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QUASINORMABILITY AND PROPERTY (Ω) FOR SPACES OF

SMOOTH AND ULTRADIFFERENTIABLE VECTORS ASSOCIATED

WITH LIE GROUP REPRESENTATIONS

ANDREAS DEBROUWERE, MICHIEL HUTTENER, AND JASSON VINDAS

Abstract. We prove that the spaces of smooth and ultradifferentiable vectors as-
sociated with a representation of a real Lie group on a Fréchet space E are quasi-
normable if E is so. A similar result is shown to hold for the linear topological
invariant (Ω). In the ultradifferentiable case, our results particularly apply to spaces
of Gevrey vectors of Beurling type. As an application, we study the quasinormability
and the property (Ω) for a broad class of Fréchet spaces of smooth and ultradifferen-
tiable functions on Lie groups globally defined via families of weight functions.

1. Introduction

In this article we study the quasinormability and the property (Ω) for spaces of
smooth and ultradifferentiable vectors associated with representations of real Lie groups.
In particular, we will provide criteria to determine when a Lie group invariant locally
convex space of smooth or ultradifferentiable functions possesses one of these linear
topological properties. Our considerations shall cover the important instance of spaces
of Gevrey vectors of Beurling type, which, together with their Roumieu variants, were
introduced and throughly investigated by Goodman and Wallach [20, 21, 22].

The notion of quasinormability for locally convex spaces is due to Grothendieck [23].
The related property (Ω) for Fréchet spaces goes back to Vogt and Wagner [29, 38]
and may be seen as a quantified version of quasinormability within the class of Fréchet
spaces. Every Fréchet space that satisfies (Ω) is hence quasinormable. Both concepts
express approximation properties with respect to families of continuous seminorms. In
this regard, our work here is closely connected with classical results of G̊arding [17, 18],
Nelson [30], and Goodman [20, Section 3] about approximations by smooth, analytic,
or Gevrey vectors, respectively.

The interest in these two linear topological properties stems, among other things,
from the fact they are often crucial hypotheses for the application of various ab-
stract functional analytic tools. For example, given a surjective continuous linear
map f : X → Y between two Fréchet spaces, the map f lifts bounded sets if ker f
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is quasinormable [5, 29], while f admits a continuous linear right inverse if ker f sat-
isfies (Ω) (assuming that X is nuclear and Y satisfies the so-called property (DN))
[29, 37]. Furthermore, strong duals of quasinormable Fréchet spaces are ultrabornolog-
ical and thus barrelled, whence the Banach-Steinhaus theorem and the open mapping
and closed graph theorems of De Wilde may be applied to them. We also mention that
(Ω) plays an important role in the isomorphic classification theory for Fréchet spaces;
in fact, (Ω) is one of the key assumptions to verify if one wants to obtain sequence
space representations of function spaces via the structure theory of Fréchet spaces (cf.
[9, 27]).

Quasinormability and (Ω) have been studied for a variety of concrete Fréchet function
spaces; see [1, 3] for spaces of continuous functions, [8, 28, 40] for spaces of analytic
functions, and [10, 36] for smooth kernels of partial differential operators. One of the
goals of this work is to provide a systematic method for establishing both properties for
function spaces that are invariant under a Lie group action, which we shall achieve here
viewing such spaces as spaces of smooth and ultradifferentiable vectors of Lie group
representations. We remark that the quasinormability of spaces of smooth vectors
associated with representations of (Rn,+) was studied by the first author in [8].

We now discuss the content of this article in some more detail. For the sake of
simplicity, we only explicitly state in this introduction our results for spaces of smooth
vectors. All these statements have their counterparts for ultradifferentiable vectors,
but the formulations require introducing some more notation and concepts, which we
choose to postpone for future sections. By a representation of a (real) Lie group G on
a Fréchet space E we simply mean a group homomorphism π : G → GL(E), where
GL(E) stands for the group of topological isomorphisms of E (in general, we will not
require π to be strongly continuous throughout the article). We refer to the preparatory
Sections 2-4 for more information about representations and the associated spaces of
smooth and ultradifferentiable vectors. In the smooth case, our main results may now
be summarized as follows:

Theorem 1.1. Let π be a locally equicontinuous representation of a Lie group on a
Fréchet space E. Let E∞ be the space of smooth vectors associated with π.

(i) E∞ is quasinormable if E is so.
(ii) E∞ satisfies (Ω) if E does so.

In fact, we show that part (i) of Theorem 1.1 holds not only for Fréchet spaces
but also for general sequentially complete locally convex Hausdorff spaces. Theorem
1.1 and its analogue for spaces of ultradifferentiable vectors are shown in Section 6.
The proofs of Theorem 1.1 and its ultradifferentiable counterpart for quasinormability
make use of a standard approximation procedure involving approximate identities [18,
20]. This procedure is revisited in Subsection 5.1. Our analysis of the property (Ω)
for ultradifferentiable vectors however requires some new approximation tools. Our
arguments are then based on the so-called parametrix method, a powerful technique
that goes back to Schwartz [34] and was further developed by Komatsu within the
theory of ultradifferentiable functions and ultradistributions [26]. In Subsection 5.2
we present an extension of the parametrix method to the setting of ultradifferentiable
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vectors associated with Lie group representations by adapting a key idea from the proof
of the celebrated Dixmier-Malliavin factorization theorem [13].

It turns out that many Fréchet function spaces on a Lie group G may be identified
with spaces of smooth and ultradifferentiable vectors associated with the left- or right
regular representation of G on a suitably chosen Fréchet function space E (usually E
is a weighted space of continuous or integrable functions). This makes Theorem 1.1
and its ultradifferentiable analogue into power devices to study the quasinormabiltiy
and the property (Ω) for concrete Fréchet function spaces. We carry out this idea in a
very general framework in Sections 7 and 8. We end the introduction by discussing an
important instance of these ideas.

Let G be a Lie group and let V = (vj)j∈N be a pointwise non-decreasing sequence of
strictly positive continuous functions on G satisfying the mild regularity condition

(1.1) ∀K ⊆ G compact ∀i ∈ N ∃j ≥ i, C > 0 ∀x ∈ G, y ∈ K : vi(xy) ≤ Cvj(x).

For p ∈ [1,∞] we define

DLp
V
(G) = {f ∈ C∞(G) | vjDf ∈ Lp(G), ∀D ∈ U(g), j ∈ N}.

Here, the Lebesgue space Lp(G) is defined with respect to a fixed right-invariant Haar
measure on G, while the elements of the universal enveloping algebra U(g) are to be
interpreted as left-invariant differential operators. We endow DLp

V
(G) with its natural

locally convex topology, for which it becomes a Fréchet space. If G = (Rn,+) these
spaces are weighted variants of the classical Schwartz spaces DLp(Rn) [34] (c.f. [12]).
The sequence space representation DLp(Rn) ∼= s⊗̂ℓp [35] implies that DLp(Rn) satisfies
(Ω) and thus is quasinormable. Our results from Section 8 yield the following charac-
terization of the quasinormabiltiy and the property (Ω) for the spaces DLp

V
(G) in terms

of V:

Theorem 1.2. Let V = (vj)j∈N be a pointwise non-decreasing sequence of strictly
positive continuous functions on a Lie group G satisfying (1.1) and let p ∈ [1,∞].

(a) Consider the following statements:
(i) V satisfies the condition

∀i ∈ N ∃j ≥ i ∀m ≥ j ∀ε ∈ (0, 1] ∃C > 0 ∀x ∈ G :
1

vj(x)
≤ ε

vi(x)
+

C

vm(x)
.

(ii) DLp
V
(G) is quasinormable.

Then, (i)⇒ (ii). If p =∞ or G is unimodular, then also (ii)⇒ (i).
(b) Consider the following statements:

(i) V satisfies the condition

∀i ∈ N ∃j ≥ i ∀m ≥ j ∃C, s > 0 ∀ε ∈ (0, 1] ∀x ∈ G :
1

vj(x)
≤ ε

vi(x)
+
C

εs
1

vm(x)
.

(ii) DLp
V
(G) satisfies (Ω).

Then, (i)⇒ (ii). If p =∞ or G is unimodular, then also (ii)⇒ (i).
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2. Spaces of vector-valued ultradifferentiable functions on open

subsets of Rn

In this short section we recall some facts about vector-valued ultradifferentiable
functions on subsets of Rn. By a weight function [6] we mean a continuous increasing
function ω : [0,∞)→ [0,∞) with ω|[0,1] ≡ 0 satisfying the following properties:

(α) ω(2t) = O(ω(t)).

(β)

∫ ∞

1

ω(t)

t2
dt <∞.

(γ) log t = o(ω(t)).
(δ) φ : [0,∞)→ [0,∞), φ(t) = ω(et), is convex.

Since ω is increasing, condition (β) implies that ω(t) = o(t).

Example 2.1. The Gevrey weight of order s, s > 0, is defined as

ωs(t) = max{0, ts − 1}.
We shall always assume that s < 1, which ensures that ωs is a weight function.

Throughout the rest of this article we fix a weight function ω and write φ(t) = ω(et)
(cf. condition (δ) above). We define

φ∗ : [0,∞)→ [0,∞), φ∗(t) = sup
u≥0
{tu− φ(u)}.

The function φ∗ is increasing, convex, φ∗(0) = 0, (φ∗)∗ = φ, and φ∗(t)/t ր ∞ on
[0,∞). We have that [24, Lemma 2.6]

(2.1) ∀C1, C2, h > 0 ∃C, k > 0 ∀t ≥ 0 :
1

k
φ∗(k(t + C1)) + C2t ≤

1

h
φ∗(ht) + logC.

The conditions ω(t) = o(t) and (2.1) imply that

(2.2) ∀h, k > 0 ∃C > 0 ∀j ∈ N : j! ≤ Ckj exp

(
1

h
φ∗(hj)

)
.

Example 2.2. For the Gevrey weights ωs, we set φs(t) = ωs(e
t). Then,

exp(φ∗
s(t)) = e

(
1

se

) t
s

t
t
s .

Consequently, we have that for all h > 0

exp

(
1

h
φ∗
s(ht)

)
= e

1

h

(
h

se

) t
s

t
t
s .

Let Θ ⊆ Rn be open and let E be a lcHs (= locally convex Hausdorff space). We
denote by csn(E) the family of all continuous seminorms on E. For h > 0 we define
Eω,h(Θ;E) as the space consisting of all f ∈ C∞(Θ;E) such that for allK ⊆ Θ compact
and p ∈ csn(E) it holds that

pK,ω,h(f) = sup
x∈K

sup
α∈Nn

p(f (α)(x)) exp

(
−1

h
φ∗(h|α|)

)
<∞.
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We endow Eω,h(Θ;E) with the Hausdorff locally convex topology generated by the
system of seminorms {pK,ω,h |K ⊆ Ω compact, p ∈ csn(E)}. We set

E (ω)(Θ;E) = lim←−
h→0+

Eω,h(Θ;E).

We write E (ω)(Θ) = E (ω)(Θ;C). The non-quasianalyticity condition (β) means that
E (ω)(Θ) contains non-zero compactly supported functions (see [6] for more information).
Let A(Θ) be the space of real analytic functions on Θ. The inequality (2.2) implies
that A(Θ) ⊆ E (ω)(Θ).

Lemma 2.3. Let Θ,Θ′ ⊆ Rn be open, and let E be a lcHs. Let ϕ : Θ → Θ′ be real
analytic. Then, f ◦ ϕ ∈ E (ω)(Θ;E) for all f ∈ E (ω)(Θ′;E).

Proof. This can be shown by adapting the proof of [25, Proposition 8.4.1]; the details
are left to the reader. �

3. Spaces of vector-valued smooth and ultradifferentiable functions

on manifolds

We shall now discuss vector-valued smooth and ultradifferentiable functions on man-
ifolds. In this section we fix a smooth manifoldM of dimension n. In the ultradifferen-
tiable case, we shall always tacitly assume the manifold to be real analytic. Throughout
this article the term regular will mean smooth if the manifold under consideration is
smooth and real analytic if it is real analytic.

Let E be a lcHs and j ∈ N ∪ {∞}. We define Cj(M,E) (E (ω)(M ;E)) as the space
consisting of all f :M → E such that f ◦ϕ−1 ∈ Cj(ϕ(U), E) (f ◦ϕ−1 ∈ E (ω)(ϕ(U), E))
for all regular charts (ϕ, U) of M . We endow Cj(M ;E) (E (ω)(M ;E)) with the initial
topology with respect to the mappings

Cj(M ;E)→ Cj(ϕ(U), E), f 7→ f ◦ ϕ−1,

(E (ω)(M ;E)→ E (ω)(ϕ(U), E), f 7→ f ◦ ϕ−1),

where (ϕ, U) runs over all regular charts ofM . We have that Cj(M ;E) and E (ω)(M ;E)
are sequentially complete if E is so. We write C(M ;E) = C0(M ;E), Cj(M) =
Cj(M ;C), and E (ω)(M) = E (ω)(M ;C). Note that Lemma 2.3 guarantees that we could
have defined E (ω)(M ;E) just through a given regular atlas, and that then its definition
does not depend on the choice of the particular altlas. The latter is obviously true as
well for Cj(M ;E).

We denote by Cj
c (M), j ∈ N ∪ {∞}, the subspace of Cj(M) consisting of elements

with compact support. We write Cc(M) = C0
c (M) and D(M) = C∞

c (M). We set
D(ω)(M) = E (ω)(M) ∩ Cc(M). The non-quasianalyticity assumption (β) again ensures
the non-triviality of D(ω)(M). We endow the spaces Cj

c (M), j ∈ N∪{∞}, and D(ω)(M)

with their natural (LF )-space topology. For K ⊆M compact we denote by DK (D(ω)
K )

for the subspace of C∞(M) (E (ω)(M)) consisting of elements with support in K.
Let E be a lcHs and let f :M → E. For v′ ∈ E ′ we define the mapping

〈v′, f〉 :M → C, x 7→ 〈v′, f(x)〉.
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If f ∈ C∞(M ;E), then 〈v′, f〉 ∈ C∞(M) and for each vector field X on M it holds
that X〈v′, f〉 = 〈v′, Xf〉.
Lemma 3.1. Let E be a sequentially complete lcHs and let f : M → E. Then,
f ∈ C∞(M ;E) if and only if 〈v′, f〉 ∈ C∞(M) for all v′ ∈ E ′.

Proof. The result is well-known ifM is an open subset of Rn (cf. [33, Appendice Lemme
II]). The general case follows from it by using local coordinates. �

Let U ⊆ M be open. A system X = (X1, . . . , Xn) of vector fields on U is called
a frame on U if (X1 |x, . . . , Xn |x) is a basis of TxU at each point x ∈ U . The frame
X is said to be regular if the vector fields X1, . . . , Xn are regular on U . For α =
(α1, . . . , αj) ∈ {1, . . . , n}j, j ∈ N, we write Xα = Xα1

· · ·Xαj
.

Let X be a regular frame on the open subset U ⊆M and let E be a lcHs. Let K be
a compact subset of U and p ∈ csn(E). For j ∈ N we define

pX,K,j(f) = max
i≤j

max
α∈{1,...,n}i

sup
x∈K

p(Xαf(x)), f ∈ C∞(U ;E).

For h > 0 we define

pX,K,ω,h(f) = sup
j∈N

max
α∈{1,...,n}j

sup
x∈K

p(Xαf(x)) exp

(
−1

h
φ∗(hj)

)
, f ∈ C∞(U ;E).

For E = C and p = | · | we write pX,K,j = ‖ · ‖X,K,j and pX,K,ω,h = ‖ · ‖X,K,ω,h. Given
p ∈ csn(E), we set Vp = {v ∈ E | p(v) ≤ 1} and write V ◦

p for its polar set in E ′. the
bipolar theorem yields that for all f ∈ C∞(U ;E)

(3.1) pX,K,j(f) = sup
v′∈V ◦

p

‖〈v′, f〉‖X,K,j, pX,K,ω,h(f) = sup
v′∈V ◦

p

‖〈v′, f〉‖X,K,ω,h.

The next result will be frequently used throughout this article.

Proposition 3.2. Let U ⊆ M be open, let X and Y be regular frames on U , and let
E be a lcHs.

(i) For all K ⊆ U compact and j ∈ N there is C > 0 such that for all p ∈ csn(E)

p(f)X,K,j ≤ Cp(f)Y,K,j, ∀f ∈ Cj(U ;E).

(ii) For all K ⊆ U compact and h > 0 there are C, k > 0 such that for all p ∈ csn(E)

p(f)X,K,ω,h ≤ Cp(f)Y,K,ω,k, ∀f ∈ C∞(U ;E).

Proof. It suffices to consider the case E = C, the general case follows from it by (3.1).
Furthermore, by using local coordinates and a compactness argument, we may assume
that U is an open subset of Rn. The statement (i) is clear. We now show (ii). Let K
be an arbitrary compact subset of U . For j ∈ N we define

|f |X,K,j = max
α∈{1,...,n}j

sup
x∈K
|Xαf(x)|, |f |Y,K,j = max

α∈{1,...,n}j
sup
x∈K
|Y αf(x)|, f ∈ C∞(U).

There are aℓ,m ∈ A(U), ℓ,m = 1, . . . , n, such that

Xℓ(f)(x) =

n∑

m=1

aℓ,m(x)Ym(f)(x), f ∈ C∞(U),
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for all ℓ = 1, . . . , n. Since aℓ,m ∈ A(U) there is H ≥ 1 such that

|aℓ,m|X,K,j ≤ Hj+1j!, j ∈ N,

for all ℓ,m = 1, . . . , n [20, Theorem 3.1] (which is originally a result due to Nelson
[30]). We claim that for all j ∈ N \ {0}

(3.2) |f |X,K,j ≤ (2nH)j
j∑

i=1

(
j

i

)
(j − i)!|f |Y,K,i, f ∈ C∞(U).

Before we show the claim, let us show how the result follows from it. Let h > 0 be
arbitrary. By (2.1) there are C, k > 0 such that

(3.3)
1

k
φ∗(kt) + t log(4nH) ≤ 1

h
φ∗(ht) + logC, t ≥ 0.

The convexity of φ∗, (3.2), and (3.3) imply that for all for j ∈ N \ {0} and f ∈ C∞(U)

|f |X,K,j exp
(
−1

h
φ∗(hj)

)
≤ 1

2j

j∑

i=1

(
j

i

)
(4nH)j−i(j − i)! exp

(
−1

h
φ∗(h(j − i))

)
×

(4nH)i|f |Y,K,i exp
(
−1

h
φ∗(hi)

)

≤ C ′‖f‖Y,K,ω,k,

where

C ′ = C sup
l∈N

(4nH)ll! exp

(
−1

h
φ∗(hl)

)
<∞,

see (2.2). This shows the result. We now prove (3.2) by induction. The case j = 1
is clear (recall that H ≥ 1). Let j ∈ N \ {0} and assume that (3.2) holds for all
l = 1, . . . , j. Let f ∈ C∞(U) be arbitrary. For all α ∈ {1, . . . , n}j , ℓ ∈ {1, . . . , n}, and
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x ∈ K it holds that

|XαXℓf(x)| ≤
n∑

m=1

|Xα(aℓ,m(x)Ym(f)(x))|

≤
n∑

m=1

j∑

l=0

(
j

l

)
|aℓ,m|X,K,j−l|Ym(f)|X,K,l

≤ n

(
Hj+1j!|f |Y,K,1 +

j∑

l=1

(
j

l

)
Hj−l+1(j − l)!(2nH)l

l∑

i=1

(
l

i

)
(l − i)!|f |Y,K,i+1

)

≤ (nH)j+1

(
j!|f |Y,K,1 +

j∑

l=1

l∑

i=1

j!

i!
2l|f |Y,K,i+1

)

≤ (2nH)j+1

(
j!|f |Y,K,1 +

j∑

i=1

(
j + 1

i+ 1

)
(j − i)!|f |Y,K,i+1

)

≤ (2nH)j+1

j+1∑

i=1

(
j + 1

i

)
(j + 1− i)!|f |Y,K,i.

This shows the induction step. �

Proposition 3.2 yields the following result.

Proposition 3.3. Let (Ui)i∈I be an open covering of M , let Xi be a regular frame on
Ui for each i ∈ I, and let E be a lcHs.

(i) The locally convex topology of C∞(M ;E) is generated by the system of semi-
norms {pXi,Ki,j | i ∈ I,Ki ⊆ Ui compact, j ∈ N, p ∈ csn(E)}.

(ii) f ∈ C∞(M ;E) belongs to E (ω)(M ;E) if and only if pXi,Ki,ω,h(f) < ∞ for all
i ∈ I, Ki ⊆ Ui compact, h > 0, and p ∈ csn(E). Moreover, the locally convex
topology of E (ω)(M ;E) is generated by the system of seminorms {pXi,Ki,ω,h | i ∈
I,Ki ⊆ Ui compact, h > 0, p ∈ csn(E)}.

Remark 3.4. All the results from Sections 2 and 3 remain valid if we replace the
condition (β) on ω by the weaker assumption ω(t) = o(t).

Remark 3.5. The theorem of iterates from [16, Corollary 3.19] also yields the set
equality part from Proposition 3.3(ii), that is, the equivalence of f ∈ E (ω)(M ;E) to
having pXi,Ki,ω,h(f) < ∞ for all of these seminorms. However, it should be noticed
that the method from [16], being based on reducing the Beurling case to the Roumieu
case (see the proof of [16, Proposition 3.2]), does not deliver the required continuity
estimates needed to conclude that the system {pXi,Ki,ω,h | i ∈ I,Ki ⊆ Ui compact, h >
0, p ∈ csn(E)} generates the locally convex topology of E (ω)(M ;E).
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4. Spaces of smooth and ultradifferentiable vectors associated with

Lie group representations

Throughout the rest of this article we fix a (real) Lie group G of dimension n with
identity element e. In the ultradifferentiable case, we shall always tacitly view the
underlying manifold structure of G as a real analytic one (cf. Section 3). Given a
function f on G and x ∈ G, we define

f̌(y) = f(y−1), Lxf(y) = f(x−1y), Rxf(h) = f(yx), y ∈ G.
A frame X = {X1, . . . , Xn} on G is said to be left-invariant (right-invariant) if the
vector fields X1, . . . , Xn are left-invariant (right-invariant). Every left-invariant (right-
invariant) frame on G is automatically regular and corresponds to the left-invariant
(right-invariant) vector fields associated with a basis in the Lie algebra of G. We fix a
left Haar measure on G. Unless explicitly stated otherwise, all integrals on G will be
be meant with respect to this measure. All vector-valued integrals in this article are
to be interpreted in the weak sense. If E is a sequentially complete lcHs, the integral∫
G
f(x)dx exists for all f ∈ Cc(G;E). Let E be a lcHs. We denote by GL(E) the group

of topological isomorphisms of E. By a representation of G on E we mean a group
homomorphism π : G→ GL(E). The representation π is called locally equicontinuous
if {π(x) | x ∈ K} is equicontinuous for each compact set K ⊆ G. For v ∈ E the
mapping

γv : G→ E, x 7→ π(x)v

is called the orbit of v. We denote by E0 the space consisting of all v ∈ E such that
γv ∈ C(G,E). The representation is said to be continuous if E = E0.

Remark 4.1. Each continuous representation of G on a barrelled lcHs E is auto-
matically locally equicontinuous, as follows from the Banach-Steinhaus theorem. In
particular, this holds if E is a Fréchet space or an (LF )-space.

Let π be a representation of G on a lcHs E. Let j ∈ N ∪ {∞}, We define Ej (E(ω))
as the space consisting of all v ∈ E such that γv ∈ Cj(G,E) (γv ∈ E (ω)(G,E)) and
endow this space with the initial topology with respect to the mapping

E∞ → Cj(G,E), v 7→ γv

(E(ω) → E (ω)(G,E), v 7→ γv).

Note that Ej and E(ω) are sequentially complete if E is so. Let X be a regular frame
on G. Let K ⊆ G be compact and p ∈ csn(E). We write pX,K,j(v) = pX,K,j(γv),
j ∈ N, and pX,K,ω,h(v) = pX,K,ω,h(γv), h > 0, for v ∈ E∞. Proposition 3.3 im-
plies that the locally convex topology of E∞ is generated by the system of seminorms
{pX,K,j |K ⊆ G compact, j ∈ N, p ∈ csn(E)}. Moreover,

E(ω) = {v ∈ E∞ | pX,K,ω,h(v) <∞ for all K ⊆ G compact, h > 0, p ∈ csn(E)}
and the system of seminorms {pX,K,ω,h |K ⊆ G compact, h > 0, p ∈ csn(E)} generates
its locally convex topology.
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Let π be again a representation of G on a lcHs E and let X be a left-invariant frame
on G. For α ∈ {1, . . . , n}j , j ∈ N, we define

Xαv = Xαγv(e), v ∈ E∞.

Since X is left-invariant, we have that

(4.1) γXαv = Xαγv, v ∈ E∞.

Let p ∈ csn(E). For j ∈ N we define

pX,j(v) = max
i≤j

max
α∈{1,...,n}i

p(Xαv), v ∈ E∞,

and for h > 0 we define

(4.2) pX,ω,h(v) = sup
j∈N

max
α∈{1,...,n}j

p(Xαv) exp

(
−1

h
φ∗(hj)

)
, v ∈ E∞.

Proposition 4.2. Let π be a locally equicontinuous representation of G on a lcHs E
and let X be a left-invariant frame on G.

(i) The locally convex topology of E∞ is generated by the system of seminorms
{pX,j | j ∈ N, p ∈ csn(E)}.

(ii) v ∈ E∞ belongs to E(ω) if and only if pX,ω,h(v) < ∞ for all h > 0 and p ∈
csn(E). Moreover, the locally convex topology of E(ω) is generated by the system
of seminorms {pX,ω,h | h > 0, p ∈ csn(E)}.

Proof. In view of (4.1), this is a consequence of Proposition 3.3 and the fact that π is
locally equicontinuous. �

Example 4.3. For the Gevrey weights ωs, Example 2.2 implies that the system of
seminorms {pX,ωs,h | h > 0, p ∈ csn(E)} is equivalent to {p̃X,ωs,h | h > 0, p ∈ csn(E)},
where

p̃X,ωs,h = sup
j∈N

max
α∈{1,...,n}j

p(Xαv)

hjj!1/s
, v ∈ E∞.

Hence, {p̃X,ωs,h | h > 0, p ∈ csn(E)} also generates the locally convex topology of
E(ω). These spaces and their Roumieu type variants were considered by Goodman and
Wallach [20, 21, 22] (cf. the introduction).

Let E be a sequentially complete lcHs. For f ∈ C(G,E) and χ ∈ Cc(G) we define
their (left-)convolution as

(f ∗ χ)(x) =
∫

G

f(y)χ(y−1x)dx =

∫

G

f(xy)χ(y−1)dy, x ∈ G.

Note that

f ∗ χ =

∫

G

f(y)Lyχdy =

∫

G

Ryf χ(y
−1)dy.

Let j ∈ N ∪ {∞}. If χ ∈ Cj
c (G) or f ∈ Cj(G,E), then f ∗ χ ∈ Cj(G,E). Let X be a

vector field on G. If X is left-invariant, then

X(f ∗ χ) = f ∗ (Xχ), f ∈ C(G,E), χ ∈ Cj
c (G),
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while if X is right-invariant, then

X(f ∗ χ) = (Xf) ∗ χ, f ∈ Cj(G,E), χ ∈ Cc(G).

If E = C, these statements hold under the weaker assumption that f ∈ L1
loc(G).

Let π be a representation of G on a sequentially complete lcHs E. For v ∈ E0 and
χ ∈ Cc(G) we define

Π(χ)v =

∫

G

γv(x)χ(x
−1)dx

Note that γΠ(χ)v = γv ∗ χ. Consequently, for j ∈ N ∪ {∞}, it holds that Π(χ)v ∈ Ej if
χ ∈ Cj

c (G).
Let X be a regular frame on G. For j ∈ N we define

‖f‖X,j = sup
x∈G

max
i≤j

max
α∈{1,...,n}i

|Xαf(x)|, f ∈ C∞(G).

For h > 0 we define

‖f‖X,ω,h = sup
x∈G

sup
j∈N

max
α∈{1,...,n}j

|Xαf(x)| exp
(
−1

h
φ∗(hj)

)
, f ∈ C∞(G).

Lemma 4.4. Let π be a locally equicontinuous representation of G on E and let X be
a regular frame on G. Let K,L ⊆ G be compact and p ∈ csn(E).

(i) There is q ∈ csn(E) such that for all j ∈ N there is C > 0 such that

pX,K,j(Π(χ)v) ≤ C‖χ‖X,jq(v), ∀v ∈ E0, χ ∈ Cj
c (G) with suppχ ⊆ L.

(ii) There is q ∈ csn(E) such that for all h > 0 there is C > 0 such that

pX,K,ω,h(Π(χ)v) ≤ C‖χ‖X,ω,hq(v), ∀v ∈ E0, χ ∈ DL.

Proof. By Proposition 3.2 we may assume that X is left-invariant. Hence, for all
v ∈ E0, χ ∈ D(G), and α ∈ {1, . . . , n}j, j ∈ N, it holds that

XαγΠ(χ)v = Xα(γv ∗ χ) = γv ∗ (Xαχ) =

∫

G

RyγvX
αχ(y−1)dy.

The result now follows from the fact that π is locally equicontinuous. �

5. Some auxiliary results

5.1. An approximation result. We fix a regular chart (ϕ, U) on G with ϕ(e) = 0
and B(0, 1) ⊆ ϕ(U). We define Sε = ϕ−1(B(0, ε)) for ε ∈ (0, 1].

Lemma 5.1. Let X = (X1, . . . , Xn) be a smooth frame on G and let E be a lcHs. For
all K ⊆ G compact there is C > 0 such that for all p ∈ csn(E) and ε ∈ (0, 1] it holds
that

sup
x∈K

sup
y∈Sε

p(f(x)− f(xy)) ≤ εC sup
x∈K

sup
y∈S1

max
i=1,...,n

p(Xif(xy)), f ∈ C∞(G;E).
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Proof. It suffices to consider the case E = C, the general case follows from it by (3.1).
Furthermore, we may assume that X is left-invariant. In this case, we will show the
following stronger property: There is C > 0 such that for all ε ∈ (0, 1] it holds that

sup
y∈Sε

|f(x)− f(xy)| ≤ εC sup
y∈S1

max
i=1,...,n

|Xif(xy)|, f ∈ C∞(G), x ∈ G.

Set ψ = ϕ−1 and denote by ψ∗∂i the pushforward of ∂i by ψ, i = 1, . . . , n. There is
C > 0 such that

(5.1) max
i=1,...,n

|(ψ∗∂i)f(y)| ≤ C max
i=1,...,n

|Xif(y)|, f ∈ C∞(G), y ∈ S1.

Let f ∈ C∞(G) and x ∈ G be arbitrary. The mean value theorem implies that for all
ε ∈ (0, 1]

sup
y∈Sε

|f(x)− f(xy)| = sup
y∈Sε

|(Lx−1f)(e)− (Lx−1f)(y)|

= sup
x∈B(0,ε)

|((Lx−1f) ◦ ψ)(0)− ((Lx−1f) ◦ ψ)(x)|

≤ ε
√
n sup
t∈B(0,1)

max
i=1,...,n

|∂i((Lx−1f) ◦ ψ)(t)|

= ε
√
n sup
y∈S1

max
i=1,...,n

|(ψ∗∂i)(Lx−1f)(y)|.

Applying (5.1) to Lx−1f and using the fact that X is left-invariant, we find that

sup
y∈Sε

|f(x)− f(xy)| ≤ εC
√
n sup
y∈S1

max
i=1,...,n

|Xi(Lx−1f)(y)| = εC
√
n sup
y∈S1

max
i=1,...,n

|Xif(xy)|.

�

We are ready to show the main result of this subsection. For the Gevrey weights ωs
it may be considered as a quantified version of [20, Theorem 3.2 and Corollary 3.1].

Proposition 5.2. Let π be a representation of G on a sequentially complete lcHs E
and let X be a regular frame on G. Let (χε)ε∈(0,1] ⊆ D(G) be such that χε ≥ 0,
supp χ̌ε ⊆ Sε, and

∫
G
χ̌ε(x)dx = 1 for all ε ∈ (0, 1].

(i) For all K ⊆ G compact and j ∈ N there is C > 0 such that for all p ∈ csn(E)
and ε ∈ (0, 1]

pX,K,j(v − Π(χε)(v)) ≤ εCpX,KS1,j+1(v), v ∈ E∞.

(ii) Suppose that (χε)ε∈(0,1] ⊆ D(ω)(G). For all h > 0 there is k > 0 such that for
all K ⊆ G compact there is C > 0 such that for all p ∈ csn(E) and ε ∈ (0, 1]

pX,K,ω,h(v − Π(χε)(v)) ≤ εCpX,KS1,ω,k(v), v ∈ E(ω).

Proof. We will only show (ii) as the proof of (i) is similar but simpler. By Proposition
3.2(ii) we may assume that X = (X1, . . . , Xn) is right-invariant. Condition (2.1)
implies that there are C ′, k > 0 such that

(5.2)
1

k
φ∗(k(t+ 1)) ≤ 1

h
φ∗(ht) + logC ′, t ≥ 0.



SPACES OF SMOOTH AND ULTRADIFFERENTIABLE VECTORS 13

Let K be an arbitrary compact subset of G.

(5.3) sup
x∈K

sup
y∈Sε

p(f(x)− f(xy)) ≤ εC sup
x∈K

sup
y∈S1

max
i=1,...,n

p(Xif(xy)), ∀f ∈ C∞(G;E).

Let p ∈ csn(E), ε ∈ (0, 1], and v ∈ E(ω) be arbitrary. Since X is right-invariant, we
find that for all x ∈ G and α ∈ {1, . . . , n}j, j ∈ N,

Xα(γv − γΠ(χε)v)(x) = Xα(γv − γv ∗ χε)(x) = Xαγv(x)− (Xαγv) ∗ χε(x)

=

∫

G

(Xαγv(x)−Xαγv(xy))χ̌ε(y)dy.

Hence, by applying (5.3) to Xαγv, we obtain that

sup
x∈K

p(Xα(γv − γΠ(χε)v)(x)) ≤ εC sup
x∈K

sup
y∈S1

max
i=1,...,n

p(XiX
αγv(xy)).

By combining the latter inequality with (5.2), we find that

pX,K,ω,h(v −Π(χε)(v)) ≤ εCC ′pX,KS1,ω,k(v).

�

5.2. The parametrix method. Let E be a sequentially complete lcHs. Given a
power series P (z) =

∑∞
i=0 aiz

i, ai ∈ C, we formally define

P (D)f =
∞∑

i=0

aif
(i), f ∈ C∞(R;E).

An entire function P (z) =
∑∞

i=0 aiz
i is called an ultrapolynomial of class (ω) if there

is H > 0 such that
sup
z∈C
|P (z)|e−Hω(|z|) <∞.

In such a case, by using the Cauchy estimates, we find that

sup
i∈N
|ai| exp

(
Hφ∗

(
i

H

))
<∞.

Hence, (2.1) and the convexity of φ∗ imply that for all h > 0 there is k > 0 such that

(5.4) sup
j∈N

exp

(
−1

h
φ∗(hj)

) ∞∑

i=0

|ai| exp
(
1

k
φ∗(k(i+ j))

)
<∞.

Given an open set Θ ⊆ R
n and h > 0, we set Dω,h(Θ) = D(Θ)

⋂
Eω,h(Rn). We

denote by D′(R) (D′(ω)(R)) the dual of D(R) (D(ω)(R)). We will assume the reader is
familiar with the basic aspects of the spaces D′(R) and D′(ω)(R); see [6, 34] for more
information. The following standard result is fundamental for us.

Proposition 5.3. Let r > 0.

(i) For all j ∈ N there are a polynomial P and ψ0, ψ1 ∈ Cj
c ((−r, r)) such that

P (D)ψ0 + ψ1 = δ in D′(R).
(ii) For all k′ > 0 there are an ultrapolynomial P (z) =

∑∞
i=0 aiz

i of class (ω) and

ψ0, ψ1 ∈ Dω,k
′

((−r, r)) such that P (D)ψ0 + ψ1 = δ in D′(ω)(R).
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Proof. (i) Let H be the Heaviside function, that is, the indicator function of [0,∞).
Choose ψ ∈ D((−r, r)) such that ψ = 1 on a neighborhood of 0. Then, P (z) =

zj+2, ψ0(x) = xj+1

(j+1)!
H(x)ψ(x), and ψ1(x) = P (D)( xj+1

(j+1)!
H(x)(1 − ψ(x))) verify all

requirements.
(ii) This is shown in [19, Corollary 2.6]. �

Let X = (X1, . . . , Xn) be a left-invariant frame on G and let E be a sequentially

complete lcHs E. For h > 0 we define Eω,h
X

as the space consisting of all v ∈ E∞

such that pX,ω,h(v) < ∞ for all p ∈ csn(E). We endow Eω,h
X

with the locally convex

topology generated by the system of seminorms {pX,ω,h | p ∈ csn(E)}. Note that Eω,h
X

is a sequentially complete lcHs. Let P (z) =
∑∞

i=0 aiz
i be an ultrapolynomial of class

(ω). Let h > 0 be arbitrary and choose k > 0 such that (5.4) holds. Then, for all
j = 1, . . . , n the linear mapping

P (Xj) : E
ω,k
X
→ Eω,h

X
, P (Xj)v =

∞∑

i=0

aiX
i
jv

is continuous, and the series P (Xj)v =
∑∞

i=0 aiX
i
jv converges absolutely in Eω,h

X
for

each v ∈ Eω,k
X

. Our goal in this subsection is to show the following parametrix type
result.

Theorem 5.4. Let X = (X1, . . . , Xn) be a left-invariant frame on G and let U be an
open neigbhorhood of e.

(i) For all j ∈ N there are a polynomial P and χθ ∈ Cj
c (U), θ = (θ1, . . . , θn) ∈

{0, 1}n, such that for all v ∈ E∞

(5.5) v =
∑

θ∈{0,1}n

Π(χθ)(Pθn(Xn) · · ·Pθ1(X1)v),

where P0 = P and P1 = 1.
(ii) For all h, h′ > 0 there are k > 0, an ultrapolynomial P of class (ω), χθ ∈ D(U)

with ‖χθ‖X,ω,h′ < ∞ , θ ∈ {0, 1}n such that (5.5) holds for all v ∈ Eω,k
X

, where
P0 = P and P1 = 1, and the linear mapping

Pθn(Xn) · · ·Pθ1(X1) : E
ω,k
X
→ Eω,h

X

is continuous for each θ ∈ {0, 1}n.
We will show Theorem 5.4 by combining Proposition 5.3 with the aid of a technique
due to Dixmier and Malliavin [13]. We need various notions and results in preparation.

Lemma 5.5. Let E be a sequentially complete lcHs.

(i) Let P be a polynomial and ψ0, ψ1 ∈ Cc(R) such that P (D)ψ0+ψ1 = δ in D′(R).
Then, for all f ∈ C∞(R;E)

(5.6) f = (P (D)f) ∗ ψ0 + f ∗ ψ1.

(ii) Let P (z) =
∑∞

i=0 aiz
i be an ultrapolynomial of class (ω) and ψ0, ψ1 ∈ Cc(R) such

that P (D)ψ0 + ψ1 = δ in D′(ω)(R). Let f ∈ C∞(R;E) be such that P (D)f =∑∞
i=0 aif

(i) converges absolutely in C(R;E). Then, (5.6) holds.
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Proof. We only show (ii) as the proof of (i) is similar. Recall that fv′ = 〈v′, f〉 ∈ C∞(R)

for v′ ∈ E ′. Note that P (D)fv′ =
∑∞

n=0 anf
(n)
v′ converges absolutely in C(R) and that

P (D)fv′ = 〈v′, P (D)f〉. In D′(ω)(R), we have that

fv′ = fv′ ∗ δ = fv′ ∗ (P (D)ψ0) + fv′ ∗ ψ1 = (P (D)fv′) ∗ ψ0 + fv′ ∗ ψ1.

Since P (D)fv′, fv′ ∈ C(R) and ψ0, ψ1 ∈ Cc(R), the equality fv′ = (P (D)fv′)∗ψ0+fv′∗ψ1

in fact holds pointwise. We have that

(P (D)fv′) ∗ ψ0 = 〈v′, P (D)f〉 ∗ ψ0 = 〈v′, P (D)f ∗ ψ0〉
and

fv′ ∗ ψ1 = 〈v′, f ∗ ψ1〉.
Consequently, we find that for all v′ ∈ E ′

〈v′, f〉 = fv′ = (P (D)fv′) ∗ ψ0 + fv′ ∗ ψ1 = 〈v′, (P (D)f) ∗ ψ0 + f ∗ ψ1〉,
which implies that f = (P (D)f) ∗ ψ0 + f ∗ ψ1 by the Hahn-Banach theorem. �

We denote by g the Lie algebra of G and by exp : g→ G the exponential mapping.
We identify each X ∈ g with its associated left-invariant vector field on G, that is,

(5.7) Xf(x) =
d

dt
f(x exp(tX))|t=0, f ∈ C∞(G), x ∈ G.

Let π be a representation of G on a sequentially complete lcHs E. For X ∈ g we define
the representation

πX : (R,+)→ GL(E), πX(t) = π(exp(tX)).

We denote the orbit of v ∈ E under πX by γX,v. Note that γX,v(t) = γv(exp(tX)).
Hence, γX,v ∈ C(R;E) (γX,v ∈ C∞(R;E)) if v ∈ E0 (v ∈ E∞). In accordance to
Section 4, we set

ΠX(f)v =

∫

R

γX,v(t)f(−t)dt, f ∈ Cc(R), v ∈ E0.

It holds that

γX,ΠX(f)v = γX,v ∗ f, f ∈ Cc(R), v ∈ E0.

For i ∈ N we write X i = X · · ·X , where X occurs i times, and set

X iv = X iγv(e), v ∈ E∞.

We have that

γX,Xiv = γ
(i)
X,v, v ∈ E∞.

Given a power series P (z) =
∑∞

i=0 aiz
i, we formally define

P (X)v =
∞∑

i=0

aiX
iv, v ∈ E∞.

Lemma 5.6. Let X ∈ g and let π be a locally equicontinuous representation of G on
a sequentially complete lcHs E.
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(i) Let P be a polynomial and ψ0, ψ1 ∈ Cc(R) such that P (D)ψ0+ψ1 = δ in D′(R).
Then, for all v ∈ E∞

(5.8) v = ΠX(ψ0)P (X)v +ΠX(ψ1)v.

(ii) Let P (z) =
∑∞

i=0 aiz
i be an ultrapolynomial of class (ω) and ψ0, ψ1 ∈ Cc(R)

such that P (D)ψ0 + ψ1 = δ in D′(ω)(R). Let v ∈ E∞ be such that P (X)v =∑∞
i=0 aiX

iv converges absolutely in E. Then, (5.8) holds

Proof. Since π is locally equicontinuous, our assumption yields

P (D)γX,v =
∞∑

i=0

aiγ
(i)
X,v =

∞∑

i=0

aiγX,Xiv

converges absolutely in C(R;E). Moreover, it holds that P (D)γX,v = γX,P (X)v. Hence,
Lemma 5.5 implies that

γX,v = (P (D)γX,v)∗ψ0+γX,v∗ψ1 = γX,P (X)v∗ψ0+γX,v∗ψ1 = γX,ΠX(ψ0)P (X)v+γX,ΠX(ψ1)v.

The result now follows by evaluating the above equality at 0. �

Let X = (X1, . . . , Xn) be a basis of g and consider the mapping

Φ : Rn → G, Φ(t1, . . . , tn) = exp(t1X1) · · · exp(tnXn).

Then, there is r0 > 0 such Φ : (−r0, r0)d → G is a regular diffeomorphism onto its
image.

Lemma 5.7. Let X be a basis of g and let Φ, r0 be as above, let π be a representation
of G on a sequentially complete lcHs E, and let r < r0.

(i) Let j ∈ N. For all ψ1, . . . , ψn ∈ Cj
c ((−r, r)) there is χ ∈ Cj(Φ((−r, r)n)) such

that

(5.9) ΠX1
(ψ1) · · ·ΠXn

(ψn)v = Π(χ̌)v, v ∈ E0.

(ii) For all h′ > 0 there is k′ > 0 such that for all ψ1, . . . , ψn ∈ Dω,k
′

((−r, r)) there
is χ ∈ D(Φ((−r, r)n)) with χ ◦ Φ ∈ Dω,h′((−r, r)n) such that (5.9) holds.

Proof. We only show (ii) as the proof of (i) is similar. Condition (2.1) yields that there
are C, k′ > 0 such that

1

k′
φ∗(k′t) + (log 2)t ≤ 1

h′
φ∗(h′t) + logC, t ≥ 0.

This inequality together with the convexity of φ∗ implies that

(5.10) fψ ∈ Dω,h′((−r, r)n), f ∈ Eω,k′((−r, r)n), ψ ∈ Dω,k′((−r, r)n).
Let ψ1, . . . , ψn ∈ Dω,k′((−r, r)) be arbitrary. Then ψ1 ⊗ · · · ⊗ ψn ∈ Dω,k′((−r, r)n)
because φ∗ is convex. Note that there is a real analytic function J : Φ((−r0, r0)n)→ R

such that∫

Rn

f(t)ψ(t)dt =

∫

G

f(Φ−1(x))ψ(Φ−1(x))J(x)dx, f ∈ C(Rn;E), ψ ∈ D((−r0, r0)n).
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Set χ(x) = (ψ1⊗· · ·⊗ψn)(−Φ−1(x))J(x), x ∈ G. Since ψ1⊗· · ·⊗ψn ∈ Dω,k′((−r, r)n)
and J ◦ Φ ∈ A((−r, r)n) ⊆ Eω,k′((−r, r)n), (5.10) implies that χ ◦ Φ ∈ Dω,h′((−r, r)n).
For all v ∈ E0 it holds that

ΠX1
(ψ1) · · ·ΠXn

(ψn)v =

∫

Rn

γv(Φ(t))(ψ1 ⊗ · · · ⊗ ψn)(−t)dt

=

∫

G

γv(x)(ψ1 ⊗ · · · ⊗ ψn)(−Φ−1(x))J(x)dx

=

∫

G

γv(x)χ(x)dx = Π(χ̌)v.

�

Proof of Theorem 5.4. This follows from Proposition 5.3, and Lemmas 5.6 and 5.7 (for
(ii) we also use Proposition 3.2(ii)). �

Remark 5.8. Cartier also employed the parametrix method to study smooth vectors
in [7]. Our applications to be discussed in the following two sections will require the
more explicit form we have treated in this subsection.

6. Main results

We are ready to study quasinormability and the property (Ω) for the spaces E∞ and
E(ω).

6.1. Quasinormability. Given a lcHs F , we denote by U0(F ) the family of all abso-
lutely convex neighborhoods of 0 in F and by B(F ) the family of all bounded subsets
of F . Given p ∈ csn(F ) we write Vp = {v ∈ F | p(v) ≤ 1} ∈ U0(F ). The space F is
said to be quasinormable [29, p. 313] if

∀U ∈ U0(F ) ∃V ∈ U0(F ) ∀ε ∈ (0, 1] ∃B ∈ B(F ) : V ⊆ εU +B.

We are ready to prove the first main result of this article.

Theorem 6.1. Let π be a locally equicontinuous representation of G on a sequentially
complete lcHs E.

(i) E∞ is quasinormable if E is so.
(ii) E(ω) is quasinormable if E is so.

Proof. We only show (ii) as the proof of (i) is similar. Let X be a real analytic frame
on G. By Proposition 3.3(ii) it suffices to show that

∀K ⊆ G compact, h > 0, p ∈ csn(E) ∃L ⊆ G compact, k > 0, q ∈ csn(E)

∀ε ∈ (0, 1] ∃B ∈ B(E(ω)) : VqX,L,ω,k
⊆ εVpX,K,ω,h

+B.

Let K ⊆ G compact, h > 0, and p ∈ csn(E) be arbitrary. Take (χε)ε∈(0,1] ⊆ D(ω)(G) as
in Proposition 5.2. Set L = KS1. Hence, there are C, k > 0 such that for all ε ∈ (0, 1]

pX,K,ω,h(v − Π(χε)(v)) ≤ εCpX,L,ω,k(v), v ∈ E(ω).
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Furthermore, Lemma 4.4(ii) implies that there is r ∈ csn(E) such that for all ε ∈ (0, 1]

pX,K,ω,h(Π(χε)v) ≤ ‖χε‖X,ω,hr(v), v ∈ E0.

Since E is quasinormable, there is s ∈ csn(E) such that

(6.1) ∀δ > 0 ∃A ∈ B(E) : Vs ⊆ δVr + A.

Set q = max{s, Cp} ∈ csn(E). Let ε ∈ (0, 1] be arbitrary. Choose A ∈ B(E) according
to (6.1) with δ = ε/(2‖χε/2‖X,ω,h). Set B = {Π(χε/2)(u) | u ∈ A}. Note that B ∈
B(E(ω)) by Lemma 4.4(ii). Let v ∈ VqX,L,ω,k

be arbitrary. There is some u ∈ A such
that r(v − u) ≤ ε/(2‖χε/2‖X,ω,h). For w = Π(χε/2)(u) ∈ B we obtain that

pX,K,ω,h(v − w) ≤ pX,K,ω,h((v − Π(χε/2)(v)) + pX,K,ω,h(Π(χε/2)(v − u))

≤ εC

2
pX,L,ω,k(v) + ‖χε/2‖X,ω,hr(v − u) ≤ ε,

which shows the result. �

6.2. The condition (Ω). A Fréchet space F is said to satisfy the condition (Ω) [29,
p. 367] if

∀U ∈ U0(F ) ∃V ∈ U0(F ) ∀W ∈ U0(F ) ∃C, s > 0 ∀ε ∈ (0, 1] : V ⊆ εU +
C

εs
W.

Remark 6.2. By [29, Lemma 26.14] a Fréchet space F is quasinormable if and only if

∀U ∈ U0(F ) ∃V ∈ U0(F ) ∀W ∈ U0(F ) ∀ε ∈ (0, 1] ∃C > 0 : V ⊆ εU + CW.

Hence, (Ω) may be considered as a quantified version of quasinormability.

The second main result of this article reads as follows.

Theorem 6.3. Let π be a locally equicontinuous representation of G on a Fréchet space
E.

(i) E∞ satisfies (Ω) if E does so.
(ii) E(ω) satisfies (Ω) if E does so.

We first prove Theorem 6.3(i). This shall be done by using a refinement of the
technique employed in the proof of Theorem 6.1. For j ∈ N we write

‖f‖j = sup
t∈Rn

max
|α|≤j
|f (α)(t)|, f ∈ C∞(Rn).

Proof of Theorem 6.3(i). We use the same notation as in Subsection 5.1. Let X be a
smooth frame on G. Pick ψ ∈ D(B(0, 1)) such that ψ ≥ 0 and

∫
Rn ψ(t)dt = 1. Set

ψε(t) = ε−nψ(t/ε) for ε ∈ (0, 1]. Define χε ∈ D(G) via

χ̌ε =
ψε ◦ ϕ

‖ψε ◦ ϕ‖L1(G)

.

Then, (χε)ε∈(0,1] satisfies the assumptions of Proposition 5.2. There is a positive smooth
function J on U such that∫

Rn

f(t)dt =

∫

G

f(ϕ(x))J(x)dx, f ∈ D(ϕ(U)).
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Hence, we obtain that for all ε ∈ (0, 1]

‖ψε ◦ ϕ‖L1(G) ≥
1

supg∈ϕ−1(B(0,1)) J(g)
.

Proposition 3.2(i) therefore implies that for all j ∈ N there is Cj > 0 such that for all
ε ∈ (0, 1]

(6.2) ‖χε‖X,j ≤ Cj‖ψε‖j ≤
Cj‖ψ‖j
εj

.

We are ready to show that E∞ satisfies (Ω). By Proposition 3.3(i) and rescaling, it
suffices to show that

∀K ⊆ G compact, j ∈ N, p ∈ csn(E) ∃q ∈ csn(E) ∀L ⊆ G compact, m ∈ N, r ∈ csn(E)

∃C1, C2, s > 0 ∀ε ∈ (0, 1] : VqX,KS1,j+1
⊆ εC1VpX,K,j

+
C2

εs
VrX,L,m

Let K ⊆ G compact, j ∈ N, p ∈ csn(E) be arbitrary. Proposition 5.2(i) implies that
there is C > 0 such that

pX,K,j(v − Π(χε)v) ≤ εCpX,KS1,j+1(v), v ∈ E∞.

By Lemma 4.4(i), there is p′ ∈ csn(E) such that for all ε ∈ (0, 1]

pX,K,j(Π(χε)v) ≤ ‖χε‖X,jp′(v), v ∈ E0.

Since E satisfies (Ω), there is q ∈ csn(E), q ≥ max{p, p′}, such that

(6.3) ∀r′ ∈ csn(E) ∃C ′, s′ > 0 ∀δ ∈ (0, 1] : Vq ⊆ δVp′ +
C ′

δs′
Vr′.

Let L ⊆ G compact, m ∈ N, and r ∈ csn(E) be arbitrary. Lemma 4.4(i) implies that
there is r′ ∈ csn(E) such that for all ε ∈ (0, 1]

rX,L,m(Π(χε)v) ≤ ‖χε‖X,mr′(v), v ∈ E0.

Choose C ′, s′ > 0 according to (6.3). Let v ∈ VqX,KS1,j+1
be arbitrary. By (6.3) we have

that for all δ ∈ (0, 1] there is wδ ∈ C ′δ−s
′

Vr′ such that v−wδ ∈ δVp′. For all ε, δ ∈ (0, 1]
it holds that

pX,K,j(v − Π(χε)wδ) ≤ pX,K,j(v − Π(χε)v) + pX,K,j(Π(χε)(v − wδ))
≤ εC + ‖χε‖X,jp′(v − wδ)

≤ εC +
Cj‖ψ‖j
εj

δ

and

rX,L,m(Π(χε)wδ) ≤ ‖χε‖X,mr′(wδ) ≤
C ′Cl‖ψ‖m
εmδs′

.

We set s = m+ (j + 1)s′ and δε = εj+1 for ε ∈ (0, 1]. Then, for all ε ∈ (0, 1]

v = (v − Π(χε)wδε) + Π(χε)wδε ∈ ε(C + Cj‖ψ‖j)VpX,K,j
+
C ′Cl‖ψ‖m

εs
VrX,L,l

.

�
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Next, we show Theorem 6.3(ii). Our proof is based on the parametrix method
presented in Subsection 5.2. We need two results in preparation.

Lemma 6.4. Let F1 ⊇ F2 ⊇ · · · be a decreasing sequence of Fréchet spaces with
continuous inclusion mappings. Set F =

⋂
j∈N Fj and endow F with its natural Fréchet

space topology, i.e., the initial topology with respect to the inclusion mappings F → Fj,
j ∈ N. Suppose that

∀i ∈ N, U ∈ U0(Fi) ∃j ≥ i, V ∈ U0(Fj) ∀m ≥ j,W ∈ U0(Fm)

∃C, s > 0 ∀ε ∈ (0, 1] : V ⊆ εU +
C

εs
W.

Then, F satisfies (Ω).

Proof. This follows from the Mittag-Leffler theorem [39, Theorem 3.2.8], see [10, Lemma
2.4] for details. �

Our next step is to show a quantified approximation result for compactly supported
ultradifferentiable functions on G. We first prove an analogous result for periodic
ultradifferentiable functions on Rn. Let a > 0. We denote by C∞

a (Rn) the Fréchet
space consisting of all smooth aZn-periodic functions. For h > 0 we write

‖f‖ω,h = sup
t∈Rn

sup
α∈Nn

|f (α)(t)| exp
(
−1

h
φ∗(h|α|)

)
, f ∈ C∞(Rn).

Lemma 6.5. Let a > 0. Then,

∀h > 0 ∃k > 0 ∀l > 0 ∃C, s > 0 ∀f ∈ C∞
a (Rn), ‖f‖ω,k ≤ 1

∀ε ∈ (0, 1] ∃fε ∈ C∞
a (Rn) : ‖f − fε‖ω,h ≤ ε and ‖fε‖ω,l ≤

C

εs
.

Proof. Define the Fréchet space

s(Zn) = {c = (cα)α∈Zn ∈ C
Zn | sup

α∈Zn

|cα||α|k <∞, ∀k ∈ N}.

Given f ∈ C∞
a (Rn), we define its Fourier coefficients as

f̂(α) =
1

a

∫ a

0

f(t)e−
2πi
a
α·tdt, α ∈ Z

n.

Then

F : C∞
a (Rn)→ s(Zn), f 7→ f̂ = (f̂(α))α∈Zn

is a topological isomorphism whose inverse is given by

(6.4) F−1(c)(t) =
∑

α∈Zn

cαe
2πi
a
α·t, c = (cα)α∈Zn ∈ s(Zn),

and the series in the right-hand side is absolutely convergent in C∞
a (Rn). For h > 0

we define

|c|ω,h = sup
α∈Zn

|cα|e
1

h
ω(|α|), c ∈ s(Zn).
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By using (2.1), a standard argument shows that for all h > 0 there are C, k > 0 such
that

|f̂ |ω,h ≤ C‖f‖ω,k, f ∈ C∞
a (Rn),

and that for all h > 0 there are C, k > 0 such that

‖F−1(c)‖ω,h ≤ C|f |ω,k, f ∈ C∞
a (Rn).

Since F : C∞
a (Rn) → s(Zn) is an isomorphism whose inverse is given by (6.4), it

therefore suffices to show that

∀h > 0 ∃k > 0 ∀l > 0 ∃C, s > 0 ∀c ∈ s(Zn), |c|ω,k ≤ 1

∀ε ∈ (0, 1] ∃cε ∈ s(Zn) : |c− cε|ω,h ≤ ε and |cε|ω,l ≤
C

εs
.

Let h > 0 be arbitrary. Set k = h/2. Let l > 0 be arbitrary. Let c ∈ s(Zn) with
|c|ω,k ≤ 1 be arbitrary. For ε ∈ (0, 1] we choose a number Nε ∈ [0,∞) such that
ω(Nε) = h log(1/ε). We define cε = (cε,α)α∈Zn ∈ s(Zn) by cε,α = cα if |α| ≤ Nε and
cε,α = 0 otherwise. Set s = h/l. Then, for all ε ∈ (0, 1] it holds that |c− cε|ω,h ≤ ε and
|cε|ω,l ≤ ε−s. �

Lemma 6.6. Let X be a real analytic frame on G. Let K and L be compact subsets
of G such that K ⊆ intL. Then,

∀h > 0 ∃k > 0 ∀l > 0 ∃C, s > 0 ∀f ∈ DK , ‖f‖X,ω,k ≤ 1

∀ε ∈ (0, 1] ∃fε ∈ DL : ‖f − fε‖X,ω,h ≤ ε and ‖fε‖X,ω,l ≤
C

εs
.

Proof. By using local coordinates, a partition of the unity argument, and Proposition
3.2(ii), we may assume that G = Rn and that X = {∂1, . . . , ∂n}. Choose a > 0 such
that L ⊆ (−a, a)n. Let h > 0 be arbitrary. Condition (2.1) yields that there are
C ′, h′ > 0 such that

1

h′
φ∗(h′t) + (log 2)t ≤ 1

h
φ∗(ht) + logC ′, t ≥ 0.

Pick k > 0 according to Lemma 6.5 with h = h′. Let l > 0 be arbitrary. By (2.1) there
are C ′′, l′ > 0 such that

1

l′
φ∗(l′t) + (log 2)t ≤ 1

l
φ∗(lt) + logC ′′, t ≥ 0.

Lemma 6.5 implies that there are C, s > 0 such that

∀f ∈ C∞
a (Rn), ‖f‖ω,k ≤ 1 ∀ε ∈ (0, 1] ∃fε ∈ C∞

a (Rn) :(6.5)

‖f − fε‖ω,h′ ≤ ε and ‖fε‖ω,l′ ≤
C

εs
.

Let f ∈ DK with ‖f‖ω,k ≤ 1 be arbitrary. Denote by fa the aZn-periodic extension of
f and note that ‖fa‖ω,k = ‖f‖ω,k ≤ 1. Hence, (6.5) yields that for all ε ∈ (0, 1] there

is fa,ε ∈ C∞
a (Rn) such that ‖fa − fa,ε‖ω,h′ ≤ ε and ‖fa,ε‖ω,l′ ≤ Cε−s. Let χ ∈ D(ω)

L be
such that χ = 1 on a neighborhood of K. Set fε = χfa,ε ∈ DL. Then,

‖f − fε‖ω,h = ‖χ(fa − fa,ε)‖ω,h ≤ C ′‖χ‖ω,h′‖fa − fa,ε‖ω,h′ ≤ C ′‖χ‖ω,h′ε
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and

‖fε‖ω,l = ‖χfa,ε‖ω,l ≤ C ′′‖χ‖ω,l′‖fa,ε‖ω,l′ ≤
CC ′′‖χ‖ω,l′

εs
.

The result now follows by rescaling. �

Proof of Theorem 6.3(ii). Fix a left-invariant frame X on G. By Corollary 4.2(ii), we

have that E(ω) =
⋂
h>0E

ω,h
X

as locally convex spaces, where we endow the right-hand
side with its natural Fréchet space topology. By Lemma 6.4 and rescaling, it therefore
suffices to show that

∀h > 0, p ∈ csn(E) ∃k > 0, q ∈ csn(E) ∀l > 0, r ∈ csn(E) ∃C1, C2, s > 0

∀v ∈ Eω,k
X
, qX,ω,k(v) ≤ 1 ∀ε ∈ (0, 1] ∃vε ∈ Eω,l

X
:

pX,ω,h(v − vε) ≤ C1ε and rX,ω,l(vε) ≤
C2

εs
.

Fix compact subsets K and L of G with e ∈ intK and K ⊆ intL. Let h > 0 and
p ∈ csn(E) be arbitrary. By Corollary 6.6, there is h′ > 0 such that

∀l > 0 ∃C ′, s′ > 0 ∀f ∈ DK , ‖f‖X,ω,h′ ≤ 1 ∀ε ∈ (0, 1] ∃fε ∈ DL :(6.6)

‖f − fε‖X,ω,h ≤ ε and ‖fε‖X,ω,l ≤
C ′

εs′
.

By Proposition 5.4(ii), there are k > 0, χj ∈ DK with ‖χj‖X,ω,h′ <∞, and continuous

linear mappings Tj : E
ω,k
X
→ E, j = 1, . . . , 2n, such that

(6.7) v =
2n∑

j=1

Π(χj)Tj(v), v ∈ Eω,k
X
.

Lemma 4.4(ii) implies that there is p′ ∈ csn(E) such that

pX,ω,h(Π(χ)w) ≤ ‖χ‖X,ω,hp′(w), w ∈ E, χ ∈ DL.
Since E satisfies (Ω), there is q′ ∈ csn(E), q′ ≥ p′, such that

∀r′ ∈ csn(E) ∃C ′′, s′′ > 0 ∀w ∈ E, q′(w) ≤ 1 ∀δ ∈ (0, 1] ∃wδ ∈ E :(6.8)

p′(w − wδ) ≤ δ and r′(wδ) ≤
C ′′

δs′′
.

Pick q ∈ csn(E) such that for all j = 1, . . . , 2n it holds that

q′(Tj(v)) ≤ qX,ω,k(v), v ∈ Eω,k
X
.

Let l > 0 and r ∈ csn(E) be arbitrary. We may assume that l ≤ h. Lemma 4.4(ii)
implies that there is r′ ∈ csn(E) such that

rX,ω,l(Π(χ)w) ≤ ‖χ‖X,ω,lr′(w), w ∈ E, χ ∈ DL.
Choose C ′, s′ > 0 and C ′′, s′′ > 0 according to (6.6) and (6.8), respectively. Let v ∈ Eω,k

X

with qX,ω,k(v) ≤ 1 be arbitrary. Condition (6.6) and a rescaling argument imply that
there is C ′′′ > 0 such that for all j = 1, . . . , 2n and ε ∈ [0, 1) there is χj,ε ∈ DL with
‖χj − χj,ε‖X,ω,h ≤ ε and ‖χj,ε‖X,ω,l ≤ C ′′′ε−s

′

. Note that q′(Tj(v)) ≤ qX,ω,k(v) ≤ 1 for
all j = 1, . . . , 2n. Hence, by (6.8), we have that for all j = 1, . . . , 2n and δ ∈ [0, 1) there
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is wj,δ ∈ E with p′(Tj(v)− wj,δ) ≤ δ and r′(wj,δ) ≤ C ′′δ−s
′′

. Equation (6.7) gives that
for all ε, δ ∈ (0, 1]

pX,ω,h(v −
2n∑

j=1

Π(χj,ε)wj,δ)

= pX,ω,h(
2n∑

j=1

Π(χj)Tj(v)−Π(χj,ε)wj,δ)

≤
2n∑

j=1

pX,ω,h(Π(χj − χj,ε)Tj(v)) + pX,ω,h(Π(χj,ε)(Tj(v)− wj,δ))

≤
2n∑

j=1

‖χj − χj,ε‖X,ω,hp′(Tj(v)) + ‖χj,ε‖X,ω,hp′(Tj(v)− wj,δ)

≤ 2nε+
2nC ′′′

εs′
δ

and

rX,ω,l(
2n∑

j=1

Π(χj,ε)wj,δ) ≤
2n∑

j=1

‖χj,ε‖X,ω,lr′(wj,δ) ≤
2nC ′′C ′′′

εs′δs′′
.

We set s = s′ + (s′ + 1)s′′ and δε = εs
′+1 for ε ∈ (0, 1]. Then, for all ε ∈ (0, 1] we have

that
∑2n

j=1Π(χj,ε)wj,δε ∈ E
ω,l
X

by Lemma 4.4(ii). Moreover,

pX,ω,h(v −
2n∑

j=1

Π(χj,ε)wj,δε) ≤ 2n(1 + C ′′′)ε

and

rX,ω,l(
2n∑

j=1

Π(χj,ε)wj,δε) ≤
2nC ′′C ′′′

εs
.

�

Remark 6.7. We do not know whether it is possible to use the same more elementary
technique as in the proof of Theorem 6.3(i) to show Theorem 6.3(ii). The problem is
that we are unable to find a family (χε)ε∈(0,1] ⊆ D(ω)(G) that satisfies the assumptions
of Proposition 5.2 and suitable polynomial type bounds in ε with respect to the scale
of norms (‖ · ‖X,ω,h)h>0 (cf. (6.2)).

7. Right-invarant spaces of smooth and ultradifferentiable functions

A lcHs E is said to be a right-invariant locally convex Hausdorff function space (=
right-invariant lcHfs) on G if E is non-trivial and satisfies the following four properties:

(A.1) E is continuously embedded into L1
loc(G).

(A.2) Rx(E) ⊆ E for all x ∈ G.
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(A.3) For all K ⊆ G compact and p ∈ csn(E) there is q ∈ csn(E) such that

sup
x∈K

p(Rxf) ≤ q(f), ∀f ∈ E.

(A.4) E ∗ Cc(G) ⊆ E and for each f ∈ E the mapping

Cc(G)→ E, χ 7→ f ∗ χ

is continuous.

Conditions (A.1)-(A.3) imply that the right-regular representation

πR : G→ GL(E), g 7→ πR(g) := Rg

is well-defined and locally equicontinuous. Condition (A.4) means that E is a right-
module over the (left-)convolution algebra Cc(G). A Banach space that is a right-
invariant lcHfs on G is simply called a right-invariant (Bf)-space on G. Our definition
of a right-invariant lcHfs is inspired by the Banach function spaces used in the coorbit
theory of Feichtinger and Gröchening [15] as well as the translation-invariant Banach
spaces of distributions from [12].

Example 7.1. Let ρ be a right-invariant Haar measure on G. The Banach spaces
spaces Lp(G) = Lp(G, ρ), 1 ≤ p ≤ ∞, are right-invariant (Bf)-spaces. We define
L0(G) as the space of all f ∈ L∞(G) such that for all ε > 0 there is a compact subset
K of G such that

ess sup
x∈K

|f(x)| ≤ ε

and endow L0(G) with the subspace topology induced by L∞(G). Then, L0(G) is a
right-invariant (Bf)-space as well. Weighted variants of the spaces Lp(G), p ∈ {0} ∪
[1,∞] (cf. Introduction) will be discussed in the next section.

Remark 7.2. If E is ultrabornological and (A.1) and (A.2) hold, then (A.3) is auto-
matically satisfied, as follows from the closed graph theorem of De Wilde [29, Theorem
24.31] and the Banach-Steinhaus theorem.

Lemma 7.3. Let E be a sequentially complete lcHs satisfying (A.1)-(A.3) and consider
the right-regular representation πR of G on E. Then,

ΠR(χ)f = f ∗ χ, f ∈ E0, χ ∈ Cc(G),

Proof. It suffices to show that
∫

G

ΠR(χ)f(x)ψ(x)dx =

∫

G

(f ∗ χ)(x)ψ(x)dx, ∀ψ ∈ Cc(G).

Let ψ ∈ Cc(G) be arbitrary. As E is continuously embedded into L1
loc(G) (condition

(A.1)), we may view ψ as an element of E ′ via

E → C, f 7→
∫

G

f(x)ψ(x)dx.
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We obtain that
∫

G

ΠR(χ)f(x)ψ(x)dx = 〈ΠR(χ)f, ψ〉

=

∫

G

〈Rxf, ψ〉χ(x−1)dx

=

∫

G

(∫

G

f(yx)ψ(y)dy

)
χ(x−1)dx

=

∫

G

(∫

G

f(yx)χ(x−1)dx

)
ψ(y)dy

=

∫

G

(f ∗ χ)(y)ψ(y)dy.

�

Remark 7.4. Let E be a sequentially complete lcHs satisfying (A.1)-(A.3). Suppose
that the right-regular representation of G on E is continuous (this particularly holds
true if Cc(G), or more generally D(σ)(G) for some weight function σ, is continuously
and densely embedded in E). Lemma 4.4(i) and Lemma 7.3 yield that E satisfies (A.4)
and therefore is a right-invariant lcHfs on G. However, there are right-invariant lcHfs
E such that the right-regular representation of G on E is not continuous, consider e.g.
E = L∞(G).

Let E be a sequentially complete right-invariant lcHfs on G. Our goal is to the
determine the spaces E∞ and E(ω) for the right-regular representation of G on E. Let
X be a left-invariant frame on G, let f ∈ C∞(G), and let α ∈ {1, . . . , n}j, j ∈ N.

To avoid confusion, we momentarily write X̃αf = Xαf , where we interpret Xα as an
operator acting on C∞(G). The next lemma shows that for f ∈ E∞ ∩C∞(G) it holds

that X̃αf coincides with Xαf , where we now interpret Xα as an operator acting on
E∞.

In fact, Lemma 7.8 below tells us that E∞ ⊆ C∞(G), so that the operator Xα :
E∞ → E∞ just becomes the classical derivative with respect to the left-invariant
vector field X .

Lemma 7.5. Let X be a left-invariant frame on G. Consider the right-regular repre-
sentation of G on L1

loc(G). Then, C∞(G) ⊆ L1
loc(G)

∞. Moreover, for all f ∈ C∞(G)

and α ∈ {1, . . . , n}j, j ∈ N, it holds that Xαf = X̃αf , where we we interpret Xα as an
operator acting on L1

loc(G)
∞.

Proof. The dual of L1
loc(G) may be identified with the space L∞

c (G) consisting of all
elements in L∞(G) whose essential support is compact. Since L1

loc(G) is sequentially
complete, Lemma 3.1 implies that (L1

loc(G))
∞ consists precisely of all those f ∈ L1

loc(G)
such that f ∗ χ̌ ∈ C∞(G) for all χ ∈ L∞

c (G). Consequently, C∞(G) ⊆ L1
loc(G)

∞. Let
f ∈ C∞(G) be arbitrary. Formula (5.7) implies that Xjγf = γX̃jf

for all j = 1, . . . , n.

Hence, by using induction, we find that Xαγf = γX̃αf for all α ∈ {1, . . . , n}j, j ∈ N.
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By evaluating this equality at e, we obtain that Xαf = X̃αf for all α ∈ {1, . . . , n}j,
j ∈ N. �

In view of Lemmas 7.3 and 7.5, Theorem 5.4(i) yields the following result.

Lemma 7.6. Let X = (X1, . . . , Xn) be a left-invariant frame on G. For all j ∈ N

there are a polynomial P and χθ ∈ Cj
c (G), θ = (θ1, . . . , θn) ∈ {0, 1}n, such that for all

f ∈ C∞(G)

f =
∑

θ∈{0,1}n

(Pθn(Xn) · · ·Pθ1(X1)f) ∗ χθ,

where P0 = P and P1 = 1.

Let E be a sequentially complete right-invariant lcHfs on G and let X be a left-
invariant frame on G. We denote by DE,X(G) the space consisting of all f ∈ C∞(G)
such that Xαf ∈ E for all α ∈ {1, . . . , n}j, j ∈ N. For j ∈ N and p ∈ csn(E) we set

pX,j(f) = max
i≤j

max
α∈{1,...,n}i

p(Xαf) <∞, f ∈ DE(G).

We endow DE,X(G) with the locally convex topology generated by the system of semi-

norms {pX,j | j ∈ N, p ∈ csn(E)}. Likewise, we write D(ω)
E,X(G) for the space consisting

of all f ∈ DE,X(G) such that for all h > 0 and p ∈ csn(E) it holds that

pX,ω,h(f) = sup
j∈N

max
α∈{1,...,n}j

p(Xαf) exp

(
−1

h
φ∗(hj)

)
<∞.

and endow D(ω)
E,X(G) with the locally convex topology generated by the system of semi-

norms {pX,ω,h | h > 0, p ∈ csn(E)}.
Remark 7.7. Proposition 3.3 and condition (A.4) imply that f ∗ χ ∈ DE,X(G)
(D(ω)

E,X(G)) for all f ∈ E and χ ∈ D(G) (χ ∈ D(ω)(G)). In particular, the spaces

DE,X(G) and D(ω)
E,X(G) are non-trivial (recall that E is assumed to be non-trivial).

Lemma 7.8. Let E be a sequentially complete right-invariant lcHfs on G and let X be
a left-invariant frame on G. Then, E∞ = DE,X(G) as sets.

Proof. We first prove that E∞ ⊆ DE,X(G). Let f ∈ E∞ be arbitrary. By Theorem
5.4(i) and Lemma 7.3 it holds that for all j ∈ N there are χi ∈ Cj+1

c (G) and fi ∈ E∞ ⊆
E0, i = 1, . . . , 2n, such that

f =
2n∑

i=1

ΠR(χi)fi =
2n∑

i=1

fi ∗ χi ∈ Cj+1(G).

Moreover, for all α ∈ {1, . . . , n}j we have that

Xαf =

2n∑

i=i

fi ∗Xαχi ∈ E,

where the last inclusion follows from the fact that E ∗ Cc(G) ⊆ E (condition (A.4)).
Hence, f ∈ DE,X(G). Next we show that DE,X(G) ⊆ E∞. Let f ∈ DE,X(G) be
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arbitrary. We first prove that f ∈ E0. By Lemma 7.6 there are χi ∈ Cc(G) and fi ∈ E,
i = 1, . . . , 2n, such that

f =
2n∑

i=1

fi ∗ χi.

Hence,

Rxf =

2n∑

i=1

fi ∗Rxχi, x ∈ G.

The orbit mapping G → E, x 7→ Rxf is now continuous because for all i = 1, . . . , 2n

the mappings G → Cc(G), g 7→ Rgχi and Cc(G) → E, χ 7→ fi ∗ χ are continuous
(condition (A.4)). Another application of Lemma 7.6 together with Lemma 7.3 shows
that for all j ∈ N there are χi ∈ Cj

c (G) and fi ∈ E, i = 1, . . . , 2n, such that

f =

2n∑

i=1

fi ∗ χi =
2n∑

i=1

ΠR(χi)(fi) ∈ Ej

Hence, f ∈ E∞. �

Remark 7.9. Lemma 7.8 for the particular case E = Lp(G), 1 ≤ p < ∞, was shown
by Poulsen [31] via completely different methods.

Lemma 7.8 and Proposition 4.2 yield the following result.

Theorem 7.10. Let E be a sequentially complete right-invariant lcHfs on G and let
X be a left-invariant frame on G.

(i) E∞ = DE,X(G) as locally convex spaces.

(ii) E(ω) = D(ω)
E,X(G) as locally convex spaces.

Let E be a sequentially complete right-invariant lcHfs on G. We write DE(G) = E∞

and D(ω)
E (G) = E(ω). By Theorem 7.10 we have that DE(G) = DE,X(G) and D(ω)

E (G) =

D(ω)
E,X(G) for any left-invariant frameX on G. Theorems 6.1 and 6.3 imply the following

two results.

Theorem 7.11. Let E be a sequentially complete right-invariant lcHfs on G.

(i) DE(G) is quasinormable if E is so.

(ii) D(ω)
E (G) is quasinormable if E is so.

Theorem 7.12. Let E be a Fréchet space that is a right-invariant lcHfs on G.

(i) DE(G) satisfies (Ω) if E does so.

(ii) D(ω)
E (G) satisfies (Ω) if E does so.

8. Examples of right-invarant Fréchet spaces of smooth and

ultradifferentiable functions

In this final section, we discuss the quasinormability and the property (Ω) for a
particular class of weighted Fréchet spaces of smooth and ultradifferentiable functions.
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A right-invariant (Bf)-space E on G is said to be solid [14, 15] if for all f ∈ E and
g ∈ L1

loc(G) it holds that

|g(x)| ≤ |f(x)| for almost all x ∈ G =⇒ g ∈ E and ‖g‖E ≤ ‖f‖E.

We will also use the following assumptions on a right-invariant (Bf)-space E (cf. [14]):

(A.5) Lx(E) ⊆ E for all x ∈ G and there is B > 0 such that

‖Lxf‖E ≤ B‖f‖E, ∀f ∈ E, x ∈ G.

Example 8.1. The spaces Lp(G), p ∈ {0} ∪ [1,∞], are solid right-invariant (Bf)-
spaces. The spaces L0(G) and L∞(G) satisfy (A.5), whereas Lp(G), 1 ≤ p < ∞,
satisfy (A.5) if and only if G is unimodular.

By a weight function system on G we mean a pointwise non-decreasing sequence
V = (vj)j∈N of strictly positive continuous functions on G satisfying the condition (1.1)
from the introduction. Given a solid right-invariant (Bf)-space E on G, we denote by
EV the space consisting of all f ∈ L1

loc(G) such that fvj ∈ E for all j ∈ N. For j ∈ N

we set

‖f‖E,vj = ‖fvj‖E , f ∈ EV ,

and endow EV with the locally convex topology generated by the norms {‖ · ‖E,vj | j ∈
N}. Then, EV is a Fréchet space that is a right-invariant lcHfs on G.

Example 8.2. Suppose that G is connected. Fix a left- or right-invariant Riemannian
metric on G and consider the associated distance function d : G×G→ [0,∞) [2, 18].
Set d(x) = d(e, x) for x ∈ G. Then, d : G → [0,∞) is continuous and subadditive,
i.e., d(xy) ≤ d(x) + d(y) for all x, y ∈ G. Let (wj)j∈N be a pointwise non-decreasing
sequence of strictly positive continuous functions on [0,∞) such that

∀i ∈ N ∃j ∈ N, C > 0 ∀t ≥ 0 : wi(t + 1) ≤ Cwj(t).

Then, (wj ◦ d)j∈N is a weight function system on G.

Let E be a solid right-invariant (Bf)-space on G and let V be a weight function
system on G. In the next two results, we characterize the quasinormability and the

property (Ω) for DEV
(G) and D(ω)

EV
(G) in terms of V.

Theorem 8.3. Let E be a solid right-invariant (Bf)-space on G and let V = (vj)j∈N
be a weight function system on G. Consider the following statements:

(i) V satisfies the condition

(8.1) ∀i ∈ N ∃j ≥ i ∀m ≥ j ∀ε ∈ (0, 1] ∃C > 0 ∀x ∈ G :
1

vj(x)
≤ ε

vi(x)
+

C

vm(x)
.

(ii) EV is quasinormable.

(iii) DEV
(G) (D(ω)

EV
(G)) is quasinormable.

Then, (i)⇒ (ii)⇒ (iii). If in addition E satisfies (A.5), then (iii)⇒ (i).
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Proof. (i)⇒ (ii) By Remark 6.2 it suffices to show that

∀i ∈ N ∃j ≥ i ∀m ≥ j ∀ε ∈ (0, 1] ∃C > 0 : V‖ · ‖E,vj
⊆ εV‖ · ‖E,vi

+ CV‖ · ‖E,vm
.

Let i ∈ N be arbitrary. Choose j ≥ i according to (8.1). Let m ≥ j and ε ∈ (0, 1] be
arbitrary. By (8.1) there is C > 0 such that

1

vj(x)
≤ ε

2vi(x)
+

C

vm(x)
, ∀x ∈ G.

Note that

(8.2) vi(x) ≥ εvj(x) =⇒ vm(x) ≤ 2Cvj(x), x ∈ G.
Let χε be the indicator function of the set

{x ∈ G | vi(x) ≤ εvj(x)}.
Let f ∈ V‖ · ‖E,vj

be arbitrary. Since E is solid we have that fχε ∈ EV . For all x ∈ G it

holds that
|f(x)χε(x)|vi(x) ≤ ε|f(x)|vj(x)

and, by (8.2),
|f(x)(1− χε(x))|vm(x) ≤ 2C|f(x)|vj(x).

Since E is solid and ‖f‖E,vj ≤ 1, we obtain that ‖fχε‖E,vi ≤ ε and ‖f(1− χε)‖E,vm ≤
2C, whence

f = fχε + f(1− χε) ∈ εV‖ · ‖E,vi
+ 2CV‖ · ‖E,vm

.

(ii)⇒ (iii) This follows from Theorem 7.11.
(iii) ⇒ (i) (under the extra assumption (A.5)) We will show that V satisfies (8.1) if

D(ω)
EV

(G) is quasinormable (the proof that V satisfies (8.1) if DEV
(G) is quasinormable

is very similar). Let X be a left-invariant frame on G. For h > 0 and j ∈ N we write

‖f‖j,h = sup
l∈N

max
α∈{1,...,n}l

‖Xαf‖E,vj exp
(
−1

h
φ∗(hl)

)
, f ∈ D(ω)

EV
(G).

As D(ω)
EV

(G) is quasinormable, Remark 6.2 and Theorem 7.10(ii) imply that

∀i′ ∈ N ∃j′ ≥ i′, h > 0 ∀m′ ≥ j′ ∀ε ∈ (0, 1] ∃C > 0(8.3)

∀f ∈ D(ω)
EV

(G), ‖f‖j′,h ≤ 1 ∃f1, f2 ∈ EV : f = f1 + f2,

‖f1‖E,vi′ ≤ ε and ‖f2‖E,vm′
≤ C.

Let f ∈ D(ω)
EV ,X

(G)\{0} (Remark 7.9). Choose χ ∈ D(ω)(G) such that fχ 6= 0. Set K =

suppχ. Condition (2.1) and the fact that E is solid imply that g = fχ ∈ D(ω)
EV ,X

(G).
Let B > 0 be as in condition (A.5). Let i ∈ N be arbitrary. By (1.1) there are i′ ≥ i
and C ′ > 0 such that

(8.4) vi(xy
−1) ≤ C ′vi′(x), x ∈ G, y ∈ K.

Choose j′ ≥ i′ and h > 0 according to (8.3). Condition (1.1) yields that there are
j ≥ j′ and C ′′ > 0 such that

(8.5) vj′(xy) ≤ C ′′vj(x), x ∈ G, y ∈ K.
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Let m ≥ j be arbitrary. Another application of (1.1) gives us that there are m′ ≥ m
and C ′′′ > 0 such that

(8.6) vm(xy
−1) ≤ C ′′′vm′(x), x ∈ G, y ∈ K.

Let ε > 0 be arbitrary and choose C > 0 according to (8.3). Let x ∈ G be arbitrary.
The left-invariance of X, the fact that E is solid, condition (A.5), and (1.1) imply that

Lxg ∈ D(ω)
EV ,X

(G) and

‖Lxg‖j′,h ≤ B sup
y∈K

vj′(xy)‖g‖j′,h.

Hence, by (8.5),

‖Lxg‖j′,h ≤ BC ′′‖g‖j′,hvj(x).
Set C0 = BC ′′‖g‖j′,h. Applying (8.3) to f = Lxg/(C0vj(x)), we find that there are
g1, g2 ∈ EV with ‖g1‖E,vi′ ≤ ε and ‖g2‖E,vm′

≤ C such that

Lxg

C0vj(x)
= g1 + g2.

Since supp g ⊆ K, we have that
g

C0vj(x)
= (Lx−1g1)1K + (Lx−1g2)1K ,

where 1K is the indicator function of K. The fact that E is solid, condition (A.5), and
(8.4) imply that (Lx−1g1)1K ∈ E and

‖(Lx−1g1)1K‖E = ‖Lx−1(g1vi′)Lx−1

(
1

vi′

)
1K‖E ≤ B‖g1‖E,vi′ sup

y∈K

1

vi′(xy)
≤ BC ′ε

vi(x)
.

Similarly, by using (8.6) instead of (8.4), we have that (Lx−1g2)1K ∈ E and

‖(Lx−1g2)1K‖E ≤
BCC ′

vm(x)
.

Hence,
‖g‖E
C0vj(x)

≤ ‖(Lx−1g1)1K‖E + ‖(Lx−1g2)1K‖ ≤
BC ′ε

vi(x)
+
BCC ′

vm(x)
.

The result now follows from a simple rescaling argument (note that ‖g‖E > 0 as
g 6= 0). �

Theorem 8.4. Let E be a solid right-invariant (Bf)-space on G and let V = (vj)j∈N
be a weight function system on G. Consider the following statements:

(i) V satisfies the condition

(8.7) ∀i ∈ N ∃j ≥ i ∀m ≥ j ∃C, s > 0 ∀ε ∈ (0, 1] ∀x ∈ G :
1

vj(x)
≤ ε

vi(x)
+
C

εs
1

vm(x)
.

(ii) EV satisfies (Ω).

(iii) DEV
(G) (D(ω)

EV
(G)) satisfies (Ω).

Then, (i)⇒ (ii)⇒ (iii). If in addition E satisfies (A.5) , then (iii)⇒ (ii).
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Proof. The implication (ii)⇒ (iii) follows from Theorem 7.12. The proofs of (i)⇒ (ii)
and (iii) ⇒ (i) (under the extra assumption (A.5)) are similar to those of the same
implications in Theorem 8.3 and are therefore left to the reader. �

Theorem 1.2 in the introduction now follows from Example 8.1 and Theorems 8.3
and 8.4.

Remark 8.5. We believe the implications (iii) ⇒ (i) in Theorems and 8.3 and 8.4
hold without the additional assumption (A.5) but were unable to show this.

Remark 8.6. Let V = (vj)j∈N be a weight function system on G.
(i) The condition (8.1) is always fulfilled if for all i ∈ N there is j ≥ i such that vi/vj
vanishes at infinity.
(ii) The condition (8.1) means that the sequence (1/vn)n∈N is regularly decreasing in the
sense of [4]. We refer to [4] for more information and various characterizations of (8.1).
A slight variant of the condition (8.1) is considered in [32], where the quasinormability
of certain weighted Fréchet spaces of measurable functions is studied.
(iii) The condition (8.7) is equivalent to

(8.8) ∀i ∈ N ∃j ≥ i ∀m ≥ j ∃C > 0, θ ∈ (0, 1) ∀g ∈ G : vθi (g)v
1−θ
m (g) ≤ Cvj(g).

This follows by taking the infimum over ε in the right-hand side of the inequality in
(8.7).
(iv) Let G be connected and non-compact. Let d and (wj)j∈N be as in Example 8.2.
Set (vj)j∈N = (wj ◦ d)j∈N. Then, (vj)j∈N satisfies (8.8) if and only if

∀i ∈ N ∃j ≥ i ∀m ≥ j ∃C > 0, θ ∈ (0, 1) ∀t ≥ 0 : wθi (t)w
1−θ
m (t) ≤ Cwj(t).

We refer to [11, Section 6] for various examples of sequences (wj)j∈N that do (not)
satisfy this condition.
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Séminaire Bourbaki 17 (1976), exp. no. 454, 20–34.
[8] A. Debrouwere, Quasinormable C0-groups and translation-invariant Fréchet spaces of type DE ,
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Bull. des Sci. Math. 102 (1978), 305–330.
[14] H. G. Feichtinger, On a class of convolution algebras of functions, Ann. Inst. Fourier 27 (1977),

135–162.
[15] H. G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and

their atomic decompositions. I, J. Funct. Anal. 86 (1989), 307–340.
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