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Abstract

This paper studies a joint design problem where a seller can design both the signal structures for the
agents to learn their values, and the allocation and payment rules for selling the item. In his seminal
work, Myerson (1981) shows how to design the optimal auction with exogenous signals. We show
that the problem becomes NP-hard when the seller also has the ability to design the signal structures.
Our main result is a polynomial-time approximation scheme (PTAS) for computing the optimal joint
design with at most an ε multiplicative loss in expected revenue. Moreover, we show that in our joint
design problem, the seller can significantly reduce the information rent of the agents by providing partial
information, which ensures a revenue that is at least 1 − 1/e of the optimal welfare for all valuation
distributions.

1 Introduction

The classical auction theory primarily focuses on models that feature exogenous signal structures, wherein

all participants in the auction are privately informed of their valuations for the items. Within this framework,

Myerson (1981) provides an elegant characterization of the optimal single-item auction, which also gives

rise to an efficient algorithm for computing the optimal auction given the exogenous signal structure as input.

However, in many practical applications, buyers initially lack information about their values for the items

for sale due to insufficient data regarding item quality or suitability according to their preferences. Instead,

these buyers depend on seller advertisements to gain insight into their own values. The nature of these

advertisements varies depending on the context. For example, streaming service providers might offer free

trials, thereby influencing consumers’ perceived value of the service prior to committing to a subscription.

Real estate agencies offer inspection opportunities to potential homebuyers, enabling better estimations of

their value for a particular property. Similarly, in the context of government auctions for oil field operations,

oil companies are often allowed to inspect and evaluate the potential oil reserves within a field prior to

bidding.
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In these applications, sellers can jointly design their advertising strategies and the subsequent auction

mechanisms. In this paper, we focus on a canonical model introduced by Bergemann and Pesendorfer (2007)

for this joint design problem. In this model, a seller possesses a single item available for purchase, and there

are n heterogeneous buyers interested in it. These buyers have values independently drawn from a prior

distribution. While the prior distribution is initially common knowledge between the seller and the buyers,

the actual values of the buyers remain unknown to both parties. Instead, the seller can design Blackwell

experiments, which enable the buyers to privately learn their own values. These Blackwell experiments, or

equivalently signal structures, are mappings from the true values to a distribution over signals. It’s crucial

to note that even though the seller designs these experiments, the signals generated by them are privately

observed by the buyers. This aligns with the application of private inspection, where the seller can restrict

the method the buyers can use for inspecting the production, but the inspection outcome is only privately

observed by the buyers. Moreover, in this model, the experiments are conducted independently for each

buyer. This means that the seller cannot establish correlations between the signals received by different

buyers, and what buyer i learns is entirely unrelated to what buyer i′ learns about their private values. We

provide additional justifications of our modeling choices in Section 2.

Following the advertisement, the seller commits to a mechanism for selling the item. This chosen

mechanism must satisfy two crucial constraints: it should be incentive compatible, meaning it incentivizes

buyers to truthfully disclose their posterior values for the item based on the advertisement, and individually

rational, ensuring that buyers have a non-negative expected utility when participating in the auction. The

seller’s objective is to jointly design the signal structures and a subsequent mechanism to maximize the

expected payments collected from the buyers, subject to the incentive compatible and individually rational

constraints.

To illustrate the joint design problem and the challenges it presents, we begin with a simple example

with two buyers. In this example, each buyer has a value that is uniformly and independently drawn between

1 and 2. These realized values are initially unknown to both buyers. Consider a mechanism in which the

values are fully disclosed to buyer 1 while providing no information to buyer 2. Following the disclosure

of information, buyer 1 perfectly learns his value, while buyer 2 is aware only that her value lies uniformly

between 1 and 2, thereby implying an average value of 1.5, which is also her maximum willingness to pay

for the item. Subsequently, the seller approaches the buyers sequentially, first posting a price of 2 to buyer

1 and then a price of 1.5 to buyer 2 if the item is not sold to buyer 1. As buyer 2 always purchases the

item when offered, it is easy to verify that this mechanism is revenue optimal for the seller, as the expected

revenue equals 1.75, which coincides with the optimal welfare in this example.1

Despite its relevance in a wide array of applications, our understanding of the joint design problem

still lags behind that of the pure mechanism design problem. While Bergemann and Pesendorfer (2007)

offers important insights into the structure of the optimal solution, the computational complexity of the joint

design problem remains unexplored. Our paper seeks to bridge this gap in understanding by investigating
1Although the seller can extract the full surplus in this example, this observation does not hold in general. We provide an

illustration for the failure of full surplus extraction in Section 2.1.
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the following question:

What is the computational complexity of the joint design problem? (*)

An important observation from the aforementioned example is that the optimal solution can exhibit asym-

metry, even in cases where the problem is symmetric. This asymmetry reveals the non-concave nature of

the joint design problem, indicating significant challenges in computing the optimal solution.

1.1 Our Results and Techniques

We first show that in contrast to auctions with exogenous signal structures where the optimal mechanism can

be efficiently computed through linear programming (Myerson, 1981; Border, 1991), computing the optimal

solution in the joint design problem is NP-hard. The construction of the hard instances utilizes a reduction

from the well-known NP-complete PARTITION problem (Garey and Johnson, 1979), which is inspired by

Xiao et al. (2020) and Chen et al. (2014).

Given the hardness result, we now focus on designing efficient algorithms for computing approximate

optimal solutions. We begin by showing that a simple signal structure with binary signals, followed by

the sequential posted pricing mechanism, can yield revenue that is at least a fraction of 1 − 1/e of the

optimal welfare. This result leverages the correlation gap technique (Agrawal et al., 2010; Yan, 2011). Our

result also implies that the worst-case multiplicative gap between optimal welfare and optimal revenue is

at most e/(e− 1) for all valuation distributions, assuming the seller can design the signal structures. This

finding sharply contrasts with scenarios where the seller is unable to design the signal structures, resulting

in unbounded gaps between welfare and revenue.

Our main result is a PTAS for computing the signal structure and subsequent mechanism with at most

an ε multiplicative loss in expected revenue compared to the optimal solution. To illustrate our algorithm,

it is helpful to first explain some structures of the joint design problems. As the bidders have quasi-linear

utilities, their willingness to pay after receiving a signal is simply the corresponding posterior mean. We

refer to this distribution of the posterior mean as the value distribution induced by the signal structure. Once

the signal structure is fixed, the subsequent optimal mechanism is Myerson’s optimal auction with respect

to the induced value distributions.

Bergemann and Pesendorfer (2007) offers an insightful characterization of the optimal signal struc-

ture, that is, it must be monotone. However, their analysis does not preclude the use of randomized signal

structures, even when dealing with discrete value distributions. As a result, this implies that the number

of potential signal structures is infinite. We provide a more refined characterization (Lemma 3.2) that the

optimal signal structure must be deterministic, which we refer to monotone partitional signal structure. Our

new characterization significantly reduces the pool of potential candidates for the optimal signal structure

to O (exp(m)), where m is the size of the support of the value distribution. This refined characterization

requires several new observations and is crucial for our PTAS.

Though our strengthened characterization reduces the number of possible signal structures per buyer

from infinite to O (exp(m)), it is still too expensive to exhaustively search over them. We next show
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how to combine dynamic programming with the problem’s inherent structure to design a PTAS to compute

the optimal monotone partitional signal structure. As shown by Bergemann and Pesendorfer (2007), the

value distribution induced by the optimal signal structure must be regular for every buyer. Our first step

in designing the PTAS is to combine this observation with the revenue equivalence by Myerson (1981) to

convert the problem of revenue maximization to virtual welfare maximization. We further decompose the

problem of virtual welfare maximization into the following two sub-problems:

1. For each buyer i, what regular distributions are inducible by a monotone partitional signal structure,

and what are the corresponding distributions of virtual values?

2. How to choose an inducible distribution of virtual value from each buyer so that the expected maxi-

mum of the virtual values is maximized?

For the first sub-problem, our plan is to construct an ε-net over all regular inducible distributions for each

buyer. This requires constructing a set F that satisfies the following two conditions: (i) for every regular

inducible distribution, there must be a distribution in F that is ε-close to it; and (ii) every distribution in F
should be ε-close to at least one regular inducible distribution. Here the ε-distance is measured according

to the differences in virtual welfares. Note that constructing an ε-net over all distributions inducible by a

monotone partitional signal structure is relatively straightforward in the absence of the regularity condition.

While the regularity condition allows us to effortlessly shift from revenue maximization to virtual value

maximization, i.e., avoiding the need for ironing and ironed virtual welfare maximization, it also complicates

the construction of the ε-net. To address this challenge, we provide a dynamic programming algorithm that

memoizes carefully designed information at each state to efficiently construct such an ε-net, as detailed in

Algorithm 2.

For the second sub-problem, we employ another dynamic programming algorithm to keep track of the

distribution of the maximum virtual value among the first j buyers rather than the profile of these buyers’

induced value distributions. This method substantially reduces the number of states we need to store, thereby

speeding up the algorithm. It is important to note that in order to prevent an exponential increase in the

number of states, it is necessary to round the distribution of the maximum virtual value at every step of the

DP. This requirement introduces additional subtleties in both the design of the algorithm and its analysis.

1.2 Related Work

The papers most closely related to ours include those by Bergemann and Pesendorfer (2007); Bergemann

et al. (2022b,a). In particular, Bergemann and Pesendorfer (2007) and Bergemann et al. (2022a) show that

the revenue-optimal signal structure consists of a finite partition of the type space. Our paper extends the

characterizations in Bergemann and Pesendorfer (2007) by introducing a novel algorithm for efficiently

computing a nearly optimal partition within polynomial time.

One line of work that relates to our paper considers the optimal signaling problem in Ad auctions (e.g.,

Emek et al., 2014; Cheng et al., 2015; Badanidiyuru et al., 2018; Bacchiocchi et al., 2022). These papers

consider the model where the seller is privately informed about the states for the Ad slots, and can design the

signaling scheme for disclosing information about Ad slots to the buyers. After the disclosure, the Ad slots
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are sold via second-price auctions if there is a single slot or VCG mechanisms if there are multiple slots.

Cheng et al. (2015) show that additive PTAS algorithms exist for selling a single slot in such environments.

If the selling mechanism is not restricted to second-price auctions, Daskalakis et al. (2016) show that the

optimal joint design problem in Ad auctions corresponds to multi-item auctions with additive valuations.

In contrast, in our model, the seller is uninformative about the states or the signals sent to the buyers, and

the selling mechanism is not restricted to second-price auctions. Moreover, from a technical perspective,

our problem is non-concave, in contrast to ad auctions where the optimal joint design problem can be

formulated as a linear program. We provide a multiplicative PTAS algorithm for solving the optimal joint

design of signal structure and selling mechanism in our model.

The computation of optimal advertisement has also been studied in Zheng and Chen (2021) for selling

information products. A significant distinction between selling information products and physical goods lies

in the fact that advertising solely influences the buyers’ posterior values for winning the physical goods. In

contrast, when advertising information products, it also impacts the quantity of information that can be sold.

Our paper also contributes to the broader domain of information design (e.g., Rayo and Segal, 2010;

Kamenica and Gentzkow, 2011). Additionally, there has been a growing body of research that studies the

computational complexities of finding optimal signal structures across various settings (e.g., Dughmi and

Xu, 2016; Xu, 2020). Our paper extends this line of work by providing novel computational insights into

optimal signal structures when the designer also has the capacity to jointly design the mechanisms for item

sales.

Our paper relates to the computational complexity of finding the optimal mechanisms in classic auction

environments without advertisements (e.g., Cai and Daskalakis, 2015; Cai et al., 2012a,b, 2013b,a; Cai

and Huang, 2013; Chen et al., 2014, 2022; Papadimitriou et al., 2016; Alaei et al., 2019). For single-

item auctions, the optimal mechanism can be computed efficient using the characterization in Myerson

(1981). For multi-item auctions, Cai et al. (2012b) provide efficient algorithms for computing the optimal

mechanisms for additive buyers. When buyers have unit-demand valuations, Chen et al. (2014) show that

computing the optimal pricing scheme is NP-complete if the valuation distribution on each item has support

size at least 3.

Our paper has focused on a specific model concerning optimal information in auctions that fits the

applications of optimal advertisements or private inspection. Note that there are other papers that explored

various models for studying optimal information under different settings and objective functions. Although

those models are suitable for studying other applications such as selling information, they do not fit into the

applications we are interested in this paper. For instance, several papers have considered a model in which

the principal can charge prices to the buyer even if the item remains unsold (e.g., Eső and Szentes, 2007; Li

and Shi, 2017; Krähmer, 2020; Smolin, 2023). In this scenario, the principal’s goal is to design a pricing

scheme that encompasses both the price for providing information and the price for selling the item, with

the aim of maximizing the expected revenue. Another stream of work concerning information in auctions

explores signal structures designed to maximize the expected utilities of the participating buyers (Roesler

and Szentes, 2017; Deb and Roesler, 2021; Brooks and Du, 2021; Chen and Yang, 2023). In this context,

the designer publicly discloses a signal structure for the buyers to learn their values. Subsequently, the seller
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strategically responds by proposing a mechanism that optimizes her expected revenue. The key distinction

here is that the designer’s goal is to implement a signal structure that maximizes the expected utilities of the

buyers while anticipating the mechanism adopted by the seller after the signal structure is publicly disclosed.

Lastly, our model also intersects with research on market segmentation and endogenous principal learning,

where the focus is essentially on providing additional information to the principal about the buyers’ values,

rather than the buyers themselves (e.g., Bergemann et al., 2015; Haghpanah and Siegel, 2023; Clark and Li,

2023). In all these alternative models concerning optimal information in auctions, the primary objective is

to provide qualitative insights into optimal signal structures. However, the computational aspects of these

models have, to a large extent, been underexplored.

2 Preliminaries

We consider the problem of selling a single item to n heterogeneous buyers. The value vi of each buyer i is

drawn independently from a commonly known distribution Fi with finite support Vi ⊆ R+ and probability

mass function fi. Let m = maxi∈[n] |Vi| be the maximum cardinality of the supports and let F = F1 ×
· · · × Fn be the joint distribution profile. In our model, all buyers have linear utilities. That is, the utility of

buyer i for receiving the item with probability xi while paying price pi is

ui(xi, pi; vi) = vi · xi − pi.

Sometimes we omit vi in the notation when the value of the buyer is clear from context. The goal of the

seller is to maximize the total revenue from the buyers, i.e.,
∑

i pi.

Signal Structures Initially, neither the seller nor the buyers possess any information regarding the values

of individual buyers beyond the prior distributions. In our model, the seller can design signal structures, i.e.,

Blackwell experiments, that allow each buyer i to privately learn about his own value vi. Specifically, the

seller can commit to a signal structure (Si, σi) for each buyer i where σi : V → ∆(Si). Each buyer i will

privately observe the realized signal si and update his belief according to the Bayes’ rule.

In this paper, a family of signal structures that are of particular interest are monotone partitional signal

structures.

Definition 1 (Partitional Signal Structures). (Si, σi) is a partitional signal structure if Si ⊆ 2Vi such that (1)

si
⋂

s′i = ∅ for any si ̸= s′i ∈ Si; (2)
⋃

si∈Si
si = Vi; and (3) σi(vi) = si if vi ∈ si. Moreover, (Si, σi)

is a monotone partitional signal structure if it is a partitional signal structure and for any si ̸= s′i and any

vi, v̂i ∈ si, v
′
i ∈ s′i, vi < v′i if and only if v̂i < v′i.

Mechanisms A mechanism M = ({(Si, σi)}i∈[n] , {xi}i∈[n] , {pi}i∈[n]) is a tuple containing a signal

structure profile {(Si, σi)}i∈[n], an allocation rule xi : Si → [0, 1] and a payment rule pi : Si → R for
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each buyer i ∈ [n]. Mechanism M is Bayesian incentive compatible (BIC) if

Eσ,F[ui(xi(si, s−i), pi(si, s−i); vi)|si] ≥ Eσ,F

[
ui(xi(s

′
i, s−i), pi(s

′
i, s−i); vi)|si

]
for all si, s′i ∈ Si, where Eσ,F[·] indicates that all values are generated according to F and all signals are

generated according to signal structures σ. Moreover, this mechanism is interim individual rational (IIR) if

Eσ,F[ui(xi(si, s−i), pi(si, s−i); vi)|si] ≥ 0

for all si ∈ Si. To simplify the notations, we also omit F in Eσ,F[·] when it is clear from context.

For any BIC-IIR mechanism M , we denote its expected revenue as Rev(M) = Eσ,F

[∑
i∈[n] pi(si, s−i)

]
and its expected welfare as Wel(M) = Eσ,F

[∑
i∈[n] vi · xi(s)

]
.

Discussion of Modeling Choices In our paper, we imposed the restriction that the signals from different

buyers are independent. This reflects scenarios such as advertising or private inspections, where buyers are

provided with the opportunities to learn their own values. In these applications, how buyer i learns their

value should not be contingent on how buyer j ̸= i learns theirs.2

In addition, we focus on mechanisms that provide information for free, i.e., advertisements or inspection

opportunities come at no cost to the buyers. This aligns with applications where charging prices for provided

information is generally not adopted in practice. If the seller were permitted to levy additional fees for

providing information, similar to the literature on auctions with endogenous entry (Menezes and Monteiro,

2000), the seller could extract the entire surplus through a mechanism conducting a second-price auction

followed by full information disclosure. In such a mechanism, each buyer would be charged their expected

utility for receiving information and participating in the auction.

Finally, we allow the seller to use arbitrary information structure for disclosing information to individual

buyers. While such complex structure may seem impractical for real-world applications, we show that

the optimal mechanism as well as the mechanisms computed by our polynomial time algorithms only use

partitional information structures. In a partitional information structure, the signals reveal to the buyers

the range of their values for the item, a feature we consider to be implementable in real-world settings.

Moreover, our constant factor approximation only uses binary signals, which further enhances its practical

appeal.

Optimal k-Signal Problem In this paper, we mainly focus on the following computational problem called

OPTIMAL k-SIGNAL problem. Specifically, letMk be the set of BIC-IIR mechanisms in which the cardi-

nality of each signal space is at most k, i.e., |Si| ≤ k for all i. Given any prior distributions F over values

and any positive integer k ≥ 2, the objective of the seller is to design an algorithm that computes a mech-

anism M∗
k inMk that maximizes the expected revenue, i.e., M∗

k = argmaxM∈Mk
Rev(M). To simplify

2Naturally, if the buyers’ true values for the items are correlated, their signals can also be correlated through their correlation
to the true values. In environments with correlated values, Crémer and McLean (1988) show that the seller can extract the full
surplus by providing full information to the buyers. In our paper, we focus on environments with independent values and hence
independent signals.
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the analysis in later sections, let

OPT-Welk = max
M∈Mk

Wel(M) and OPT-Revk = max
M∈Mk

Rev(M)

be the optimal welfare and optimal revenue respectively with at most k signals for each buyer.

In our paper, we also consider the problem where the cardinality of the signal space is unrestricted. We

omit k in the subscripts from notations if the signal space is a compact set without cardinality constraints, and

we refer to the optimal design problem without cardinality constraints as the OPTIMAL SIGNAL problem.

2.1 Illustrative Example

Before going into the details of our analysis, we provide a simple example to illustrate the joint design

problem.

Consider the example with two buyers. In this example, each buyer’s value is uniformly and indepen-

dently drawn among 0, 1 and 2. According to Lemma 3.2, which we will show later in Section 3, the optimal

signal structure is a monotone partitional signal structure. By enumerating all possible monotone partitions,

we show that for each buyer i ∈ 1, 2, the optimal signal structure (Si, σi) comprises a binary signal space

Si = h, l, where signal h is sent if the value is either 1 or 2, and signal l is sent otherwise.

Conditional on receiving signal h, by Bayes’ rule, the buyer’s posterior belief about their own value is a

uniform distribution between 1 and 2, with an expected value of 1.5. Therefore, the buyer’s expected utility

for winning the item conditional on receiving signal h is 1.5 and hence his maximum willingness to pay in

this case is also 1.5. Similarly, conditional on receiving signal l, the buyer’s posterior belief about their own

value is a point mass distribution at 0. With this signal structure, the optimal selling mechanism that ensures

both incentive compatibility and individual rationality is to sequentially offer each buyer a take-it-or-leave-it

price of 1.5. The item is sold if at least one of the buyers receives signal h, which occurs with a probability

of 1− 1
3 ×

1
3 = 8

9 . Therefore, the expected revenue in the optimal mechanism is 4
3 .

In this example, the optimal welfare is 13
9 , which is strictly greater than the optimal revenue. Therefore,

full surplus extraction is generally not possible, even when the seller can design the signal structures.

3 NP-hardness

In this section, we prove that both the OPTIMAL SIGNAL problem and the OPTIMAL k-SIGNAL problem

for any k ≥ 2 are NP-hard when the maximum size of support is at least 3. If the maximum support size

is at most 2, we demonstrate in Appendix A that the problem can be solved within polynomial time. The

missing proofs in this section are provided in Appendix A.

Theorem 1 (NP-hardness). Both the OPTIMAL SIGNAL problem and the OPTIMAL k-SIGNAL problem for

any k ≥ 2 are NP-hard when max |Vi| ≥ 3.

We divide the proof of Theorem 1 into two parts. First we show that the OPTIMAL SIGNAL problem is

NP-hard even if the valuation distributions have support size at most 3.
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Lemma 3.1. The OPTIMAL SIGNAL problem is NP-hard even when |Vi| ≤ 3 for all i.

The proof of Lemma 3.1 relies on the following characterization of the optimal signal structure.

Lemma 3.2. For both the OPTIMAL k-SIGNAL and the OPTIMAL SIGNAL problem, there exists an optimal

mechanism in which the signal structure (Si, σi) is a monotone partitional signal structure for all buyer i.

Bergemann and Pesendorfer (2007) consider a model with continuous distributions and show that it is

without loss to focus on monotone partitional signal structures. In the case of discrete distributions, their

result translates into the optimality of randomized monotone partitional signal structures where a value can

be randomly assigned to two different partitions. Lemma 3.2 further shows that such randomization is

unnecessary to ensure the optimality.

An immediate corollary of Lemma 3.2 is that the cardinality of the signal space for each buyer i in

the optimal mechanism is upper-bounded by the cardinality of the support of the valuation distribution.

Therefore, for instances where the valuation distributions have a support size of at most 3, the cardinality

of the each buyer’s signal space in the optimal mechanism is at most 3. This strengthened characterization

is crucial for our PTAS, as it provides a polynomial upper bound on the support size of the buyers’ induced

value distributions. This bound is key to making the dynamic programming feasible. The characterization

also has some interesting implications for the hardness results. In particular, it means that the constraints on

the cardinalities of the signal spaces are not binding for those instances when k ≥ 3. Hence, Lemma 3.1

also implies that the OPTIMAL k-SIGNAL problem is NP-hard for any k ≥ 3.

In the following, we present the hard instance used to derive Lemma 3.1 and a brief description of our

reduction. Our proof is inspired by Xiao et al. (2020) and Chen et al. (2014). It is derived through a reduction

from the well-known NP-complete PARTITION problem (Garey and Johnson, 1979):

PARTITION: Given n positive integers c1, c2, · · · , cn, is it possible to find a subset S ⊆ [n] such that∑
i∈S ci =

∑
i/∈S ci?

Given an instance of PARTITION parameterized by c1, c2, · · · , cn, it is without loss of generality to

assume c1 ≥ c2 ≥ · · · ≥ cn. We define M = c1 · 2n and ti =
1
2

∑
j∈[n]
j ̸=i

cj/M . For each i ∈ [n], let ri and

qi represent the unique, non-negative solutions to the following system of equations:

ri + qi = ci/M.

2qi + riti = qi + ri

That is to say,

ri =
ci

M(2− ti)
and qi =

ci(1− ti)

M(2− ti)
.

We now construct the following hard instance for the OPTIMAL SIGNAL problem comprising n + 1

buyers. Specifically, for the i-th buyer among the first n buyers, the value distribution Fi is defined as
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follows:

vi ∼ Fi, vi =


3 w.p. qi

ti + 1 w.p. ri

0 w.p. 1− qi − ri

In the constructed hard instance for the OPTIMAL SIGNAL problem with value support size 3, for each

buyer i, one of the possible values is 0, which without loss of optimality separated from the rest of the

values in the optimal signal structure. Moreover, for the remaining two values in the support, since the

optimal signal structure is monotone partitional, it can only either full disclose these two values or pool

them together as a single signal. Essentially this provides a natural partition of the buyers based on whether

their high values are fully disclosed, and we constructed the values of the items in the OPTIMAL SIGNAL

problem based on any given PARTITION problem instance such that the expected revenue is maximized if

and only if this partition of buyers is an optimal solution to the PARTITION problem.

Next, it is sufficient to focus on the OPTIMAL k-SIGNAL problem with k = 2. The high level intuition

is similar to Lemma 3.1. The difference is that here we will provide a reduction from the NP-complete

problem SUBSET PRODUCT (Ng et al., 2010).

Lemma 3.3. The OPTIMAL 2-SIGNAL problem is NP-hard when max |Vi| ≥ 3.

We again offer a high-level overview for the proof of Lemma 3.3 with the full details provided in Ap-

pendix A. The hard instance in this lemma is inspired by Agrawal et al. (2020). We provide the reduction

from the following NP-complete SUBSET PRODUCT problem (Ng et al., 2010):

SUBSET PRODUCT: Given integers a1, a2, · · · , an with ai > 1 and a positive integer B, is it possible to

find a subset S ⊆ [n] such that
∏

i∈S ai = B?

Given a1, a2, . . . , an and B, we construct a hard instance of the OPTIMAL 2-SIGNAL problem with n

buyers. For each buyer i, we define the value distribution Fi such that:

vi ∼ Fi, vi =


1 w.p. ai−1

ai

B2−ai
B2+1

w.p. ai−1
a2i

0 w.p. 1
a2i

In our construction, 0 is once again included in the distribution’s support. Given that no more than

2 signals are permitted, it can be shown that there are only two possible optimal signal structures: either

pooling the highest two values together and leaving 0 alone, or pooling the lowest two values together and

isolating 1. Note that in both signal structures, only the higher signal possesses a positive virtual value.

Moreover, the positive virtual values in both signal structures are constants independent from i. Therefore,

finding the optimal 2-signal structure in this instance is equivalent to deciding a set of buyers T ⊆ [n] who

pool the highest two values together. It turns out that the revenue of any signal structure is a function of∏
i∈T ai and attains the maximum when

∏
i∈T ai = B.

Theorem 1 holds immediately by combining Lemma 3.1 and Lemma 3.3.
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4 Polynomial Time Algorithms

In this section, we provide several polynomial time algorithms for approximating the optimal revenue of

the optimal signal structure with at most k signals. The missing proofs in this section are provided in

Appendix B.

4.1 Warm-up: A Simple Constant Approximation Algorithm

We first introduce a simple e/(e− 1)-approximate algorithm for this problem.

Theorem 2 (Welfare Approximating Algorithm). For any k ≥ 2, there exists an algorithm for the OPTIMAL

k-SIGNAL problem with running time poly(n,m) that computes a mechanism M with expected revenue at

least 1− 1/e fraction of the optimal welfare, i.e., Rev(M) ≥ (1− 1/e) ·OPT-Wel.

Since welfare is an upper bound on the optimal revenue and the optimal revenue is higher when the

cardinality constraints on the signal space is relaxed, we have

Rev(M) ≥
(
1− 1

e

)
OPT-Wel ≥

(
1− 1

e

)
OPT-Rev ≥

(
1− 1

e

)
OPT-Revk.

Therefore, the constructed mechanism given in Theorem 2 is an e/(e− 1) approximation to the optimal rev-

enue. Moreover, An immediate corollary of Theorem 2 is that the optimal revenue is a constant approxima-

tion to the optimal welfare when the seller can design the signal structures for arbitrary buyer distributions F.

In contrast, this claim is no longer valid even when buyers have regular value distributions if the seller lacks

the ability to design the signal structures.

Corollary 4.1. OPT-Rev ≥ (1− 1/e) ·OPT-Wel.

The algorithm for Theorem 2 is constructed in Algorithm 1. Intuitively, the algorithm first computes

the probability qi each buyer is the highest value buyer given the prior distribution, and sends a binary

signal to the buyer to indicate whether his value is in the upper qi quantile. Then the algorithm computes

the expected value bi of each buyer conditional on receiving the high value signal. The seller approaches

the buyers sequentially according to the decreasing order on conditional values bi, and offers prices that

equal the conditional values. It is easy to verify that the algorithm can be implemented in poly (n,m)

time. Therefore, it is sufficient to show that the revenue derived from the constructed mechanism is at least

1 − 1/e fraction of the optimal welfare, which can be proved by applying the technique of correlation gap

Yan (2011).

Lemma 4.1. The revenue of mechanism M constructed in Algorithm 1 is at least 1 − 1/e fraction of the

optimal welfare, i.e., Rev(M) ≥ (1− 1/e)OPT-Wel.

Proof. The proof here is an application of correlation gap. We define a unit-demand set function f(S) for

S ⊆ [n] where

f(S) = max
i∈S

bi.
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Algorithm 1: A constant approximation algorithm
Input: Prior distributions F = F1 × · · · × Fn.
Output: Mechanism M = ({(Si, σi)}i∈[n] , {xi}i∈[n] , {pi}i∈[n]).

1 Computes the probability that i has the largest value among all buyers as

qi = Prv∼F

[
vi = argmax

j∈[n]
vj

]

where ties are broken according to lexicographic order.
2 Let v̄i be the minimum value such that Fi(v̄i) ≥ 1− qi and let di =

Fi(v̄i)−1+qi
fi(v̄i)

.
3 Signal Structure: For each buyer i, consider a binary signal space Si = {0, 1} and signal structure

σi such that

σi(vi) =


δ1 vi > v̄i

diδ1 + (1− di)δ0 vi = v̄i

δ0 vi < v̄i

where δs is a point mass measure on signal s for all s ∈ S.
4 Let bi = Eσi,Fi [vi|si = 1] be the expected value of buyer i conditional on receiving signal 1.
5 Selling Mechanism: In mechanism M , the seller uses sequential posted pricing by approaching the

buyers according to an order that is decreasing in bi. That is, for each buyer i, for any signal
profile s, xi(s) = 1 if buyer i is the first buyer (according to decreasing order on bi) such that
si = 1. Moreover, pi(s) = bi if xi(s) = 1.

It is clear to verify that f(S) is a submodular function. For the sequential posted price mechanism, we

defineA as the set of buyers that receive signal 1. Therefore, the revenue of mechanism M is the expectation

of f(A):
Rev (M) = EA[f(A)] . (1)

Since qi is the probability that buyer i has the highest value among all buyers, and bi is the expectation

of vi in the top qi quantile, it follows that

E

[
vi|vi = argmax

j∈[n]
vj

]
≤ bi.

Therefore, by ex ante relaxation, we have

OPT-Wel =

n∑
i=1

Pr

[
vi = argmax

j∈[n]
vj

]
E

[
vi|vi = argmax

j∈[n]
vj

]
≤

n∑
i=1

qibi. (2)

Note that for each buyer i, it is in the set A with probability qi independently. Now consider another set

B where B =
{
i|vi = argmaxj∈[n] vj

}
. It is clear that the marginal probability that i is in the set B is also

qi. However, the events that whether buyer i is in the set B are not independent. Since the correlation gap
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for submodular functions is e
e−1 (see Yan, 2011), it holds that

EA[f(A)] ≥
(
1− 1

e

)
EB[f (B)] .

Follow from the definition of B, it holds that EB[f (B)] =
∑n

i=1 qibi. Combining the two inequalities above,

we have

EA[f(A)] ≥
(
1− 1

e

)
·

n∑
i=1

qibi. (3)

Finally, Lemma 4.1 holds by combining inequalities (1), (2) and (3).

4.2 PTAS

In this section, we present a PTAS for the OPTIMAL k-SIGNAL problem. The missing proofs in this section

are provided in Appendix B.

Theorem 3 (PTAS). For any k ≥ 2 and any ε > 0, there exists an algorithm that computes a multiplicative

(1 − ε)-optimal solution to the OPTIMAL k-SIGNAL problem in time poly
((

nm
ε

)f( 1
ε) , n,m, k

)
, where n

is the number of bidders, m is the maximum cardinality of the support of the bidders’ value distributions,

and f(·) is a fixed function that is independent of the parameters of the OPTIMAL k-SIGNAL problem.

Note that by Lemma 3.2, the maximum cardinality of the signal spaces is at most m in the OPTIMAL

SIGNAL problem. Therefore, by applying Theorem 3 to the case where k = m, the resulting mechanism

is approximately optimal for the OPTIMAL SIGNAL problem, even when the signal spaces are unrestricted.

Hence, the algorithm proposed in Theorem 3 also serves as a PTAS for the OPTIMAL SIGNAL problem.

Corollary 4.2. For any ε > 0, there exists an algorithm that computes a multiplicative (1 − ε)-optimal

solution to the OPTIMAL SIGNAL problem in time poly
(
(nmε )f(

1
ε
), n,m

)
, where n is the number of bidders,

m is the maximum cardinality of the support of the bidders’ value distributions, and f(·) is a fixed function

that is independent of the parameters of the OPTIMAL SIGNAL problem.

To prove Theorem 3, first note that it is without loss of generality to normalize the valuation distributions

such that the optimal welfare equals 1. We will show that Algorithm 4 outputs a mechanism with an O(ε)

additive loss in expected revenue after the normalization of the distributions. Since Corollary 4.1 implies that

the optimal revenue is a constant approximation to the optimal welfare, any O(ε) additive loss immediately

implies an O(ε) multiplicative loss in expected revenue.

The computation of the optimal signal structure relies on the revenue equivalence result in Myerson

(1981), which converts the optimal revenue to the expected virtual surplus.

Definition 2 (Virtual Values). For any discrete distribution F with probability mass function f , for any

valuation v in the support of F , letting v+ be the minimum value in the support of F that is strictly larger
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than v, the virtual value of v in distribution F is

ϕ(v) = v − (1− F (v))(v+ − v)

f(v)
.

We might, for the sake of convenience, extend the notation to use ϕ(si), where si represents a signal

within the signal structure (Si, σi). This is intended to denote the virtual value of signal si with respect to

the distribution generated by the signal structure.

Definition 3 (Regularity). A valuation distribution F is regular if the corresponding virtual value function

ϕ(v) is non-decreasing in v.

Lemma 4.2 (Revenue Equivalence (Myerson, 1981)). For any regular distribution profile F1, . . . , Fn, the

optimal revenue equals virtual welfare, i.e.,

OPT-Rev = Ev∼F

[
max
i∈[n]

ϕi(vi)

]
.

Moreover, Lemma 2 of Bergemann and Pesendorfer (2007) show that it is without loss to consider mono-

tone partitional signal structure such that the induced posterior valuation distribution is regular. Therefore,

by converting the problem of revenue maximization into virtual welfare maximization, the high level idea

of the PTAS is to discretize the space of virtual value distributions and use dynamic programming to keep

track of the optimal virtual welfare the seller can collect from first i buyers for any i ≤ n. Formally, our

PTAS consists of two phases:

• Phase 1: Identify a monotone partitional signal structure that induces a regular posterior valuation

distribution, and achieves virtual welfare that is an (1− ε)-approximation to the optimal revenue.

• Phase 2: Compute the subsequent selling mechanism that maximizes the expected revenue given the

signal structure in Phase 1.

The computation of Phase 2 can be solved in polynomial time by Myerson (1981). Therefore, in the rest of

the section, we will focus on the computation of the optimal signal structure in Phase 1. We will first show

how to discretize the space of virtual values, then illustrate how to compute the optimum using dynamic

programming.

4.2.1 Discretization

We first describe our discretization scheme. For any buyer i ∈ [n], let Gi be the distribution over virtual

values and let gi be the probability mass function for virtual values. Given any virtual value distribution

Gi, for high virtual values above the threshold of ε−1, we store the contribution of those virtual values in

a compensation term ci. For low virtual values below the threshold of ε−1, we simply discretize both the

virtual values space and the probability space, and round down the distribution to the discretization grid.

Specifically,
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1. Bounded Support: For any virtual value distribution Gi with probability mass function gi, we neglect

the virtual values above ε−1, and for any vi ∈ (0, ε−1], we round it down to the nearest multiples of ε.

Moreover, we round down the probability mass gi(vi) to the nearest multiples of ε4

nm . That is, letting

G =
{
zε | z ∈ N, zε ≤ ε−1

}
be the discretization grid in the virtual value space, the discretized distribution Ĝi has support in G,

and for any vi ∈ G,

ĝi(vi) =
∑

v′i∈[vi,vi+ε)

zv′iε
4

nm
where zv′i = max

z∈N

{
z
∣∣∣ zε4
nm
≤ gi(v

′
i)

}
.

The rest of the probability mass in Ĝi is reallocated to value 0.

2. Compensation Term: We define a compensation term ci to preserve the mean for values above the

threshold of ε−1 as

ci = Evi∼Gi

[
vi · 1

[
vi > ε−1

]]
. (4)

Note that ci ≤ 1 for all i since the virtual welfare is at most the welfare, where the latter is normalized

to 1. In the discretization scheme, we round down vi · gi(vi) to the nearest multiples of ε
nm for any

vi > ε−1 and then take the sum.

In the discretization scheme, we define DISV as the process of only discretizing the virtual value space, and

DISQ as the process of only discretizing the probability space. Let DIS be the joint process of discretizing

both virtual values and probabilities. Note that, in probability space discretization, even if multiple virtual

values share the same discretization, we discretize the probabilities separately before aggregating them

into a single virtual value in the discretized distribution. This procedure results in a larger discretization

error, necessitating a finer discretization grid to maintain a small error. However, this sacrifice is crucial

for the polynomial time computation of the set of implementable discretized distributions, as defined later

in Definition 5, using dynamic programming via Algorithm 2. Similarly, we employ such discretization

scheme for the compensation term ci as well.

Given the discretization scheme, we can then define the space of feasible discretized virtual value distri-

butions and compensation terms.

Definition 4 (Feasible Discretization Pairs). A pair of distribution and compensation term (G, c) is feasible

if

1. The support of G is a subset of G, and the probability mass g(v) is an integral multiple of ε4

nm for

any v.

2. c is an integral multiple of ε
nm and does not exceed 1.

15



We denote F as the set of feasible pairs. By slightly overloading the notation, sometimes we say a

distribution G ∈ F if there exists c such that (G, c) ∈ F .

Lemma 4.3. The cardinality of the set of feasible pairs F is O
((

nm
ε

)f( 1
ε)
)

, where f
(
1
ε

)
is a function that

exclusively depends on 1
ε .

Given the valuation distribution Fi, not all feasible pairs can be attained by implementing a monotone

partitional signal structure with regular posterior value distribution, and then discretizing the virtual value

distribution. We define the implementable set Ii(Fi) as the set of implementable pairs derived based on

value distribution Fi. Note that |Ii(Fi)| ≤ |F| for all i and Fi. We often omit Fi from the notation when it

is clear from context.

Definition 5 (Implementable Discretization Pairs). A pair of distribution and compensation term (G, c) is

implementable given F , i.e., (G, c) ∈ I(F ), if there exists a monotone partitional k-signal structure (S, σ)

such that the induces posterior valuation distribution F̂ is regular, and the discretized pair for the virtual

value distribution of F̂ matches (G, c).

4.2.2 Dynamic Programming Algorithm

Our algorithm has two main steps for computing the optimal monotone partitional k-signal structure.

1. Computing the set of implementable pairs Ii(Fi) for all buyer i ∈ [n].

2. Computing an implementable pair (Gi, ci) ∈ Ii(Fi) for each buyer i to maximize the virtual welfare.

Both steps are implemented using dynamic programming.

Computation of Implementable Pairs For any buyer i, let vi,j be the j-th smallest value in the support

of buyer i’s valuation distribution. We use mi to denote |Vi|.
We define the state for dynamic programming as Imp (k′, j, j′, Gi, ci), which memorizes the following

information as a tuple. The first component of the tuple is binary and is true if and only if the following two

conditions are met:

(i) There exists a monotone partitional signal structure (Si, σi) for values {vi,j , vi,j+1, · · · , vi,mi} within

distribution Gi such that (1) the cardinality of the signal space |Si| = k′ ≤ k; (2) the posterior value

distribution F̂i induced by (Si, σi) is regular; and (3) the discretized pair of the virtual value distribution

Gi given F̂i coincides with (Gi, ci). Note that the signal structure for {vi,1, vi,2, · · · , vi,j−1} remains

undetermined, and hence we fulfill the probability mass of those part with a value of 0 in posterior

value distribution F̂i;

(ii) The partitional signal structure in (i) contains
{
vi,j , vi,j+1, · · · , vi,j′

}
as a single signal.

The second component of the tuple stores the the maximum virtual value achievable by pooling valuations

from vi,j to vi,j′ subject to the constraint that the virtual values are monotone. The third component is used

to store the index of the dynamic programming states for backtracking the implementable signal structures.
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The states of the dynamic programming are computed via Algorithm 2. In Step 14, the function DIS is

the discretization scheme that rounds down both distribution G′ and the compensation term c′. Intuitively,

Algorithm 2 keeps track of all implementable pairs for using monotone partitions over values above vi,j .

The algorithm repeatedly incorporates new implementable pairs through the introduction of an additional

partition that terminates at the value vi,j−1. This addition must satisfy that the resulting virtual valuation is

monotone.

With the states of the dynamic programming established, the computation of the sets of implementable

pairs Ii becomes straightforward. A pair (Gi, ci) is deemed implementable, that is, included in the set Ii,
if and only if there exists k′ ≤ k and j ≥ 1 such that the state Imp (k′, 1, j, Gi, ci) evaluates to be true.

Consequently, our approach involves enumerating all such pairs and verifying whether each candidate pair

(Gi, ci) qualifies for inclusion in Ii. This process is efficiently executed in poly
((

nm
ε

)f( 1
ε) ,m, k

)
time.

The correctness of Algorithm 2 is established in the following lemma, with proof provided in Appendix B.1.

Lemma 4.4. Algorithm 2 correctly computes the set of implementable pairs Ii for all i ∈ [n], i.e., any

feasible discretization pair (G′
i, c

′
i) is in Ii if and only if there exists a partitioned signal structure (Si, σi)

that induces a regular virtual value distribution G such that DIS(G) = (G′
i, c

′
i).

Additionally, for any (G′
i, c

′
i) ∈ Ii backtracking can compute a monotone partitioned signal structure

(Si, σi) that induces a regular virtual value distribution G such that DIS(G) = (G′
i, c

′
i). This computation

of both Algorithm 2 and backtracking can be achieved in poly
((

nm
ε

)f( 1
ε) , n,m, k

)
time.

Virtual Welfare Maximization Given the set of implementable pairs Ii for each buyer i, next we show

how to find a profile of implementable pairs {(Gi, ci)}i∈[n] such that (Gi, ci) ∈ Ii for all i and the following

term is maximized

VW(G, c) ≜ Ev∼G

[
max
i∈[n]

vi

]
+

n∑
i=1

ci.

By slightly overloading the notation, we also let VW(G, c) ≜ Ev∼G[v] + c when the input is a distribution

and compensation pair for a single buyer.

We show that the optimal profile of implementable pairs can be computed by dynamic programming

with an additive loss of O(ε). At a high level, the DP algorithm progresses in n stages. During the i-th

stage, the DP memorizes all potential rounded distributions of the maximum virtual value among the first

i buyers. How do we proceed to stage i + 1 using information of stage i? Suppose G1 ∈ F represents

a potential distribution of the maximum virtual value among the first i buyers, and G2 ∈ F is a potential

distribution of virtual value for buyer i+1. Consider Ḡ ≜ max{G1, G2} be the distribution of the maximum

between two independent random variables v1 and v2, where v1 ∼ G1 and v2 ∼ G2. Next, we apply the

procedure of DISQ to round down the probability masses of Ḡ to the nearest multiples of 1
nmε4. After the

rounding procedure, a potential distribution is computed and stored for stage i + 1. We show the rounding

procedure only introduces negligible loss in revenue. We don’t need to discretize the virtual value space as

Ḡ is already supported on G.
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Algorithm 2: Computation of Implementable Pairs
Input: Distribution Fi with support Vi and ε > 0.
Output: Set of implementable pairs Ii.

1 Initialize every Imp (k′, j, j′, G, c) as (False,−∞, ·) for all k′ ≤ k, j, j′ ≤ mi + 1, (G, c) ∈ F .
2 Imp (0,mi + 1,mi + 1, G0, 0)← (True,max {vi ∈ Vi} , ·) where G0 is the distribution that is

deterministically 0.
3 for j ← mi to 1 do
4 for (k′, jl, jr, G, c) s.t. Imp1 (k

′, jl, jr, G, c) = True and k′ < k do
5 Prob←

∑jl−1
l=j fi(vi,l); ExpectedValue←

(∑jl−1
l=j vi,l · fi(vi,l)

)
/Prob.

6 VirtualValue←

ExpectedValue−
(∑jr

l=jl
vi,l·fi(vi,l)∑jr

l=jl
fi(vi,l)

− ExpectedValue
)
·
∑mi

l=jl
fi(vi,l)

Prob · 1 [jr ̸= mi + 1].

7 G′ ← G; c′ ← c.
8 if VirtualValue > ε−1 then
9 c′ ← c′ + VirtualValue · Prob

10 end
11 else
12 Move a probability mass of Prob from 0 to max (VirtualValue, 0) in G′.
13 end
14 (G′, c′)← DIS (G′, c′).
15 if VirtualValue < Imp2 (k

′, jl, jr, G, c) then
16 Imp (k′ + 1, j, jl − 1, G′, c′)←

(True,max {VirtualValue, Imp2 (k
′ + 1, j, jl − 1, G′, c′)} , (k′, jl, jr, G, c)).

17 end
18 end
19 end
20 for (k′, j, Gi, ci) s.t. Imp1 (k

′, 1, j, Gi, ci) = True do
21 Add (Gi, ci) to Ii.
22 end

Formally, we introduce the dynamic programming states Fea (i, G, c) as a Boolean variable for all

buyer i and all feasible pairs (G, c) ∈ F , where the variable is True if there exists {(G1, c1) , · · · , (Gi, ci)}
such that

1. (Gj , cj) ∈ Ij for all j ≤ i;

2.
∑i

j=1 cj = c;

3. if we let Ĝ1, . . . , Ĝi be a sequence of distributions such that Ĝ1 = G1 and Ĝj =

DISQ(max(Ĝj−1, Gj)) for any 2 ≤ j ≤ i, Ĝi is equal to G.

Algorithm 3 shows how to compute Fea (i, G, c).
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Algorithm 3: Computation of the Virtual Welfare
Input: Sets of Implementable Pairs {Ii}i∈[n].
Output: The matrix Fea (i, G, c).

1 Initialize Fea (i, G, c) to be False for all i ∈ [n] and (G, c) ∈ F .

2 Fea (1, G, c)← True for all (G, c) ∈ I1.

3 for i← 2 to n do
4 for (Gi−1, ci−1) s.t. Fea (i− 1, Gi−1, ci−1) = True do
5 for (Gi, ci) ∈ Ii do
6 Fea (i, DISQ(max (Gi−1, Gi)), ci−1 + ci)← True.

7 end
8 end
9 end

With Fea (n,G, c), the optimal signal structure can be found by identifying the feasible pair (G, c) such

that Fea (n,G, c) = True and VW(G, c) is maximized. The full procedure of the PTAS is provided in

Algorithm 4.

Algorithm 4: PTAS
Input: Parameter ε > 0 and value distributions F1, . . . , Fn.

1 for i← 1 to n do
2 Compute Ii for all buyer i via Algorithm 2.

3 end
4 Compute Fea by running Algorithm 3 with inputs {Ii}i∈[n] .
5 Let G, c be the pair such that Fea (n,G, c) = True and VW(G, c) is maximized, backtrack

Fea (n,G, c) to find the partitional signal structure (Si, σi) for each buyer i.

6 Compute the revenue optimal mechanism given signal structures {(Si, σi)}i∈[n] according to

Myerson (1981).

4.2.3 Proof of Revenue Loss

We next proceed to show that such scheme introduces at most O(ε) loss. Our proof consists of two parts.

In the first part, we show that the discretization error from replacing a virtual value distribution with its

corresponding discretized pair using Algorithm 2 is at most O (ε). In the second part, we show that the loss

is at most O
(
ε
n

)
if we only round down the probability space. The main reason we analyze this discretization

error separately is because we need to repeatedly apply the discretization in probability space in Step 6 of

Algorithm 3, while the discretization over virtual value space is only applied once for obtaining the set of

implementable pairs.

We first show that the error from further discretization in Algorithm 2 is small. The proof of Lemma 4.4

can be found in Appendix B.2.

Lemma 4.5. Given any distribution profile G with support size |Gi| ≤ m for all i and VW(G, 0) ≤ 1, let

(G′, c′) = DIS(G) be the discretized pair of virtual value distributions and compensation terms. It holds
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that

∣∣VW(G, 0)− VW(G′, c′)
∣∣ ≤ 5ε.

The proof of Lemma 4.5 proceeds in three steps. First, we decompose the virtual value distribution to

store the realization of high virtual values into a separate compensation term. Essentially, the decomposition

overestimates the true virtual welfare since for the high virtual values above the threshold of ε−1, the contri-

bution to the virtual welfare is computed as the sum instead of the max. However, by Markov’s inequality,

the probability there exists a high virtual value among n bidders is at most ε since the virtual welfare is at

most 1. Therefore, in such small probability events, the difference between the sum and the max is suffi-

ciently small. Secondly, to bound the error for discretization in the virtual value space, it is sufficient to

couple the realizations over virtual value profiles given distributions before and after the discretization. Us-

ing this coupling argument, we show that the error in the virtual welfare is upper bounded by O(ε) without

the additional multiplicative overhead of n. This is crucial as it limits the number of possible distributions to

be polynomial in n for every fixed ε. Finally, the discretization in probability space is applied separately for

each virtual value in the support of Gi. The discretization error is small since the discretization grid is ε4

nm

and the virtual value distribution G has support size m. Note that the requirements on support size are nat-

urally satisfied in our joint design problem since we are focusing on monotone partitional signal structures,

which generates at most m signals.

Next we show that the error from Algorithm 3 is small. In particular, we show that the error from

discretization over two distributions and then taking the max is at most O( εn). See Appendix B.2 for the

proof of Lemma 4.6.

Lemma 4.6. Given two distributions G1, G2 with support in G, let G′
i = DISQ(Gi) for i ∈ {1, 2} be the

distributions discretized in probability space. It holds that

Ev∼max(G1,G2)[v]−
2ε

n
≤ Ev′∼max(G′

1,G
′
2)
[
v′
]
≤ Ev∼max(G1,G2)[v]

This is because the discretization grid in probability space is 1
nmε4, while the maximum value in the

support of G is at most ε−1 and |G| = O(ε−2). Therefore, it is easy to verify that the expected virtual

welfare loss from rounding down the probabilities can be bounded by O
(
ε
n

)
.

Proof of Theorem 3. First, it is easy to verify that the running time of Algorithm 4 is

poly
((

nm
ε

)f( 1
ε) , n,m, k

)
since the cardinality of the feasible pairs is O

((
nm
ε

)f( 1
ε)
)

by Lemma 4.3.

To simplify the exposition, we first introduce the following notation. For any profile of signal structures

{(Si, σi)}i∈[n], let Rev
(
{(Si, σi)}i∈[n]

)
be the optimal revenue from mechanisms in which the signal struc-

ture coincides with {(Si, σi)}i∈[n]. Let VW
(
{(Si, σi)}i∈[n]

)
be the virtual welfare given posterior value

distribution generated by {(Si, σi)}i∈[n]. For any value distribution profile F, let {(S∗
i , σ

∗
i )}i∈[n] be the pro-

file of signal structures that maximizes the expected revenue. Since the induced posterior value distribution
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is regular (Bergemann and Pesendorfer, 2007), Lemma 4.2 implies that

Rev
(
{(S∗

i , σ
∗
i )}i∈[n]

)
= VW

(
{(S∗

i , σ
∗
i )}i∈[n]

)
.

Letting (G∗, c∗) be the discretized distribution and compensation term pairs induced by the optimal signal

structure {(S∗
i , σ

∗
i )}i∈[n], the correctness of Algorithm 2 illustrated in Lemma 4.4 implies that (G∗

i , c
∗
i ) ∈ Ii

for all i ∈ [n]. Moreover, Lemma 4.5 implies that∣∣∣VW
(
{(S∗

i , σ
∗
i )}i∈[n]

)
− VW (G∗, c∗)

∣∣∣ ≤ 5ε.

since the optimal signal structure is monotone partitional and has cardinality at most m for each buyer.

Let (Ĝ, ĉ) be the discretized distribution and compensation term pairs computed by Algorithm 4, and let{
(Ŝi, σ̂i)

}
i∈[n]

be the corresponding monotone paritional signal structure guaranteed by Lemma 4.4. Simi-

larly, we have ∣∣∣∣VW
({

(Ŝi, σ̂i)
}
i∈[n]

)
− VW

(
Ĝ, ĉ

)∣∣∣∣ ≤ 5ε.

Moreover, Algorithm 2 ensures that the associated signal structures induce regular distributions, and hence

Rev

({
(Ŝi, σ̂i)

}
i∈[n]

)
= VW

({
(Ŝi, σ̂i)

}
i∈[n]

)
.

Let (Ḡ, c̄) be the discretized distribution and compensation term pairs that maximizes the virtual wel-

fare, i.e., (Ḡ, c̄) = argmax(G,c)∈{Ii}i∈[n]
VW(G, c). By definition, we have VW(Ḡ, c̄) ≥ VW(G∗, c∗).

Note that in Algorithm 3, we repeat the discretization in probability space Step 6 for n at most times, and

Lemma 4.6 shows that the error induced by each step is at most 2ε
n . Therefore, the aggregated discretization

error is at most 2ε, which further implies that

VW
(
Ĝ, ĉ

)
≥ VW(Ḡ, c̄)− 2ε ≥ VW(G∗, c∗)− 2ε

where the last inequality holds since (G∗, c∗) is an implementable discretization pair. By combining all the

inequalities above, we have

Rev

({
(Ŝi, σ̂i)

}
i∈[n]

)
≥ Rev

(
{(S∗

i , σ
∗
i )}i∈[n]

)
− 12ε = OPT-Rev − 12ε.

Finally, since Corollary 4.1 implies that the optimal revenue is at least O(1), the loss in revenue is also

multiplicative in O(ε).
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5 Conclusions and Discussions

In this paper, we show that the optimal joint design problem is NP-hard, and we provide a PTAS for comput-

ing the optimal solution. Our paper initiates a new research direction for understanding the computational

complexity for jointly designing the signal and incentive structures. Numerous immediate questions emerge

from our study, which we believe to be very intriguing. For instance, while our paper has concentrated on

the single-item auction setting, it would be interesting to explore settings where the seller has multiple items

for sale. Another worthwhile direction is investigating settings where the utility functions of the agents

are interdependent. Finally, even within the model studied in this paper, there are compelling open ques-

tions, such as characterizing the maximum cardinalities of the optimal signal structures or showing whether

FPTAS exists for computing the optimal solution.

References

Agrawal, S., Ding, Y., Saberi, A., and Ye, Y. (2010). Correlation robust stochastic optimization. In Pro-

ceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 1087–1096.

SIAM.

Agrawal, S., Sethuraman, J., and Zhang, X. (2020). On optimal ordering in the optimal stopping problem.

In Proceedings of the 21st ACM Conference on Economics and Computation, pages 187–188.

Alaei, S., Fu, H., Haghpanah, N., Hartline, J., and Malekian, A. (2019). Efficient computation of optimal

auctions via reduced forms. Mathematics of Operations Research, 44(3):1058–1086.

Bacchiocchi, F., Castiglioni, M., Marchesi, A., Romano, G., Gatti, N., et al. (2022). Public signaling in

bayesian ad auctions. In Proceedings of the Thirty-First International Joint Conference on Artificial

Intelligence, pages 39–45.

Badanidiyuru, A., Bhawalkar, K., and Xu, H. (2018). Targeting and signaling in ad auctions. In Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2545–2563.

Bergemann, D., Brooks, B., and Morris, S. (2015). The limits of price discrimination. American Economic

Review, 105(3):921–957.

Bergemann, D., Heumann, T., and Morris, S. (2022a). Screening with persuasion. arXiv preprint

arXiv:2212.03360.

Bergemann, D., Heumann, T., Morris, S., Sorokin, C., and Winter, E. (2022b). Optimal information disclo-

sure in classic auctions. American Economic Review: Insights, 4(3):371–88.

Bergemann, D. and Pesendorfer, M. (2007). Information structures in optimal auctions. Journal of economic

theory, 137(1):580–609.

22



Border, K. C. (1991). Implementation of reduced form auctions: A geometric approach. Econometrica:

Journal of the Econometric Society, pages 1175–1187.

Brooks, B. and Du, S. (2021). Optimal auction design with common values: An informationally robust

approach. Econometrica, 89(3):1313–1360.

Cai, Y. and Daskalakis, C. (2015). Extreme value theorems for optimal multidimensional pricing. Games

and Economic Behavior, 92:266–305.

Cai, Y., Daskalakis, C., and Weinberg, S. M. (2012a). An algorithmic characterization of multi-dimensional

mechanisms. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages

459–478.

Cai, Y., Daskalakis, C., and Weinberg, S. M. (2012b). Optimal multi-dimensional mechanism design:

Reducing revenue to welfare maximization. In 2012 IEEE 53rd Annual Symposium on Foundations of

Computer Science, pages 130–139. IEEE.

Cai, Y., Daskalakis, C., and Weinberg, S. M. (2013a). Reducing revenue to welfare maximization: Approx-

imation algorithms and other generalizations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 578–595. SIAM.

Cai, Y., Daskalakis, C., and Weinberg, S. M. (2013b). Understanding incentives: Mechanism design be-

comes algorithm design. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,

pages 618–627. IEEE.

Cai, Y. and Huang, Z. (2013). Simple and nearly optimal multi-item auctions. In Proceedings of the Twenty-

Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 564–577. SIAM.

Chen, X., Diakonikolas, I., Orfanou, A., Paparas, D., Sun, X., and Yannakakis, M. (2022). On the com-

plexity of optimal lottery pricing and randomized mechanisms for a unit-demand buyer. SIAM Journal

on Computing, 51(3):492–548.

Chen, X., Diakonikolas, I., Paparas, D., Sun, X., and Yannakakis, M. (2014). The complexity of optimal

multidimensional pricing. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete

algorithms, pages 1319–1328. SIAM.

Chen, Y.-C. and Yang, X. (2023). Information design in optimal auctions. Journal of Economic Theory,

212:105710.

Cheng, Y., Cheung, H. Y., Dughmi, S., Emamjomeh-Zadeh, E., Han, L., and Teng, S.-H. (2015). Mixture

selection, mechanism design, and signaling. In 2015 IEEE 56th Annual Symposium on Foundations of

Computer Science, pages 1426–1445.

Clark, D. and Li, Y. (2023). Optimal mechanism design with endogenous principal learning. working paper.

23
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A NP-hardness

Before presenting the missing proofs in Section 3, we first show that both the OPTIMAL k-SIGNAL and the

OPTIMAL SIGNAL problem is solvable in polynomial time when max |Vi| = 2.

Theorem 4. Both the OPTIMAL k-SIGNAL and the OPTIMAL SIGNAL problem can be solved in polynomial

time when max |Vi| = 2.

Proof. Without loss of generality, we can assume that k = 2 for the OPTIMAL k-SIGNAL problem since

the support size is at most 2. Thus in this case, the solutions to the OPTIMAL SIGNAL problem and the

OPTIMAL k-SIGNAL are the same. In the following, we present the algorithm to compute the optimal

solution.

Lemma 3.2 establishes that the optimal information structure for each buyer is required to be a monotone

partitional information structure. Given that |Vi| ≤ 2, the range of possible information structures is limited

to two scenarios: either both values in Vi are associated with the same signal, or each value is linked to a

distinct signal.

Since we have at most 2 signals, it follows that the induced distributions over virtual values are au-

tomatically regular. Therefore, given the information structure for each buyer, the revenue of the optimal

mechanism equals to the expected of the maximum virtual welfare:

Ev∼F

[
max
i∈[n]

ϕi (σi (vi))

]
.

Suppose there is at least one buyer who has only a single signal in the signal structure and let i∗ be the

buyer who has the highest virtual value of that signal. Corresponding, define ϕi∗ as the virtual value of this

signal. It is clear that for any other signal with a virtual value lower than ϕi∗ , the contribution of this signal

to the expected revenue is 0, as the maximum of the virtual value is always at least ϕi∗ .

Next we show that it is without loss to consider the signal structure where i∗ is the only buyer with a

single signal. For any other buyer i′ ̸= i∗, we first assume that both values in Vi′ are mapped to the same

signal and compute the virtual value of the signal. First, if the virtual value of the signal is larger than ϕi∗ ,

it follows that each value in Vi′ must be linked to a distinct signal, as we assume that i∗ is the one with the

highest virtual value. If the virtual value of the signal is at most ϕi∗ , we can also map each value in Vi′

to different signals. This is because that mapping to the same signal has zero contribution to the optimal

revenue. Consequently, assigning different signals to each value has non-negative impact on the revenue,

which is never a worse choice. Therefore, the optimal information structure is uniquely determined by fixing

i∗. By enumerating i∗, this problem is solvable within polynomial time.

In scenarios where i∗ is non-existent, the signal structure for each buyer becomes predetermined, and

the expected revenue in this case can be computed in polynomial time as well. Combining the two cases

together, we complete the proof of Theorem 4.

Proof of Lemma 3.1. The proof is inspired by Xiao et al. (2020) and Chen et al. (2014). The NP-hardness

is derived through a reduction from the well-known NP-complete PARTITION problem (Garey and Johnson,

1979).
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PARTITION: Given n positive integers c1, c2, · · · , cn, is it possible to find a subset S ⊆ [n] such that∑
i∈S ci =

∑
i/∈S ci?

Given an instance of PARTITION parameterized by c1, c2, · · · , cn, we construct the hard instance as we

described in Section 3. Here we restate the process for the completeness of our proof. Given c1 ≥ c2 ≥
· · · ≥ cn, we correspondingly define M = c1 · 2n and ti =

1
2

∑
j∈[n]
j ̸=i

cj/M . For each i ∈ [n], define ri and

qi as the unique, non-negative solutions to the following system of equations:

ri + qi = ci/M. (5)

2qi + riti = qi + ri (6)

In particular, we have

ri =
ci

M(2− ti)
and qi =

ci(1− ti)

M(2− ti)
.

The hard instance for the OPTIMAL SIGNAL problem is constructed as follows comprising n+1 buyers.

Specifically, for the i-th buyer among the first n buyers, the value distribution Fi is defined as follows:

vi ∼ Fi, vi =


3 w.p. qi

ti + 1 w.p. ri

0 w.p. 1− qi − ri

The value distribution of the (n+ 1)-th bidder is deterministically 1. According to Lemma 3.2, there

always exists an optimal signal structure that is also monotone and partitional. For the i-th buyer where i ≤
n, there are four distinct signal structures available for selection: ({3} , {ti + 1} , {0}), ({3, t1 + 1} , {0}),
({3} , {ti + 1, 0}) or ({3, ti + 1, 0}). First, it is important to recognize that there always exists an optimal

signal structure which does not include ({3, ti + 1, 0}). This is because pooling 0 is dominated by not

pooling it, and switching from ({3, ti + 1, 0}) to ({3, ti + 1} , {0}) always results in a weak increase in

revenue.3 Now let us consider the signal structure ({3} , {ti + 1, 0}). It can be readily shown that the virtual

value of the signal {ti + 1, 0} is given by

ϕ ({ti + 1, 0}) = (1 + ti)ri
(1− qi)

−
(
3− (1 + ti)ri

(1− qi)

)
· qi
1− qi

=
3q2i − 3qi + ri + riti

(1− qi)2
< 1.

where the last inequality holds since ri, qi, ti ≪ 1. However, it is important to note that the buyer n + 1

3This is because under signal structure ({3, ti + 1} , {0}), the seller can mimic the allocation rule of the mechanism under signal
structure ({3, ti + 1, 0}) for all buyers j ̸= i or buyer i with value in {3, ti + 1}, and not allocate the item to buyer i if his value
is 0. The expected virtual welfare remains unchanged given this mechanism and hence the expected revenue remains unchanged as
well due to the revenue equivalence result in Myerson (1981). The optimal revenue given signal structure ({3, ti + 1} , {0}) can
only be weakly larger.
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always has a virtual value of 1. As per the characterization of the optimal mechanism provided by Myerson

(1981), it follows that xi ({ti + 1, 0}) = 0. This is because the optimal mechanism consistently favors the

(n+ 1)-th buyer, thereby resulting in a zero probability of allocating to the type {ti + 1, 0}. Therefore,

switching from ({3} , {ti + 1, 0}) to ({3} , {ti + 1} , {0}) always weakly increases the revenue, as we keep

the virtual value of the signal {3} unchanged, and only splits the signal that has 0 probability to be allocated.

Thus, we have demonstrated that there always exists an optimal signal structure which only contains two

possible signal structures for the first n buyers: either ({3} , {ti + 1} , {0}) or ({3, ti + 1} {0}).
Given that the first n buyers have only two signal structure options, let us define S as the set of buyers

opting for the signal structure ({3, ti + 1}, {0}), and T as the set of those selecting ({3}, {ti + 1}, {0}). It

is clear that for any buyer i ∈ S, the virtual value associated with the signal {3, ti + 1} is calculated as:

ϕ ({3, ti + 1}) = 3qi + ri + riti
qi + ri

= 2.

where the last equality follows from Equation (6).

For each buyer i ∈ T , the virtual value for the signal {ti + 1} is given by:

ϕ ({ti + 1}) = (ti + 1)− (3− (ti + 1))
qi
ri

= (ti + 1)− (3− (ti + 1))(1− ti) < 1

since ti <
1
2 .

Furthermore, the virtual value of the signal {0} is always negative in both signal structures. Conse-

quently, the optimal mechanism under this information structure is straightforward: The mechanism initially

offers a price of 3 to the buyers in T in any order. If the item remains unsold, it then proposes a price of 2

to the buyers in S. Should the item still be unsold, it will finally be sold to the n + 1-th buyer at a price of

1. Now, notice that both ri and qi are O
(

1
M

)
. We approximate the revenue of the optimal mechanism under

the sets S and T by expanding the contribution up to the second terms and ignoring the third order terms,

i.e., terms of order O (ε) where ε = n3/M3:

Rev(S, T ) = 3 ·

(
1−

∏
i∈T

(1− qi)

)
+ 2 ·

∏
i∈T

(1− qi) ·

(
1−

∏
i∈S

(1− qi − ri)

)

+

(
1−

∏
i∈T

(1− qi)
∏
i∈S

(1− qi − ri)

)

= 1 +

(
2 ·
∑
i∈T

qi +
∑
i∈S

(qi + ri)

)
−

2
∑
i,j∈T
i<j

qiqj +
∑
i∈T
j∈S

qi (qj + rj) +
∑
i,j∈S
i<j

(qi + ri) (qj + rj)

±O (ε) .

(7)
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For the constant and the first order term, it holds that

1 + 2 ·
∑
i∈T

qi +
∑
i∈S

(qi + ri) = 1 + 2
∑
i∈[n]

qi +
∑
i∈S

riti

= 1 + 2
∑
i∈[n]

qi +
1

2

∑
i∈S

ri
∑
j∈[n]
j ̸=i

cj/M

= 1 + 2
∑
i∈[n]

qi +
1

2

∑
i∈S

ri
∑
j∈[n]
j ̸=i

(rj + qj) ,

(8)

where the first equation is derived from Equation (6) and the second equation expands tj according to its

definition that ti =
∑

j ̸=i cj/M . The last equation is from Equation (5). Notice that Equation (6) suggests

that

ri = qi + riti = qi +O
( n

M2

)
.

This equation implies that∑
i∈T

∑
j∈S

qi (qj + rj) =
∑
i∈T

∑
j∈S

qi

(
2qj +O

( n

M2

))
= 2

∑
i∈T

∑
j∈S

qiqj +O(ε).
(9)

Similarly, it can be shwon that∑
i,j∈S
i<j

(qi + ri) (qj + rj) =
∑
i,j∈S
i<j

qi (qj + rj) +
∑
i,j∈S
i<j

ri (qj + rj)

=
∑
i,j∈S
i<j

qi

(
2qj +O

( n

M2

))
+
∑
i,j∈S
i<j

ri (qj + rj)

=
∑
i,j∈S
i<j

2qiqj +
∑
i,j∈S
i<j

ri (qj + rj) +O(ε).

(10)
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By substituting Equation (8), (9) and (10) into the right hand side of Equation (7), it follows that

Rev (S, T ) = 1 + 2
∑
i∈[n]

qi +
1

2

∑
i∈S

ri
∑
j∈[n]
j ̸=i

(rj + qj)

−

∑
i,j∈T
i<j

2qiqj + 2
∑
i∈T

∑
j∈S

qiqj +
∑
i,j∈S
i<j

2qiqj +
∑
i,j∈S
i<j

ri (qj + rj)

±O (ε)

= 1 + 2
∑
i∈[n]

qi − 2
∑

i,j∈[n]
i<j

qiqj +
1

2

∑
i∈S

ri
∑
j∈[n]
j ̸=i

(rj + qj)−
∑
i,j∈S
i<j

ri (rj + qj)±O(ε)

= 1 + 2
∑
i∈[n]

qi − 2
∑

i,j∈[n]
i<j

qiqj +
1

2

∑
i∈S

ri
∑
j∈T

(rj + qj)±O(ε). (11)

In the second equality, we employ the following equation:∑
i,j∈T
i<j

qiqj +
∑
i,j∈S
i<j

qiqj +
∑

i∈S,j∈T
qiqj =

∑
i,j∈[n]
i<j

qiqj

In the third equality, we use the fact that

1

2

∑
i∈S

ri
∑
j∈S
j ̸=i

(rj + qj) =
∑
i,j∈S
i̸=j

rirj +O(ε)

and ∑
i,j∈S
i<j

ri(qj + rj) = 2
∑
i,j∈S
i<j

rirj +O(ε) =
∑
i,j∈S
i ̸=j

rirj +O(ε).

It is clear that the expression 1 + 2
∑

i∈[n] qi − 2
∑

i<j
i,j∈[n]

qiqj , denoted as L, remains constant and is inde-

pendent of the specific choices of S and T . Regarding the only remaining term, adding ri to both sides of

Equation (6) and subsequently rearranging yields:

ri =
1

2
(ri + qi) +

1

2
riti

=
1

2
(ri + qi)±O(n2/M2).

Combining the equation above with Equation (11) and Equation (5), it follows that

Rev(S, T ) = L+
1

4M2

(∑
i∈S

ci

)∑
j∈T

cj

±O(ε).

Define H as
∑

i∈[n] ci/2. When there exists an equal-sum partition S, T , the revenue generated by the

corresponding sets S, T is L+ H2

4M2±O (ε). Conversely, in the absence of such a partition, Lemma 3.2 asserts
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the existence of an optimal monotone partitional signal structure. Consequently, the maximum achievable

revenue is capped at L + H2−1
4M2 ± O (ε). Given that ε = n3

M3 is significantly smaller than 1
M2 , deciding

whether the optimal revenue exceeds the threshold t = L + H2−0.5
4M2 solves the PARTITION problem. This

concludes our proof.

Proof of Lemma 3.2. First, Bergemann and Pesendorfer (2007) have established that there exists an mono-

tone optimal signal structure for both the OPTIMAL SIGNAL and the OPTIMAL k-SIGNAL problem. A signal

structure, denoted as {(Si, σi)}i∈[n], is monotone, if and only if the following condition holds for all buyer i:

For any signal si ∈ Si, and two values va < vb ∈ Vi such that Pr[σi (va) = si] > 0,Pr[σi (vb) = si] > 0, it

holds that Pr[σi (vc) = si] = 1 for any vc ∈ Vi satisfying vc ∈ (va, vb).

We start by establishing that for any given k, the OPTIMAL k-SIGNAL problem possesses an optimal

signal structure that is both monotone and partitional. A direct corollary of this monotonicity suggests

that for any buyer i with a valuation support of at most m elements, that is, |Vi| ≤ m, the optimal signal

structure entails no more than 2m distinct signals. Consequently, the solution to the OPTIMAL SIGNAL

problem aligns identically with the solution to the OPTIMAL 2M-SIGNAL problem. Thus, the validity of this

statement for the OPTIMAL k-SIGNAL problem inherently affirms its correctness to the OPTIMAL SIGNAL

problem as well.

We prove by contradiction. By Bergemann and Pesendorfer (2007), there is an optimal BIC-IIR mech-

anism
(
{(Si, σi)}i∈[n] , {xi}i∈[n] , {pi}i∈[n]

)
in which the signal structure {(Si, σi)}i∈[n] is monotone, and

we assume that it is not a partition. Given the monotonicity of the signal structure, the signals for each

buyer i can be arranged in ascending order, denoted as si,1, si,2, · · · , si,|Si|. Specifically, for any pair of

signals si,a, si,b ∈ Si where a < b, and any two values vi,a, vi,b ∈ Vi such that Pr[σi (vi,a) = si,a] > 0

and Pr[σi (vi,b) = si,b] > 0, it always holds that vi,a ≤ vi,b. As the signals are arranged in ascending order,

the corresponding expected values follow the same order. Moreover, since the mechanism is BIC, Myerson

(1981) shows that the interim allocation probability of each signal is also monotone. That is,

Eσ,F[xi (si, s−i) |si = si,1] ≤ Eσ,F[xi (si, s−i) |si = si,2] ≤ · · · ≤ Eσ,F

[
xi (si, s−i) |si = si,|Si|

]
The first observation is that if there are two adjacent signals si,a, si,a+1 ∈ Si with identical interim

allocation probabilities in the optimal mechanism, i.e.,

Eσ,F[xi (si, s−i) |si = si,a] = Eσ,F[xi (si, s−i) |si = si,a+1]

their interim payments must also be the same since otherwise the mechanism is not BIC (Myerson, 1981).

In this case, we can define a new signal structure (S′
i, σ

′
i) which combines the signals si,a and si,a+1 for each

buyer i. Specifically, S′
i =

{
si,1, · · · , si,a, si,a+2, · · · , si,|Si|

}
, and Pr[σ′

i (vi) = si,j ] = Pr[σi (vi) = si,j ]

holds for all vi ∈ Vi and j ̸= a, a+ 1. For the signal si,a, we define that

Pr
[
σ′
i (vi) = si,a

]
= Pr[σi (vi) = si,a] + Pr[σi (vi) = si,a+1]

for all vi ∈ Vi. Moreover, the interim allocation and payment rules remain unchanged given the new signal
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structure. It is easy to verify that the alternative mechanism is still BIC-IIR with respect to the new signal

structure {(S′
i, σ

′
i)}i∈[n] and the expected revenue of the mechanism remains the same. Therefore, combin-

ing signals with the same interim allocation probability in the optimal mechanism leads to a weak increase

in revenue. Thus, in the following, we can assume that Es,F[xi (si, s−i) |si = si,j ] is strictly increasing with

respect to j.

Before initiating our proof, it is necessary to introduce a new family of mechanisms induced by a per-

mutation P over a selected subset of all signals {s1,1, · · · , sn,|Sn|}. The mechanism operates as follows: It

sequentially iterates through all signals in the order specified by the permutation P , and allocates the item

to the buyer who has the first occurrence of a signal in P . If none of the signals in the permutation P appear,

the mechanism simply does not allocate the item. Once the allocation rule is determined, the mechanism

determines the payment according to the characterization by Myerson (1981).

Algorithm 5: Mechanism Induced by a Permutation P

1 Each bidder i submits their signal si ∈ Si.

2 for j ← 1 to |P| do
3 s′i,a ← Pj .

/* Here assume that Pj is a signal s′i,a from buyer i. */

4 if si = s′i,a then
5 Allocate the item to buyer i.

6 Calculate the payment of buyer i according to the result by Myerson (1981).

7 Exit.

8 end
9 end

10 Does not allocate the item to any buyer.

Given a permutationP , we define
{
xPi (si, s−i)

}
i∈[n] ,

{
pPi (si, s−i)

}
i∈[n] as the allocation and payment

rules, respectively, of the mechanism induced by P . We may abuse the notation and also use P to refer the

mechanism induced by a permutation P . Bergemann and Pesendorfer (2007) have established that the

optimal mechanism corresponding to the optimal signal structure can also be characterized as a mechanism

induced by a permutation. A mechanism induced by a permutation P is the BIC-IIR if and only if, for

each buyer i, the signals included in P constitute a suffix of the complete set of their possible signals{
si,1, si,2, · · · , si,|Si|

}
. Furthermore, these included signals must be arranged within P in descending order.

Considering a specific signal si,a ∈ P from buyer i, the interim probability of allocating the signal si,a
corresponds precisely to the probability that si,a is the first to appear in the permutation sequence:

Eσ,F

[
xPi (si, s−i) |si = si,a

]
=
∏
j ̸=i

1−
∑
sj∈Sj

sj<Psi,a

Pr[σj (vj) = sj ]

 (12)

Bergemann and Pesendorfer (2007) demonstrate that, for any mechanism induced by a permutation P ,
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its revenue is given by:

n∑
i=1

Eσ,F

[
pPi (si, s−i)

]
=

n∑
i=1

|Si|∑
a=1

(
Eσ,F

[
xPi (si, s−i) |si = si,a

]
− Eσ,F

[
xPi (si, s−i) |si = si,a−1

])
·

E[vi|σi (vi) = si,a] · Pr[σi(vi) ≥ si,a] .

(13)

Here, the notation si,a ≥ si,b is used to denote that a ≥ b.

We are now ready to prove the lemma. Since the optimal monotone signal structure is not partitional,

there exists a pair of adjacent signals si,a, si,a+1 ∈ Si and a value va ∈ Vi such that both Pr[σi (va) = si,a]

and Pr[σi (va) = si,a+1] are strictly positive. As the signal structure is monotone, it is established that

E[vi|σi (vi) = si,a] ≤ va

E[vi|σi (vi) = si,a+1] ≥ va

Furthermore, it is not possible for both inequalities to be equal simultaneously. This is from the observation

that should both become equalities, merging the two signals would lead to unchanged revenue.

In the subsequent analysis, we introduce two alternative signal structures with the aim of demonstrating

that better one of these two yields strictly higher revenue. Let ε > 0 be a sufficiently small variable. The

first alternative signal structure, denoted as {(S′
i, σ

′
i)}i∈[n], involves transferring a probability mass of ε for

va from signal si,a to si,a+1. Formally, (S′
i, σ

′
j) is identical to (Si, σj) for all j ∈ [n], except the case that

Pr
[
σ′
i(va) = si,a

]
= Pr[σi(va) = si,a]− ε

Pr
[
σ′
i(va) = si,a+1

]
= Pr[σi(va) = si,a+1] + ε.

For the second signal structure {(S′′
i , σ

′′
i )}i∈[n], it just operates in the opposite direction and moves a

probability mass of ε for va from signal si,a+1 to si,a. Specifically, (S′′
i , σ

′′
j ) remains identical to (Si, σj)

for all j ∈ [n], with the exception that:

Pr
[
σ′′
i (va) = si,a

]
= Pr[σi(va) = si,a] + ε

Pr
[
σ′′
i (va) = si,a+1

]
= Pr[σi(va) = si,a+1]− ε.

Let P be the permutation corresponding to the optimal mechanism with respect to the original signal

structure {Si, σi)}i∈[n]. Instead of focusing directly on the optimal revenue associated with the signal struc-

tures {(S′
i, σ

′
i)}i∈[n] and {(S′′

i , σ
′′
i )}i∈[n], we examine the revenue generated by the mechanism induced by

the permutation P . For simplicity, define

wa = E[vi|σi (vi) = si,a] qa = Pr[σi (vi) = si,a]

wa+1 = E[vi|σi (vi) = si,a+1] qa+1 = Pr[σi (vi) = si,a+1]

We define similar variables for {(S′
i, σ

′
i)}i∈[n] and {(S′′

i , σ
′′
i )}i∈[n] in the same way. According to our defi-
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nition, it directly follows that

w′
a =

wa · qa − εva
qa − ε

w′
a+1 =

wa+1 · qa+1 + εva
qa+1 + ε

w′′
a =

wa · qa + εva
qa + ε

w′′
a+1 =

wa+1 · qa+1 − εva
qa+1 − ε

Define ∆′ and ∆′′ as the differences in revenue between the mechanisms corresponding to the signal struc-

tures {(S′
i, σ

′
i)}i∈[n] and {(S′′

i , σ
′′
i )}i∈[n], when induced by P , and the optimal revenue associated with the

original signal structure {(Si, σi)}i∈[n]. The variations in revenue can be attributed to three distinct com-

ponents: (1) The contribution of si,a; (2) The contribution of si,a+1; (3) The contribution from signals

sj,b of other buyers j ̸= i, wherein either Eσ,F

[
xPj (sj , s−j)|sj = sj,b

]
or Eσ,F

[
xPj (sj , s−j)|sj = sj,b−1

]
experiences a change.

We commence by computing the contribution from component (1), denoting the respective differences

by ∆′
(1) and ∆(1)

′′. Notice that

∆′
(1) =

(
Eσ′,F

[
x′i

P (
s′i, s

′
−i

)
|s′i = s′i,a

]
− Eσ′,F

[
x′i

P (
s′i, s

′
−i

)
|s′i = s′i,a−1

])
· w′

a · Pr
[
σ′
i(vi) ≥ s′i,a

]
−
(
Eσ,F

[
xPi (si, s−i) |si = si,a

]
− Eσ,F

[
xPi (si, s−i) |si = si,a−1

])
· wa · Pr[σi(vi) ≥ si,a]

=
(
Eσ,F

[
xPi (si, s−i) |si = si,a

]
− Eσ,F

[
xPi (si, s−i) |si = si,a−1

])
· Pr[σi(vi) ≥ si,a]

· ε (wa − va)

qa − ε

where in the second equality we uses the fact that Eσ,F

[
xPi (si, s−i) |si = si,a

]
,

Eσ,F

[
xPi (si, s−i) |si = si,a−1

]
and Pr[σi(vi) ≥ si,a] remains unchanged following the transfer of

probability. Similarly,

∆′′
(1) =

(
Eσ′,F

[
x′′i

P (
s′′i , s

′′
−i

)
|s′′i = s′′i,a

]
− Eσ′,F

[
x′′i

P (
s′′i , s

′′
−i

)
|s′′i = s′′i,a−1

])
· w′

a · Pr
[
σ′′
i (vi) ≥ s′′i,a

]
−
(
Eσ,F

[
xPi (si, s−i) |si = si,a

]
− Eσ,F

[
xPi (si, s−i) |si = si,a−1

])
· wa · Pr[σi(vi) ≥ si,a]

=
(
Eσ,F

[
xPi (si, s−i) |si = si,a

]
− Eσ,F

[
xPi (si, s−i) |si = si,a−1

])
· Pr[σi(vi) ≥ si,a]

· ε (va − wa)

qa + ε

Combining the two equations above implies that

∆′
(1) +∆′′

(1)

=
(
Eσ,F

[
xPi (si, s−i) |si = si,a

]
− Eσ,F

[
xPi (si, s−i) |si = si,a−1

])
Pr[σi(vi) ≥ si,a]

2ε2 (va − wa)

q2a − ε2
≥ 0
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Now let us compute the component (2). It is true that

∆′
(2) +∆′′

(2)

=
(

Eσ′,F

[
x′i

P (
s′i, s

′
−i

)
|s′i = s′i,a+1

]
− Eσ′,F

[
x′i

P (
s′i, s

′
−i

)
|s′i = s′i,a

])
· w′

a+1 · Pr
[
σ′
i(vi) ≥ s′i,a+1

]
+
(

Eσ′′,F

[
x′′i

P (
s′′i , s

′′
−i

)
|s′′i = s′′i,a+1

]
− Eσ′′,F

[
x′′i

P (
s′i, s

′
−i

)
|s′′i = s′i,a

])
· w′′

a+1 · Pr
[
σ′′
i (vi) ≥ s′′i,a+1

]
− 2

(
Eσ,F

[
xPi (si, s−i) |si = si,a+1

]
− Eσ,F

[
xPi (si, s−i) |si = si,a

])
· wa+1 · Pr[σi(vi) ≥ si,a+1]

=
(
Eσ,F

[
xPi (si, s−i) |si = si,a+1

]
− Eσ,F

[
xPi (si, s−i) |si = si,a

])
·

2ε2 (Pr[σi(vi) ≥ si,a+1]− qa+1) (wa+1 − va)

q2a − ε2

≥ 0

where the second equation follows from the fact that Eσ,F

[
xPi (si, s−i) |si = si,a+1

]
remain unchanged and

the following equation that

Pr
[
σ′
i(vi) ≥ s′i,a+1

]
− ε = Pr

[
σ′′
i (vi) ≥ s′′i,a+1

]
+ ε = Pr[σi(vi) ≥ si,a+1] .

Finally, let us compute the contribution from component (3). For each signal sj,b, define

Γ (sj,b) := E[vi|σj (vj) = sj,b] · Pr[σj(vj) ≥ sj,b]

Consequently, it follows that

∆′
(3) = ε ·

n∑
j=1,j ̸=i

∑
sj,b:si,a<Psj,b<Psi,a+1

Γ (sj,b) ·
∏
l ̸=i,j

1−
∑
sl∈Sl

sl<Psj,b

Pr[σl (vl) = sl]



− ε ·
n∑

j=1,j ̸=i

∑
sj,b:si,a<Psj,b<Psi,a+1

b<|Vj |

Γ (sj,b+1) ·
∏
l ̸=i,j

1−
∑
sl∈Sl

sl<Psj,b

Pr[σl (vl) = sl]


Similarly, it can be calculated that

∆′′
(3) = −ε ·

n∑
j=1,j ̸=i

∑
sj,b:si,a<Psj,b<Psi,a+1

Γ (sj,b) ·
∏
l ̸=i,j

1−
∑
sl∈Sl

sl<Psj,b

Pr[σl (vl) = sl]



+ ε ·
n∑

j=1,j ̸=i

∑
sj,b:si,a<Psj,b<Psi,a+1

b<|Vj |

Γ (sj,b+1) ·
∏
l ̸=i,j

1−
∑
sl∈Sl

sl<Psj,b

Pr[σl (vl) = sl]
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Therefore, it holds that

∆′
(3) +∆′′

(3) = 0.

Notice that va−wa and wa+1−va cannot both be 0 simultaneously, and Eσ,F

[
xPi (si, s−i) |si = si,a+1

]
−

Eσ,F

[
xPi (si, s−i) |si = si,a

]
is positive for all a. Therefore, for a sufficiently small constant ε > 0, it follows

that

∆′ +∆′′ > 0.

This implies that deviating to a signal structure yielding strictly higher revenue is always possible. Such

a possibility contradicts our initial assumption that the signal structure {(Si, σi)}i∈[n] is optimal. Therefore,

we conclude the proof with this contradiction.

Proof of Lemma 3.3. We now construct the hard instance as described in Section 3. For the completeness

of the proof, we restate the construction in this proof.

We provide the reduction from the following NP-complete problem (Ng et al., 2010):

SUBSET PRODUCT: Given integers a1, a2, · · · , an with ai > 1 and a positive integer B, is it possible to

find a subset S ⊆ [n] such that
∏

i∈S ai = B?

Consider an instance of the SUBSET PRODUCT problem, characterized by the parameters a1, a2, . . . , an
and B. We proceed to formulate a corresponding instance of the OPTIMAL 2-SIGNAL problem with n

buyers. The construction is as follows: For each buyer i, we define the value distribution Fi such that:

vi ∼ Fi, vi =


1 w.p. ai−1

ai

B2−ai
B2+1

w.p. ai−1
a2i

0 w.p. 1
a2i

Let us consider the optimal 2-signal structure of the instance above. First, according to Lemma 3.2,

we know that the optimal signal structure must be a monotone partitional signal structure. Consequently,

we know that for buyer i, there are only three possible candidate signal structures:
(
{0} ,

{
B2−ai
B2+1

, 1
})

,({
0, B

2−ai
B2+1

}
, {1}

)
, or
({

0, B
2−ai

B2+1
, 1
})

. Similar to the proof in Lemma 3.1, it is clear that the there exists

an optimal signal structure that does not contain
({

0, B
2−ai

B2+1
, 1
})

for any i ∈ [n], as simply switching from({
0, B

2−ai
B2+1

, 1
})

to
(
{0} ,

{
B2−ai
B2+1

, 1
})

will always weakly increase the revenue. Let us denote by S ⊆ [n]

the subset of buyers electing the signal structure
({

0, B
2−ai

B2+1

}
, {1}

)
. Given the dichotomy of possible

signal structures for each buyer, we define T = [n]\S to represent the complementary subset of buyers who

adopt the signal structure
(
{0},

{
B2−ai
B2+1

, 1
})

.

Now for any bidder in S, they always receive a binary signal. For the high signal, their virtual value is

simply 1. For the low signal, we first notice that the expected value is
(
B2−ai
B2+1

· ai−1
a2i

)
/( 1

ai
) = (ai−1)(B2−ai)

ai(B2+1)
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. Consequently, their virtual value is

(ai − 1)(B2 − ai)

ai(B2 + 1)
−
(
1− (ai − 1)(B2 − ai)

ai(B2 + 1)
· (ai − 1)

)
=

1− a2i
B2 + 1

< 0.

Similarly, for any bidder in T , they also receives a binary signal. For the high signal, their virtual value

is
(
ai−1
ai

+ B2−ai
B2+1

ai−1
a2i

)
/(1 − 1

a2i
) = B2

B2+1
. For the low signal, it is straightforward that the virtual value

is negative. Therefore, according to the characterization of the optimal auction by Myerson (1981), the

optimal mechanism under such signal structure is simply a sequential posted-price mechanism: The seller

first offers a price of 1 to the buyers in S in any order. If the item is still not sold, the seller then presents a

price of B2

B2+1
to the buyers in T . Therefore, the optimal revenue attainable from a partition S, T , which we

denote by Rev(S, T ), can be computed as:

Rev(S, T ) = 1−
∏
i∈S

1

ai
+
∏
i∈S

1

ai

1−
∏
j∈T

1

a2j

 · B2

B2 + 1
.

The revenue here is exactly the same as the reward in the proof by Agrawal et al. (2020). Following

the same argument, we are able to prove the NP-hardness. Define γ as
∏

i∈T ai. Agrawal et al. (2020)

have established that the term Rev(S, T ) achieves its unique maximum when γ = B. Therefore, given

an optimal information structure, simply checking that whether the induced revenue is the same as the

maximum at γ = B gives an answer to the SUBSET PRODUCT problem and this concludes the proof.

B Missing Proofs for PTAS

Proof of Lemma 4.3. Following the implementation of the discretization scheme, we observe that the resul-

tant distribution possesses support only over points that are integral multiples of ε and do not surpass ε−1.

Additionally, the probability mass allocated to each point must be a multiple of 1
nmε4. Consequently, the

upper bound on the number of feasible distributions is given by
(
nmε−4

)ε−2

. As for the compensatory

term, it is required to be a multiple of ε
nm and is constrained to a maximum value of 1. Hence, the number

of distinct possible compensatory terms is bounded by O
(
nmε−1

)
. Taking the product of these two factors,

we thus complete our proof.

B.1 Proof of Correctness

Proof of Lemma 4.4. We first illustrate that given any partitioned signal structure (Si, σi) that induces a

regular distribution Gi, there exists an implementable pairs (G′
i, c

′
i) such that DIS (Gi) = (G′

i, c
′
i).

Let us assume that there are ki signals in the signal structure (Si, σi), which we denote as

si,1, si,2, · · · , si,ki . Define ROUNDDOWN(x, t) as the largest multiples of t that does not exceed x. For

each signal si,j , let p (si,j) represent the probability of observing si,j . Formally, this is defined as:

p (si,j) := Pr[σ(vi) = si,j ] .

37



Recall that G =
{
zε | z ∈ N, zε ≤ ε−1

}
. Let us define the following pair of distribution and compen-

sation term G′
i, c

′
i where

Prv∼G′
i
[v = x] =


∑ki

j=1 ROUNDDOWN
(
p (si,j) ,

ε
n4m

)
· 1 [ϕ (si,j) ∈ [x, x+ ε)] x ∈ G\{0}

1−
∑ε−2

k=1 Prv∼kε[v = x] x = 0

0 otherwise

c′i =

ki∑
j=1

ROUNDDOWN
(
p (si,j)ϕ (si,j) ,

ε

nm

)
· 1
[
ϕ (si,j) > ε−1

]
It is clear that (G′

i, c
′
i) is the outcome of applying discretization scheme to Gi, i.e., (G′

i, c
′
i) = DIS (Gi).

According to the definition of Algorithm 2, it follows that (Gi, ci) is implementable, i.e., (Gi, ci) ∈ Ii. This

is because that we can always make the transition of the state at the boundary of the partition and get (Gi, ci)

in Ii. This finishes the first part of the proof.

For the opposite direction, suppose there exists an implementable pair (G′
i, c

′
i) satisfying (G′

i, c
′
i) ∈ Ii.

Given that (G′
i, c

′
i) belongs to the implementable set Ii, there must exist some k′ ≤ k and j′ ∈ [mi] such

that Imp (k′, 1, j, G′
i, c

′
i) evaluates to True. By backtracking this dynamic programming state, the property

of the dynamic programming guarantees that we can always find a partitioned signal structure (Si, σi) for

each buyer i that ensures that the following conditions are met for all k ≤ ε−2 ∈ Z+:

• The induced distribution of virtual values Gi is regular.

•
∑ki

j=1 ROUNDDOWN
(
p (si,j)ϕ (si,j) ,

ε
nm

)
· 1
[
ϕ (si,j) > ε−1

]
= c′i.

•
∑ki

j=1 ROUNDDOWN
(
p (si,j) ,

ε
n4m

)
· 1 [ϕ (si,j) ∈ [kε, kε+ ε)] = Prv∼G′

i
[v = kε] for all k ∈ Z+.

Furthermore, the backtracking process can efficiently run in poly
((

nm
ε

)f( 1
ε) ,m, k

)
time. Again, it is

clear that (G′
i, c

′
i) is just identical to DIS (Gi) by checking the definition of discretization. This concludes

the proof.

B.2 Proof of Revenue Loss

We first show that the error from decomposing a distribution G into a truncated virtual value distribution

and a compensation term without discretization is at most O(ε).

Lemma B.1. Given any distribution profile G such that VW(G, 0) ≤ 1, let (G′, c′) be the profile of trun-

cated distribution and compensation pairs, i.e., G′
i is the distribution of the random variable vi·1

[
vi ≤ ε−1

]
,

where vi ∼ Gi, and ci is defined according to Equation (4). It holds that

VW(G, 0) ≤ VW(G′, c′) ≤ VW(G, 0) + 2ε.

Proof. First note that since the transformation only modifies values that are strictly larger that ε−1, it holds
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that

Ev∼G

[
max
i∈[n]

vi · 1
[
max
i∈[n]

vi ≤ ε−1

]]
= Ev′∼G′

[
max
i∈[n]

v′i · 1
[
max
i∈[n]

v′i ≤ ε−1

]]
(14)

We now consider the case when the maximum is strictly larger than ε−1. It is clear that distributions

{G′
i}i∈[n] do not have values greater than ε−1, i.e.,

Ev′∼G′

[
max
i∈[n]

v′i · 1
[
max
i∈[n]

v′i > ε−1

]]
= 0. (15)

Notice that for any set of non-negative numbers, its maximum is always no less than its sum. Consequently,

the following inequality holds:

Ev∼G

[
max
i∈[n]

vi · 1
[
max
i∈[n]

vi > ε−1

]]
≤

n∑
i=1

Evi∼Gi

[
vi · 1

[
vi > ε−1

]]
=

n∑
i=1

ci. (16)

Therefore, combining the above inequalities with the definition of VW(·), we have

VW(G, 0) ≤ VW(G′, c′).

Moreover, if we only consider the case where exactly one vi exceeds ε−1, it holds that

Ev∼G

[
max
i∈[n]

vi · 1
[
max
i∈[n]

vi > ε−1

]]
≥

n∑
i=1

Ev∼G

[
vi · 1

[
vi > ε−1

]
· 1
[
max
j ̸=i

vj ≤ ε−1

]]

=

n∑
i=1

Evi∼Gi

[
vi · 1

[
vi > ε−1

]]
· Prv−i∼G−i

[
max
j ̸=i

vj ≤ ε−1

]

≥
n∑

i=1

Evi∼Gi

[
vi · 1

[
vi > ε−1

]]
· Prv∼G

[
max

j
vj ≤ ε−1

]

≥ (1− ε) ·
n∑

i=1

Evi∼Gi

[
vi · 1

[
vi > ε−1

]]
= (1− ε)

n∑
i=1

ci,

(17)

where the third inequality follows from Markov’s inequality:

Prv∼G

[
max

j
vj ≤ ε−1

]
= 1− Prv∼G

[
max

j
vj > ε−1

]
≥ 1− ε.
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Combining the inequalities (14) and (17), we have

VW(G, 0) = Ev∼G

[
max
i∈[n]

vi · 1
[
max
i∈[n]

vi ≤ ε−1

]]
+ Ev∼G

[
max
i∈[n]

vi · 1
[
max
i∈[n]

vi > ε−1

]]
≥ Ev′∼G′

[
max
i∈[n]

v′i · 1
[
max
i∈[n]

v′i ≤ ε−1

]]
+ (1− ε) ·

n∑
i=1

ci ≥ (1− ε)VW(G′, c′).

Since VW(G, 0) ≤ 1, the inequality above implies that

VW(G′, c′) ≤ (1 + 2ε)VW(G, 0) ≤ VW(G, 0) + 2ε,

and hence Lemma B.1 holds.

Proof of Lemma 4.5. Given any distribution profile G, let G′′ and c′′ be the profile of distribution and

compensation term pairs that is induced by G by simply decomposing the high values in G in compensation

terms without discretization. Lemma B.1 shows that

VW(G, 0) ≤ VW(G′′, c′′) ≤ VW(G, 0) + 2ε. (18)

Considering a specific buyer i, assume that there are ki signals in the signal structure (Si, σi), which

we denote as si,1, si,2, · · · , si,ki . Recall that ROUNDDOWN(x, t) is defined as the largest multiples of t that

does not exceed x and p (si,j) represents the probability of observing si,j .

It is straightforward that Gi, the virtual value distribution for buyer i, assigns a probability of p(si,j) to

the virtual value ϕ(si,j) for each j ∈ [ki]. Given our method of redistributing higher values within Gi, it is

clear that

Prv∼G′′
i
[v = x] =


∑ki

j=1 p (si,j) · 1
[
ϕ (si,j) > ε−1

]
x = 0∑ki

j=1 p (si,j) · 1 [ϕ (si,j) = x] 0 < x ≤ ε−1

0 x < 0 or x > ε−1

c′′i =

ki∑
j=1

p (si,j)ϕ (si,j) · 1
[
ϕ (si,j) > ε−1

]
According to the definition, G′

i, c
′
i, i.e., the outcome of applying our discretization scheme on Gi, is

defined as follows:

Prv∼G′
i
[v = x] =


∑ki

j=1 ROUNDDOWN
(
p (si,j) ,

ε
n4m

)
· 1 [ϕ (si,j) ∈ [x, x+ ε)] x ∈ G\{0}

1−
∑ε−2

k=1 Prv∼kε[v = x] x = 0

0 otherwise

c′i =

ki∑
j=1

ROUNDDOWN
(
p (si,j)ϕ (si,j) ,

ε

nm

)
· 1
[
ϕ (si,j) > ε−1

]
(19)
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Since G′ is stochastic dominated by G′′ and each term in c′ is generated by rounding down the corre-

sponding term in c′′, it follows that

VW(G′, c′) ≤ VW(G′′, c′′)

Next we provide the lower bound for VW(G′, c′). The definition of the rounding down function impies

that

p (si,j)ϕ (si,j)− ROUNDDOWN
(
p (si,j)ϕ (si,j) ,

ε

nm

)
≤ ε

nm
.

Upon summing the inequality above, the following naturally arises:

n∑
i=1

c′′i −
n∑

i=1

c′i =

n∑
i=1

ki∑
j=1

(
p (si,j)ϕ (si,j)− ROUNDDOWN

(
p (si,j)ϕ (si,j) ,

ε

nm

))
· 1 [ϕ (si,j)]

≤ ε

nm
· nm = ε.

(20)

where the first inequality we use the fact that ki is upper bounded by m for all i ∈ [n].

Next we bound the loss between G′′ and G′ by employing a coupling between G′′
i and G′

i. By the

definition of G′
i and G′′

i , the following is true for all k ∈ Z.

Prv∼G′′
i
[v ∈ [kε, (k + 1)ε)]− ε4

n
≤ Prv∼G′

i
[v = kε] ≤ Prv∼G′′

i
[v ∈ [kε, (k + 1)ε)] (21)

The coupling mechanism operates as follows: Whenever the distribution G′′
i assumes a value v′′i within

the interval [kε, (k + 1)ε) for some k ∈ Z+, we correspondingly assign the rounded value kε to G′
i. How-

ever, a residual probability mass exists, quantified as Prv∼G′′
i
[v ∈ [kε, (k + 1)ε)]− Prv∼G′

i
[v = kε], which

remains unaccounted for in G′′
i . This excess probability mass is then allocated to the value 0 in G′

i. The

coupling ensures that v′′i − v′i ≤ ε with a probability of at least 1− ε4

n · ε
−2 = 1− ε2

n .

We next consider the product distributions G′′
1 × · · · × G′′

n and G′
1 × · · · × G′

n. Let (v′′1 , · · · , v′′n) and

(v′1, · · · , v′n) be the realization of the product distributions. By union bound, with a probability of at least

1− ε2

n · n = 1− ε2, it holds that v′′i − v′i ≤ ε holds for all i ∈ [n]. By taking the maximum, we have

max
i∈[n]

v′′i −max
i∈[n]

v′i ≤ ε.

holds with a probability of at least 1− ε2. Therefore, by taking the expectation, it follows that

Ev′′∼G′′

[
max
i∈[n]

v′′i

]
− Ev′∼G′

[
max
i∈[n]

v′i

]
≤ ε+ ε−1 · ε2 = 2ε. (22)

where we uses the fact that G′′
i and G′

i are distributions with a support that does not exceed ε−1 for all

i ∈ [n].
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By synthesizing Equations (20) and (22), we deduce that:

VW(G′, c′) ≥ VW(G′′, c′′)− 2ε ≥ VW(G, 0)− 3ε.

This, in conjunction with the established upper bound for VW(G′, c′), leads to the conclusion that:

|VW(G′, c′)− VW(G′′, c′′)| ≤ 3ε.

Integrating this result with Equation (18), we effectively conclude our proof.

Proof of Lemma 4.6. Since we only round down the probabilities and redistribute the remaining probabili-

ties to value 0, it is clear that

Ev′∼max(G′
1,G

′
2)
[
v′
]
≤ Ev∼max(G1,G2)[v] .

Now we prove the lower bound. From the discretization scheme, we know that for any k ∈ N+, it holds

that

Prv1∼G1 [v1 = kε]− 1

nm
ε4 ≤ Prv′1∼G′

1

[
v′1 = kε

]
≤ Prv1∼G1 [v1 = kε] ,

which further implies that

Prv′1∼G′
1

[
v′1 ≤ kε

]
= 1−

∑
k′>k

Prv′1∼G′
1

[
v′1 = k′ε

]
≥ 1−

∑
k′>k

Prv1∼G1

[
v1 = k′ε

]
= Prv1∼G1 [v1 ≤ kε] .

Moreover, the same inequalities hold for G2 and G′
2. Combining the inequalities implies that

Prv′1∼G′
1,v

′
2∼G′

2

[
max(v′1, v

′
2) = kε

]
= Prv′1∼G′

1

[
v′1 = kε

]
· Prv′2∼G′

2

[
v′2 ≤ kε

]
+ Prv′1∼G′

1

[
v′1 < kε

]
· Prv′2∼G′

2

[
v′2 = kε

]
≥
(

Prv1∼G1 [v1 = kε]− 1

nm
ε4
)
· Prv2∼G2 [v2 ≤ kε] + Prv1∼G1 [v1 < kε] ·

(
Prv′2∼G′

2

[
v′2 = kε

]
− 1

nm
ε4
)

= Prv1∼G1,v2∼G2 [max(v1, v2) = kε]− 2

nm
ε4.
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Therefore, we can show that

Ev′∼max(G′
1,G

′
2)
[
v′
]
=

ε−2∑
k=1

kε · Prv′1∼G′
1,v

′
2∼G′

2

[
max(v′1, v

′
2) = kε

]
≥

ε−2∑
k=1

kε ·
(

Prv1∼G1,v2∼G2 [max(v1, v2) = kε]− 2

nm
ε4
)

≥ Ev∼max(G1,G2)[v]−
ε−2∑
k=1

ε−1 · 2

nm
ε4 = Ev∼max(G1,G2)[v]−

2ε

nm
.

which concludes the proof since m ≥ 1.
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