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QUASINORMABILITY AND PROPERTY (©2) FOR SPACES OF
SMOOTH AND ULTRADIFFERENTIABLE VECTORS ASSOCIATED
WITH LIE GROUP REPRESENTATIONS

ANDREAS DEBROUWERE, MICHIEL HUTTENER, AND JASSON VINDAS

ABSTRACT. We prove that the spaces of smooth and ultradifferentiable vectors as-
sociated with a representation of a real Lie group on a Fréchet space E are quasi-
normable if E is so. A similar result is shown to hold for the linear topological
invariant (©2). In the ultradifferentiable case, our results particularly apply to spaces
of Gevrey vectors of Beurling type. As an application, we study the quasinormability
and the property (Q) for a broad class of Fréchet spaces of smooth and ultradifferen-
tiable functions on Lie groups globally defined via families of weight functions.

1. INTRODUCTION

In this article we study the quasinormability and the property (€2) for spaces of
smooth and ultradifferentiable vectors associated with representations of real Lie groups.
In particular, we will provide criteria to determine when a Lie group invariant locally
convex space of smooth or ultradifferentiable functions possesses one of these linear
topological properties. Our considerations shall cover the important instance of spaces
of Gevrey vectors of Beurling type, which, together with their Roumieu variants, were
introduced and throughly investigated by Goodman and Wallach [20] 2T, 22].

The notion of quasinormability for locally convex spaces is due to Grothendieck [23].
The related property (£2) for Fréchet spaces goes back to Vogt and Wagner [29] [3§]
and may be seen as a quantified version of quasinormability within the class of Fréchet
spaces. Every Fréchet space that satisfies (€2) is hence quasinormable. Both concepts
express approximation properties with respect to families of continuous seminorms. In
this regard, our work here is closely connected with classical results of Garding [17, [18],
Nelson [30], and Goodman [20, Section 3| about approximations by smooth, analytic,
or Gevrey vectors, respectively.

The interest in these two linear topological properties stems, among other things,
from the fact they are often crucial hypotheses for the application of various ab-
stract functional analytic tools. For example, given a surjective continuous linear
map f : X — Y between two Fréchet spaces, the map f lifts bounded sets if ker f
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is quasinormable [5 29], while f admits a continuous linear right inverse if ker f sat-
isfies (2) (assuming that X is nuclear and Y satisfies the so-called property (DN))
[29, 37]. Furthermore, strong duals of quasinormable Fréchet spaces are ultrabornolog-
ical and thus barrelled, whence the Banach-Steinhaus theorem and the open mapping
and closed graph theorems of De Wilde may be applied to them. We also mention that
(Q) plays an important role in the isomorphic classification theory for Fréchet spaces;
in fact, (£2) is one of the key assumptions to verify if one wants to obtain sequence
space representations of function spaces via the structure theory of Fréchet spaces (cf.
[9, 27]).

Quasinormability and (£2) have been studied for a variety of concrete Fréchet function
spaces; see [1l 3] for spaces of continuous functions, [8, 28, 40] for spaces of analytic
functions, and [10} 36] for smooth kernels of partial differential operators. One of the
goals of this work is to provide a systematic method for establishing both properties for
function spaces that are invariant under a Lie group action, which we shall achieve here
viewing such spaces as spaces of smooth and ultradifferentiable vectors of Lie group
representations. We remark that the quasinormability of spaces of smooth vectors
associated with representations of (R", +) was studied by the first author in [§].

We now discuss the content of this article in some more detail. For the sake of
simplicity, we only explicitly state in this introduction our results for spaces of smooth
vectors. All these statements have their counterparts for ultradifferentiable vectors,
but the formulations require introducing some more notation and concepts, which we
choose to postpone for future sections. By a representation of a (real) Lie group G on
a Fréchet space F we simply mean a group homomorphism 7 : G — GL(FE), where
GL(E) stands for the group of topological isomorphisms of £ (in general, we will not
require 7 to be strongly continuous throughout the article). We refer to the preparatory
Sections for more information about representations and the associated spaces of
smooth and ultradifferentiable vectors. In the smooth case, our main results may now
be summarized as follows:

Theorem 1.1. Let w be a locally equicontinuous representation of a Lie group on a
Fréchet space E. Let E*° be the space of smooth vectors associated with .

(1) E* is quasinormable if E is so.
(11) E° satisfies () if E does so.

In fact, we show that part (i) of Theorem [[.I] holds not only for Fréchet spaces
but also for general sequentially complete locally convex Hausdorff spaces. Theorem
[[L1l and its analogue for spaces of ultradifferentiable vectors are shown in Section [6l
The proofs of Theorem [I.I] and its ultradifferentiable counterpart for quasinormability
make use of a standard approximation procedure involving approximate identities [18],
20]. This procedure is revisited in Subsection 5.1l Our analysis of the property (£2)
for ultradifferentiable vectors however requires some new approximation tools. Our
arguments are then based on the so-called parametrix method, a powerful technique
that goes back to Schwartz [34] and was further developed by Komatsu within the
theory of ultradifferentiable functions and ultradistributions [26]. In Subsection
we present an extension of the parametrix method to the setting of ultradifferentiable
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vectors associated with Lie group representations by adapting a key idea from the proof
of the celebrated Dixmier-Malliavin factorization theorem [13].

It turns out that many Fréchet function spaces on a Lie group G may be identified
with spaces of smooth and ultradifferentiable vectors associated with the left- or right
regular representation of G on a suitably chosen Fréchet function space E (usually E
is a weighted space of continuous or integrable functions). This makes Theorem [I]
and its ultradifferentiable analogue into power devices to study the quasinormabiltiy
and the property () for concrete Fréchet function spaces. We carry out this idea in a
very general framework in Sections [7]and 8 We end the introduction by discussing an
important instance of these ideas.

Let G be a Lie group and let V = (v;),en be a pointwise non-decreasing sequence of
strictly positive continuous functions on G satisfying the mild regularity condition

(1.1) VK C G compact Vi e N3j >i,C >0Vr € G,y € K : v;(zy) < Cvj(x).
For p € [1, 00| we define
Dy (G) = {f € C¥(G) | v;Df € I*(G), ¥D € Ulg), j € N},

Here, the Lebesgue space LP(G) is defined with respect to a fixed right-invariant Haar
measure on G, while the elements of the universal enveloping algebra U(g) are to be
interpreted as left-invariant differential operators. We endow Dy, (G) with its natural
locally convex topology, for which it becomes a Fréchet space. If G = (R", +) these
spaces are weighted variants of the classical Schwartz spaces Dp»(R"™) [34] (c.f. [12]).
The sequence space representation Dy»(R") 2 s®¢, [35] implies that Dp»(R") satisfies
(Q2) and thus is quasinormable. Our results from Section [§ yield the following charac-
terization of the quasinormabiltiy and the property (£2) for the spaces Dy, (G) in terms

of V:
Theorem 1.2. Let V = (v;)jen be a pointwise non-decreasing sequence of strictly
positive continuous functions on a Lie group G satisfying (L)) and let p € [1, o0].

(a) Consider the following statements:
(i) V satisfies the condition

Vie Ndj >iVm > jVe € (0,1]3C > 0Vx € G : ! < + .
vi(z) ~ viz) - vm(2)
(12) Dry (G) is quasinormable.
Then, (1) = (i1). If p =00 or G is unimodular, then also (i1) = ().
(b) Consider the following statements:
(i) V satisfies the condition

1
Vie NJj>iVm > j3C,s>0Ve € (0,1]Vz € G : —— < + =

(12) Drz (G) satisfies ().
Then, (1) = (i1). If p = oo or G is unimodular, then also (i1) = ().
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2. SPACES OF VECTOR-VALUED ULTRADIFFERENTIABLE FUNCTIONS ON OPEN
SUBSETS OF R"

In this short section we recall some facts about vector-valued ultradifferentiable
functions on subsets of R™. By a weight function [6] we mean a continuous increasing
function w : [0, 00) — [0, 00) with wjjg1) = 0 satisfying the following properties:

(@) w(2t) = O(w(?)).

(5)/ %dt<oo.

() Togt = o{uw (1))
(0) ¢:]0,00) = [0,00), &(t) = w(e'), is convex.

Since w is increasing, condition () implies that w(t) = o(t).
Example 2.1. The Gevrey weight of order s, s > 0, is defined as
ws(t) = max{0,t* — 1}.
We shall always assume that s < 1, which ensures that wy is a weight function.

Throughout the rest of this article we fix a weight function w and write ¢(t) = w(e')
(cf. condition (&) above). We define
¢" :10,00) = [0,00), ¢"(t) = sup{tu — $(u)}.

The function ¢* is increasing, convex, ¢*(0) = 0, (¢*)* = ¢, and ¢*(t)/t /~ oo on
[0,00). We have that [24] Lemma 2.6]

1 1
(2.1) VC,C,h>03C k>0Vt>0: %qb*(k(t + 1))+ Cot < E(b*(ht) +log C.
The conditions w(t) = o(t) and (1)) imply that

h
Example 2.2. For the Gevrey weights ws, we set ¢s(t) = ws(e’). Then,

| 1
(2.2) Vh,k>03C >0Vj €N : jl < Ck exp (—gb*(hj)) .

wﬂ@@ﬁze(i)i?

Consequently, we have that for all h > 0
( h ) E t
— | ts.
se

oo (Je) -

Let © C R™ be open and let E be a lcHs (= locally convex Hausdorff space). We
denote by csn(F) the family of all continuous seminorms on E. For h > 0 we define
E¥M(O; E) as the space consisting of all f € C>(0; E) such that for all K C © compact
and p € csn(E) it holds that

Prwn(f) = sup sup p(f'@(z)) exp (—l¢*(h|a\)> < oo.

==

rzeK aeN" h
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We endow £<"(O; E) with the Hausdorff locally convex topology generated by the
system of seminorms {px 5| K C € compact,p € csn(E)}. We set

EW(O;E) = lim £°"(0; E).
h—0+
We write £¢)(0) = £@(0;C). The non-quasianalyticity condition (3) means that
£« (O) contains non-zero compactly supported functions (see [6] for more information).

Let A(O) be the space of real analytic functions on ©. The inequality (2.2]) implies
that A(0) C £@)(O).

Lemma 2.3. Let ©,0" C R"™ be open, and let E be a lcHs. Let ¢ : © — ©' be real
analytic. Then, fo @ € E@(O; E) for all f € EV)(O; E).

Proof. This can be shown by adapting the proof of [25] Proposition 8.4.1]; the details
are left to the reader. O

3. SPACES OF VECTOR-VALUED SMOOTH AND ULTRADIFFERENTIABLE FUNCTIONS
ON MANIFOLDS

We shall now discuss vector-valued smooth and ultradifferentiable functions on man-
ifolds. In this section we fix a smooth manifold M of dimension n. In the ultradifferen-
tiable case, we shall always tacitly assume the manifold to be real analytic. Throughout
this article the term regular will mean smooth if the manifold under consideration is
smooth and real analytic if it is real analytic.

Let E be a lcHs and j € NU {oc}. We define C/(M, E) (£« (M; E)) as the space
consisting of all f : M — E such that fop™ € C(p(U), E) (fop™ € EW(p(U), E))
for all regular charts (¢, U) of M. We endow C7(M; E) (€@ (M; E)) with the initial
topology with respect to the mappings

CI(M;E) = C(p(U), E), fr fop™,
(EYNM;E) = EXNp(U),E), frs fop™),

where (i, U) runs over all regular charts of M. We have that C7(M; E) and £ (M; E)
are sequentially complete if E is so. We write C(M;E) = C°(M;E), C/(M) =
C¥(M;C), and E@ (M) = £« (M;C). Note that Lemma 2.3 guarantees that we could
have defined £@)(M; E) just through a given regular atlas, and that then its definition
does not depend on the choice of the particular altlas. The latter is obviously true as
well for CV(M; E).

We denote by CY(M), j € NU {oo}, the subspace of C?(M) consisting of elements
with compact support. We write C.(M) = C%(M) and D(M) = C>(M). We set
DW(M) = E@(M) N C.(M). The non-quasianalyticity assumption (3) again ensures
the non-triviality of D) (M). We endow the spaces C7(M), j € NU{oo}, and D) (M)
with their natural (LF)-space topology. For K C M compact we denote by Dg (D?{U))
for the subspace of C*®(M) (@) (M)) consisting of elements with support in K.

Let E be a lcHs and let f: M — E. For v' € E’ we define the mapping

W, fy: M —C,z— (¥, f(x)).
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If f e C®M;E), then (v, f) € C®°(M) and for each vector field X on M it holds
that X (v, f) = (', X f).

Lemma 3.1. Let E be a sequentially complete IcHs and let f : M — E. Then,
feC®(M;E) if and only if (', f) € C>®(M) for allv' € E'.

Proof. The result is well-known if M is an open subset of R™ (cf. [33] Appendice Lemme
I1]). The general case follows from it by using local coordinates. O

Let U C M be open. A system X = (Xi,...,X,) of vector fields on U is called
a frame on U if (X |z, ..., Xy |z) is a basis of T,U at each point x € U. The frame
X is said to be regular if the vector fields Xy,..., X, are regular on U. For a =
(a1,...,a5) €{1,...,n}, j €N, wewrlteXo‘—Xal---Xa..

Let X be a regular frame on the open subset U C M and let E be a lcHs. Let K be
a compact subset of U and p € csn(E). For j € N we define

pxk;(f) =max max supp(X*f(x)), fecCc>U,FE).

i<7 acllon} ek
For h > 0 we define
1 N
pxcon(f) = sup max supp(X°f(z)) exp (——cb <hy>), [ e Cx(; B).
el ac{loom) nelt 5

For £ = C and p = | . | we write PX K,j = H . ||X,K,j and PX Kwh = H . HX,KMJL‘ Given
p € csn(E), we set V, = {v € E'|p(v) < 1} and write V> for its polar set in £'. the
bipolar theorem yields that for all f € C*(U; F)

(3.1) pxig(f) = sup [V, Allx s pxgwn(f) = sup [V, F)llx g wn
vevp Vevp

The next result will be frequently used throughout this article.

Proposition 3.2. Let U C M be open, let X and Y be reqular frames on U, and let
E be a lcHs.

(i) For all K CU compact and j € N there is C' > 0 such that for all p € csn(FE)

p(fxx; < Cp(f)y.xj Vf e Cl(U;E).
(17) Forall K C U compact and h > 0 there are C, k > 0 such that for all p € csn(E)

P(f)x.kwh < CD(f)y, K wks VfeC*U;E).

Proof. It suffices to consider the case E' = C, the general case follows from it by (B.1]).
Furthermore, by using local coordinates and a compactness argument, we may assume
that U is an open subset of R". The statement (7) is clear. We now show (i7). Let K
be an arbitrary compact subset of U. For j € N we define

\flx.r;= aeglax y sup | X“f(x)|, |flyv,x;= ?1180( sup [Y f(z)], fec=U).

7777 n reK ac 7"'7”}] zeK

There are ag,, € A(U), {,m =1,...,n, such that

=D am@)Vulf)@),  feCU),
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forall ¢ =1,...,n. Since a,, € A(U) there is H > 1 such that

|a'ém|XK]§H]+l j€N>

for all £,m = 1,...,n [20 Theorem 3.1] (which is originally a result due to Nelson
[30]). We claim that for all j € N\ {0}

<.

(32) [flx.kj < (2nH) ]Z () 7= )M f vk fec>=U).

=1

Before we show the claim, let us show how the result follows from it. Let A > 0 be
arbitrary. By (210 there are C, k > 0 such that

(3.3) %¢*(kt>+uog(4nmg &' (ht) +log O, £>0.

S o=

The convexity of ¢*, (B.2), and ([B3]) imply that for all for j € N\ {0} and f € C>*(U)

J

s ep (=50 0)) < 53 (1) nrty =1~ tesp (-0

(4nH)i|f|Y,K,i €xXp (‘%Cb*(hi))

< C'NfIIv i ks

where

C' = C sup(4nH)"! exp (—%qﬁ*(hl)) < 00

leN

see (2.2). This shows the result. We now prove ([B.2)) by induction. The case j = 1
is clear (recall that H > 1). Let j € N\ {0} and assume that (3.2]) holds for all
I=1,...,7. Let f € C®°(U) be arbitrary. For all « € {1,...,n}?, £ € {1,...,n}, and
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x € K it holds that

| XX f ( |<Z|X g ()Y (f)(2))]

N (0
<> Z (l) |t 11| Yo () I3 1

m=1 =0

I
<7’L<HJJrl '|f|YK1+Z()H] PG - 2”HZZ<) (L —1) '|f|YKZ+1)
=1

=1

J .
: 4 7!
G CIETTES » v ST

=1 =1

j .
s +1),
< (2nH) ™! (j!\f|y,K,1 + ; (‘Z n 1) (j— Z)”f‘Y,K,i—H)
Jj+1
+1
< (2nHY Y (j ) )(] + 1= Iy

=1

This shows the induction step. O

Proposition yields the following result.

Proposition 3.3. Let (U;)ic; be an open covering of M, let X; be a reqular frame on
U; for each i € I, and let E be a lcHs.

(1) The locally convex topology of C(M;E) is generated by the system of semi-
norms {px, r,; |t € I, K; CU; compact,j € N,p € csn(FE)}.

(i) f € C®(M;E) belongs to E@)(M; E) if and only if px, i, wn(f) < 0o for all
i€ l, K; CU; compact, h > 0, and p € csn(E). Moreover, the locally convex
topology of E@)(M; E) is generated by the system of seminorms {px, i, wn|i €
I, K; C U; compact,h > 0,p € csn(E)}.

Remark 3.4. All the results from Sections 2] and [ remain valid if we replace the
condition (f) on w by the weaker assumption w(t) = o(t).

Remark 3.5. The theorem of iterates from [16, Corollary 3.19] also yields the set
equality part from Proposition B3(i7), that is, the equivalence of f € £ (M; E) to
having px, k, wn(f) < oo for all of these seminorms. However, it should be noticed
that the method from [16], being based on reducing the Beurling case to the Roumieu
case (see the proof of [16l Proposition 3.2]), does not deliver the required continuity
estimates needed to conclude that the system {px, x,wn|? € I, K; C U; compact, h >
0,p € csn(E)} generates the locally convex topology of £« (M; E).
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4. SPACES OF SMOOTH AND ULTRADIFFERENTIABLE VECTORS ASSOCIATED WITH
LIE GROUP REPRESENTATIONS

Throughout the rest of this article we fix a (real) Lie group G of dimension n with
identity element e. In the ultradifferentiable case, we shall always tacitly view the
underlying manifold structure of G as a real analytic one (cf. Section B). Given a
function f on G and x € GG, we define

f)=f™), Lfl)=fla"y),  Rf(h)=flyx), yeGC.

A frame X = {Xj,...,X,,} on G is said to be left-invariant (right-invariant) if the
vector fields X7, ..., X, are left-invariant (right-invariant). Every left-invariant (right-
invariant) frame on G is automatically regular and corresponds to the left-invariant
(right-invariant) vector fields associated with a basis in the Lie algebra of G. We fix a
left Haar measure on GG. Unless explicitly stated otherwise, all integrals on G will be
be meant with respect to this measure. All vector-valued integrals in this article are
to be interpreted in the weak sense. If E is a sequentially complete lcHs, the integral
Jo f(x)dz exists for all f € Co(G; E). Let E be alcHs. We denote by GL(E) the group
of topological isomorphisms of E. By a representation of G on E we mean a group
homomorphism 7 : G — GL(E). The representation = is called locally equicontinuous
if {m(z)|z € K} is equicontinuous for each compact set K C G. For v € E the
mapping
Yo : G— E, x— 7w(x)v

is called the orbit of v. We denote by E° the space consisting of all v € E such that
v, € C(G, E). The representation is said to be continuous if E = E°.

Remark 4.1. Each continuous representation of G on a barrelled IcHs E is auto-
matically locally equicontinuous, as follows from the Banach-Steinhaus theorem. In
particular, this holds if F is a Fréchet space or an (LF')-space.

Let 7 be a representation of G on a lcHs E. Let j € NU {oc}, We define E7 (E“)
as the space consisting of all v € E such that v, € C(G,E) (v, € E¥(G, E)) and
endow this space with the initial topology with respect to the mapping

E* — CV(G,E), v+ v,
(E@) — EW(G,E), v 7).
Note that E’/ and E“) are sequentially complete if F is so. Let X be a regular frame
on G. Let K C G be compact and p € csn(E). We write px i j(v) = px.i;(Vo),
Jj € N, and px gwr(v) = pxgwh(w), b > 0, for v € E*. Proposition im-

plies that the locally convex topology of E* is generated by the system of seminorms
{rx.x;j| K C G compact,j € N,p € csn(E)}. Moreover,

E® = {v € E®|px xwn(v) < oo for all K C G compact,h > 0,p € csn(E)}

and the system of seminorms {px r..n| K C G compact, h > 0,p € csn(E)} generates
its locally convex topology.
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Let m be again a representation of G on a IcHs E and let X be a left-invariant frame
on G. For a € {1,...,n}?, j € N, we define
X% = X%,(e), v e E™.
Since X is left-invariant, we have that
(4.1) Yxay = X Y, v e E™.
Let p € csn(F). For j € N we define

px,;(v) =max max p(X%), ve E™
i<j ae{l,...,n}?

and for h > 0 we define

1 * . 00
(4.2) Pxwn(v) =sup max p(X%v)exp <——¢ (h])) : veE”.
jeN ae{l,...,n}I h
Proposition 4.2. Let w be a locally equicontinuous representation of G on a lcHs FE
and let X be a left-invariant frame on G.
(1) The locally convex topology of E> is generated by the system of seminorms
{rx;|j € N,p € csn(E)}.
(i) v € E= belongs to E“) if and only if px.wn(v) < oo for all h > 0 and p €
csn(E). Moreover, the locally convex topology of E“) is generated by the system
of seminorms {pxwn|h > 0,p € csn(E)}.

Proof. In view of ([1l), this is a consequence of Proposition and the fact that 7 is
locally equicontinuous. O

Example 4.3. For the Gevrey weights w,, Example implies that the system of
seminorms {px ., n|h > 0,p € csn(E)} is equivalent to {px .|k > 0,p € csn(E)},
where o )
XCV
woh = SU max v e B
pX b ]EII\T) ac{l,...n} h]]”/s

Hence, {pxw.n|h > 0,p € csn(E)} also generates the locally convex topology of
E@) . These spaces and their Roumieu type variants were considered by Goodman and
Wallach [20] 2], 22] (cf. the introduction).

Let E be a sequentially complete lcHs. For f € C(G, E) and x € C.(G) we define
their (left-)convolution as

* L)dxe = g dG.
(f * )z /f x(y™ ) /Gf(:vy)x(y)y, v e
Note that

f*XZ/Gf(y) LyxdyzéRyfx(y‘l)dy-

Let 7 € NU{oo}. If x € C¥(G) or f € C/(G, E), then f*y € C'(G,E). Let X be a
vector field on G. If X is left-invariant, then

X(f*x)=f*(Xx), [feC(G,E),xeClqG),
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while if X is right-invariant, then
X(fx)=(Xf)xx, feUG E),xeClq).
If E = C, these statements hold under the weaker assumption that f € L (G).

loc
Let 7 be a representation of G on a sequentially complete lcHs E. For v € E° and

X € C.(G) we define
v = [ alx(e™)da

Note that Vi), = Y * x. Consequently, for j € NU {oo}, it holds that II(x)v € E7 if
x € CI(Q).
Let X be a regular frame on G. For j € N we define

[fllx; =supmax max [X“f(x)],  feCF(G).
zeG =7 a€e{l }

----- n

For h > 0 we define

[l = supsup max _|Xaf<x>|exp(—1¢*<hj>), fe @),

zeq jeN a€{l,...,n} h

Lemma 4.4. Let w be a locally equicontinuous representation of G on E and let X be
a reqular frame on G. Let K, L C G be compact and p € csn(FE).

(1) There is q € csn(FE) such that for all j € N there is C > 0 such that
pxxi(I(x)v) < Clixllx a(v), Vv € E°, x € C(G) with supp x C L.
(17) There is q € csn(E) such that for all h > 0 there is C' > 0 such that
px.xwn((X)v) < Ol X|Ixw0nq(v), Vv e E° x € Dp.
Proof. By Proposition we may assume that X is left-invariant. Hence, for all
veEE’ x€D(G), and a € {1,...,n}, j €N, it holds that

X000 = X (10 * X) = Yo * (XY) = /GRy% Xx(y~)dy.

The result now follows from the fact that 7 is locally equicontinuous. U

5. SOME AUXILIARY RESULTS

5.1. An approximation result. We fix a regular chart (¢, U) on G with ¢(e) = 0
and B(0,1) C ¢(U). We define S. = ¢~ 1(B(0,¢)) for ¢ € (0, 1].

Lemma 5.1. Let X = (X1,...,X,) be a smooth frame on G and let E be a lcHs. For
all K C G compact there is C' > 0 such that for all p € csn(FE) and ¢ € (0, 1] it holds
that

sup sup p(f(z) — f(zy)) < eCsup sup max p(Xif(zy)),  f€C¥(G;E).

z€K yEeS: zeK yeS; =1n
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Proof. 1t suffices to consider the case E' = C, the general case follows from it by (B).
Furthermore, we may assume that X is left-invariant. In this case, we will show the
following stronger property: There is C' > 0 such that for all € € (0, 1] it holds that

sup | f(x) — f(zy)| < eC Sup  max, [ Xif(zy)l,  feC¥(G)zel.

yeSe  yeS s

Set ¢ = ¢~ ! and denote by 1,0; the pushforward of 9; by #, i = 1,...,n. There is
C > 0 such that

61 max [@0)f(0)] <C max [XfW). S €CT(E@)ye s

Let f € C*(G) and = € G be arbitrary. The mean value theorem implies that for all
€ (0,1]
sup | f(z) — f(zy)| = sup [(Ls-1 f)(€) = (Lo f)(y)]

yESe YyESe

= sp (Lo f) 0 0)(0) = (Lot f) 0 v)(a)]

z€B(0,¢)

<ey/n sup max 0;((La—1f) 0 )(2)]

teB(0,1) =

= ey/nsup max |(140) (Lo f) ()]

yeS =hes n

Applying (5.1)) to L,-1 f and using the fact that X is left-invariant, we find that
sup | f(x) — f(zy)| < eCvnsup max [Xi(Ly-1f)(y)| = eCv/nsup max [X;f(xy)|.

yESe yeSy = yeS =

U

We are ready to show the main result of this subsection. For the Gevrey weights wy
it may be considered as a quantified version of [20, Theorem 3.2 and Corollary 3.1].

Proposition 5.2. Let © be a representation of G on a sequentially complete lcHs FE
and let X be a regular fmme on G. Let (X:)ec(oq] € D(G) be such that x. > 0,
supp X C Se, and [, Xe(z)dz =1 for all ¢ € (0,1].

(1) For all K C G compact and j € N there is C > 0 such that for all p € csn(E)
and € € (0, 1]

px.x,j(v —(x:)(v)) < eCpx rsy,j41(v), ve E>.

(i7) Suppose that (x<)ec01) € DW(G). For all h > 0 there is k > 0 such that for
all K C G compact there is C > 0 such that for all p € csn(E) and ¢ € (0, 1]

Px.kwhr(v—I(x:)(v) < eCpx ks, wi(v), ve EW,

Proof. We will only show (iz) as the proof of (¢) is similar but simpler. By Proposition
B2(#) we may assume that X = (Xi,...,X,) is right-invariant. Condition (2.1))
implies that there are C’, k > 0 such that

(5.2) %(j)*(k(t—i— 1) < %w(m) FlogCl,  t>0.
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Let K be an arbitrary compact subset of G.
(5.3) sup sup p(f(z) = f(ay)) < eCsup sup max p(X;f(zy)), V€ C¥(G;E).

€K yeS, zeK yesy i=1,...

Let p € csn(E), € € (0,1], and v € E) be arbitrary. Since X is right-invariant, we
find that for all x € G and « € {1,...,n}/, j € N,

X = M) (@) = X990 — % xe) () = X%(2) — (X %) * xe(2)
= [ (¥*u@) = X3 ) o)
Hence, by applying (5.3]) to X*v,, we obtain that

sup p(X* (7o — M) (2)) < eCsup sup max p(X; Xy, (zy)).
zeK zeK yeS] i=1,...,n

By combining the latter inequality with (5.2]), we find that

px.Kwh(v—H(xe)(v) < eCC'px ks wr (V).
]

5.2. The parametrix method. Let E be a sequentially complete IcHs. Given a
power series P(z) = > 7 a;z", a; € C, we formally define

D)f = iaif(i), feC™R;E).
1=0

An entire function P(z) = Y = a;2" is called an ultrapolynomial of class (w) if there
is H > 0 such that

sup |P(z)]e (=) < o0,
zeC

In such a case, by using the Cauchy estimates, we find that

7
sup |a;|exp | Ho™ | — < 00.
aplafexo (197 (4 ) )

Hence, (2.1)) and the convexity of ¢* imply that for all A~ > 0 there is k£ > 0 such that

(5.4) Sup exp < ) Z |a;| exp < (k(i +]))) < 0.

JjeN

Given an open set © C R™ and h > 0, we set D*"(0©) = D(O) N EMR"). We
denote by D'(R) (D' (R)) the dual of D(R) (D“)(R)). We will assume the reader is
familiar with the basic aspects of the spaces D'(R) and D' (R); see [6], [34] for more
information. The following standard result is fundamental for us.

Proposition 5.3. Let r > 0.
(i) For all j € N there are a polynomial P and vg,v¢; € CI((—r,r)) such that
P(D)bo + ¢y = & in D'(R). |
(it) For all k' > 0 there are an ultrapolynomial P(z) = > .~ a;z" of class (w) and
Yo, Wy € DUF ((=r, 7)) such that P(D)y + ¥y = 6 in D' (R).
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Proof. (i) Let H be the Heaviside function, that is, the indicator function of [0, c0).
Choose 1 € D((—r,r)) such that ¢y = 1 on a neighborhood of 0. Then, P(z) =

A2, () = EapH(2)(r), and ¢(x) = P(D)(ErmH(@)(1 — ¢(x))) verify all

requirements.

(27) This is shown in [19, Corollary 2.6]. O
Let X = (Xy,...,X,) be a left-invariant frame on G and let E be a sequentially

complete IcHs FE. For h > 0 we define E;J(’h as the space consisting of all v € E*°

such that px.»(v) < oo for all p € csn(E). We endow Ey" with the locally convex

topology generated by the system of seminorms {px ., |p € csn(E)}. Note that Eg"
is a sequentially complete lcHs. Let P(z) = >~ ;2" be an ultrapolynomial of class
(w). Let h > 0 be arbitrary and choose k£ > 0 such that (5.4) holds. Then, for all

j =1,...,n the linear mapping
P(X)): Bg* = Bg", P(Xjv=Y a; Xl
i=0

is continuous, and the series P(X;)v = > 7/ aiX;:v converges absolutely in E;J(’h for
each v € E;’(k Our goal in this subsection is to show the following parametrix type
result.

Theorem 5.4. Let X = (Xy,...,X,,) be a left-invariant frame on G and let U be an
open neigbhorhood of e.

(i) For all j € N there are a polynomial P and xo € CI(U), 6 = (64,...,0,) €
{0, 1}", such that for allv € E*

(5.5) o= H(xo)(Ps,(Xn) - Po(X1)),

0e{0,1}n
where Py = P and P, = 1.
(17) For all hyh' > 0 there are k > 0, an ultrapolynomial P of class (w), xg € D(U)
with || xo||x.wn < 00, 0 € {0,1}" such that (G3) holds for all v € EY", where
Py = P and P, =1, and the linear mapping

Py, (X)) Pp (X1) : B" — EY"
is continuous for each 6 € {0,1}".

We will show Theorem (.4l by combining Proposition with the aid of a technique
due to Dixmier and Malliavin [13]. We need various notions and results in preparation.

Lemma 5.5. Let E be a sequentially complete lcHs.
(i) Let P be a polynomial and 1,11 € Ce(R) such that P(D)ig+1; = & in D'(R).
Then, for all f € C®(R; E)
(5.6) f=(P(D)f) o+ fxtr.
(1) Let P(z) =Y o0y ;2" be an ultrapolynomial of class (w) and vy, ¥1 € Ce(R) such
that P(D)y + 11 = 0 in D'“(R). Let f € C®(R; E) be such that P(D)f =
S, aif® converges absolutely in C(R; E). Then, (5.6) holds.
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Proof. We only show (i) as the proof of (i) is similar. Recall that f, = (v/, f) € C*(R)
for v € E’. Note that P(D)fy =Y "ty fé,") converges absolutely in C(R) and that
P(D)fy = (', P(D)f). In D'®(R), we have that

fU’ = fv/ * (5 = fvl * (P(D)¢0) —+ fv/ * wl = (P(D)fv/) * ¢0 -+ fvl * ’Lpl.
Since P(D) fy, fr € C(R) and ¢y, 1 € C.(R), the equality f,, = (P(D) fy)*to+ fur*1
in fact holds pointwise. We have that

(P(D)fv’) * ,QDO = <'U,>P(D)f> * ,QDO = <'U,>P(D)f * ¢0>
and
fv’ *'le = <U,>f*¢1>-

Consequently, we find that for all ' € E’

(W', ) = fu = (P(D) fur) % o + fur * 1 = (V', (P(D) f) % bo + f * 1),
which implies that f = (P(D)f) * 1o + f * ¢y by the Hahn-Banach theorem. O

We denote by g the Lie algebra of G and by exp : g — G the exponential mapping.
We identify each X € g with its associated left-invariant vector field on G, that is,

d
(5.7) Xf2) = 2 flwexp(tX))l—o, € C¥(G)xel.
Let 7 be a representation of G on a sequentially complete IcHs E. For X € g we define
the representation
mx : (R, +) = GL(E), x(t) = m(exp(tX)).

We denote the orbit of v € E under mx by 7vx,. Note that vx,(t) = v, (exp(tX)).
Hence, 7x, € C(R; E) (yx, € C®(R; E)) if v € E° (v € E®). In accordance to
Section Ml we set

My (f)o = /R vxoO)f(=)dt, € Cu(R),v e E°.

It holds that
VX Ix (o = VX * [, f€C.(R),veE"
For i € N we write X? = X --- X, where X occurs i times, and set
Xy = X'y,(e), ve B
We have that
VX, Xiv = 7%?07 veE™.

Given a power series P(z) = > "2 a;2", we formally define
P(X)v = ZaiXiv, ve E™.
i=0

Lemma 5.6. Let X € g and let ™ be a locally equicontinuous representation of G on
a sequentially complete lcHs F.
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(i) Let P be a polynomial and 1,11 € Ce(R) such that P(D)ig+11 = & in D'(R).
Then, for allv € E*

(5.8) v = Ty (o) P(X)v + Iy (41 )v.

(1) Let P(z) = Y 25 a;2" be an ultrapolynomial of class (w) and vy, € C.(R)
such that P(D)y + 1y = 0 in D' (R). Let v € E* be such that P(X)v =
Yo g @i X' converges absolutely in E. Then, (5.8) holds

Proof. Since 7 is locally equicontinuous, our assumption yields

WXU ZCLNXU ZCLNXXZ

converges absolutely in C'(R; ). Moreover, it holds that P(D)vyx,, = vx,p(x). Hence,
Lemma implies that

VX = (P(D)WX,U)*#JO#LWX,U*% = ’YX,P(X)U*TPO-F”YX,U*% = VX Ix (o) P(X)v T VX Iy (¢1)v-
The result now follows by evaluating the above equality at 0. O
Let X = (Xi,...,X,) be a basis of g and consider the mapping
O:R" = G, P(ty,...,t,) =exp(t1 X1) - exp(t,Xy).

Then, there is ry > 0 such ® : (—rp,79)¢ — G is a regular diffeomorphism onto its
image.

Lemma 5.7. Let X be a basis of g and let ®,rq be as above, let ™ be a representation
of G on a sequentially complete IcHs E, and let r < rg.

(i) Let j € N. For all ¥y,... ¢, € Ci((—r,r)) there is x € CI(D((—r,r)™)) such
that

(5.9) Iy, (1) -+ Iy, (n)o = I(Y)v, v e E".

(i3) For all h' > 0 there is k' > 0 such that for all 11, ... b, € DK ((—r,1)) there
is x € D(®((—r, 7)) with x o ® € D" ((—r,r)") such that (59) holds.

Proof. We only show (i) as the proof of () is similar. Condition (2.1]) yields that there
are C, k' > 0 such that

1 * 1 *
07 (K1) + (log2)t < 507 (W't) +1ogC, £20.
This inequality together with the convexity of ¢* implies that

(5.10) foeDM (=), fFeEN((—rr)"), 0 € DN ((—r, ).

Let 4y,...,1, € D“F((=r,r)) be arbitrary. Then ¢ ® --- ® ¥, € D¥ ((—r,1r)")
because ¢* is convex. Note that there is a real analytic function J : ®((—rg,79)") = R
such that

(t)dt = /Gf(®‘1(x))¢(®‘1(ff))J(ff)d% f e CRY E), ¢ € D((=ro.70)")-
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Set x(2) = (V1@ @y,) (=P () J(z), z € G. Since Y, @ - - - @, € DUF ((—r,r)")
and J o ® € A((—r,7)") C E“¥ ((—r,r)"), (5.10) implies that x o ® € DM ((—r,r)™).
For all v € E° it holds that

Iy, (¢1) -+ - My, (Yn)v =

T

Yo (P(1) (1 @ - - @ 1y,) (—t)dt

n

Yo(@) (W1 @ - ® ) (=07 (2)) T () dx

- /G (@) (@)dz = T1(Y)e.

I
S

O

Proof of Theorem[5.4). This follows from Proposition [5.3], and Lemmas and [5.7] (for
(77) we also use Proposition [3.2(i7)). O

Remark 5.8. Cartier also employed the parametrix method to study smooth vectors
in [7]. Our applications to be discussed in the following two sections will require the
more explicit form we have treated in this subsection.

6. MAIN RESULTS

We are ready to study quasinormability and the property (£2) for the spaces £ and
E®.

6.1. Quasinormability. Given a lcHs F', we denote by Uy(F) the family of all abso-
lutely convex neighborhoods of 0 in F' and by B(F') the family of all bounded subsets
of F. Given p € csn(F) we write V, = {v € F|p(v) < 1} € Uy(F'). The space F' is
said to be quasinormable [29] p. 313] if

VU € Uy(F)3IV € Uy(F)Ve € (0,1]IB € B(F) : V CeU + B.
We are ready to prove the first main result of this article.

Theorem 6.1. Let 7w be a locally equicontinuous representation of G on a sequentially
complete lcHs E.

(1) E* is quasinormable if E is so.

(ii) E“ is quasinormable if E is so.

Proof. We only show (i7) as the proof of (i) is similar. Let X be a real analytic frame
on G. By Proposition B3((i4) it suffices to show that
VK C G compact,h > 0,p € csn(F)3IL C G compact, k > 0,q € csn(F)
Ve € (0,1]3B € B(E“W) : V, CeV, + B.

9X,L,w,k PX,K,w,h

Let K C G compact, h > 0, and p € csn(E) be arbitrary. Take (xc)cc01] € D™ (G) as
in Proposition 1.2l Set L = K S;. Hence, there are C, k > 0 such that for all € € (0, 1]

Pxkwn(®—(x) (@) < eCpx pwi(v), veE®.
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Furthermore, Lemma FL4{(i7) implies that there is r € csn(E) such that for all € € (0, 1]

Px, Ko (T(x)v) < [IXellxwnr (V) veE"
Since F is quasinormable, there is s € csn(FE) such that
(6.1) Vo >03dA e B(E) : V; TV, + A.

Set ¢ = max{s, Cp} € csn(E). Let € € (0, 1] be arbitrary. Choose A € B(E) according
to (6.10) with § = €/(2||xc/2llxwn)- Set B = {II(x./2)(u) | w € A}. Note that B €
B(E“) by Lemma BA(ii). Let v € Vg, be arbitrary. There is some u € A such
that r(v —u) < e/(2||xe/2llxwn). For w = TII(x./2)(u) € B we obtain that
Px Kk wh(V = W) < pxrwn((vV = (xe/2) () + px gwn(I(Xe/2) (0 — w))
eC
< TPX,L,w,k(U) + |IXe 2]l xwnr (v —u) <e,

which shows the result. U

6.2. The condition (2). A Fréchet space F' is said to satisfy the condition (£2) [29,
p. 367] if

C
VU € U(F) 3V € Uo(F)YW € Up(F)3C,5 > 0V € (0,1] : V C el + W,

Remark 6.2. By [29, Lemma 26.14] a Fréchet space F' is quasinormable if and only if
VU € Uy(F) IV e Up(F)VIV € Uy(F)Ve € (0,1]3C >0 : V CeU + CW.

Hence, (€2) may be considered as a quantified version of quasinormability.

The second main result of this article reads as follows.
Theorem 6.3. Let 7 be a locally equicontinuous representation of G on a Fréchet space
E.

(1) E* satisfies () if E does so.
(ii) E“ satisfies () if E does so.

We first prove Theorem [6.3(¢). This shall be done by using a refinement of the
technique employed in the proof of Theorem For 7 € N we write

I£1l; = sup max|[f@ (@),  feC=(R").

teRn |a|<j

Proof of Theorem[6.3(i). We use the same notation as in Subsection 0.1l Let X be a
smooth frame on G. Pick ¢ € D(B(0,1)) such that ¢ > 0 and [, ¥(t)dt = 1. Set
. (t) = e ™p(t/¢e) for € € (0,1]. Define x. € D(G) via

. Pe ©

Xe = 4 .

14 0 ¢l L2

Then, (Xc)sc(0,1] satisfies the assumptions of Proposition[5.2l There is a positive smooth
function J on U such that

[ rwat= [ fe@)i@as, f e D).
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Hence, we obtain that for all € € (0, 1]
1
SUP;e,-1(B(0,1)) J(g)

Proposition B.2(7) therefore implies that for all j € N there is C; > 0 such that for all
e e (0,1]

| 0 @l L1(c) >

(6.2) Ixellx; < Cjlleell; <

We are ready to show that E* satisfies (€2). By Proposition B:3(i) and rescaling, it
suffices to show that

Gl
gl

VK C G compact,j € N,p € csn(E) Jg € csn(E) VL C G compact, m € N,r € csn(E)

3C:,Cy, s > 0Ve € (O, 1] -V

9X,KSq,j+1

Q é?Clv

Cy
pxg T g_sv

TX,L,m

Let K C G compact, j € N, p € csn(FE) be arbitrary. Proposition [5.2)(7) implies that
there is C' > 0 such that

px.x,;(v — H(x:)v) < eCpx ks, j+1(v), vE E™.
By Lemma [.4)(7), there is p’ € csn(E) such that for all € € (0, 1]

px i ((xe)v) < Ixellx ' (v),  ve B
Since F satisfies (Q), there is ¢ € csn(F), ¢ > max{p, p'}, such that

!

C
(6.3) Vr' € esn(E)3C, s >0V € (0,1] : V, TV + EVW.

Let L C G compact, m € N, and r € csn(E) be arbitrary. Lemma [£.4)(7) implies that
there is v’ € csn(FE) such that for all € € (0, 1]

rx L (IT(X:)0) < [IXellxm?’(v), v € B
Choose ', s' > 0 according to (6.3)). Let v € Vi s ., be arbitrary. By (6.3) we have
that for all 6 € (0, 1] there is ws € C'6~'V,+ such that v—w; € 6V,,. Foralle,6 € (0,1]
it holds that
px.x(v = (xe)ws) < px (v = T(xe)v) + px.re (T(xe) (0 — ws))
< eC + [Ixellx 2 (v — ws)

<oy Gillvls,
gl

and caily|
Pz (T ws) < el (w5) < =1

We set s =m + (j + 1)s’ and 6. = &/ for e € (0,1]. Then, for all € € (0, 1]

/
COYny,

TX,L,l"

v = (v—=(xe)ws.) + Hxe)ws. € e(C+ Cl[¢]1;)Vix 1, +
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Next, we show Theorem [6.3(i7). Our proof is based on the parametrix method
presented in Subsection We need two results in preparation.

Lemma 6.4. Let F; O F, O --- be a decreasing sequence of Fréchet spaces with
continuous inclusion mappings. Set F' = ﬂjeN F; and endow F' with its natural Fréchet
space topology, i.e., the initial topology with respect to the inclusion mappings F' — Fj,
j € N. Suppose that

Vi e N,U GZ/{O(E) dj >,V EUO(Fj)Vm >, W EUO(Fm)
AC, s > 0Ve € (0,1] : VgaU—l—g—Cs’W

Then, F satisfies ().

Proof. This follows from the Mittag-Leffler theorem [39] Theorem 3.2.8], see [10, Lemma
2.4] for details. 0

Our next step is to show a quantified approximation result for compactly supported
ultradifferentiable functions on G. We first prove an analogous result for periodic
ultradifferentiable functions on R™. Let a > 0. We denote by C°(R") the Fréchet
space consisting of all smooth aZ"-periodic functions. For A > 0 we write

1l = s sup |70 exp (<o (hlal) ), f € C(E)

teR™ aeN™

Lemma 6.5. Let a > 0. Then,

Vh>03k >0Vl >03C, s > 0Vf € CORM), || f]lur < 1
C
Ve € (0,1]3L € CPRY : f — fillun < and |felloa < <.

Proof. Define the Fréchet space

S(Z") = {c = (ca)aczn € C*"| sup |ca|lalf < oo, Vk € N}.
a€Z™

Given f € C°(R™), we define its Fourier coefficients as

27

floy=1 [(soe e aer

Then R R
FiCFR") = s(Z"), f = f=(f(a))aezn

is a topological isomorphism whose inverse is given by

(6.4) FUOb) =D cac® ™, = (Ca)aczr € s(Z"),

aEZ™

and the series in the right-hand side is absolutely convergent in C'°(R"). For h > 0

we define
|clown = SuZp |ca\e%w(‘°‘|), c € s(Z).
ac/Zm



SPACES OF SMOOTH AND ULTRADIFFERENTIABLE VECTORS 21

By using (210), a standard argument shows that for all A > 0 there are C, k > 0 such
that

Flop SClflop, [ €CERY),
and that for all A > 0 there are C, k > 0 such that
IFHMwn < Clflog,  f € CERY.

Since F : CP(R™) — s(Z") is an isomorphism whose inverse is given by (6.4), it
therefore suffices to show that

Vh > 03k >0VI>03C,s>0Vce s(Z"),|c|lor <1
Ve € (0,1)3c. € s(Z") : |c —ce|wp <€ and |c:|w; < g

Let h > 0 be arbitrary. Set k = h/2. Let [ > 0 be arbitrary. Let ¢ € s(Z") with
|clwkx < 1 be arbitrary. For ¢ € (0,1] we choose a number N, € [0,00) such that
w(N:) = hlog(1/e). We define ¢. = (ccn)aczn € S(Z") by cco = ¢4 if |a] < N. and
Ce.o = 0 otherwise. Set s = h/l. Then, for all € € (0, 1] it holds that |¢ — c.|,n < € and
|Ce]ws < e7°. O

Lemma 6.6. Let X be a real analytic frame on G. Let K and L be compact subsets
of G such that K C int L. Then,

Vh>03k>0VI>03C,s>0Yf € Dg, || fllxwr <1

C
Ve € (0,1]3f. € D :||f — fellxwn <€ and || f]xwi < =

Proof. By using local coordinates, a partition of the unity argument, and Proposition
B2(#i), we may assume that G = R" and that X = {0,...,0,}. Choose a > 0 such
that L C (—a,a)”. Let h > 0 be arbitrary. Condition (2.1I) yields that there are
C’, h' > 0 such that

1 1
07 (0't) + (log2)t < 5. (t) +1ogC", 20,

Pick k > 0 according to Lemma 6.5 with h = /. Let [ > 0 be arbitrary. By (21]) there
are C" I’ > 0 such that

1 1
0 (') + (log2)t < 70" (1t) +log C", ¢ 20.
Lemma implies that there are C, s > 0 such that
(6.5) VF € C®), | fllox < 195 € (0,1 3f, € C2(RY) -
C

||f_fa||w,h’ S £ and ||fa||w,l’ S ;
Let f € Dg with || f||lux < 1 be arbitrary. Denote by f, the aZ™-periodic extension of
f and note that || fo|lwr = || fllwx < 1. Hence, (6.5)) yields that for all € € (0, 1] there
is foe € C2°(R™) such that || fy — focllow < e and ||focllor < Ce™®. Let x € D(Lw) be
such that y = 1 on a neighborhood of K. Set f. = xf.. € Dr. Then,

Hf - fEHw,h = HX(fa - fa,E)Hw,h < C,HXHw,h’Hfa - fa,EHw,h’ < C/HXHw,h’E
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and e
Xlw,l
1ol = el < Ol ol < CE0 st

The result now follows by rescaling. U

Proof of Theorem[6.3(i1). Fix a left-invariant frame X on G. By Corollary [L.2(ii), we
have that B« = M=o E‘)"(’h as locally convex spaces, where we endow the right-hand
side with its natural Fréchet space topology. By Lemma and rescaling, it therefore
suffices to show that

Vh > 0,p € csn(E) Ik > 0,q € esn(E) VL > 0,7 € csn(E) ICy, Cy, s > 0

Yo € BYY gx wr(v) < 1Ve € (0,1) Fv. € B -

C
pX,w,h(U - Us) S 015 and T’X,w’l(’ug) < —2

=
Fix compact subsets K and L of G with e € int K and K C int L. Let h > 0 and

p € csn(E) be arbitrary. By Corollary [6.6], there is A’ > 0 such that

(66) Vi > OHC/, s > OVf c DK, HfHX,w,h’ <1Ve e (O, 1] E|f5 € Dy :
C/

gs’’

If — fellxwn <e and || fellxwi <

By Proposition [5.4((i7), there are k > 0, x; € D with ||x;||xwn < 00, and continuous
linear mappings 7j : E;J(k — FE,j=1,...,2" such that

277,
(6.7) v="> T)Tiv), veEg"
j=1

Lemma [£4(i7) implies that there is p’ € csn(F) such that

pX,w,h(H(X)w) S ||X||X,w,hp/(w)> w e E> X € DL-
Since E satisfies (Q2), there is ¢’ € csn(F), ¢ > p/, such that

(6.8) Vr' € csn(E)3C", 8" > 0Vw € E,¢'(w) <1V6 € (0,1 3ws € E :
p(w—ws) <§ and 7'(ws) < 57:

Pick ¢ € csn(FE) such that for all j = 1,...,2" it holds that
¢(T3(0) < axwplv),  veER"

Let [ > 0 and r € csn(E) be arbitrary. We may assume that | < h. Lemma F.4)(i7)
implies that there is r’ € csn(F) such that

rxwi(HO)w) < lIxllxwir’(w),  we€ E,x € Dr.
Choose C’,s' > 0 and C”, " > 0 according to (6.6) and (6.8), respectively. Let v € Eyg*
with ¢x . x(v) < 1 be arbitrary. Condition (6.6) and a rescaling argument imply that
there is C" > 0 such that for all j = 1,...,2" and ¢ € [0, 1) there is x;. € D, with
IX; = Xjellxwn < € and [[xjellxws < C"e™. Note that ¢'(T;(v)) < gxwr(v) <1 for
all j =1,...,2" Hence, by (6.8)), we have that for all j =1,...,2" and 6 € [0,1) there
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is wjs € E with p/(Tj(v) — w;5) < and 7' (w;s) < C"6~*". Equation (6.7) gives that
for all €,6 € (0, 1]

27L

PXwn(V — Z I1(x.e)w;,6)

Jj=1

= px,w,h(z ()T (v) — (x5 )w;is)

< pr,w,h(H(Xj = X3.)T5(0)) + Px .m0 ) (T3 (v) — w;5))

27L

< NG = Nellxawont (T (0)) + X ellxwnp (T3 (0) = wjs)
j=1
2TLC///
<2"e 4+ ——§
88
and
2" 2" 2TLC//C///
rxwt(Y TG ws6) < NG ellxwar (w)s) < s
j=1 j=1

We set s = s’ + (s’ + 1)s” and ., = £+ for € € (0, 1]. Then, for all £ € (0, 1] we have
that Z?; T1(x;)w;s. € B3’ by Lemma E4l(i). Moreover,

2n
PXwn(V = Z M(xje)wjs.) < 2" (14 C")e
j=1
and
27L
2”0//0///
’/’X,w,l(z H(Xjﬁ)wj,(;s) S T

J=1

O

Remark 6.7. We do not know whether it is possible to use the same more elementary
technique as in the proof of Theorem [6:3(7) to show Theorem [6.3)(¢7). The problem is
that we are unable to find a family (x:)cc(01] D@ (@) that satisfies the assumptions
of Proposition and suitable polynomial type bounds in € with respect to the scale

of norms (|| - ||x.wn)rs0 (cf. (62)).

7. RIGHT-INVARANT SPACES OF SMOOTH AND ULTRADIFFERENTIABLE FUNCTIONS

A lcHs F is said to be a right-invariant locally convex Hausdorff function space (=
right-invariant lcHfs) on G if E is non-trivial and satisfies the following four properties:

(A.1) E is continuously embedded into L] (G).
(A2) R, (E) C Eforall z € G.
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(A.3) For all K C G compact and p € csn(FE) there is ¢ € csn(£) such that
supp(faf) < alf),  VfEE
re

(A4) ExC.(G) C E and for each f € E the mapping
Ce(G) = B, x = [ X

1S continuous.

Conditions (A.1)-(A.3) imply that the right-regular representation
mr: G — GL(E), g — mr(g) = R,

is well-defined and locally equicontinuous. Condition (A.4) means that E is a right-
module over the (left-)convolution algebra C.(G). A Banach space that is a right-
invariant lcHfs on G is simply called a right-invariant (Bf)-space on G. Our definition
of a right-invariant 1cHfs is inspired by the Banach function spaces used in the coorbit
theory of Feichtinger and Grochening [15] as well as the translation-invariant Banach
spaces of distributions from [12].

Example 7.1. Let p be a right-invariant Haar measure on G. The Banach spaces
spaces LP(G) = LP(G,p), 1 < p < oo, are right-invariant (B f)-spaces. We define
L°(@) as the space of all f € L>®(G) such that for all £ > 0 there is a compact subset
K of G such that

esssup | f(z)| <e
zeEK

and endow L°(G) with the subspace topology induced by L>®(G). Then, L°(G) is a
right-invariant (Bf)-space as well. Weighted variants of the spaces L*(G), p € {0} U
[1,00] (cf. Introduction) will be discussed in the next section.

Remark 7.2. If E is ultrabornological and (A.1) and (A.2) hold, then (A.3) is auto-
matically satisfied, as follows from the closed graph theorem of De Wilde |29, Theorem
24.31] and the Banach-Steinhaus theorem.

Lemma 7.3. Let E be a sequentially complete lcHs satisfying (A.1)-(A.3) and consider
the right-reqular representation g of G on E. Then,

HR(X)f = f * X f € E07X € CC(G)7
Proof. Tt suffices to show that

/G M (x) f ()0 () de = / (f* ) @e(@)dr, ¥ € CG).

G

Let ¢ € C.(G) be arbitrary. As E is continuously embedded into L (G) (condition
(A.1)), we may view 1) as an element of E’ via

EC fo /G @) (2)da.
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We obtain that

/G MR(x) f (@) ()dz = (Ta(x)F, )
— [ (Ref vt
G

-/ ( / f(yx)¢(y)dy) X(z)d
= [ ([ swonteas) wispay

- /G (f * )W) (y)dy.

O

Remark 7.4. Let E be a sequentially complete 1cHs satisfying (A.1)-(A.3). Suppose
that the right-regular representation of G on E is continuous (this particularly holds
true if C.(G), or more generally D) (G) for some weight function o, is continuously
and densely embedded in F). Lemma[£4(i) and Lemma [T 3 yield that E satisfies (A.4)
and therefore is a right-invariant lcHfs on G. However, there are right-invariant lcHfs

FE such that the right-regular representation of G on E is not continuous, consider e.g.
E = L>*(G).

Let E be a sequentially complete right-invariant IcHfs on G. Our goal is to the
determine the spaces £ and E“ for the right-regular representation of G on E. Let
X be a left-invariant frame on G, let f € C*(G), and let a € {1,...,n}’, j € N.

To avoid confusion, we momentarily write X f = X*f, where we interpret X as an
operator acting on C*°(G). The next lemma shows that for f € £~ N C*(G) it holds

that X®f coincides with X f, where we now interpret X¢ as an operator acting on
E.

In fact, Lemma [T8 below tells us that £ C C'*(G), so that the operator X« :
E>* — E* just becomes the classical derivative with respect to the left-invariant
vector field X.

Lemma 7.5. Let X be a left-invariant frame on G. Consider the right-reqular repre-
sentation of G on L (G). Then, C=(G) C LL (G)*. Moreover, for all f € C*(G)

loc loc

and o € {1,...,n},j €N, it holds that X*f = X*f, where we we interpret X as an

operator acting on L (G)>.

Proof. The dual of L} (G) may be identified with the space L(G) consisting of all
elements in L>(G) whose essential support is compact. Since Li..(G) is sequentially

complete, LemmaBdlimplies that (L (G))> consists precisely of all those f € L. (GQ)

loc loc

such that f x x € C(G) for all y € L°(G). Consequently, C®(G) C L (G)>®. Let

f € C*(G) be arbitrary. Formula (5.7) implies that X;~; = Vg, forall j=1,...n
Hence, by using induction, we find that X%y = vz., for all @ € {1,...,n}, j € N.
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By evaluating this equality at e, we obtain that X“f = X°f for all a € {1,...,n},
jeN. 0

In view of Lemmas [[.3] and [T5], Theorem [B5.4{(7) yields the following result.

Lemma 7.6. Let X = (Xy,...,X,) be a left-invariant frame on G. For all j € N
there are a polynomial P and xy € C4(G), 6 = (01,...,0,) € {0,1}", such that for all
feC=(G)
F=> (Po(Xa) Po(X1)f) * xo:
0e{0,1}"
where Py = P and P, = 1.

Let E be a sequentially complete right-invariant IcHfs on GG and let X be a left-
invariant frame on G. We denote by Dg x(G) the space consisting of all f € C*(G)
such that X*f € F for all « € {1,...,n}Y, j € N. For j € N and p € csn(E) we set

pxj(f) =max max p(X°f)<oo,  f€DlC)

1<j

We endow Dg x(G) with the locally convex topology generated by the system of semi-

norms {px;|j € N,p € csn(F)}. Likewise, we write D( ) x(G) for the space consisting
of all f € D x(G) such that for all h > 0 and p € csn(E) it holds that

1 .
pxon(f) = sup  max p(X"‘f)eXp( ¢*<hy>)<oo
jeN ae{l,...,n}i h

and endow D%’;((G) with the locally convex topology generated by the system of semi-
norms {pxo.n|h > 0,p € csn(E)}.

Remark 7.7. Proposition B3] and condition (A.4) imply that f x x € Dpx(G)
(D};X(G)) for all f € E and x € D(G) (x € D¥(G)). In particular, the spaces
Dgx(G) and DgX(G) are non-trivial (recall that F is assumed to be non-trivial).

Lemma 7.8. Let E be a sequentially complete right-invariant lcHfs on G and let X be
a left-invariant frame on G. Then, E* = Dg x(G) as sets.

Proof. We first prove that E*° C Dgx(G). Let f € E* be arbitrary. By Theorem
5.4(i) and Lemma[73]it holds that for all j € N there are y; € C/T1(G) and f; € E> C
E° i=1,...,2" such that

f ZHR Xz ) Zfz * Xi € C]+1(G)

Moreover, for all « € {1,...,n}’ we have that

2n
Xof =Y fixX°x:i € E,
where the last inclusion follows from the fact that E % C.(G) C E (condition (A.4)).
Hence, f € Dpx(G). Next we show that Dpx(G) € E*. Let f € Drpx(G) be
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arbitrary. We first prove that f € E°. By Lemma[Z.8] there are x; € C.(G) and f; € E,

1=1,...,2" such that
2n
f= Z fi* X
i=1

Hence,
27l
Rof =Y fixRoxi, 2€G.
i=1
The orbit mapping G — E, z — R, f is now continuous because for all 1 = 1,...,2"

the mappings G — C.(G), g — Ryx; and C.(G) — E, x — fi * x are continuous
(condition (A.4)). Another application of Lemma [T.6] together with Lemma [[.3] shows
that for all j € N there are x; € CY(G) and f; € E,i=1,...,2", such that

2" on
f=3fixxi= Y Halx)(f) € B
i=1 i=1

Hence, f € E*. O

Remark 7.9. Lemma [.§ for the particular case £ = LP(G), 1 < p < oo, was shown
by Poulsen [31] via completely different methods.

Lemma [7.§ and Proposition [4.2] yield the following result.

Theorem 7.10. Let E be a sequentially complete right-invariant lcHfs on G and let
X be a left-invariant frame on G.

(i) B> = Dgrx(G) as locally convex spaces.
(ii) E@ = D%J)X(G) as locally conver spaces.

Let E be a sequentially complete right-invariant lcHfs on G. We write Dg(G) = E*
and Dg)(G) = E“. By Theorem [I.I0we have that Dy(G) = D x(G) and Dg)(G) =
Dg’%((G) for any left-invariant frame X on GG. Theorems[6.1] and [6.3]imply the following
two results.

Theorem 7.11. Let E be a sequentially complete right-invariant lcHfs on G.
(1) Dp(G) is quasinormable if E is so.
) ng)(G) is quasinormable if E is so.

Theorem 7.12. Let E be a Fréchet space that is a right-invariant lcHfs on G.
(1) Dg(G) satisfies (2) if E does so.
) ng)(G) satisfies () if E does so.

8. EXAMPLES OF RIGHT-INVARANT FRECHET SPACES OF SMOOTH AND
ULTRADIFFERENTIABLE FUNCTIONS

In this final section, we discuss the quasinormability and the property () for a
particular class of weighted Fréchet spaces of smooth and ultradifferentiable functions.
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A right-invariant (Bf)-space E on G is said to be solid [14, [15] if for all f € E and
g € Ll (GQ) it holds that

loc

lg(x)| < |f(x)| for almost all t € G = g € E and ||g||g < ||f||&-

We will also use the following assumptions on a right-invariant (Bf)-space F (cf. [14]):
(A.5) L,(F) C E for all z € G and there is B > 0 such that

| L. flle < Bl flle Vfe E,x €.

Example 8.1. The spaces LP(G), p € {0} U [1,00], are solid right-invariant (Bf)-
spaces. The spaces L°(G) and L*°(G) satisfy (A.5), whereas LF(G), 1 < p < oo,
satisfy (A.5) if and only if G is unimodular.

By a weight function system on G we mean a pointwise non-decreasing sequence
V = (vj)en of strictly positive continuous functions on G satisfying the condition (L)
from the introduction. Given a solid right-invariant (Bf)-space E on G, we denote by
E), the space consisting of all f € L} (G) such that fv; € E for all j € N. For j € N
we set

1 lew, = Ifville,  f € By,

and endow Ey with the locally convex topology generated by the norms {|| - |[£., | €
N}. Then, Ey is a Fréchet space that is a right-invariant 1cHfs on G.

Example 8.2. Suppose that G is connected. Fix a left- or right-invariant Riemannian
metric on G and consider the associated distance function d : G x G — [0, 00) [2], [1§].
Set d(z) = d(e,x) for x € G. Then, d : G — [0,00) is continuous and subadditive,
ie., dzy) < d(x)+d(y) for all x,y € G. Let (w;)jen be a pointwise non-decreasing
sequence of strictly positive continuous functions on [0, 00) such that

Vi e N3j e N,C>0Vt>0: wi(t+1) < Cw;(t).
Then, (w; o d);ey is a weight function system on G.

Let E be a solid right-invariant (Bf)-space on G and let V be a weight function
system on GG. In the next two results, we characterize the quasinormability and the

property (§2) for Dg,(G) and Dg"v)(G) in terms of V.

Theorem 8.3. Let E be a solid right-invariant (Bf)-space on G and let V = (v;)en
be a weight function system on G. Consider the following statements:

(i) V satisfies the condition

1
(8.1) VieNIj>ivVm>jVee (0,1]3C >0Vz e G : < . Y
vi(z) ~ viz)  v(2)

(11) By is quasinormable.
(iti) D, (G) (DENG)) is quasinormable.
Then, (i) = (i1) = (ii1). If in addition E satisfies (A.5), then (iii) = (7).
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Proof. (i) = (i) By Remark [6.2]it suffices to show that
ViENHjZiVijV&?E(O,l]HC>O:V| §5V| +CV||'||E,um‘
Let ¢ € N be arbitrary. Choose j > ¢ according to (81). Let m > j and ¢ € (0, 1] be
arbitrary. By (81)) there is C' > 0 such that
1 € C

vi(z) = 2v(x) + ()’ Vo e G

HE HE™

Note that
(8.2) vi(x) > evj(r) = vp(z) < 2CV;(x), reQqG.
Let . be the indicator function of the set
{z € G|vi(x) < evj(x)}.
Let f € V). 1.0, be arbitrary. Since F is solid we have that fx. € Ey. For all x € G it
holds that
| f(@)xe(@)|vi(z) < el f(z)|vj(x)
and, by (82),
| f(@)(1 = xe(@))|vm(x) < 2C[f (2)|v;(2).
Since E is solid and || f||z.; < 1, we obtain that || fx.|/ g < e and || f(1 - x|z, <
2C', whence
f=Ixe+fl=xo) €V yp,, + 20V p,,, -

(1) = (uii) This follows from Theorem [T.111
(i13) = (i) (under the extra assumption (A.5)) We will show that V satisfies (8.1]) if

Dg"v) (G) is quasinormable (the proof that V satisfies (81) if Dg,,(G) is quasinormable
is very similar). Let X be a left-invariant frame on G. For h > 0 and j € N we write

1, w
[flljn=sup max [ Xf| g, exp (-—625 (hl)) . feDLa).
leN ae{ M h

As Dg})(G) is quasinormable, Remark [6.2] and Theorem [7.10(i7) imply that
(8.3) Vi’ € N3j' > i h > 0¥m' > j'Ve € (0,1]3C > 0
Vf € DY) Iflljn <13f. o€ By f =i+ fo.
||f1||E7'Ui/ S 8 and Hf2||E,’U,m/ S C

Let f € D%UJX(G)\{O} (Remark [Z9). Choose x € D) (G) such that fy # 0. Set K =

supp x. Condition (2.1]) and the fact that F is solid imply that ¢ = fx € ng)’X(G).
Let B > 0 be as in condition (A.5). Let ¢ € N be arbitrary. By (1)) there are ¢/ > i
and C’ > 0 such that

(8.4) vi(zy ™) < Clvg(z), reG,yeK.

Choose j' > i’ and h > 0 according to ([R3)). Condition (L)) yields that there are
j > 4" and C” > 0 such that

(8.5) vj(ay) < C"vj(x), re€G,y€K.
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Let m > j be arbitrary. Another application of (L)) gives us that there are m’ > m
and C"” > 0 such that

(8.6) m(zy ™) < C"o(z),  TEGyYEK.

Let € > 0 be arbitrary and choose C' > 0 according to ([83)). Let x € G be arbitrary.
The left-invariance of X, the fact that £ is solid, condition (A.5), and (1)) imply that
L.g € D};j)vx(G) and

[ Laglljrn < Bsup vy (zy)lglln-
yeK

Hence, by (83,
I Lagllyn < BC"||glljrnv;(x).

Set Cy = BC"||g|j7n- Applying B3) to f = L,g/(Covj(x)), we find that there are
91,92 € By with ||g1||z,., < e and [|g2]/g,,, < C such that

L.g n
Co’Uj(SL’) 9 g2:
Since supp g € K, we have that
g
——— = (Ly,1g1)1 L,-190)1k,
Co’Uj(LL’) ( 191) K+( 192) K

where 1 is the indicator function of K. The fact that E is solid, condition (A.5), and
(84) imply that (L,-1¢91)1x € E and

1 1 B(C'e
[(Le191)1k||E = || Le—1 (g1vir) Lo (v_,/) Iklle < Bllgill £, 22}]@3 o (27) < (@)’
Similarly, by using (8.0 instead of (84]), we have that (L,-1g2)1x € E and
BCc!
U ()

I(La192)1k |2 <

Hence,

||g||E BC/E BCC/
< ||[(L,-1 1 + (L, 1 < .
C()Uj( ) = H( x 91) KHE H( x 92) KH = Uz'( ) . ( )

The result now follows from a simple rescaling argument (note that ||g||p > 0 as
9#0). O

Theorem 8.4. Let E be a solid right-invariant (Bf)-space on G and let V = (vj);en
be a weight function system on G. Consider the following statements:

(1) V satisfies the condition

(8.7) Vi € N3j >iVm >;j3C,s >0V € (0,1]Vz € G :

vi(z) T viz) et um(z)
(i) Ey satisfies ().
(iii) Dy (G) (D)(G)) satisfies (9).

Then, (1) = (i1) = (ii1). If in addition E satisfies (A.5) , then (i1i) = (ii).
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Proof. The implication (ii) = (iii) follows from Theorem [T T2l The proofs of (i) = (i)
and (#i7) = (i) (under the extra assumption (A.5)) are similar to those of the same
implications in Theorem and are therefore left to the reader. O

Theorem in the introduction now follows from Example 8.1l and Theorems R3]
and [R.4

Remark 8.5. We believe the implications (iii) = (i) in Theorems and R3] and 4]
hold without the additional assumption (A.5) but were unable to show this.

Remark 8.6. Let V = (v;),en be a weight function system on G.

(i) The condition (&1) is always fulfilled if for all ¢ € N there is j > ¢ such that v;/v;
vanishes at infinity.

(77) The condition (8] means that the sequence (1/v,,),en is regularly decreasing in the
sense of [4]. We refer to [4] for more information and various characterizations of (8.1]).
A slight variant of the condition (8.]) is considered in [32], where the quasinormability
of certain weighted Fréchet spaces of measurable functions is studied.

(731) The condition (87 is equivalent to

(8.8) VieNTj>iVm>33C >0,0€ (0,1)Vg € G : v (g)v?(g) < Cv;(g).

m

This follows by taking the infimum over ¢ in the right-hand side of the inequality in

B.D).
(iv) Let G be connected and non-compact. Let d and (w;);jen be as in Example 8.2
Set (v;)jen = (w; o d)jen. Then, (v;),en satisfies (8.8) if and only if

Vi e NIj >iVm > j73C > 0,0 € (0,1)Vt >0 : wl(t)wl ?(t) < Cw;(t).

We refer to [11, Section 6] for various examples of sequences (w;) ey that do (not)
satisfy this condition.
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