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We study the dynamics of quantum skyrmions under a magnetic field gradient using neural net-
work quantum states. First, we obtain a quantum skyrmion lattice ground state using variational
Monte Carlo with a restricted Boltzmann machine as the variational ansatz for a quantum Heisen-
berg model with Dzyaloshinskii-Moriya interaction. Then, using the time-dependent variational
principle, we study the real-time evolution of quantum skyrmions after a Hamiltonian quench with
an inhomogeneous external magnetic field. We show that field gradients are an effective way of ma-
nipulating and moving quantum skyrmions. Furthermore, we demonstrate that quantum skyrmions
can decay when interacting with each other. This work shows that neural network quantum states
offer a promising way of studying the real-time evolution of quantum magnetic systems that are
outside the realm of exact diagonalization.

I. INTRODUCTION

Manipulating magnetic structures and understanding
their dynamics is crucial for their potential use in spin-
tronics devices. Among these magnetic structures, mag-
netic skyrmions have received great attention in recent
years because of their topological protection and ease of
motion, making them an attractive candidate for mag-
netic storage devices like skyrmion-based racetrack mem-
ory [1–7]. These quasiparticles can be manipulated by
various methods like spin and charge currents [8–12],
electric and magnetic field gradients [13–16], tempera-
ture gradients [17, 18] and microwaves [19]. The size of
magnetic skyrmions can range from micrometers to a few
times the atomic lattice spacing [1]. However, the prop-
erties of magnetic skyrmions are mainly analyzed clas-
sically, which may only be relevant for large skyrmions.
For example, while classically, the dynamics of skyrmions
are described by the Landau-Lifshitz-Gilbert equation,
small-sized skyrmions cannot be described using classi-
cal spins as quantum effects can play an important role.

Only recently, the static properties of quan-
tum skyrmions have been studied in systems with
Dzyaloshinskii-Moriya interaction (DMI) [20–26], frus-
tration [27], itinerant magnetism [28] and with f -electron
systems [29]. The presence of DMI or frustration makes
quantum skyrmions challenging to study numerically us-
ing quantum Monte Carlo methods. While most works
have focused on small systems amenable to exact diago-
nalization, a few works have tackled larger lattices using
the density matrix renormalization group [23] and neural
network quantum states [26]. However, research in the
dynamical properties of quantum skyrmions is lacking as
it is considerably more challenging numerically. A very
recent work showed the onset of a quantum skyrmion
Hall effect in f -electron systems under linear response
theory using dynamical mean field theory [29]. To shed
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more light on the dynamics of quantum skyrmions, a full
nonequilibrium calculation on large lattices is needed.
Variational methods based on artificial neural networks

offer a feasible approach to approximate the static and
dynamic properties of quantum many-body systems [30–
40]. These methods use an artificial neural network to
represent the variational wave function, known as a neu-
ral network quantum state (NQS), which learns the tar-
get state using a gradient-based optimization scheme.
NQS-based methods are gaining popularity because of
their higher expressive capacity than conventional meth-
ods and their ability to simulate large lattices in high di-
mensions [41–43]. State-of-the-art results have been ob-
tained by combining NQS with variational Monte Carlo
(VMC) for ground state calculations [44, 45] and with
time-dependent variational Monte Carlo (t-VMC) for
real time evolution [46, 47]. In the context of quantum
skyrmions, we showed in our previous work that an NQS
can efficiently represent the quantum skyrmion ground
state at medium and strong DMI [26].
In this work, we study the real-time evolution of a

quantum skyrmion lattice in the presence of an external
magnetic field gradient using NQS and t-VMC. First, we
obtain a quantum skyrmion lattice as the ground state of
a two-dimensional spin-1/2 Heisenberg Hamiltonian with
DMI. The spins in this quantum skyrmion lattice have
nonzero quantum entanglement. Then, we quench the
Hamiltonian with a nonuniform external magnetic field
and evolve the system according to the time-dependent
Schrödinger equation using t-VMC. We show that quan-
tum skyrmions move diagonally to the field gradient, re-
sembling a skyrmion Hall effect, with a velocity that is
larger in the direction perpendicular to the magnetic field
gradient. The quantum skyrmions interact with each
other, leading to the formation of an exceptional con-
figuration with the topological charge of a meron, which
causes the decay of a quantum skyrmion. Merons and
antimerons are vortex-like spin textures that are quan-
tized to half the skyrmion number N , a topological in-
variant used to characterize skyrmions (Eq. (12)). Our
work shows that NQS can be used as a variational ansatz
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FIG. 1. Restricted Boltzmann machine used as the neural
network quantum state. The inputs are the spin configura-
tions in σz basis, and the output is the logarithm of the wave
function (Eq. (3)). The hidden layer contains αL2 neurons,
where α = 2 in our case.

to study the ground state and nonequilibrium properties
of quantum skyrmions with system sizes that are not fea-
sible using exact methods.

The paper is organized as follows: In Sec. II, we de-
scribe the model used in our simulations. In Sec. III,
we discuss the NQS-based variational methods to obtain
ground states and to perform real-time evolution. The
details of various parameters in our calculations are de-
scribed in Appendix A. In Sec. IV, we discuss the proper-
ties of the quantum skyrmion ground state. In Sec. V, we
study the dynamical properties of quantum skyrmions.
Finally, we summarize our work in Sec. VI.

II. MODEL

We study the spin-1/2 Heisenberg Hamiltonian with
DMI and anisotropy on a two-dimensional lattice with
periodic boundary conditions. The Hamiltonian is given
as

H0 =− J
∑
⟨ij⟩

(σx
i σ

x
j + σy

i σ
y
j )−A

∑
⟨ij⟩

σz
i σ

z
j

−D
∑
⟨ij⟩

(uij × ẑ) · (σi × σj) +Bz
∑
i

σz
i .

(1)

Here, J is the Heisenberg exchange term, A is the Heisen-
berg anisotropy term, D is the strength of the DMI, and
Bz is the strength of the homogeneous external magnetic
field. We take ℏ = 1. The Pauli matrices are denoted by
σ = {σx, σy, σz} and uij is the unit vector from site i to
site j. The first three terms are summed over the nearest
neighbors denoted by ⟨ij⟩. A quantum skyrmion state
can emerge due to the competition between the ferro-
magnetic exchange term and the noncolinear DMI term,
stabilized by the anisotropy and the external magnetic
field.

III. METHOD

To obtain the ground state of the above Hamilto-
nian, we use variational Monte Carlo with neural net-
work quantum states (NQS) as the variational ansatz.
The many-body wave function is approximated using an
artificial neural network that encodes the complex-valued
coefficients ψθ(x),

|ψθ⟩ =
∑
x

ψθ(x) |x⟩ . (2)

Here, θ are the variational parameters, and |x⟩ are the
local basis states, which in our case are the eigenvalues
of the σz

j operators. We use a restricted Boltzmann ma-
chine (RBM) with complex weights and biases as the
variational wave function. The RBM consists of an input
layer that takes the spin configurations |x⟩ as input and
a hidden layer with variational parameters θ = (a,W, b),
see Fig. 1. Here, a are input biases, and W and b are
hidden weights and biases, respectively. The length of
one side of the lattice is given by L, and α is the hid-
den unit density. In this study, α = 2 is used for both
ground state and time evolution calculations. Increasing
α increases the expressiveness of the network, resulting
in better accuracy but with higher computational cost.
The output is the logarithm of the unnormalized wave
function

ln(ψθ(x)) =

αL2∑
i

aixi + ln cosh[Wx+ b]i. (3)

It is important to choose differentiable activation func-
tions for deriving the real-time evolution, which relies
on the wave function being differentiable at every point
of the variational manifold [46]. Thus, instead of the
reLU(x) activation function (nondifferentiable at x = 0),
that was used previously to study the ground states of
quantum skyrmions [26], in this work, we use an RBM
with ln cosh(x) activation function. The loss function
L0(θ) for ground state calculations is the energy of the
Hamiltonian H0 which is minimized with respect to the
variational parameters θ

L0(θ) = ⟨ψθ|H0 |ψθ⟩ . (4)

We use Adam [48] as the optimizer and Markov chain
Monte Carlo to sample the input spin configurations.

For the real-time evolution, we use the time-dependent
variational principle, which corresponds to the time de-
pendence of the variational parameters, θ(t). Given a
Hamiltonian H, at each time step, the loss function is
the distance between an infinitesimal time evolved state
and the state at time t′ = t+ δt

Lt′(θ(t
′),θ(t)) = dist

(∣∣ψθ(t′)

〉
, e−iHδt

∣∣ψθ(t)

〉)
,

= dist
(∣∣ψθ(t′)

〉
,−iδtH

∣∣ψθ(t)

〉)
+O(δt2). (5)

The parameters θ(t) are known, and parameters θ(t′) are
to be determined by minimizing the loss function above.
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FIG. 2. Quantum skyrmion lattice ground state of Eq. (1) at parameters D = J , A = 0.5J and Bz = J . (a) Ground state spin
expectation values, showing a skyrmion lattice with two quantum skyrmions. The color map indicates the z component of the
spin expectation value. (b) Convergence of variational energy per spin over the number of iterations for a 9 × 9 lattice, with
the energy variance per spin in the inset. The lighter color shows the values at each iteration, while the darker color shows
the moving average over 30 iterations. (c) Renyi entropy of the ground state. The entropy is largest in the space between two
skyrmions.

We use the Fubini-Study metric as the distance between
two wave functions |ψ⟩ and |ϕ⟩,

dist(|ψ⟩ , |ϕ⟩) = cos−1

(√
⟨ψ|ϕ⟩ ⟨ϕ|ψ⟩
⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩

)2

. (6)

Minimizing Eq. (5) results in an equation for the time

derivative of the variational parameters θ̇ [30]

Sθ̇ = −iF . (7)

Here, S is the quantum geometric tensor and F is the
force vector defined as (dropping the t dependence of
θ(t) for readability),

Sij =

〈
∂θiψθ|∂θjψθ

〉
⟨ψθ|ψθ⟩

− ⟨∂θi
ψθ|ψθ⟩

⟨ψθ|ψθ⟩

〈
ψθ|∂θjψθ

〉
⟨ψθ|ψθ⟩

, (8)

Fi =
⟨∂θi

ψθ|H |ψθ⟩
⟨ψθ|ψθ⟩

− ⟨∂θi
ψθ|ψθ⟩

⟨ψθ|ψθ⟩
⟨ψθ|H |ψθ⟩
⟨ψθ|ψθ⟩

. (9)

Both S and F are computed by estimating the expecta-
tion values in the Monte Carlo scheme. Finally, Eq. (7)
is integrated with the classic Runge-Kutta method to ob-
tain the parameters θ(t′). We use NetKet to implement

the RBM, VMC, and t-VMC algorithms [49–51]. Details
about the hyperparameters used are given in Appendix
A.

IV. GROUND STATE

A quantum skyrmion lattice (QSL) is the ground state
of the Hamiltonian in Eq. (1) for large DMI and fi-
nite anisotropy and magnetic field if the lattice size is
large enough to accommodate the QSL, consistent with
previous findings [23, 26]. The spin expectation values
⟨S⟩ = ⟨σ⟩ /2 in Fig. 2(a) show two quantum skyrmions
in the ground state, encircled by dashed lines. As this
is a quantum spin model, the lengths of the spins are
not normalized due to quantum fluctuations, and thus
| ⟨S⟩ | < 1/2. The ground state energy E0 minimization
plot for the RBM used to describe the QSL in a 9 × 9
lattice is shown in Fig. 2(b), with the energy variance
⟨ψθ| (H0 −E0)

2 |ψθ⟩ in the inset. Here, the Hamiltonian
parameters are D = J , A = 0.5J , and Bz = J . The
RBM converges to a QSL as the variance vanishes.
To characterize the quantum skyrmions, we calculate

the local skyrmion density for the nearest neighbor spins
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i, j, and k forming an elemental triangle ∆ as [22, 29, 52]

Ω∆ =
1

2π
atan2(ni · (nj × nk), (10)

1 + ni · nj + nj · nk + nk · ni). (11)

Here, we use the normalized spin expectation values ni =
⟨Si⟩ /| ⟨Si⟩ |. The skyrmion number N is given by the
sum over all triangles

N =
∑
∆

Ω∆. (12)

Using twice the unnormalized spin expectation values in
Eq. (11) instead of n results in a non-quantized number
Q, which depends on the length | ⟨S⟩ | of the spins and is
an indicator of the stability of quantum skyrmions, with
Q → N if and only if the spin expectation values have
maximal amplitude [22] and quantum fluctuations com-
pletely vanish. For the ground state solution in Fig. 2,
we find N = 2 corresponding to two quantum skyrmions
in the ground state and Q = 1.93, implying that these
skyrmions have spin expectation values with magnitude
close to ℏ/2.

We note that the existence of a QSL depends not only
on the DMI D, anisotropy A, and external magnetic field
Bz but also on the size of the lattice. For square lattices
smaller than 9×9 spins, we do not find any ground state
hosting a quantum skyrmion in the parameter range 0 <
D/J < 2, 0 < A/J < 2 and 0 < Bz < 2. While it is
possible to obtain a QS ground state in smaller lattices
when embedded in a ferromagnetic medium [22, 26], in
the presence of periodic boundaries, we only obtain a spin
spiral or a ferromagnet as the ground state. For larger
lattice sizes up to 13 × 13, we also obtain a QSL as the
ground state with N = 2 for large DMI.

Next, we study entanglement in the QSL ground state
as previously done for single quantum skyrmions [23, 26].
Using the expectation value of the “Swap” operator, we
calculate the second order Renyi entropy S2(ρA) as a
measure of entanglement in quantum skyrmions [26, 35,
53],

S2(ρA) = −1

2
ln(Tr(ρ2A)). (13)

Here, ρA is the reduced density matrix obtained by di-
viding the system into subsystems A and B and trac-
ing out the degrees of freedom in subsystem B. In all
our Renyi entropy calculations, we take subsystem A to
be a single spin and partition B to be the remaining
spins to see how the spins are entangled with their envi-
ronment. The heat map in Fig. 2(c) shows the Renyi
entropy in the QSL ground state. The entanglement
is largest (S2(ρA) = 0.061) in the region between two
skyrmions and smallest (S2(ρA) = 0.004) around the cen-
ter of the skyrmions. The entropy for the central spin
is nonzero (S2(ρA) = 0.013), different from the case of a
quantum skyrmion embedded in a ferromagnetic medium
where the central spin was disentangled from the rest of

the lattice. This might be due to different parameter
regimes, boundary conditions, and system sizes [23, 26].
As 0 ≤ S2(ρA) ≤ ln(2), the Renyi entropies are still small
in the QSL ground state.

V. DYNAMICS OF QUANTUM SKYRMIONS

In this section, we study the real-time evolution of the
QSL ground state after quenching the Hamiltonian with
a magnetic field gradient. Magnetic field gradients have
been shown to be an effective way of manipulating clas-
sical skyrmions and can induce a motion perpendicular
to the gradient [15–17]. We quench the Hamiltonian in
Eq. (1) with a static, nonuniform magnetic field

Hq = H0 +
∑
i

Bg
i σ

z
i ,

where, Bg
i =


g(xi + 1) if 0 ≤ xi < 4

0 if xi = 4

g(xi − L) if 4 < xi < L

(14)

Here, g is the strength of the gradient, xi is the x-
coordinate of i-th spin, and xi = 4 is the x-coordinate of
the center of one of the skyrmions at t = 0. The gradi-
ent is along the x-axis. With this Bg, the magnetic field
gradient is largest at the center of the middle skyrmion
xi = 4 and decreases away from it (Fig. 3(a)). The
speed at which the quantum skyrmions move depends
on the gradient, similar to the classical case [16]. With
this choice of Bg, the interaction of quantum skyrmions
can be observed in the time scales accessible by our
method while maintaining the stability of the nontrivial
spin structure. The ground state of the Hamiltonian Hq

with magnetic field gradient is a spin spiral phase. Thus,
the quench is made from a nontrivial quantum skyrmion
phase to a trivial spiral phase. We therefore expect a
tendency for the quantum skyrmions to eventually tran-
sition to a spiral with N = 0. With g = 0.2J , Fig. 3(b)
shows the evolution of the energy Eq =

〈
ψθ(t)

∣∣Hq

∣∣ψθ(t)

〉
with time t. After the quench, the Hamiltonian is time-
independent, the time evolution is unitary, and the en-
ergy is supposed to be conserved. While the energy Eq is
indeed nearly constant in our simulations, we see that it
changes at longer times due to the accumulation of errors
[39, 54] and we constrain ourselves to the interval tJ ≤ 5.
The time evolution of spin expectation values is shown

in Fig. 3(d)-(i) (see Supplementary Information for the
video). The color plot in the background shows the local
skyrmion density Ω∆ (Eq. (11)). The speed of the quan-
tum skyrmions depends on the magnetic field gradient,
and as the quantum skyrmion at xi = xc = 4 experiences
a larger gradient than the quantum skyrmion at xi = 8,
it moves faster. The speed of the quantum skyrmions is
also proportional to the magnitude of g (not shown here).
However, a larger g increases the errors in t-VMC and can
even destroy the QSL state. The quantum skyrmions
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Validity regime

FIG. 3. Real-time dynamics of quantum skyrmions. (a) Magnetic field gradient used to move quantum skyrmions (Eq. (14)).
The magnetic field points along the z-axis and depends on the x-coordinate. (b) Time evolution of energy per spin of the
quenched Hamiltonian in (Eq. (14)) over time as a quality check for the unitarity of the method. Blue shows the energy at
each iteration, and yellow shows the moving average over 30 iterations. (c) Evolution of the normalized skyrmion number N
and the unnormalized skyrmion number Q with time. While Q continuously decreases, N is quantized and a transition from
N = 2 to N = 1 takes place at tJ = 2.81. (d)-(i) Snapshots of spin expectation values at different times with the skyrmion
density Ω∆ in the background. The quantum skyrmions (marked by arrows) move towards each other (d)-(e), interact and an
exceptional configuration is formed between tJ = 2.80 and tJ = 2.81 (f)-(g), after which one quantum skyrmion decays and an
elongated quantum skyrmion remains (h)-(i).

move in a Hall-like motion [15], with the velocity per-
pendicular to the field gradient larger than the velocity
parallel to it. The two quantum skyrmions experience
opposite magnetic field gradients and move towards each
other (Fig. 3(e)). The skyrmion density Ω∆ builds up es-
pecially for one triangle of spins at (7, 1) as the two quan-
tum skyrmions interact. The skyrmion density reaches a

maximum of Ω∆ = 0.5 for this triangle at tJ = 2.80
Fig. 3(f). Then, it passes through an exceptional con-
figuration, where the denominator in Eq. (11) changes
sign [52], and Ω∆ changes from Ω∆ ≈ 0.5 to Ω∆ ≈ −0.5
which results in the change of skyrmion number N from
N = 2 to N = 1 in Fig. 3(g). Thus, the quantum
skyrmion decay is mediated by exceptional configurations
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Evolution of Renyi entropy over time. The entropy
increases when the quantum skyrmions interact.

carrying the topological charge of a meron. By this, the
two quantum skyrmions merge to an elongated quantum
skyrmion (Fig. 3(i)). Although Ω∆ changes discontin-
uously at tJ = 2.81, the spin expectation values and
the wave function do not change discontinuously and the
real-time evolution remains valid at this singular point.
We also note that we did not observe a dynamical quan-
tum phase transition here, which is accompanied by the
nonanalytic behavior of the wave function [55].

To obtain this decay of quantum skyrmions, it is neces-
sary that the two quantum skyrmions interact. By chang-
ing the gradient profile, it becomes possible for the two
skyrmions to move in the same direction without inter-
action. Alternatively, starting with a single skyrmion
state (achieved by optimizing the ground state RBM
in the presence of large pinning fields such that only
one skyrmion remains), the time evolution of a single
skyrmion can be obtained. In both cases, we do not ob-
serve a quantum skyrmion decay. However, when two
quantum skyrmions are driven towards each other, they
collide, and this interaction leads to the formation of
an exceptional configuration and deletion of a quantum
skyrmion.

Finally, let us discuss the evolution of the Renyi en-
tropy with time, shown in Fig. 4. At tJ = 0, the entropy
is low and concentrated between the two skyrmions,
which is shown in Fig. 4(a). As the quantum skyrmions
move toward each other, the entropy between them in-
creases, reaching a maximum of S2 = 0.48 at tJ = 4.50.
The increase in entropy is due to the interaction between
the two quantum skyrmions, and it increases continu-
ously, even after one quantum skyrmion decays. The
merging of two quantum skyrmions results in large en-
tropy regions, demonstrating the necessity of quantum
calculations to capture the correct behavior of this pro-
cess.

VI. SUMMARY

In this work, we studied the ground state proper-
ties and real-time evolution of quantum skyrmions. Us-
ing variational Monte Carlo with a restricted Boltz-
mann machine as the variational ansatz, we obtained the
ground state of a spin-1/2 Heisenberg model in the pres-
ence of Dzyaloshinskii-Moriya interaction and Heisenberg
anisotropy. The ground state hosts a quantum skyrmion
lattice with nonzero Renyi entropy and skyrmion num-
ber N = 2. The Renyi entropy is largest between the
two quantum skyrmions. These quantum skyrmions can
be manipulated by applying a magnetic field gradient.
The quantum skyrmions move in a direction mostly per-
pendicular to the gradient, with a small parallel compo-
nent. The velocity of quantum skyrmions depends on the
magnitude and direction of the gradient. An exceptional
configuration with the topological charge of a meron is
formed due to the interaction of the time-evolving quan-
tum skyrmions, resulting in a quantum skyrmion decay
as the skyrmion number N = 2 changes to N = 1. Thus,
neural network quantum states can effectively approxi-
mate the real-time evolution of quantum skyrmions and
reveal previously unknown quantum phenomena. Stabi-
lizing longer-time dynamics is an interesting aspect for
future work.
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Appendix A: Hyperparameters details

For the ground-state calculations, we take the hidden
layer density α = 2. With a larger α, energy is slightly
improved but the spin expectation values remain un-
changed. However, this results in a higher computational
cost, especially during real-time evolution. The weights
and biases are initialized randomly with a normal distri-
bution having a standard deviation of 0.01. To optimize
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FIG. 5. Overlap between the time evolved state and the
state obtained using t-VMC, as defined in Appendix B. Pur-
ple shows the overlap at each time step and green shows the
moving average over 100 iterations.

the RBM using gradient descent, we use the Adam op-
timizer with the moments β1 = 0.9 and β2 = 0.999 [48].
The learning rate η is varied from η = 10−3 to η = 10−5

in the steps of 10−1 after every 4× 104 iterations, which
can be seen as a sudden drop in the variational energy in
Fig. 2(a). Using a stochastic gradient descent optimizer
with stochastic reconfiguration [30] gives similar results
but with increased computational costs. As the Hilbert
space is very large, we use Markov chain Monte Carlo to

generate samples that are used in the computation of ex-
pectation values. The samples are generated by flipping
one spin randomly, and the process is repeated L2 times
to complete one Monte Carlo sweep. We use 214 samples
for energy calculation and 217 samples for all the other
expectation values.

For the real-time evolution, the optimized RBM is used
as the initial state at tJ = 0. We use a time step of
δt = 10−4. At each time step, the quantum geometric
tensor S and the forces vector F are computed with 214

samples. The equation of motion, Eq. (7), can be very
unstable due to the presence of noise in the calculation
of the matrix S [40, 46, 54]. To improve stability, we
add a small shift of ϵ = 0.01 to the diagonal elements of
the S matrix to regularize the equation of motion. We
experimented with different values of ϵ and found that
while the quantum skyrmion motion was similar for all
1.0 < ϵ < 10−5 qualitatively, a smaller ϵ resulted in un-
stable energy. Finally, to integrate Eq. (7), we use a
fourth-order Runge-Kutta integration scheme. Both the
ground state optimization and real-time evolution calcu-
lations were performed on an NVIDIA A100 GPU.

Appendix B: t-VMC error

Here, we discuss the errors in our time evolution calcu-
lations. The total error in θ due to integration of Eq. (7)
using the Runge-Kutta method is of the order O(δt4).
The overlap O(t) =

〈
ψθ(t′)

∣∣ 1 − iHδt
∣∣ψθ(t)

〉
is shown in

Fig. 5, where t′ = t+ δt. Within our approximation, the
overlap stays close to unity at each time step.
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Spontaneous atomic-scale magnetic skyrmion lattice in
two dimensions, Nature Physics 7, 713 (2011).

[8] W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Ben-
jamin Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen,
K. L. Wang, Y. Zhou, A. Hoffmann, and S. G. E.
te Velthuis, Direct observation of the skyrmion Hall ef-
fect, Nature Physics 13, 162 (2017).

[9] R. Juge, S.-G. Je, D. D. S. Chaves, L. D. Buda-
Prejbeanu, J. Peña-Garcia, J. Nath, I. M. Miron, K. G.
Rana, L. Aballe, M. Foerster, F. Genuzio, T. O. Menteş,
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