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PaddingFlow: Improving Normalizing Flows with
Padding-Dimensional Noise

Qinglong Meng, Chongkun Xia, Xueqian Wang*

Abstract—Normalizing flow is a generative modeling approach
with efficient sampling. However, Flow-based models suffer two
issues: 1) If the target distribution is manifold, due to the
unmatch between the dimensions of the latent target distribution
and the data distribution, flow-based models might perform
badly. 2) Discrete data might make flow-based models collapse
into a degenerate mixture of point masses. To sidestep such two
issues, we propose PaddingFlow, a novel dequantization method,
which improves normalizing flows with padding-dimensional
noise. To implement PaddingFlow, only the dimension of nor-
malizing flows needs to be modified. Thus, our method is easy to
implement and computationally cheap. Moreover, the padding-
dimensional noise is only added to the padding dimension, which
means PaddingFlow can dequantize without changing data distri-
butions. Implementing existing dequantization methods needs to
change data distributions, which might degrade performance. We
validate our method on the main benchmarks of unconditional
density estimation, including five tabular datasets and four
image datasets for Variational Autoencoder (VAE) models, and
the Inverse Kinematics (IK) experiments which are conditional
density estimation. The results show that PaddingFlow can
perform better in all experiments in this paper, which means
PaddingFlow is widely suitable for various tasks. The code is
available at: https://github.com/AdamQLMeng/PaddingFlow.

Index Terms—Normalizing Flows, Dequantization, Generative
Models, Density Estimation.

I. INTRODUCTION

NOMALIZING flow (NF) is one of the widely used
generative modeling approaches. Flow-based generative

models use cheaply invertible neural networks and are easy
to sample from. However, two issues limit the performance of
flow-based generative models: 1) Mismatch of the latent target
distribution dimension and the data distribution dimension
[1]; 2) Discrete data leads normalizing flows to collapse to
a degenerate mixture of point masses [2]. Here, we list five
key features that an ideal dequantization for sidestepping such
two issues should offer:

• 1. Easy to implement: To implement dequantization, the
modification of the original models should be simple.

• 2. Not have to change the data distribution: Changing
the data distribution may bring benefits because of the
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reasonable assumption of the neighbor of the data points.
On the other side, any assumption may be unreasonable
sometimes. Dequantization should not change the data
distribution if it is needed.

• 3. Unbiased estimation: The generative samples should
be the unbiased estimations of the data.

• 4. Not computationally expensive: At first, dequanti-
zation methods as the preprocessing will degrade the
inference speed if the computation is large. Secondly,
the improvement provided by dequantization methods
is limited sometimes, large computations will make the
method poor economic.

• 5. Widely suitable: If the selection of dequantization
methods is complicated, using dequantization methods
is poor economic. Thus, dequantization should provide
improvement for various tasks.

Prior work has proposed several dequantization methods,
including uniform dequantization, variational quantization [3],
and conditional quantization [1]. Uniform dequantization is
easy to implement and computationally cheap, however, the
generative samples are biased estimations (Eq. 7). Variational
dequantization can provide improvement to various tasks, but
using an extra flow-based model to generate noise is computa-
tionally expensive, and difficult to implement because there is
an extra model that needs to be trained. Conditional dequanti-
zation is to add a conditional distribution where the condition
is the variance of noise sampled from a uniform distribution.
Such a complicated distribution might degrade performance
significantly (Fig. 3). Moreover, it requires modifying the
original models to conditional normalizing flows, which can
be intractable when the original model is an unconditional
normalizing flow.

In this paper, we propose a novel dequantization method that
can satisfy the five key features we list, named PaddingFlow,
which improves normalizing flows with padding-dimensional
noise. Unlike all prior work, PaddingFlow can dequan-
tize without changing the data distribution. To implement
PaddingFlow, only the dimension of distribution needs to be
modified. Thus, unlike variational dequantization, the com-
putation of implementing PaddingFlow is relatively low. We
validate our method on 9 density estimation benchmarks
(including 5 tabular datasets, and 4 VAE datasets), and IK
experiments, which contain both unconditional and conditional
density estimation. The results show that PaddingFlow can
perform better and is suitable for both discrete and continuous
normalizing flows.
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Fig. 1. Implementation of PaddingFlow for training flow-based models. d denotes the dimension of the data distribution, and p denotes the dimension of
padding-dimensional noise.

II. BACKGROUND

In this section, we introduce Normalizing Flows (NFs)
briefly. Moreover, the prior work for sidestepping the two
issues abovementioned are introduced, and the main flaws of
these methods are analyzed.

A. Normalizing Flows

Normalizing flows are to model the target distribution as a
transformation Fθ of the base distribution, which is usually
Gaussian distribution:

x = Fθ(z), where z ∼ N(0, I). (1)

Furtherly, the density of x can be obtained by a change of
variables:

pX(x) = pZ(F
−1
θ (x))|JF−1

θ
(x)|. (2)

In practice, we often construct a neural network to fit the
transformation Fθ. The corresponding objective function is
usually Kullback-Leibler (KL) divergence to minimize diver-
gence between the flow-based model pX(x; θ) and the target
distribution p∗X(x) [4], which can be written as:

L(x; θ) = DKL[p
∗
X(x)∥pX(x; θ)]

= −Ep∗X(x)[logpX(x; θ)]−H[p∗X(x)]

= −Ep∗X(x)[logpZ(F
−1
θ (x)) + log|detJF−1

θ
(x)|]

−H[p∗X(x)].

(3)

Due to the data distribution p∗X(x) is fixed, the second term is
a constant. And the expectation over p∗X(x) can be estimated
by Monte Carlo. Therefore, the loss function can be written
as:

L(X ; θ) ≈ − 1

N

N∑
i=1

[logpZ(F
−1
θ ((i)x))

+ log|detJF−1
θ

((i)x)|],
(4)

where X = {xi}Ni=1. As for continuous normalizing flows
(CNF) [5] [6], the computation of total change in log-density
logpZ(z) is done by integrating across time, and it is the
integration of the trace of the Jacobian matrix, instead of using
the determinant:

logpZ(z(t1)) = logpZ(z(t0))−
∫ t1

t0

Tr (JFθ
(z)) , (5)

which simplifies the computation of the change of log-density.

B. Dequantization

The real-world datasets, such as MNIST [7] and UCI
datasets [8], are recordings of continuous signals quantized
into discrete representations. Training a flow-based model on
such datasets is to fit a continuous density model to discrete
distribution. Moreover, the latent target distribution in some
tasks is manifold, such as some conditional distributions,
which means the dimension of the target distribution is lower
than the data dimension. Both two issues will hurt the train-
ing loss and generalization. To sidestep these issues, several
dequantization methods were proposed. In this section, the
representative work will be introduced, and the main flaws
will be analyzed as well.

Uniform Dequantization is used most widely in prior
work, due to the simple noise formula and no need to modify
the model for adapting such a dequantization method. How-
ever, uniform noise will lead models to suboptimal solutions.
Here, we give a simplified example for explanation. After
adding uniform noise (u ∼ U(0, 1)) to the normalized data
(x ∼ N(0, 1)), the density of the noisy data (y) can be written
as:

pY (y) =

∫ +∞

−∞
pX(y − u)pU (u)du

=

∫ 1

0

1√
2π
e−

1
2 (y−u)

2

du.

(6)

We further compute the expectation of Y as follows:

E(Y ) =

∫ +∞

−∞
ydy

∫ 1

0

1√
2π
e−

1
2 (y−u)

2

du = 1− e−
1
2 .1 (7)

Therefore, the data generated by the flow-based generative
models trained on the data added uniform noise is a biased
estimation of the original data. If the interval is symmetric (i.e.
u ∼ U(−a, a)), the expectation of Y : E(Y ) = 0, which means
the estimation is unbiased. However, another issue is that
assigning uniform density to the unit hypercubes x+ [0, 1)D

is difficult and unnatural for neural network density models.
Variational dequantization [3] is proposed to sidestep the

issue that the uniform noise assigns uniform density to the

1The details of computation can be found in Appendix B.
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Fig. 2. Two ways of implementing PaddingFlow on a VAE model: 1) adding PaddingFlow noise (green lines), and 2) PaddingFlow reparameterization (blue
lines). Images (I′

) shown in the figure are reconstructed by the PaddingFlow-based VAE model trained on Caltech 101 Silhouettes.

unit hypercubes x + [0, 1)D. Variational dequantization uses
an extra flow-based generative model to generate noise, which
makes noise obey an arbitrary conditional distribution where
the condition is the corresponding data (x). The process can
be written as:{

ϵ′ = g(ϵ|x),where ϵ ∼ N(0, I)

z = f−1(x+ ϵ′)
(8)

where g(·) is the dequantization flow, f(·) is the data flow.
Apparently, such a method is computationally expensive es-
pecially when the data is images.

Conditional dequantization [1] is to use a conditional
distribution for generating noise as well as variational dequan-
tization. Instead of using an extra model, SoftFlow [1] uses
the parameterization trick as VAE models [9]. The process can
be written as: 

ϵ ∼ N(0, I)

c ∼ U(0, 1)

z = f−1(x+ c · ϵ|c)
(9)

In the generative direction, SoftFlow set the condition c and the
noise ϵ to 0⃗ to remove the effect of the noise. This method re-
quires the model to be conditional normalizing flow. Especially
when the original model is an unconditional normalizing flow,
the modification can be intractable. Additionally, conditional
dequantization is to add an extra conditional distribution to
the original distribution. As shown in Fig. 3, when the target
distribution is also conditional, it might degrade performance
significantly.

In conclusion, the prior work shows promising results but
doesn’t satisfy all key features we list (Sec. I). In this paper, we
propose PaddingFlow, which improves normalizing flows with
padding-dimensional noise. Our method satisfies all five key
features we list. In particular, PaddingFlow can overcome the
limitation that existing dequantization methods have to change
the data distribution.

III. PADDINGFLOW

In this section, we introduce the formula of PaddingFlow
noise, and the implementation of plain normalizing flows and

flow-based VAE models. Moreover, for VAE models, we also
propose PaddingFlow parameterization.

A. PaddingFlow Noise
To overcome the limitations of noise added to data directly,

we proposed the padding-dimensional noise denoted as εp,
which doesn’t change the distribution of data dimensions.
Moreover, to inherit the merits of uniform noise and achieve
unbiased estimation, we choose to add the Gaussian noise with
zero expectation N(0, I) to data as a complement of padding-
dimensional noise, denoted as εd. εd is called data noise in
this paper. Furthermore, the variances of εd and εp should
vary depending on the density of data points and the scale of
data respectively. We introduce hyperparameters of variances
to the noise, which means the distributions are N(0, a2I), and
N(0, b2I). Therefore, the formula of PaddingFlow noise can
be written as (Fig. 1):

εd ∼ N(0, a2Id)

εp ∼ N(0, b2Ip)

x′ = (x+ εd, εp)

(10)

where a, and b denote the variances of data noise, and padding-
dimensional noise respectively; d and p denote the dimension
of data noise, and padding-dimensional noise respectively.

After implementing our method, in the normalizing direc-
tion, it only needs to cut out the first data dimensions of the
normalized point (z′) for obtaining the point from true base
distribution (N(0, Id)):{

z′ = F−1
θ (x′) ∼ N(0, Id+p)

z = (z′1, · · · , z′d) ∼ N(0, Id)
. (11)

In the generative direction, the operation of obtaining the
true generative data is the same as the normalizing direction:{

x′ = Fθ(z
′)

x = (x′1, · · · , x′d)
. (12)

As for the loss function, it should be written as:

L(X ′; θ) ≈ − 1

N

N∑
i=1

[logpZ′(F−1
θ ((i)x′))

+ log|detJF−1
θ

((i)x′)|],
(13)
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Fig. 3. Comparison of FFJORD, SoftFlow, and PaddingFlow on 4 2-D distributions including 2 unconditional distributions (circles, and sines) and 2 conditional
distributions (conditional circles, and conditional sines).

where X ′ = {x′i}Ni=1.

B. PaddingFlow-based VAE Model

The objective function of variational auto-encoder (VAE) is
called evidence lower bound (ELBO) [9], which can be written
as:

L(I;ϕ, ψ) =Eqϕ(z|I)[−logqϕ(z|I) + logpψ(I, z)]. (14)

For flow-based VAE, the approximate posterior distribution
qϕ,θ(z|I) is obtained by transforming the initial distribution
qϕ(x). The ELBO of flow-based VAE can be written as [10]:

L(I;ϕ, ψ, θ) = −Eqϕ(x)[logqϕ(x)− log|detJF−1
θ

(x)|]
+ Eqϕ(x)[logpψ(I, z)],

(15)

where x is sampling from N(µ,Σσ), which is done by the
reparameterization trick as:{

(µ, σ) = Qϕ(I)
x = µ+ σ · ε,where ε ∼ N(0, Id)

. (16)

To implement PaddingFlow on a VAE model, there are
two main modifications, including implementing PaddingFlow
noise and modifying the calculation of KL divergence. For the
first one, we propose a more efficient way of computation:

• PaddingFlow Reparameterization is another way of im-
plementing PaddingFlow noise on a VAE model. Imple-
menting PaddingFlow noise can be done by the method

abovementioned (Eq. 10) as shown in Fig. 2 (green lines).
The distribution of the data can be expressed as:{

µ′ = (µ, 0⃗p)

σ′ = ((
√
σ2
1 + a2, · · · ,

√
σ2
d + a2), b⃗1p)

, (17)

However, for flow-based VAE models, due to variables
of the distribution predicted by the encoder Qϕ being
independent of each other, it can also be done by the
PaddingFlow’s version of reparameterization trick (Fig.
2 blue lines): 

(µ, σ) = Qϕ(I)
µ′ = (µ, 0⃗p)

σ′ = (σ + a1⃗d, b⃗1p)

ε′ ∼ N(0, Id+p)

x′ = µ′ + σ′ · ε′

, (18)

where 1⃗p denotes p-D 1-vector, and 0⃗p denotes p-D 0-
vector. The distribution of noise is different from adding
noise directly under the same hyperparameter a, but
choosing the different value of a could obtain the same
noise.

As for the loss function of VAE models, after adding
padding-dimensional noise, the ELBO L should be written
as:

L(I;ϕ, ψ, θ) = −Eqϕ(x′)[logqϕ(x
′)]

+ Eqϕ(x′)[log|detJF−1
θ

(x′)|]
+ Eqϕ(x′)[logpψ(I, z)].

(19)
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Fig. 4. Negative log-likelihood continuously decreases while all four metrics
for evaluating IK solutions have been well-converged.

However, due to the distribution of noise being predetermined
and padding dimensions being independent of data dimen-
sions, the entropy of distribution qϕ(x′) can be written as:

H[qϕ(x
′)] = f(H[qϕ(x)]) + const, (20)

where f(·) is a nonlinear bijective function. Therefore, the
second term of loss function Llatent can be simplified as
follows:

L(I;ϕ, ψ, θ) = H[qϕ(x)]

+ Eqϕ(x′)[log|detJF−1
θ

(x′)|]
+ Eqϕ(x′)[logpψ(I, z)].

(21)

IV. EXPERIMENTS

In this section, firstly, we explain why existing metrics are
not suitable for evaluating our method on density estimation
tasks briefly, and introduce new metrics for evaluating density
estimation models. Then, we evaluate PaddingFlow on uncon-
ditional density estimation (tabular datasets and VAE datasets),
and conditional density estimation (IK experiments).

A. Evaluation Metrics

Prior work uses log-likelihood to evaluate flow-based mod-
els on tabular datasets (Eq. 4 and 5). The trace and determinant
of the Jacobian matrix should be calculated for computing
log-likelihood. However, we didn’t find a way to modify
the ODE solver for computing the trace and the determinant
without being affected by padding-dimensional noise. Besides,
in the IK experiments, we observed negative log-likelihood
continuously decreases while four metrics for evaluating IK
solutions in robotics have been well-converged (shown in Fig.
4). Therefore, log-likelihood might not evaluate the quality of
samples from flow-based models well. In this paper, we intro-
duce several new metrics for evaluating density estimation.

To measure the similarity between the target distribution and
the predicted distribution by two point sets (X , Y ) sampled
from such two distributions respectively, the used metrics
should vary from different kinds of point sets. In this paper, we

discuss which metrics are suitable for ordered point sets (OX ,
OY ) or disorder point sets (DX , DY ) respectively. We first
describe three distance metrics, including Euclidean distance
(L2), Chamfer distance (CD), and earth mover’s distance
(EMD). They can be defined as follows:

• Euclidean distance (L2): To measure the distance be-
tween two ordered point sets (OX , OY ), L2 is the most
common distance:

L2(OX,O Y ) =

N∑
i=1

∥Oxi − Oyi∥2. (22)

• Chamfer distance (CD): As for the distance between
two disordered point sets (DX , DY ), CD assumes the two
nearest points, each from the two given sets respectively,
is the pair of corresponding points. Then the distance of
such two points is used for computing the distance of the
given point sets:

CD(DX,D Y ) =
1

|DX|
∑
x∈DX

min
y∈DY

D(x, y)

+
1

|DY |
∑
y∈DY

min
x∈DX

D(y, x),
(23)

where D(·, ·) is a distance measure. If the given sets have
the same number of points and the distance measure is
symmetric (2-norm), CD can be simplified as follows:

CD(DX,D Y ) =
∑
x∈DX

min
y∈DY

∥x− y∥22. (24)

• Earth mover’s distance (EMD): Instead of using a fixed
distance measure, EMD is to fit a bijection for the given
sets to find the pair of corresponding points:

EMD(DX,D Y ) = min
f :DX→DY

∑
x∈DX

∥x− f(x)∥2, (25)

where f(·) is a bijective function between the point sets
(DX , DY ).

The abovementioned distance metrics can evaluate a model,
which fits on a single distribution (tabular datasets). However,
in some tasks (experiments of VAE models), we need to
evaluate a model that fits on multiple distributions. Therefore,
we further describe two metrics that evaluate models by
two sets of point sets, which are sampled from the target
distributions and the predicted distributions (St, Sp):

• Minimum matching distance (MMD) is the averaged
distance between each point set in St and its nearest
neighbor in Sp:

MMD(St, Sp) =
1

|St|
∑
X∈St

min
Y ∈SP

D(X,Y ), (26)

where D(·, ·) can be L2, CD, or EMD. If there is only
one point set (X) in St, it can be written as:

MMD(X,Sp) = min
Y ∈SP

D(X,Y ), (27)
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TABLE I
AVERAGE CD, AVERAGE EMD, MMD-CD, AND MMD-EMD (LOWER IS BETTER) ON THE TEST SET FROM UCI DATASETS AND BSDS300.

Dataset Model CD (↓) EMD (↓)
MMD (↓)

CD EMD

POWER
d=6; N=2,049,280

FFJORD 0.153 0.116 0.144 0.111
PaddingFlow (1, 0) 0.145 0.107 0.137 0.101
PaddingFlow (1, 0.01) 0.142 0.105 0.135 0.0980

GAS
d=8; N=1,052,065

FFJORD 1.29 0.146 0.950 0.135
PaddingFlow (1, 0) 1.18 0.131 0.913 0.121
PaddingFlow (3, 0) 0.890 0.141 0.390 0.128

HEPMASS
d=21; N=525,123

FFJORD 13.8 0.164 13.8 0.158
PaddingFlow (1, 0) 13.8 0.161 13.7 0.153

MINIBOONE
d=43; N=36,488

FFJORD 24.6 0.270 24.1 0.254
PaddingFlow (1, 0) 24.7 0.269 24.4 0.256
PaddingFlow (1, 0.01) 24.5 0.268 24.1 0.255
PaddingFlow (2, 0) 24.6 0.270 24.2 0.255
PaddingFlow (2, 0.01) 24.6 0.271 24.0 0.257

BSDS300
d=63; N=1,300,000

FFJORD 0.683 0.0281 0.548 0.0227
PaddingFlow (10, 0) 0.592 0.0255 0.484 0.0212
PaddingFlow (10, 0.01) 0.495 0.0248 0.480 0.0218

* The hyperparameters p, and a shown in the names of models denoted as PaddingFlow (p, a) in the tabular represent the number of padding
dimensions and the variance of data noise respectively. The variance of the padding-dimensional noise is set to 2.

which means it can also be used for evaluating models
fitting on a single distribution.

• Coverge (COV) measures the rate of the point sets
from predicted distribution in Sp that can match the
corresponding target distribution represented by a point
set in St:

COV(St, Sp) =
|{argminY ∈Sp

D(X,Y )|X ∈ St}|
|Sp|

, (28)

where D(·, ·) can be L2, CD, or EMD.

In conclusion, for the experiments of tabular datasets,
including UCI datasets and BSDS300, we use average CD,
average EMD, MMD-CD, and MMD-EMD for evaluation. For
the experiments of VAE models, we use MMD-L2 and COV-
L2 for evaluation. As for IK experiments, we use two metrics
for evaluating IK solutions in robotics, which are position
error, and angular error.

B. Density Estimation on 2D Artificial Data

We designed four 2-D artificial distributions to visually ex-
hibit the performance of FFJORD, SoftFlow, and PaddingFlow
on both unconditional and conditional distributions. In this
section, models of SoftFlow and PaddingFlow are both based
on the same model of FFJORD. SoftFlow noise variance c is
sampled from U(0, 0.1). The hyperparameters of PaddingFlow
p, a, and b are set to 1, 0.01, and 2 respectively.

As shown in Fig. 3, FFJORD can not fit into a manifold
well, except conditional sines. After implementing SoftFlow
noise, the performance on two unconditional distributions
of FFJORD is well-improved, but degraded significantly on
two conditional distributions at the same time. In contrast,

PaddingFlow can perform well on both unconditional and
conditional distributions.

C. Unconditional Density Estimation

In this section, we compare FFJORD and PaddingFlow on
tabular datasets and VAE models. The results show our method
can improve normalizing flows on the main benchmarks of
density estimation, including five tabular datasets and four
image datasets for VAE models.

1) Tabular Datasets: We evaluate unconditional density es-
timation on five tabular datasets, including four UCI datasets,
and BSDS300, which are preprocessed as [11]. In this section,
our method is implemented on FFJORD. Average CD, average
EMD, MMD-CD, and MMD-EMD are used for comparison
of FFJORD and PaddingFlow. The results (Tab. I) show
that PaddingFlow performs better than FFJORD across all
five tabular datasets. Especially on the GAS and BSDS300
datasets, the improvement of implementing our method is
significant. On the POWER, GAS, HEPMASS, and BSDS300
datasets, we observed improvement in the experiments that
only concatenate padding-dimensional noise on the data. Ad-
ditionally, throughout the tabular experiments, we found it
difficult to find a suitable number of padding dimensions p
for individual datasets (i.e. BSDS300).

In general, our method can improve the performance of
normalizing flows on tabular datasets, but the selection of the
hyperparameter p is intractable sometimes.

2) Variational Autoencoder: We also evaluate uncondi-
tional density estimation in variational inference on four image
datasets, including MNIST, Omniglot, Frey Faces, and Caltech
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Fig. 5. Comparison of VAE models based on FFJORD, and PaddingFlow on MNIST and Frey Faces.

TABLE II
CROSS ENTROPY (LOWER IS BETTER), MMD (LOWER IS BETTER), AND COV (HIGHER IS BETTER) ON THE TEST SET FOR VAE MODELS.

Model MNIST Omniglot Frey Faces Caltech

Cross Entropy (↓) FFJORD 55.9 64.3 1715.6 63.0
PaddingFlow 36.1 64.0 1666.9 60.2

MMD (↓) FFJORD 17.3 20.5 0.834 18.6
PaddingFlow 11.0 20.3 0.621 17.9

COV (%, ↑) FFJORD 96.4 99.0 100.0 98.8
PaddingFlow 100.0 98.8 100.0 98.7

* PaddingFlow noise in VAE experiments is only padding-dimensional noise.
** The distance measure used in the experiments of VAE models is L2.

101 Silhouettes. All four datasets are preprocessed as [12]. In
this section, our method is implemented on VAE models using

TABLE III
THE RESULTS ON THE TEST SET (150,000 RANDOM IK PROBLEMS OF

PANDA MANIPULATOR).

Model Position Error (mm, ↓) Angular Error (deg, ↓)

GLOW 7.37 0.984
SoftFlow (IKFlow) 6.86 2.382

PaddingFlow 5.96 0.621

Fig. 6. IK solutions for a Panda manipulator reaching to given end effector
poses.

FFJORD. Cross Entropy, MMD-L2, and COV-L2 are used for
comparison of FFJORD and PaddingFlow. The results (Tab.
II) show that PaddingFlow performs better than FFJORD.
Especially for the MNIST and Frey Faces, the improvement
is significant, and the images reconstructed by PaddingFlow-
based VAE models have higher quality as shown in Fig. 5,
which are with richer details. Moreover, the best models of
the four datasets are all without data noise, and the dimension
of padding-dimensional noise is relatively low.

In general, for flow-based VAE models, PaddingFlow can
bring improvement via only padding-dimensional noise with
relatively low dimension, which means the selection of hyper-
parameters is quite simple.

D. Conditional Density Estimation

Inverse Kinematics (IK) is to map the work space to
the robot’s joint space. IK is an important prior task for
many tasks in robotics, such as motion planning. IK solvers
are required to return a set of IK solutions that covers the
universal set of solutions, as shown in Fig. 6, in case of
no feasible path or only suboptimal paths. Due to such a
feature, efficient sampling of normalizing flows is suitable
for IK. In this section, we choose two metrics in robotics
for evaluating IK solutions, including position error, and
angular error. As for two other metrics mentioned in Fig. 4
which are joint limits exceeded rate and self-colliding rate,
due to the feature of IK abovementioned, they are just the
complement of position error and angular error. Furthermore,
both SoftFlow and PaddingFlow provide no improvement to
joint limits exceeded rate and self-colliding rate. Thus, such
two metrics are not used in this section. In IK experiments,
SoftFlow and PaddingFlow are based on the same model of
GLOW. The architecture of GLOW follows models used in
experiments of Panda manipulator in [13]. PaddingFlow noise
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in IK experiments is only padding-dimensional noise. The
hyperparameters of padding-dimensional noise p, and b are
set to 1, and 2 respectively. The variance of SoftFlow noise is
sampled from U(0, 0.001).

As shown in Tab. III, PaddingFlow performs better than
both GLOW and SoftFlow on the position error and angular
error.

V. CONCLUSION

In this paper, we propose PaddingFlow, a novel dequan-
tization method, which satisfies the five key features of an
ideal dequantization method we list (Sec. I). In particular,
PaddingFlow overcomes the limitation of existing dequanti-
zation methods, which is that they have to change the data
distribution. We validate our method on the main benchmarks
of unconditional density estimation, and conditional density
estimation. The results show our method performs better in all
experiments and can improve both discrete normalizing flows
and continuous normalizing flows.
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Fig. 7. Data, and reconstructions from PaddingFlow-based VAE models trained on MNIST, Omniglot, Frey Faces, and Caltech 101 Silhouettes respectively.

APPENDIX

A. Reconstructions from PaddingFlow-base VAE models

The pictures shown in Fig. 7 are reconstructed from
PaddingFlow-based VAE models trained on MNIST, Om-
niglot, Frey Faces, and Caltech 101 Silhouettes respectively.

B. Proof of Eq. 7

Here, the details of estimating the expectation of Y is
shown:

E(Y ) =

∫ +∞

−∞
ydy

∫ 1

0

1√
2π
e−

1
2 (y−u)

2

du

=

∫ +∞

−∞
dy

∫ 1

0

1√
2π

(y − u)e−
1
2 (y−u)

2

du

+

∫ +∞

−∞
dy

∫ 1

0

1√
2π
ue−

1
2 (y−u)

2

du

≜ I1 + I2.

(29)

The first integral (I1) can be easily computed:

I1 =

∫ +∞

−∞

1√
2π

(
e−

1
2 (y−1)2 − e−

1
2y

2
)
dy

= 0.

(30)

The second integral (I2) can be further transformed as follows:

I2 =

∫ +∞

−∞
dy

∫ 1

0

1√
2π
ue−

1
2 (y−u)

2

du

=

∫ +∞

−∞

1√
2π
e−

1
2y

2

dy

∫ 1

0

ue−
1
2u

2

eyudu.

(31)

Due to u ∈ [0, 1], The term (eyu) can be bounded as follows:

1 ⩽ eyu = (eu)y ⩽ ey. (32)

Therefore, the lower bound of I2 is:

I2 ⩾
∫ +∞

−∞

1√
2π
e−

1
2y

2

dy

∫ 1

0

ue−
1
2u

2

du

= 1− e−
1
2 .

(33)
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TABLE IV
HYPERPARAMETERS FOR MODELS ON TABULAR DATASETS.

Dataset nonlinearity # layers hidden dim multiplier # flow steps batch size

HEPMASS softplus 2 10 10 10000
Others softplus 2 20 1 1000

TABLE V
HYPERPARAMETERS FOR VAE MODELS.

Dataset nonlinearity # layers hidden dimension # flow steps batch size padding dimension

MNIST softplus 2 1024 2 64 2
Omniglot softplus 2 512 5 20 2
Frey Faces softplus 2 512 2 20 3
Caltech tanh 1 2048 1 20 2

* The variances of data noise and padding-dimensional noise are set to 0, and 2 respectively.

The upper bound of I2 is:

I2 ⩽
∫ +∞

−∞

1√
2π
e−

1
2y

2+ydy

∫ 1

0

ue−
1
2u

2

du

= 1− e−
1
2 .

(34)

In conclusion, according to the Squeeze Theorem:

E(Y ) = 1− e−
1
2 . (35)

C. Experimental details

On the tabular datasets and VAE experiments, we follow the
settings in [6] over network architectures. The hyperparameters
of models used in Sec. IV-C1 can be found in Tab. IV. The
hyperparameters of VAE models used in Sec. IV-C2 can be
found in Tab. V.
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