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The simulation of chemical reactions is an anticipated application of quantum computers. Using
a Diels-Alder reaction as a test case, in this study we explore the potential applications of quantum
algorithms and hardware in investigating chemical reactions. Our specific goal is to calculate the
activation barrier of a reaction between ethylene and cyclopentadiene forming a transition state. To
achieve this goal, we use quantum algorithms for near-term quantum hardware (entanglement forging
and quantum subspace expansion) and classical post-processing (many-body perturbation theory)
in concert. We conduct simulations on IBM quantum hardware using up to 8 qubits, and compute
accurate activation barriers in the reaction between cyclopentadiene and ethylene by accounting for
both static and dynamic electronic correlation. This work illustrates a hybrid quantum-classical
computational workflow to study chemical reactions on near-term quantum devices, showcasing the
potential of quantum algorithms and hardware in accurately calculating activation barriers.

I. INTRODUCTION

The Diels-Alder reaction, discovered by Otto Diels and
Kurt Alder in 1928, remains a fundamental and exten-
sively studied transformation in organic chemistry [1–5].
The synthetic versatility of the Diels-Alder reaction is ev-
ident in its widespread use for the construction of com-
plex natural products [6–8] and the design of novel ma-
terials [9–14]. This reaction occurs between a conjugated
diene and an alkene, referred to as a dienophile, and pro-
duces a cyclic compound, typically a six-membered ring.
The reaction’s efficiency and precise control over stereo-
chemistry have established it as an indispensable tool for
organic chemists seeking streamlined routes to elaborate
molecular structures [15, 16]. The extensive applicabil-
ity of the Diels-Alder reaction in organic synthesis, com-
bined with its intricate mechanistic aspects, positions it
as a focal point for ongoing investigation and innovative
advancements [17–20].

The widespread importance and unique challenges of
the Diels-Alder reaction make it a valuable testbed for
near-term quantum computing algorithms [21–25] and
hardware. First, breaking and formation of bonds in
the course of the reaction may lead to electronic wave-
functions with a multireference character, which can be
captured to zeroth order by accurate active-space calcu-
lations. The energetics of the reaction then arise from a
complex interplay between static and dynamic electronic
correlation, the latter resulting from electronic transi-
tions outside the active space. Finally, the reactivity and
selectivity of the Diels-Alder reactions hinge on the char-
acteristics of their transition states, which are typically
more sensitive to approximations in the solution of the
Schrödinger equation than reactants and products, due
to the presence of partial bonds. Therefore, accurate cal-
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culations of the Diels-Alder reaction pose a substantial
challenge to quantum computing algorithms, since they
require accounting for both static and dynamic electronic
correlation in reactants, products, and transition states.
In this work, we study the prototypical example of a

Diels-Alder reaction, between cyclopentadiene and ethy-
lene reacting in a synchronous “aromatic type” fashion
where the reorganization of π bonds in cyclopentadiene
and ethylene (Figure 1) during bond formation leads to
a bridged six-membered ring compound [26]. We ex-
plore the significance of this Diels-Alder reaction as a
compelling testbed for the validation, combination, and
refinement of quantum computing algorithms for near-
term quantum devices. To that end, we employ hybrid
quantum-classical algorithms to solve the Schrödinger
equation in an active space on a quantum computer, and
then recover dynamical electronic correlation through
classical post-processing. For active-space simulations,
we use a qubit-reduction technique [27–30] called entan-
glement forging (EF) [28, 31, 32] to define a variational
ansatz in the context of the variational quantum eigen-
solver (VQE) method [33, 34]. To improve the qual-
ity of active-space simulations beyond the level of ac-
curacy afforded by EF, we use a quantum subspace ex-
pansion (QSE) [35, 36] based on single and double elec-
tronic excitations from the EF wavefunction. For recov-
ering dynamical electronic correlation, we integrate EF
and QSE with second-order perturbation theory (PT2)
[37, 38]. We demonstrate the proposed algorithmic work-
flow (active-space calculations on quantum computers
and classical post-processing exemplified by perturbation
theory to recover dynamical electronic correlation) on
classical simulators and quantum hardware, using up to
8 qubits and error mitigation techniques [39–41] to com-
pute the activation energy of the Diels-Alder reaction.
The structure of this work is as follows: first, we de-

tail the methods employed, emphasizing simulations on
quantum hardware, including error mitigation techniques
and measurement optimization. We then present and dis-
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Figure 1. Left panel: schematics of (a) the reactant molecules, (b) the transition state, and (c) the activation barrier denoted by
∆E‡. The right three panels show the active-space orbitals for both reactants and the transition state (MP2 natural orbitals).
A grey box highlights the AS(6e,6o) π space of the reactants and transition state.

cuss results for predictions of the activation energy of the
reaction on quantum simulators and quantum devices.
The supplementary information includes additional de-
tails of the workflow used in this study.

II. METHODS

A. Active-space Selection

In the Diels-Alder reaction, active electrons are de-
fined as those participating in the breaking/formation
of bonds as the reaction unfolds. The orbitals involved
in the reaction involve two π bonds contributed by the
diene reacting with one π bond contributed by the ene
counterpart. These undergo conversion into partial π
bonds in the transition state, prior to the formation of
two σ bonds and one π bond in the product. Overall,
this process involves a 6 electron, 6 orbital active space
(here denoted AS(6e, 6o)). Through the work of Houk
and co-workers [42] on the retro reaction of norbornene
breaking into cyclopentadiene and ethylene, it is known
that the breaking/formation of bonds in a Diels-Alder re-
action can be studied in an active space of 8 electrons in
8 orbitals, AS(8e,8o). Therefore, in this work, we simu-
late AS(8e,8o) of MP2 natural orbitals around the High-
est Occupied Natural Orbital-Lowest Unoccupied Natu-

ral Orbital (HONO-LUNO) frontier [43], as shown in Fig-
ure 1. We note that most of the active-space orbitals of
the transition state have reactant-like character, consis-
tent with the fact that the transition state has an “early”
nature. In particular, within the AS(8e,8o) active space
shown in Figure 1, one can recognize an AS(6e,6o) (en-
closed in a gray box), spanned by the π and π∗ orbitals
of the reactants and transition state, respectively. In the
remainder of this work, we therefore study the AS(6e,6o)
alongside the larger AS(8e,8o) active space.

B. Classical Methods

We conducted classical electronic structure simulations
using an aug-cc-pVTZ basis set [44] with PySCF [45, 46].
We obtained initial coordinates for the reactants and
transition state from the prior study by Levandowski et
al. [26]. Our CASCI calculations were performed us-
ing active spaces comprising MP2 natural orbitals. The
CASCI energies for the active spaces of AS(6e,6o) and
AS(8e,8o) were 45.7 kcal/mol and 43.5 kcal/mol, respec-
tively. These values were compared to those obtained in
previous computational studies [47, 48] and to the ex-
perimentally determined (Exp) activation barrier [49] of
23.7 ± 1.6 kcal/mol in the gas phase (521-570 K) (Fig-
ure 2). The difference between the active-space ener-
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Figure 2. Classical computational results for AS(6e,6o) (light
green), AS(8e,8o) (dark blue), and various single-reference
methods with differing treatments of electronic correlation
(SCF, MP2, DFT with M06-2X functional, CCSD, and
CCSD(T)), using the aug-cc-pVTZ basis set. Active-space
methods included CASCI with natural orbitals, CASCI with
natural orbitals combined with PT2 corrections to account
for dynamical correlation, as well as CASSCF and CASSCF
with PT2 corrections. The inclusion of dynamical correlation
is essential to obtain realistic results.

gies and the experimental values underscores the signif-
icance of accounting for dynamical correlation to align
the theoretical results with the experimental data. Con-
sequently, we conducted second-order perturbation the-
ory calculations to incorporate dynamical correlation.
The activation barriers were found to be 6.5 kcal/mol
and 8.9 kcal/mol for the active spaces of AS(6e,6o) and
AS(8e,8o), respectively. CASSCF and CASSCF+PT2
calculations followed a similar trend. These classical elec-
tronic structure calculations serve as a reference point for
evaluating the accuracy and precision of the quantum-
classical algorithms employed in this study. Notably, the
method that gets the closest to the experimental values
is CCSD which suggests that the system under study is
adequately described by a single reference wavefunction
with dynamical correlation effects.

C. Quantum Algorithms Overview

The workflow illustrated in Figure 3 uses a hybrid
quantum-classical approach. First, we carry out active-
space calculations using the VQE method, on quantum
hardware, using the EF method to formulate a varia-
tional ansatz and reduce the number of qubits from 2N
to N , where N is the number of active-space orbitals. We
then extract the density matrix of our system through

Measure Density Matrix via Tomography

Perform Entanglement Forging 

Extract CI Vectors

Compute QSE Matrices

Solve Generalized Eigenvalue Problem

Calculate PT2 Energies

Active Space

Full Basis

Quantum

Quantum

Classical

Classical

Classical
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Figure 3. Schematic representation of the hybrid approach
workflow. Active-space calculations are performed on a quan-
tum computer, followed by classical post-processing. After
conducting an active-space variational calculation with en-
tanglement forging (EF), we conduct an active-space quan-
tum subspace expansion calculation to refine the EF results
and second-order perturbation theory (PT2) to account for
dynamical electron correlation. To quantify and mitigate the
errors occurring on quantum devices, we extract the density
operators of the quantum states prepared by the device using
tomography. We then project the density operator in the sub-
space of the Hilbert space with appropriate particle number
and spin. We use the resulting projection (referred to as a CI
vector) as a starting point for the QSE and PT2 calculations
in lieu of the original density operator.

tomographic measurements of the ground state on the
quantum computer and we project it into the Hilbert
space with the correct particle and spin number. The
obtained projection (denoted as the CI vector in Figure
3) is used as a starting point for QSE and PT2. This
approach allows us to improve the quality of EF ground-
state results and mitigate errors from the quantum de-
vice.

1. Entanglement Forging

Entanglement Forging (EF) is a qubit reduction tech-
nique that enables the simulation of electronic systems
using only half the qubits required by a conventional
simulation in the Jordan-Wigner representation, by map-
ping a spatial orbital to a single qubit instead of two.
EF reduces the number of qubits by separately simu-
lating electrons of opposite spins, and accounting for the
correlation between opposite-spin electrons with classical
post-processing based on a finite set of electronic config-
urations (bitstrings). EF was first demonstrated for the
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simulation of the water molecule [28] and later applied
to study the excited-state dissociation of the sulfonium
cation [31], as well as excitations in aromatic heterocy-
cles [32]. EF involves two steps: first, the identification
of a subset of bitstrings to establish an initial multicon-
figuration approximation of the electronic ground state;
second, the selection of an appropriate quantum circuit.

In the EF algorithm, the active-space Hamiltonian is
expressed as a linear combination of tensor products,

H =
∑
µ

Âµ ⊗ B̂µ, (1)

where Âµ and B̂µ act on α and β spin-orbitals, re-
spectively. The target wavefunction is represented by
a Schmidt decomposition,

|Ψθ⟩ =
∑
k

λkÛ(θ)|xk⟩ ⊗ Û(θ)|xk⟩, (2)

in which the operator Û(θ) is a parameterized unitary,
λk is a set of Schmidt coefficients, and |xk⟩ are qubit
computational-basis states represented by bitstrings.

To approximate the ground-state energy of our system,
we evaluate the expectation value of Ĥ

⟨Ψθ|Ĥ|Ψθ⟩ =
∑
klµ

λ∗kλlAklµBklµ. (3)

In Equation (3), the matrices Aklµ and Bklµ are defined
as

Aklµ = ⟨xk|Û†(θ)ÂµÛ(θ)|xl⟩, (4)

Bklµ = ⟨xk|Û†(θ)B̂µÛ(θ)|xl⟩. (5)

The bra and ket states ⟨xk| and |xl⟩ are computational
basis states labelled by bitstrings. For k = l, Aklµ and
Bklµ are expectation values, that can be easily measured
on quantum hardware. For k ̸= l, they can be written as
linear combinations of expectation values,

Aklµ =

3∑
p=0

(−i)p

4
⟨ϕpkl|Âµ|ϕpkl⟩, (6)

where the superposition states are

|ϕpkl⟩ =
|xk⟩+ ip|xl⟩√

2
. (7)

Figure 4 illustrates the 8-qubit EF circuit used in this
work. The quantum circuits used in this study comprised
two-qubit “hop-gates” that are both hardware-efficient
and preserve the particle number. In Figure 4 the “hop-
gates” are organized in a brick-wall configuration. De-
tails of the other circuits run in this study can be found
in Appendix A.

=

= =

=

Figure 4. Top: 8-qubit quantum circuit corresponding to the
TS in AS(8e,8o) with state initialization run on a 27-qubit
ibm auckland device. A brick-wall arrangement of hop-gates
(green), and measurement of single-qubit Pauli operators X,
Y, and Z. Bottom: The hop-gate is compiled into single-qubit
and CNOT gates. Two-qubit unitaries (highlighted in pink)
transform the initial state |00⟩ into various states, such as
|10⟩, |01⟩, and |ϕp⟩ for p = 0, 1, 2, and 3, corresponding to
single-qubit gates (R0 = I, R1 = ZS, R2 = Z, and R3 = S).

2. Quantum Subspace Expansion

To improve the accuracy of the EF results, we used the
QSE method [36, 50–52] by applying single and double
electronic excitations to the wavefunction obtained from
EF as follows,

|Ψ⟩ = α|ψEF⟩+ βkiâ
†
kâi|ψEF⟩+ γkibj â

†
kâ

†
bâj âi|ψEF⟩. (8)

The coefficients α, βai, and γaibj were optimized vari-

ationally. In Equation (8), â†k/âi are the creation and
annihilation operators, respectively for an electron in an
occupied/virtual spin-orbital k/i.
In this work, we focused on single and double elec-

tronic excitations within the same set of orbitals used to
describe the ground state. This flavor of QSE can be
regarded as a multi-reference CISD method, where the
wavefunction, prepared on a quantum device, is not a sin-
gle Slater determinant but a correlated electronic state.
We classically realize a variational subspace spanned by
a set of quantum states {ψI} as |ψI⟩ = ÔI |ψEF⟩, where
ÔI ∈ {I, â†kâi, â

†
kâ

†
bâj âi}, which can be generated via ad-

ditional measurements and post-processing. The Hamil-
tonian is then diagonalized within the new state space,
by solving the generalized eigenvalue problem Hc = ScE
and obtaining a variational estimate of the ground state
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energy. More specifically, obtaining the expansion coeffi-
cients c requires computing the matrix elements

Hij = ⟨ψEF|Ô†
IĤÔJ |ψEF⟩ = Tr[Ô†

IĤÔJ ρ̂], (9)

Sij = ⟨ψEF|Ô†
IÔJ |ψEF⟩ = Tr[Ô†

IÔJ ρ̂]. (10)

We employ a quantum device to compute the matrix

elementsHij and Sij by measuring the operators Ô†
IĤÔJ

and Ô†
IÔJ respectively. Following [31], we conduct quan-

tum state tomography on the EF circuits by performing
measurements on up to n = 8 qubits in the 3n eigenbases
of X, Y, and Z Pauli operators. Through this operation,
we obtain a Bloch vector aP = Tr[Pρ], where P is an n-
qubit Pauli operator, and use it to calculate the matrix
elements Hij and Sij . We then use a classical computer
to solve the generalized eigenvalue equation Hc = ScE
and obtain approximate eigenpairs. The benefit of this
approach is that QSE integrates into the VQE without
necessitating any modifications to the quantum circuit,
at the cost of additional measurements. Notably, it does
not increase the depth of the quantum circuit required for
preparing |ψEF⟩. This characteristic is beneficial, espe-
cially for near-term quantum hardware subject to qubit
coherence times and two-qubit gate errors. We remark
that quantum state tomography is not required to mea-
sure the operators in Eq. (9). However, it is necessary
to implement the classical post-processing operations de-
scribed in the forthcoming Subsection II F.

D. Hardware Calculations

All EF calculations were executed on the 27-qubit
ibm auckland device, using the Qiskit Runtime library to
interface the code with quantum devices. Jobs consist-
ing of 300 circuits, and 10,000 shots for each circuit, were
submitted on quantum hardware. Readout [39] and dy-
namical decoupling [40] error mitigation techniques were
employed to reduce noise originating from readout and
quantum gates, respectively. Particle number was con-
served through CI vector projection. Additional details
can be found in Appendix A.

E. Error-weighted Pearson Correlation Analysis

Quantum chemistry experiments on near-term quan-
tum computers demand extensive time and resource uti-
lization, underscoring the importance of achieving opti-
mization in both aspects without compromising result
fidelity. To optimize circuit time while maintaining per-
formance, we conducted an in-depth analysis of quantum
state tomography experiments on multiple IBM Quan-
tum processors. Our approach involved calculating the
Pearson correlation coefficient between quantum hard-
ware results and the ground truth statevector, varying

the number of shots, or alternatively, the number of cir-
cuit repetitions. Understanding the optimal number of
shots required to achieve high-fidelity results enables the
optimization of time and resources on near-term quan-
tum computers without compromising result fidelity.
To that end, we first simulated tomography circuits for

ethylene, cyclopentadiene, and the transition state using
Qiskit Aer, representing the resulting statevector as a bi-
nary string of zeroes and ones, serving as a ground truth
vector. Next, we selected several 27-Qubit IBMQuantum
Falcon processors, including ibm algiers, ibm cairo, and
ibm hanoi. The experiments were executed using Qiskit
Runtime, employing an optimization level of 3, readout
error mitigation, and dynamical decoupling techniques.
The variable explored in this study was the number of
shots used in each experimental instance. The number
of shots was systematically varied, and for each experi-
mental instance, a Bloch vector was computed along with
its associated errors. Subsequently, for every shot value,
the resulting Bloch vector from the hardware run was
correlated using the error-weighted Pearson correlation
coefficient rweighted, defined as follows:

rweighted =

∑n
i=1 wi(Xi − X̄weighted)(Yi − Ȳ )√∑n

i=1 wi(Xi − X̄weighted)2
√∑n

i=1(Yi − Ȳ )2
,

(11)
In Equation 11 X and Y represent two sets of data,

namely simulator and hardware block vectors, wi are
weights, Xi is the i-th data point in X, and Yi is the
i-th data point in Y . The mean of Y (Ȳ ) and weighted
mean of X (Xweighted) are expressed as:

Ȳ =
1

n

n∑
i=1

Yi, (12)

X̄weighted =

∑n
i=1 wiXi∑n
i=1 wi

. (13)

In Equation 13, the weights are calculated as follows:

wi = 1− ϵ2i , (14)

where wi is the weight for the i-th data point in X,
and ϵi is the associated error.

F. Perturbation Theory

An active-space calculation, carried out with an accu-
rate solver and in carefully selected active space, can cap-
ture static correlation but not dynamical correlation aris-
ing from electronic interactions involving electrons in the
inactive orbitals. A way of accounting for dynamical cor-
relation is to combine active-space quantum computation
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with classical post-processing on the full basis set. An ex-
ample is complete active-space second-order perturbation
theory (CASPT2). Within CASPT2, the Hamiltonian is

written as a sum of two terms Ĥ = ĤD + V̂ , where
ĤD is the Dyall Hamiltonian, i.e., the sum between the
active-space Born-Oppenheimer Hamiltonian and the re-
striction of the Fock operator to the non-active space,
and V̂ = Ĥ − ĤD is treated as a perturbation. The
second-order energy contribution is

∆EPT2 = −
∑
ν ̸=0

|⟨Ψν |V̂ |Ψ0⟩|2

Eν − E0
, (15)

where (Ψν , Eν) are the eigenpairs of the Dyall Hamilto-
nian, and ν = 0 labels the ground state. Implement-
ing the exact (or uncontracted) NEVPT2 has a combi-
natorial cost with active-space size due to the sum over
the excited states. This limitation can be remedied us-
ing strongly-contracted NEVPT2, which requires high-
order ground-state reduced density matrices (RDMs), or
partially-contracted NEVPT2, which approximates the
sum over the excited states [38].

Implementing CASPT2 based on quantum computing
data, specifically tomographic measurements, poses two
challenges: first, active-space simulations conducted in
the Fock space may break particle number conservation
and other symmetries due to device noise, with detri-
mental impact on the accuracy of the ground and excited
electronic states; second, statistical uncertainties need to
be propagated from active-space quantities to ∆EPT2,
leading to imprecise results. In this work, we (i) sample
the ground-state density matrix using quantum-state to-
mography and subsequently extract a Configuration In-
teraction (CI) vector by normalizing the density matrix’s
row/column entries for each sample. The resulting CI
vector approximates the QSE wavefunction but has an
exact particle number and considerably reduced statisti-
cal uncertainties. We then (ii) use each sampled CI vector
as the input of a conventional CASPT2 calculation, and
finally (iii) average the resulting PT2 energies.

III. RESULTS AND DISCUSSION

a. Active-space quantum calculations In Figure 5,
we present active-space calculations with EF and
EF+QSE, carried out on classical simulators. In EF sim-
ulations, two bitstrings were used for the reactants and
the transition state, respectively. These bitstrings, de-
rived through a Schmidt decomposition of the FCI wave-
function, corresponded to the Hartree-Fock and HONO-
LUNO excitation bitstrings. Given the relatively small
size of the problem and the availability of the FCI so-
lution, obtaining the FCI bitstrings and using them in
our EF calculations allowed us to assess the effective-
ness of the EF method. We further investigated the
impact of a third bitstring for simulations of the tran-
sition state. Notably, simulated forged-VQE results for

the transition state with 3 bitstrings resulted in lower en-
ergies, as shown in Figure 5. This is expected because,
as we include more bitstrings, we can achieve a more
accurate representation of the electronic wavefunction.
However, adding a third bitstring had a modest impact
on the EF+QSE energy, which was approximately equal
to the CASCI energy for both 2 and 3 bitstrings. There-
fore, for computational efficiency, hardware calculations
were executed using only two bitstrings for the transition
state.

Hardware calculations, mitigated with readout and dy-
namical decoupling error suppression techniques, were
further processed to ensure particle number preservation
by extracting a CI vector representation as discussed in
the previous Section. The results obtained in combina-
tion with QSE, closely matched the CASCI and statevec-
tor simulation results (Figure 7). The associated statis-
tical uncertainties for the activation barriers were 0.01
kcal/mol for both active spaces, with errors increasing
with system size, but effectively cancelling out for the
activation barriers. For example, when calculating ab-
solute energies for ethylene AS(2e,2o), cyclopentadiene
AS(4e,4o), and the transition state AS(6e,6o), respective
errors were 0, 3.6× 10−6, and 1.6× 10−5 kcal/mol. No-
tably, the largest deviations in absolute energies were ob-
served in the transition state, as expected due to its more
complex electronic structure, compared to reactants.

b. Pearson Correlation Shot Analysis Through ad-
ditional optimization of hardware experiments and de-
tailed Pearson correlation analysis [53] for reactants and
the TS, a trend emerged across the three quantum de-
vices (ibm algiers, ibm cairo, and ibm hanoi). The corre-
lation between the hardware results and the ground truth
statevector showed a significant improvement as the num-
ber of shots increased (Figures 6). However, our results
also reveal a noticeable point of diminishing returns, and
this point is contingent upon the circuit complexity in-
herent in the molecular system under investigation. For
the TS, characterized by a high degree of circuit com-
plexity, it became evident that even at the upper limit
of 10,000 shots, there existed the potential for further
enhancement in the quality of the result by gathering of
additional shots. In contrast, for experiments involving
cyclopentadiene with a moderate level of circuit com-
plexity, an approximate shot count of 1,000 proved to
be sufficient to reach a quality plateau. Notably, ethy-
lene, which possesses the least complex circuit, achieved
a plateau with only 500 shots.

c. Perturbation theory After applying the PT2 cor-
rection to the activation barrier energies, the results were
found to be consistent with classical CASPT2 energies,
as illustrated in Figure 7. The statistical uncertainties
for the activation barriers were 3.7×10−3 and 6.7×10−3

kcal/mol for the AS(6e,6o) and AS(8e,8o), respectively.
The low error bars are due to state projection, which
reduces statistical fluctuations on the input of the PT2
calculation. Furthermore, the extraction of CI vectors
from tomographic measurements yields a pure state (as
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Figure 5. Quantum simulations: VQE performed using the EF+QSE (denoted as VQE+QSE) for active-space AS(6e,6o)
(green) and AS(8e,8o) (blue). Entanglement forging simulations were performed with 2 bitstrings (abbreviated as bts) for
reactants and either 2 or 3 bitstrings for the transition state. The combination of entanglement forging and QSE results in
a substantial reduction of approximately 10 kcal/mol in the activation barrier, closely aligning with outcomes obtained from
classical CASCI calculations. Additionally, the introduction of an extra bitstring in entanglement forging for transition state
calculations demonstrates minimal impact on the activation barrier.

Figure 6. Relationship between Pearson correlation (y-axis) and the number of shots (x-axis) for ethylene (Eth), cyclopentadiene
(Cyc), and the transition state (TS) using data from ibm algiers, ibm cairo, and ibm hanoi (from left to right). The data
represent computational basis states x0 and x1, where x0 is the Hartree-Fock bitstring and x1 is a HONO-LUNO bitstring
(e.g., for the transition state, xk ∈ {|1111000⟩, |1110100⟩}). Superposition states |ϕp

01⟩ = (|x0⟩+ ip|x1⟩) /
√
2 are marked as ϕp

01,
where p = 0, 1, 2, 3 respectively.

opposed to a density operator) and ensures the correct number of electrons and spin. A detailed comparison be-
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tween VQE and QSE, and VQE and QSE with CI vector
purification in Table II shows that state purification sig-
nificantly reduces errors.

IV. CONCLUSION

In this study, we used the Diels-Alder reaction of cy-
clopentadiene with ethylene as a testbed for perform-
ing near-term simulations of reactions on quantum hard-
ware. We computed the activation barrier of the reac-
tion with an integrated combination of quantum algo-
rithms for active-space calculations (Entanglement Forg-
ing, EF, and Quantum Subspace Expansion, QSE) and
classical post-processing to recover dynamical electronic
correlation (second-order perturbation theory, PT2). We
demonstrated this computational workflow on classical
simulators and quantum hardware, using up to 8 qubits
and error mitigation. Additionally, insights derived from
the Pearson correlation analysis enhanced our under-
standing of optimal shot selection and its impact on re-
sult fidelity in quantum experiments.

Our results pinpointed drastic approximations in the
EF Ansatz, which overestimates the activation barrier
by ∼ 20 kcal/mol compared to CASCI. We resolved the
discrepancies between active-space quantum computing
simulations with the chosen ansatz and CASCI by com-
bining QSE with EF. However, CASCI (and any other
active-space calculation) overestimates the activation en-
ergy, due to omission of dynamical electronic correla-
tion. To overcome this limitation, we integrated EF and
QSE with PT2, obtaining activation energies in agree-
ment with CASPT2 within ∼ 1 kcal/mol. These results,
however, differ appreciably from experimental data and
other classical calculations (CCSD, CCSD(T), DFT) due
to the approximation of PT2.

While our findings present compelling evidence of
the effective application of the QSE method in refining
ground-state approximations and enhancing the accuracy
of VQE calculations, several important points should be
noted about our methodology. Firstly, tomographic mea-
surements are not scalable to larger system sizes. To
address this issue, future work entails employing mea-
surement optimization strategies such as Pauli grouping
[54] and cumulant approximation [55, 56]. This, in turn,
would significantly reduce the computational demands
associated with current implementations. Second, the
classical CI vector sampling approach relies on classical
representations of quantum information, thereby limit-
ing its scalability. Additionally, among the methods that
can be tested on Diels-Alder reactions in future research
are: (i) embedding techniques [43, 57, 58] to define active
regions and correlate them with their environment, (ii)
variational ansatzes to solve for the Schrödinger equa-
tion in the active space seeking a balance between ac-

curacy, computational cost, and hardware compatibil-
ity [59–62], and (iii) approaches for recovering dynamical
correlation, such as transcorrelated [63–65], downfolding
[66], and subspace methods [52]. Our work highlights a
Diels-Alder reaction as a compelling testbed for quantum
algorithms and hardware, as it allows us to gauge their
effectiveness in accounting for static and dynamical elec-
tron correlation in non-trivial situations (e.g. transition
states), exposing and quantifying algorithmic approxi-
mations, and indicating areas and directions of improve-
ment.

Appendix A: Entanglement Forging Hardware
Calculations. Additional Details

Entanglement forging calculations on quantum hard-
ware were performed for the reactants and transition
state in the Diels-Alder reaction. The details on the
number of qubits, parameters, gates, circuit depth and
the total number of circuits are provided in Table I. The
quantum circuits for the reactants and transition state
are shown in Figures 4 and 8.

System Qubits Parameters Gates Depth Circuits

C2H4 (2e,2o) 2 3 (12,4) 10 54

C5H6 (4e,4o) 4 4 (21,7) 10 486

C5H6 (6e,6o) 6 8 (42,19) 20 4374

TS (6e,6o) 6 8 (42,19) 20 4374

TS (8e,8o) 8 14 (72,37) 30 39366

Table I. Key parameters in the study, including the number
of qubits, variational parameters (one for every Hop gate and
two for the Schmidt coefficients), the configuration of single-
and two-qubit gates and the depth. Specifically, for each two-
qubit unitary (denoted by U|⋆⟩ in Fig. 4), Hop gate, and
measurement, there are 4, 4, 2 single-qubit gates and 1, 3, 0
two-qubit gates, respectively. The circuit depth is signifying
the number of layers of quantum gates executed in parallel for
computation completion. Tomography experiments on quan-
tum hardware were run using Qiskit Runtime, which executes
quantum circuits in sessions. Each Runtime job session on
ibm auckland contained a maximum of 300 circuits.

Appendix B: CI Vector Purification

We employed state projection and CI vector extrac-
tion as a noise mitigation/purification technique. The
evaluation of noise in states by CI vectors significantly
contributes to the reduction of error bars. These CI
vectors represent pure states with the correct number of
electrons and spin, enhancing the fidelity of our quantum
computational analyses.
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Figure 7. Comparative analysis of classical CASCI and CASCI+PT2 calculations, quantum simulations (Sim), and hardware
calculations (HW) for active spaces AS(6e,6o) (green) and AS(8e,8o) (blue) with and without second-order perturbation theory
(PT2) for dynamical correlation. Quantum hardware results, employing error mitigation techniques, exhibit consistency with
statevector simulations and classical CASCI calculations.

(a) (b) (c)

Figure 8. Additional quantum circuits run in this study: (a) 2-qubit circuit for active space AS(2e,2o) for ethylene, (b) 4-
qubit circuit for an active space AS(4e,4o) for cyclopentadiene, and (c) 6-qubit circuit representing active space AS(6e,6o) for
cyclopentadiene and TS. The definitions of the two-qubit unitary (U|⋆⟩) and the “hop-gate” are described in Fig. 4.

Method ∆E‡ (6e,6o) ∆E‡ (8e,8o)

SV (VQE+QSE) 47.10 44.95

HW (VQE+QSE) 46.52 ± 2.10 44.49 ± 4.04

HW (VQE+QSE+proj.) 47.52 ± 0.01 45.24 ± 0.01

HW (VQE+QSE+proj.+PT2) 5.45 ± 0.004 7.85 ± 0.007

Table II. Comparison between VQE+QSE,VQE+QSE with
CI vector projection/purification, and VQE+QSE+PT2 with
CI vector projection. Results were obtained using statevector
(abbreviated SV), and ibm auckland quantum hardware (ab-
breviated HW)
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