), then there exists a t0 < t1 such that T ′′

l,1,φ(t0) ≤ 0, T ′
l,1,φ(t0) = 0 and

T ′′
l,1,φ(t1) ≥ 0, T ′

l,1,φ(t1) = 0 hold true. Together with (5.7), we can obtain

S2
κ(t0) ≥

vl
µl,1,φ

≥ S2
κ(t1).

Due to the increasing property of Sκ(t), this contradicts with t0 < t1. So, T
′
l,1,φ has no zero

points in the interval (0, R). For the case T ′
l,j,φ, j > 1, one only needs to repeat the above

argument in each nodal domain.

It is not hard to know that the function T0,2 satisfies

{
(pT ′

0,2,φ)
′ + µ0,2,φpT0,2,φ = 0,

T ′
0,2,φ(0) = T ′

0,2,φ(R) = 0.
(5.8)

Since T0,1,φ is a non-zero constant function, and T0,2,φ is orthogonal to T0,1,φ in the sense of
(5.4), we know that T0,2,φ changes sign on the interval (0, R). Therefore, we may assume
that T0,2,φ is positive on some interval (0, r0) and T0,2,φ(r0) = 0, 0 < r0 < R. If there exists
r∗ ∈ [0, r0) such that T ′′

0,2,φ(r
∗) ≥ 0 and T ′

0,2,φ(r
∗) = 0, then substituting this fact into (5.8)

yields ((pT ′
0,2,φ)

′ + µ0,2,φpT0,2,φ)(r
∗) > 0, which contradicts with the first equation in the

system (5.8). Hence, we conclude that T ′
0,2,φ is negative on the interval (0, r0). Since φ is

non-increasing, p′ ≥ 0 can be obtained, and then from (5.8) again, we have T ′′
0,2,φ(r0) ≥ 0 at

r0.
We notice that the function T1,1,j satisfies the following equation

(pT ′
1,1,φ)

′ + (µ1,1,φ − (n− 1)S−2
κ )pT1,1,φ = 0. (5.9)

Differentiating both sides of the first equation in the system (5.8) results in

(pT ′′
0,2,φ)

′ +

(
µ0,2,φ + (

p′

p
)′
)
pT ′

0,2,φ = 0. (5.10)

Combining (5.9)-(5.10), and applying Lemma 5.1, we can obtain at r0 that

p(T1,1,φT
′′
0,2,φ − T ′

1,1,φT
′
0,2,φ)(r0) =∫ r0

0

[
µ1,1,φ − µ0,2,φ +

((
−
p′

p

)′
− (n− 1)S−2

κ

)]
pT1,1,φT

′
0,2,φdt. (5.11)

Since φ is a convex function, φ′′ ≥ 0, and so we have

−

(
(n− 1)Cκ

Sκ

− φ′
)′

− (n− 1)S−2
κ ≥ 0.

Substituting the fact

p(t) = e
∫
t

ǫ (
(n−1)Cκ

Sκ
−φ′)dt
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into the above inequality, one has
(
−
p′

p

)′
− (n− 1)S−2

κ ≥ 0.

Together with the fact that at r0, T1,1,φ > 0, T ′
1,1,φ ≥ 0, T0,2,φ > 0, T ′

0,2,φ ≤ 0 and T ′′
0,2,φ ≥ 0, it

follows from (5.11) that µ1,1,φ < µ0,2,φ. That is to say, the first non-zero Neumann eigenvalue
µ1,φ(BR(o)) of the Witten-Laplacian on BR(o) should be µ1,φ = µ1,1,φ. Substituting this fact
in (5.1) results in

T ′′ +

[
(n− 1)Cκ

Sκ
− φ′

]
T ′ +

(
µ1(BR(o))− v1S

−2
κ

)
T = 0,

which is exactly the first equation in the system (4.1). This completes the proof of Theorem
4.1.
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