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Order parameters in quasi-1D spin systems
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In this work we extend the notion of what is meant by a meanfield. For the purposes of this work
meanfields are approximately maps - through some self consistency relation - of a complex, usually
manybody, problem to a simpler more readily solvable problem. This mapping can then be solved
to represent properties of the complex many body problem using some self consistency relations and
the solution of the simpler problem. Prototypical examples of simpler meanfield problems (meanfield
systems) are the single site and free particle problems - which are exactly solvable. Here we propose
a new class of simple meanfield systems where the simple problem to be solved is a 1D spin chain.
These meanfields are particularly useful for studying quasi-1D models, where there is a 3D system
composed of weakly coupled 1D spin chains with the coupling in the transverse direction weaker
then in the 1D direction. We illustrate this idea by considering meanfields for the Ising (of any
coupling sign) and ferromagnetic Heisenberg models with one direction coupled much more strongly
then the other directions (quasi-1D systems) which map at meanfield level onto the 1D Ising and 1D
ferromagnetic Heisenberg models. We also consider more exotic models to illustrate other methods
of solving 1D systems, namely the ferromagnetic N-state Potts model. Magnetic phase transition
temperatures and are obtained for all three models, we see that they significantly differ from the
usual meanfield estimates. Indeed if the 1D direction has coupling Γ and the transverse directions
have coupling J with λ ∼

Γ
J
≫ 1 then regular meanfield would predict the transition temperature

to be kBTc ∼ Γ for all three models while 1D meanfield predicts temperatures of kBTc ∼
Γ

log(λ)
for

the Ising and Potts models and kBTc ∼
Γ
√

λ
for the ferromagnetic Heisenberg model. Cluster 1D

(ladders etc.) meanfield extensions are also proposed.

I. INTRODUCTION

Meanfields have been very successfully and almost uni-
versally used as a first step towards the solution (under-
standing) of many complex manybody problems [1–5]. In
a meanfield like solution of a complex problem we map
a difficult manybody problem into a simpler one (a sim-
pler system which can then be efficiently solved), solve
the problem and solve for self consistency to relate the
parameters of the solution of the simpler problem to the
more complex many body problem to be solved or un-
derstood. The prototypical meanfield - simple - systems
are the single site problem or the single particle prob-
lem. In the single particle case the complex system is
mapped onto a quadratic Hamiltonian, through say a
Hartree-Fock [5] meanfield, in a self consistent manner
whereby properties of the complex model namely ground
state energy, symmetry breaking, correlation functions
may be often reliably computed to some accuracy from
the Hartree-Fock problem [5]. In the single site problem -
often a spin model is mapped onto a single spin problem
which can be efficiently solved. Then self consistency is
imposed through equating the parameters of the single
site problem to the effects of the couplings to the neigh-
boring spins and their magnetization [1]. In some cases,
the single site problem may be extended, as in Dynamical
Meanfield Theory (DMFT), to a single site and a bath
whereby the frequency dependence (but not momentum
dependence) of the Green’s functions of the manybody
system may be modeled self consistently through the dis-
sipitative effects of the bath [6].

Here we propose another important simple system
which may be effciently analyzed as a meanfield system

- the 1D system. Indeed many 1D models are solvable
through transfer matrix calculations [1, 7], Density Ma-
trix Renormalization Group (DMRG) [8–10] methods ,
Jordan-Wigner fermionization [3, 5], or more generally
the Bethe Ansatz (BA) methods [7, 11–13], and Exact
Diagonalization (ED) techniques [14–16] to name a few.
In this work we consider 3D spin systems where the cou-
pling in one direction is much stronger then the coupling
in the other two (quasi-1D systems). For these systems
mapping the system to a 1D meanfield system and solving
for self consistency is more efficient then regular mean-
field (we verify this in part in Appendix A). We illustrate
this idea through the 3D (quasi-1D) Ising model whose
meanfield is the 1D Ising model (of either sign of cou-
pling) in an external field (which is solvable by transfer
matrix techniques) and the 3D (quasi-1D) ferromagnetic
Heisenberg model whose meanfield is the 1D ferromag-
netic Heisenberg model in an external field (which is solv-
able by BA techniques). We choose these two examples
because of their simplicity clarity and because in both 3D
and 1D these models are prototypical examples of models
with magnetic phase transitions. We also illustrate the
ideas through a more exotic related example the N -state
ferromagnetic Potts model. We show significant differ-
ences between regular meanfield results and 1D meanfield
results. Indeed assuming two couplings Γ ≫ J for longi-
tudinal and transverse directions and λ ∼ Γ

J ≫ 1; then
regular meanfield predicts a transition temperature of
kBTc ∼ Γ for all three models while 1D improved mean-
field shows that kBTc ∼ Γ

log(λ) for the Ising and Potts

models and kBTc ∼ Γ√
λ

for the ferromagnetic Heisenberg

model. Here kB is the Boltzmann constant and Tc is the
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critical temperature for the magnetic phase transition.
Cluster 1D meanfields are also proposed, which should
systematically improve meanfield accuracy [1].

II. ISING MODEL

Consider a 3D quasi-1D ferromagnetic Ising model in
an external field with the following Hamiltonian:

HI =− Γ
∑

i

σz (i)σz (i+ ẑ)

− J
∑

〈i,j〉,j 6=i±ẑ

σz (i)σz (j) +B
∑

i

σz (i) (1)

at a temperature β and 〈i, j〉 are nearest neighbors, here
we will be interested in Γ ≫ J so that the 1D chains along
the z-axis are more strongly coupled then the transverse
plane. Antiferromagnetic Ising models are equivalent to
ferromagnetic Ising models on bipartite lattices. so need
not be considered Now consider the following meanfield
Hamiltonian at unit temperature:

HMF = γ

N
∑

i

σz (i)σz (i+ 1) + h
∑

i

σz (i) (2)

Where for self consistency:

γ = βΓ, h = βJNm− βB (3)

here N ∼ 2 (d− 1) is the number of nearest neighbors in
the weakly coupled directions and d = 3 is the dimension
of the system. Then we know that the magnetization m
in the thermodynamic limit for the Hamiltonian in Eq.
(2) at unit temperature is given by 1 [1]:

m =
sinh (h)

[

exp (−4γ) + (sinh (h))
2
]1/2

(4)

This is an exact result (using the transfer matrix formal-
ism) [1, 7]. Now we substitute the meanfield relations in
Eq. (3) and obtain:

m =
sinh (βJNm− βB)

[

exp (−4βΓ) + (sinh (βJNm− βB))
2
]1/2

(5)

Setting B = 0 and linearizing to find the phase transition
temperature we have that:

m = exp (2βΓ)βJNm,

1 = exp (2βΓ)βJN (6)

leads to magnetism. Taking the logarithm of both sides
we see that:

2βΓ = − log (βJN ) (7)

Introducing

λ =
Γ

JN ≫ 1 (8)

We get that:

2λ = − log (βJN )

βJN (9)

We now write:

β0JN =
1

2λ
(10)

Then:

− log (βJN )

βJN
∼= log (2λ)

βJN (11)

This means that:

β1JN =
1

2λ log (2λ)
(12)

In general we can iterate the solution through the relation
(though Eq. (12) is often enough):

βn+1JN = − 1

2λ log (βnJN )
(13)

We note that the usual meanfield equations the phase
transition temperature can be found through the follow-
ing relationship:

2βΓ + βJN = 1 (14)

Which are much worse as it predicts:

βJN =
1

2λ+ 1
(15)

which is significantly different, for large λ, then Eq. (12),
see Appendix A.

III. N STATE POTTS MODEL

We focus on the ferromagnetic Potts model. We write:

HPott =− Γ
∑

i

δ (n (i) , n (i+ ẑ))

− J
∑

〈i,j〉,j 6=i±ẑ

δ (n (i) , n (j)) +B
∑

i

δ (n (i) , 1)

(16)

Where n (i) is the state of the i’th unit, with n (i) =
1, 2..., N . We now write the Hamiltonian of the meanfield
system:

HPott = −Γ
∑

i

δ (n (i) , n (i+ 1))− B
∑

i

δ (n (i) , 1)

(17)
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Then we write the transfer matrix [1, 7] of the system as:

T = |V 〉 〈V |+ (exp (B)− 1) [|V 〉 〈1|+ |1〉 〈V |]

+ (exp (Γ)− 1)

N
∑

i=2

|i〉 〈i|+

+ (exp (Γ + 2B)− 2 exp (B) + 1) |1〉 〈1| (18)

Where we introduce the un-normalized vector

|V 〉 =
N
∑

i=1

|i〉 (19)

Now we look for the biggest eigenvalue of the transfer
matrix [1, 7] using the ansatz:

E (a |1〉+ b |V 〉)
= T (a |1〉+ b |V 〉) (20)

Now we linearIze everything for small B in order to find the magnetic phase transition and write:

(

(exp (βΓ)− (2 exp (βΓ)− 1)βB) ((N − 2) + 2 exp (βΓ))βB
βB (N − 1 + exp (βΓ) + βB)

)(

a
b

)

= E

(

a
b

)

(21)

For a full calculation to all orders see Appendix B. Now we treat the matrix proportional to βB as a perturbation
and we write:

(

exp (βΓ) 0
0 (N − 1 + exp (βΓ))

)

+ βB
(

(2 exp (βΓ)− 1) ((N − 2) + 2 exp (βΓ))
1 1

)

(22)

Then

E ∼= (N − 1 + exp (βΓ)) + βB (23)

b ∼= 1 (24)

a ∼= βB (N + 2 exp (βΓ)− 2)

N − 1
(25)

and

M ∼= 2a

N
=

2βB (N + 2 exp (βΓ)− 2)√
N (N − 1)

(26)

is the magnetization. This then means that at meanfield:

B = MNJ

⇒ 1 =
2βNJ ((N − 2) + 2 exp (βΓ))

N (N − 1)
(27)

Now we will assume that βNJ ≪ 1 so that (N − 2) ≪
2 exp (βΓ) as such we obtain:

1 =
4βNJ exp (βΓ)

N (N − 1)

βΓ = log

(

N (N − 1)

4βNJ

)

λ =
log
(

N(N−1)
4βNJ

)

βJN
∼= log (N (N − 1) /4)

βJN

βJN ∼= log (N (N − 1) /4)

λ
(28)

Iterating we get that:

1 = 2
log (N (N − 1) /4)

λ

((N − 2) + 2 exp (βΓ))

N (N − 1)

βΓ ∼= 1

2
log

(

λN (N − 1)

2 log (N (N − 1) /4)
−N + 2

)

(29)

IV. FERROMAGNETIC HEISENBERG MODEL

We consider the anisotropic 3D (quasi-1D) ferromag-
netic Heisenberg model with the following Hamiltonian:

H =− Γ
∑

i

~σ (i) · ~σ (i+ ẑ)

− J
∑

〈i,j〉,j 6=i±ẑ

~σ (i) · ~σ (j) +B
∑

i

σz
i (30)

with J ≫ J . Now we consider the following meanfield
Hamiltonian (which happens to be the Heisenberg model
in an external field and as such solvable by BA techniques
[11, 12]):

HMF = −Γ
∑

i

~σ (i) · ~σ (i+ 1)− h
∑

i

σz (i) (31)

with

h = NJM−B (32)

Where M will be chosen self consistently that is:

M = 〈σz (i)〉HMF
(33)
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We will now solve Eqs. (31) and (33) and find the critical
transition temperature where M vanishes. This will be
an extended meanfield treatment of the Hamiltonian in
Eq. (30). Indeed the magnetic susceptibility χ can be
used to determine phase boundaries. We have that for
the ferromagnetic Heisenberg model at temperature T
the susceptibility is given by [11, 12]:

χ = J−1

(

1

6

(

Γ

T

)2

+ 0.581

(

Γ

T

)3/2

+ 0.68

(

Γ

T

)

)

+ ...

(34)
Now to determine the phase transition temperature be-
tween magnetic and non-magnetic phase we use the re-
lationship:

χh = M
χNJM = M

χNJ = 1. (35)

Where we have set B = 0 to find the phase transition.
As such for the phase transition between magnetic and
non-magnetic we write:

NJ

Γ

(

1

6

(

Γ

T

)2

+ 0.581

(

Γ

T

)3/2

+ 0.68

(

Γ

T

)

)

= 1

(36)
Now we have that

NJ

Γ

(

1

6

(

Γ

T

)2

+ 0.581

(

Γ

T

)3/2

+ 0.68

(

Γ

T

)

)

∼= 1

6λ

(

Γ

T

)2

(37)

This means that at first approximation for the critical
temperature:

T0
∼= Γ

(

1

6λ

)1/2

(38)

Now we write:

NJ

Γ

(

1

6

(

Γ

T

)2

+ 0.581

(

Γ

T

)3/2

+ 0.68

(

Γ

T

)

)

∼= NJ

Γ

(

1

6

(

Γ

T0

)2

+ 0.581

(

Γ

T0

)3/2

+ 0.68

(

Γ

T0

)

)

(39)

As such the second approximation for the critical tem-
perature gives:

T1
∼= Γ

√

√

√

√

1

6λ

[

1− 2.23

(

1

λ

)1/4

− 1.67

(

1

λ

)1/2
]

(40)

We can continue to iteratively solve the problem for the
critical temperature more and more accurately using the

formula (though Eq. (40) is often sufficient):

Tn+1
∼= Γ

√

√

√

√

1

6λ

[

1− 1

λ

[

0.581

(

Γ

Tn

)3/2

− 0.68

(

Γ

Tn

)

]]

(41)

V. CONCLUSIONS

In this work we have extended the notion of the mean-
field. We have proposed a new class of meanfield mod-
els where 1D systems are the meanfield problems to
be solved. This combined with self consistency rela-
tions may be used to efficiently solve for properties of
anisotropic 3D or quasi-1D systems - where one direc-
tion is much more strongly coupled then the other. In
this work we have illustrated this idea with the Ising
and ferromagnetic Heisenberg models which are solvable
by transfer matrix and Bethe Ansatz techniques respec-
tively and found transition temperatures as preliminary
results. We also studied a more exotic model - the Potts
model. We found significantly different results then regu-
lar meanfield. Indeed we found magnetic phase transition
temperatures of kBTc ∼ Γ

log(λ) for the Ising and Potts

models and kBTc ∼ Γ√
λ

for the ferromagnetic Heisenberg

model, where as regular meanfield predicts kBTc ∼ Γ for
all three models. In future works it would be of interest to
extend these results to many other quasi-1D systems sys-
tematically. Furthermore it would be of interest to study
cluster 1D meanfields, where a cluster of 1D systems is
chosen as the meanfield system to be solved. The accu-
racy of the calculation is systematically improved with
cluster size in cluster 1D meanfields.

Acknowledgements: The author would like to thank
Natan Andrei for useful discussions.

Appendix A: Onsager solution

We note that the Onsager relation for d = 2 (N = 2)
is that the critical temperature is given by [1, 17]:

sinh (2βJ) sinh (2βΓ) = 1

exp (2βΓ) · βJ ∼= 1 (A1)

This is the exact same relationship as in Eq. (6) for
N = 1, which means that:

βJ =
1

2λ log (2λ)
+ ... (A2)

This means the meanfield is accurate within a factor of
two while the regular meanfield is off by ∼ log (2λ) for
large λ showing significant improvement of our approach
over regular meanfield in the limit of strong anisotropy
or nearly 1D systems.
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Appendix B: N-state Potts model in an external

Field at unit temperature

Now we look for the biggest eigenvalue using the ansatz in Eq. (20). This means that:

(

(exp (J + 2B)− exp (B) + 1) ((N − 2) [exp (B)− 1] + exp (J + 2B)− exp (J))
[exp (B)− 1] (N − 2 + exp (B) + exp (J))

)(

a
b

)

= E

(

a
b

)

(B1)

This means that

det

[

(exp (J + 2B)− exp (B) + 1− E) ((N − 2) [exp (B)− 1] + exp (J + 2B)− exp (J))
[exp (B)− 1] (N − 2 + exp (B) + exp (J)− E)

]

= 0 (B2)

As such:

E2 − E [exp (J + 2B) +N − 1 + exp (J)] + exp (2J + 2B) + [N − 1] [exp (J + 2B)− exp (2B) + exp (B)] = 0 (B3)

As such (since we want the biggest eigenvalue):

E+ =
[exp (J + 2B) +N + exp (J)− 1] +

√

∆(J,B,N)

2
(B4)

Where

∆(J,B,N) = [exp (J + 2B)−N + 1+ exp (J)]
2 − 4 [exp (2J + 2B) + [N − 1] [exp (B)− exp (2B)− exp (J)]] (B5)

Now we have that

a

b
=

E+ −N + 2− exp (B)− exp (J)

exp (B)− 1

=
exp (J + 2B) +

√

∆(J,B,N)

2 (exp (B)− 1)
− 1

2
(B6)

Now we have that the normalization of the vector is

‖a |1〉+ b |V 〉‖ = Nb2 + a2 + 2ab (B7)

Therefore the magnetization is given by:

M =
a2 + 2ab

Nb2 + a2 + 2ab
(B8)
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