QUANTISED $\mathfrak{s l}_{2}$-DIFFERENTIAL ALGEBRAS

ANDREY KRUTOV AND PAVLE PANDŽIĆ

Abstract

We propose a definition of a quantised $\mathfrak{s l}_{2}$-differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of $\mathfrak{s l}_{2}$ are natural examples of such algebras.

Let \mathfrak{g} be a Lie algebra. H. Cartan introduced the notion of \mathfrak{g}-differential algebras as a generalisation of differential forms on manifolds with \mathfrak{g}-action, Car1, Car2. Later \mathfrak{g} differential algebras appeared in the study of equivariant cohomology [GS, AM1], in ChernWeil theory [AM2, Mei], and in relation to (algebraic) Dirac operators and Vogan's conjecture AM1, HP1, HP2].

There have been several attempts to generalise the notion of \mathfrak{g}-differential algebras to the setting of quantum groups and noncommutative geometry; for example, see [AC, SWZ, AS]. These works, however, assumed that we either work with a triangular Hopf algebra, or start with a bicovariant calculus on a quantum group, so they do not directly apply the setting of $U_{q}\left(\mathfrak{s l}_{2}\right)$ since it is only a quasitriangular, see [Dri1, Dri2, and its bicovariant differential calculus does not have classical dimension [Wor], see also [Jur] for the general case.

In this paper we propose a definition of quantised $\mathfrak{s l}_{2}$-differential algebras and give first examples, certain quantised Clifford and exterior algebras. The advantage of our approach is that we start with the quantum exterior algebra defined by Berenstein and Zwicknagl [BZ] of the classical dimension instead of a bicovariant calculus. We use the coboundary structure on the category of $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules, see Dri2. (As it was shown in HK such coboundary structure is related to the category of crystals.)

The paper is organised as follows. In $\S 2$ we recall necessary facts about the DrinfeldJimbo quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$, the quantised adjoint representation and its quantum exterior algebra. In $\$ 3$ we recall the definition of the q-deformed Clifford algebra of $\mathfrak{s l}_{2}$ introduced in [KP] and define Lie derivatives, contraction operators and the differential on it. We show that the defined operations enjoy many features of their classical counterparts, in particular, Cartan's magic formula holds for them. In $\S 4$ we propose a definition of a quantised $\mathfrak{s l}_{2}{ }^{-}$ differential algebra and show that the quantised exterior and Clifford algebras of $\mathfrak{s l}_{2}$ are examples of such algebras.

Acknowledgments. We would like to thank P. Aschieri and D. Bashkirov for stimulating discussions. The authors thank the organisers of the conference "Quantum Groups and Noncommutative Geometry in Prague" (11th to 15th September 2023, Prague, Czech Republic) for warm hospitality and financial support.

[^0]
2. Preliminaries

2.1. \mathfrak{g}-differential algebras. Let \mathfrak{g} be a complex Lie algebra. Let $\bigwedge[\xi]$ be the Grassmann algebra with one generator ξ, and let $\mathrm{d}:=\partial_{\xi} \in \operatorname{Der} \bigwedge[\xi]$ be the derivation with respect to ξ. Set $\widehat{\mathfrak{g}}:=\mathfrak{g} \otimes \wedge[\xi] \oplus \mathbb{C}$. Then $\widehat{\mathfrak{g}}=\widehat{\mathfrak{g}}_{-1} \oplus \widehat{\mathfrak{g}}_{0} \oplus \widehat{\mathfrak{g}}_{1}$ is a \mathbb{Z}-graded Lie superalgebra where

$$
\widehat{\mathfrak{g}}_{-1}=\mathfrak{g} \otimes \xi, \quad \widehat{\mathfrak{g}}_{0}=\mathfrak{g} \otimes 1, \quad \widehat{\mathfrak{g}}_{1}=\mathbb{C d}
$$

For $x \in \mathfrak{g}$, let $L_{x}:=x \otimes 1 \in \widehat{\mathfrak{g}}_{0}, \iota_{x}:=x \otimes \xi \in \widehat{\mathfrak{g}}_{-1}$. The non-zero bracket relations in $\widehat{\mathfrak{g}}$ are defined as

$$
\begin{equation*}
\left[L_{x}, \iota_{y}\right]=\iota_{[x, y]}, \quad\left[L_{x}, L_{y}\right]=L_{[x, y]}, \quad\left[\iota_{x}, \mathrm{~d}\right]=L_{x} \quad \text { for all } x, y \in \mathfrak{g} . \tag{1}
\end{equation*}
$$

2.1.1. Digression: semisimple Lie superalgebras. Assume that \mathfrak{g} is simple. Let $\bigwedge(n)$ denote the Grassmann algebra with n generators ξ_{1}, \ldots, ξ_{n}. Then $\Lambda(n)$ has a natural \mathbb{Z} grading given by $\operatorname{deg} \xi_{i}=1$. Let $\mathfrak{v e c t}(0 \mid n):=\operatorname{Der} \bigwedge(n)$. Clearly, $\mathfrak{v e c t}(0 \mid n)$ is a \mathbb{Z}-graded Lie superalgebra where $\operatorname{deg} \partial_{\xi_{i}}=-1$. Let $\mathfrak{v e c t}(0 \mid n)_{-1}$ denotes the homogeneous component of degree -1 . As it was shown in [Che, any semisimple Lie superalgebra is the direct sum of the following summands

$$
\tilde{\mathfrak{s}} \otimes \bigwedge(n) \notin \mathfrak{v},
$$

where \mathfrak{s} is a simple Lie superalgebra, $\mathfrak{s} \subseteq \tilde{\mathfrak{s}} \subseteq \operatorname{Der} \mathfrak{s}$, and $\mathfrak{v} \subset \mathfrak{v e c t}(0 \mid n)$ is such that the projection $\mathfrak{v} \rightarrow \mathfrak{v e c t}(0 \mid n)_{-1}$ is onto. In our case (for $\widehat{\mathfrak{g}}$) we have that $n=1, \mathfrak{v}=\operatorname{Span}_{\mathbb{C}}\left(\partial_{\xi}\right)$, $\tilde{\mathfrak{s}}=\mathfrak{s}=\mathfrak{g}$.
2.2. \mathfrak{g}-differential spaces and algebras. A \mathfrak{g}-differential space is a superspace V, together with a $\widehat{\mathfrak{g}}$-module structure $\rho: \widehat{\mathfrak{g}} \rightarrow \operatorname{End}(V)$. A \mathfrak{g}-differential algebra is a superalgebra A, equipped with a structure of \mathfrak{g}-differential space such that $\rho(x) \in \operatorname{Der} A$ for all $x \in \widehat{\mathfrak{g}}$. Observe that if A is a \mathfrak{g}-differential algebra then the contraction operators ι define a \mathfrak{g}-equivariant representation of $U\left(\widehat{\mathfrak{g}}_{-1}\right) \cong \wedge \mathfrak{g}$ on A, where $U\left(\hat{\mathfrak{g}}_{-1}\right)$ is the universal enveloping algebra of the Lie superalgebra $\widehat{\mathfrak{g}}_{-1}$. The idea of a \mathfrak{g}-differential algebra is due to H. Cartan Car2, Car1]. We follow the terminology and notation from Mei].
2.2.1. Example. Take $A=\wedge \mathfrak{g}^{*}$, equipped with the coadjoint action of \mathfrak{g} denoted by L_{x} for $x \in \mathfrak{g}$. For $x \in \mathfrak{g}$ and $f \in \mathfrak{g}^{*}=\bigwedge^{1} \mathfrak{g}^{*}$ define the contraction operator by $\iota_{x} f=f(x)$. The odd map i_{x} is extended to $\bigwedge \mathfrak{g}^{*}$ by the super Leibniz rule. Let e_{a} be a basis of \mathfrak{g} and f_{a} be the corresponding dual basis in \mathfrak{g}^{*}. The Lie algebra differential on $\Lambda \mathfrak{g}^{*}$ may be written as

$$
\mathrm{d}_{\wedge}=\frac{1}{2} \sum_{a} f_{a} \circ L_{e_{a}},
$$

with f_{a} acting by the exterior multiplication. Then $\bigwedge \mathfrak{g}^{*}$ is a \mathfrak{g}-differential algebra. One can show that $H\left(\bigwedge \mathfrak{g}^{*}, \mathrm{~d}_{\wedge}\right) \cong\left(\bigwedge \mathfrak{g}^{*}\right)^{\mathfrak{g}}$.
2.2.2. Example. Suppose that \mathfrak{g} has a nondegenerate invariant symmetric bilinear form B (for example, see review in BKLS]), used to identify $\mathfrak{g} \cong \mathfrak{g}^{*}$. Let $\mathrm{Cl}(\mathfrak{g})$ be the Clifford algebra of \mathfrak{g} with respect to B define by

$$
\mathrm{Cl}(\mathfrak{g})=T(\mathfrak{g}) /\langle x \otimes y+y \otimes x-2 B(x, y) \mid x, y \in \mathfrak{g}\rangle .
$$

Let z_{i} be an orthonormal basis of \mathfrak{g}, then the Chevalley map (or quantisation) $q_{\mathrm{Cl}}: \bigwedge(\mathfrak{g}) \rightarrow$ $\mathrm{Cl}(\mathfrak{g})$ is defined by

$$
z_{i_{1}} \wedge \ldots \wedge z_{i_{k}} \mapsto z_{i_{1}} \ldots z_{i_{k}} \quad(\text { and } 1 \mapsto 1)
$$

where $1 \leq i_{1}<\ldots<i_{k} \leq \operatorname{dim} \mathfrak{g}$. Set

$$
\gamma=-\frac{1}{12} \sum_{a, b, c=1}^{\operatorname{dim} \mathfrak{g}} B\left(\left[z_{a}, z_{b}\right], z_{c}\right) z_{a} \wedge z_{b} \wedge z_{c} \in\left(\bigwedge^{3} \mathfrak{g}\right)^{\mathfrak{g}}
$$

Define the map $\alpha: \mathfrak{g} \rightarrow \mathrm{Cl}(\mathfrak{g})$ by

$$
\alpha(x)=-\frac{1}{4} \sum_{a, b=1}^{\operatorname{dim} \mathfrak{g}} B\left(x,\left[z_{a}, z_{b}\right]\right) z_{a} z_{b} \quad \text { for } x \in \mathfrak{g} .
$$

The map α extends to an algebra homomorphism $\alpha: U(\mathfrak{g}) \rightarrow \mathrm{Cl}(\mathfrak{g})$.
The Clifford algebra $\mathrm{Cl}(\mathfrak{g})$ is a filtered \mathfrak{g}-differential algebra with differential, Lie derivatives and contractions given as

$$
\mathrm{d}_{\mathrm{Cl}}=\left[q_{\mathrm{Cl}}(\gamma),-\right]_{\mathrm{Cl}}, \quad L_{x}=[\alpha(x),-]_{\mathrm{Cl}}, \quad \iota_{x}=\frac{1}{2}[x,-]_{\mathrm{Cl}}, \quad \text { for } x \in \mathfrak{g}
$$

where $[-,-]_{\mathrm{Cl}}$ denotes the supercommutator in $\mathrm{Cl}(\mathfrak{g})$. The quantisation map $q_{\mathrm{Cl}}: \wedge \mathfrak{g} \rightarrow$ $\mathrm{Cl}(\mathfrak{g})$ intertwines the Lie derivatives and contractions, but does not intertwine the differential. The cohomology of $\left(\mathrm{Cl}(\mathfrak{g}), \mathrm{d}_{\mathrm{Cl}}\right)$ is trivial in all filtration degrees (except if \mathfrak{g} is abelian, in which case $\mathrm{d}_{\mathrm{Cl}}=0$); for example, see [Mei, §7.1].
2.3. $\boldsymbol{U}_{\boldsymbol{q}}\left(\mathfrak{s l}_{\mathbf{2}}\right)$. Fix a nonzero $q \in \mathbb{C}$ which is not a root of unity. The quantised enveloping algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$ is the associative algebra with unit generated by the elements E, F, K, and K^{-1} subject to the relations

$$
K E=q^{2} E K, \quad K F=q^{-2} F K, \quad K K^{-1}=K^{-1} K=1, \quad E F-F E=\frac{K-K^{-1}}{q-q^{-1}}
$$

A Hopf algebra structure on $U_{q}\left(\mathfrak{s l}_{2}\right)$ is given by
$\Delta E=E \otimes K+1 \otimes E, \quad \Delta F=F \otimes 1+K^{-1} \otimes F, \quad \Delta K=K \otimes K, \quad \Delta K^{-1}=K^{-1} \otimes K^{-1}$,

$$
\begin{gathered}
S(E)=-E K^{-1}, \quad S(F)=-K F, \quad S\left(K^{-1}\right)=K, \quad S(K)=K^{-1}, \\
\varepsilon(E)=\varepsilon(F)=0, \quad \varepsilon(K)=\varepsilon\left(K^{-1}\right)=1,
\end{gathered}
$$

where Δ is the coproduct, S is the antipode, and ε is the counit. In what follows we use Sweedler notation for the coproduct $\Delta x=\sum x_{(1)} \otimes x_{(2)}$.

Let \mathfrak{h} be a Cartan subalgebra of $\mathfrak{s l}_{2}, \mathcal{P} \subset \mathfrak{h}^{*}$ be the weight lattice of $\mathfrak{s l}_{2}$, and \mathcal{P}_{+}be the sublattice of dominant weights generated by the fundamental weight π. The category of finite dimensional type 1 modules over $U_{q}\left(\mathfrak{s l}_{2}\right)$ is equivalent to the category of finite dimensional $\mathfrak{s l}_{2}$ modules; for example, see [EGNO, §5.8] or [KS, §3]. For $\lambda \in \mathcal{P}_{+}$we denote the corresponding type 1 finite dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-module with highest weight λ by V_{λ}.

Let $\mathfrak{s l}_{q}(2)$ denote the vector subspace of $U_{q}\left(\mathfrak{s l}_{2}\right)$ spanned by the elements

$$
X=E, \quad Z=q^{-2} E F-F E, \quad Y=K F .
$$

The space $\mathfrak{s l}_{q}(2)$ is closed with respect to the left adjoint action of $U_{q}\left(\mathfrak{s l}_{2}\right)$ on itself defined by

$$
\operatorname{ad}_{x} y=\sum x_{(1)} y S\left(x_{(2)}\right) \quad \text { for } x, y \in U_{q}\left(\mathfrak{s l}_{2}\right) .
$$

It is easy to see that as a $U_{q}\left(\mathfrak{s l}_{2}\right)$-module, $\mathfrak{s l}_{q}(2)$ is isomorphic to the quantised adjoint representation $V_{2 \pi}$ of $\mathfrak{s l}_{2}$. In what follows we will use notation $\mathfrak{s l}_{q}(2)$ to emphasise that elements X, Z, and Y belong to $\mathfrak{s l}_{q}(2) \subset U_{q}\left(\mathfrak{s l}_{2}\right)$. In the case when $V_{2 \pi}$ is treated as an abstract $U_{q}\left(\mathfrak{s l}_{2}\right)$-module and in the case when we will construct quantum exterior and Clifford algebras, we will use the following notation for basis elements in $V_{2 \pi}$:

$$
v_{2}=X, \quad v_{0}=Z, \quad v_{-2}=Y
$$

2.4. Normalised braiding. The following construction is due to Drinfeld [Dri2]. Let C be a braided monoidal category linear over $\mathbb{C}[[\hbar]]$ and assume that the braiding satisfies $\sigma_{W, V} \circ \sigma_{V, W}=\operatorname{id}_{V \otimes W}+O(\hbar)$. Then the map

$$
\tilde{\sigma}_{V, W}=\sigma_{V, W} \circ\left(\sigma_{W, V} \circ \sigma_{V, W}\right)^{-1 / 2}
$$

is called a normalised braiding and defines a coboundary structure on C in the sense of [Dri2]. For details see [EGNO, Exercise 8.3 .25 on p. 202]. In particular, we have that $\tilde{\sigma}^{2}=\mathrm{id}$.

The category of type one finite-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-module is a braided monoidal category where the braiding σ is given by the universal R-matrix; see [EGNO, §8.3] for details. The R-matrix braiding σ satisfies the above condition. In what follows we denote by $\tilde{\sigma}$ the corresponding normalised braiding.
2.5. Quantum exterior algebras. Following [BZ] define the quantum exterior algebra $\bigwedge_{q} V_{2 \pi}$ of $V_{2 \pi}$ as

$$
\bigwedge_{q} V_{2 \pi}=T\left(V_{2 \pi}\right) /\left\langle v \otimes w+\tilde{\sigma}(v \otimes w) \mid v, w \in V_{2 \pi}\right\rangle
$$

The algebra $\bigwedge_{q} V_{2 \pi}$ is generated by v_{2}, v_{0}, v_{-2} subject to the following relations

$$
\begin{array}{ll}
v_{2} \wedge v_{2}=0, & v_{-2} \wedge v_{-2}=0 \\
v_{0} \wedge v_{2}=-q^{-2} v_{2} \wedge v_{0}, & v_{-2} \wedge v_{0}=-q^{-2} v_{0} \wedge v_{-2} \\
v_{0} \wedge v_{0}=\frac{\left(1-q^{4}\right)}{q^{3}} v_{2} \wedge v_{-2}, & v_{-2} \wedge v_{2}=-v_{2} \wedge v_{-2}
\end{array}
$$

We note that $\bigwedge_{q} V_{2 \pi}$ is a \mathbb{Z}-graded super algebra in the braided monoidal category of type 1 finite-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules. The \mathbb{Z}_{2}-grading corresponding to a super algebra structure is given by setting $p\left(v_{2}\right)=p\left(v_{0}\right)=p\left(v_{-2}\right)=\overline{1}$, where $p(v) \in \mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$ denotes the parity of the element v. The algebra $\bigwedge_{q} V_{2 \pi}$ is (super)commutative with respect to normalised braiding, i.e. $v \wedge w=(-1)^{p(v) p(w)} \wedge \circ \tilde{\sigma}(v \otimes w)$ for all parity homogeneous $v, w \in \bigwedge_{q} V_{2 \pi}$.

3. Motivating example: $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$

Fix a non-zero constant $c \in \mathbb{C}\left[q, q^{-1}\right]$. First recall from [KP, $\left.\S 2.7\right]$ that $V_{2 \pi}$ admits a nondegenerate $U_{q}\left(\mathfrak{s l}_{2}\right)$-invariant bilinear form given by

$$
\left\langle v_{2}, v_{-2}\right\rangle=c, \quad\left\langle v_{0}, v_{0}\right\rangle=q^{-3}\left(1+q^{2}\right) c, \quad\left\langle v_{-2}, v_{2}\right\rangle=c q^{-2}
$$

Note that the form $\langle\cdot, \cdot\rangle$ is symmetric with respect to the normalised braiding $\tilde{\sigma}$, i.e., $\langle\cdot, \cdot\rangle=$ $\langle\cdot, \cdot\rangle \circ \tilde{\sigma}$. The q-deformed Clifford algebra of $\mathfrak{s l}_{2}$ was defined in [KP, §3] as filtered deformation of $\bigwedge_{q} V_{2 \pi}$ by the bilinear form $\langle\cdot, \cdot\rangle$:

$$
\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)=T\left(V_{2 \pi}\right) /\left\langle v \otimes w+\tilde{\sigma}(v \otimes w)-2\langle v, w\rangle \mid v, w \in V_{2 \pi}\right\rangle,
$$

As it was shown in [KP, Lemma 3.3], the algebra $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is generated by v_{2}, v_{0}, v_{-2} satisfying the following relations

$$
\begin{array}{llrl}
v_{2} v_{2} & =0, & v_{-2} v_{-2} & =0, \\
v_{0} v_{2} & =-q^{-2} v_{2} v_{0}, & v_{-2} v_{0} & =-q^{-2} v_{0} v_{-2}, \\
v_{0} v_{0} & =\frac{1-q^{4}}{q^{3}} v_{2} v_{-2}+\frac{q^{2}+1}{q} c 1, & v_{-2} v_{2} & =-v_{2} v_{-2}+\frac{q^{2}+1}{q^{2}} c 1 .
\end{array}
$$

It is easy to see that $\mathrm{Cl}_{q}\left(\mathfrak{S l}_{2}\right)$ is a filtered super algebra in the (braided) monoidal category of $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules. We note that $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is a filtered $U_{q}\left(\mathfrak{s l}_{2}\right)$-module where the elements of $U_{q}\left(\mathfrak{s l}_{2}\right)$ act by operators of degree 0 .
3.1. $\tilde{\boldsymbol{\sigma}}$-commutators. For $x, y \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ homogeneous with respect to parity set

$$
[x, y]_{\tilde{\sigma}}:=\left(m_{\mathrm{Cl}_{q}}-(-1)^{p(x) p(y)} m_{\mathrm{Cl}_{q}} \circ \tilde{\sigma}\right)(x \otimes y),
$$

where $m_{\mathrm{Cl}_{q}}$ denotes the multiplication map in $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$. The map $[-,-]_{\tilde{\sigma}}$ is extended to $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ by linearity. By construction $[-,-]_{\tilde{\sigma}}$ is $U_{q}\left(\mathfrak{s l}_{2}\right)$-equivariant since it is composed from equivariant maps.
3.1.1. Lemma. The bracket $[-,-]_{\tilde{\sigma}}$ is $\tilde{\sigma}$-skew-symmetric:

$$
[\omega, \mu]_{\tilde{\sigma}}=-(-1)^{p(\omega) p(\mu)}[-,-]_{\tilde{\sigma}} \circ \tilde{\sigma}(\omega \otimes \mu) \quad \text { for } \omega, \mu \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right),
$$

and has the filtration degree -1 .
Proof. The $\tilde{\sigma}$-skew-symmetricity follows form the definition of $[-,-]_{\tilde{\sigma}}$. Since $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is a filtered deformation of the $\tilde{\sigma}$-supercommutative algebra $\bigwedge_{q} V_{2 \pi}$, it follows from the definition that the bracket $[-,-]_{\tilde{\sigma}}$ has the filtration degree -1 .
3.2. The $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ maps and Lie derivatives. The quantum moment map (in the sense of [Lu) is the algebra map $\alpha_{q}: U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ defined in [KP, §3.7]. It is given on generators by

$$
\begin{array}{cc}
\alpha_{q}(E)=-\frac{q}{\left(1+q^{2}\right) c} v_{2} v_{0}, & \alpha_{q}(F)=-\frac{q^{2}}{\left(1+q^{2}\right) c} v_{0} v_{-2}, \\
\alpha_{q}(K)=\frac{q^{3}-q}{\left(1+q^{2}\right) c} v_{2} v_{-2}+q^{-1}, & \alpha_{q}\left(K^{-1}\right)=-\frac{q^{3}-q}{\left(1+q^{2}\right) c} v_{2} v_{-2}+q .
\end{array}
$$

Since α_{q} is an algebra map it follows that

$$
\alpha_{q}(Z)=\frac{1}{c} v_{2} v_{-2}-1, \quad \alpha_{q}(Y)=-\frac{q}{\left(1+q^{2}\right) c} v_{0} v_{-2} .
$$

As it was shown in [KP, Lemma 3.7.1] the inner $U_{q}\left(\mathfrak{s l}_{2}\right)$-action defined by α coincides with the natural one:

$$
x \triangleright \omega=\sum \alpha_{q}\left(x_{(1)}\right) \omega \alpha_{q}\left(S\left(x_{(2)}\right)\right) \quad \text { for } x \in U_{q}\left(\mathfrak{s l}_{2}\right), \omega \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right),
$$

where $x \triangleright \omega$ denotes the $U_{q}\left(\mathfrak{s l}_{2}\right)$-action on $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$.
Following the classical situation we define Lie derivatives on $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ with respect to elements of $U_{q}\left(\mathfrak{s l}_{2}\right)$ by

$$
L_{x} \omega:=x \triangleright \omega \quad \text { for } x \in U_{q}\left(\mathfrak{s l}_{2}\right), \omega \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right) .
$$

Classically, the map α defined the (adjoint) action of \mathfrak{g} by taking the (super)commutator; see Example 2.2.2. This is no longer true in the quantum case for $\tilde{\sigma}$-commutators. Define a linear map $\beta_{q}: \mathfrak{s l}_{q}(2) \rightarrow \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ by

$$
\beta_{q}(X)=\frac{1+q^{2}}{q} \alpha_{q}(X), \quad \beta_{q}(Y)=\frac{1+q^{2}}{q} \alpha_{q}(Z), \quad \beta_{q}(Z)=\frac{1+q^{2}}{q} \alpha_{q}(Y) .
$$

The definition of β_{q} is motivated by the following lemma.
3.2.1. Proposition. The β_{q}-map defines the quantum Hamiltonian with respect to the $\tilde{\sigma}$ commutator for the action of elements of $\mathfrak{s l}_{q}(2) \subset U_{q}\left(\mathfrak{s l}_{2}\right)$ on $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$. Namely, we have that

$$
L_{x} \omega=\left[\beta_{q}(x), \omega\right]_{\tilde{\sigma}} \quad \text { for } x \in \mathfrak{s l}_{q}(2), \omega \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)
$$

Proof. For $X \in \mathfrak{s l}_{q}(2)$ and $v_{2} \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$, we have that

$$
\left[\beta_{q}(X), v_{2}\right]_{\tilde{\sigma}}=-\frac{1}{2 c} v_{2} v_{0} v_{2}+\frac{1}{2 c} v_{2} v_{2} v_{0}=\frac{1}{2 q^{2} c} v_{2} v_{2} v_{0}=0=X \triangleright v_{2} .
$$

The computations for other elements of $\mathfrak{s l}_{q}(2)$ and $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ are analogous.
3.3. Differential. Recall from [KP, §3.4] that the element

$$
\gamma_{q}=-\frac{1}{2 c^{2}}\left(c v_{0}+v_{2} v_{0} v_{-2}\right) \in \mathrm{Cl}_{q}^{(3)}\left(\mathfrak{s l}_{2}\right)
$$

squares to a scalar. Therefore, we can define a differential on $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ by

$$
\mathrm{d}_{\mathrm{Cl}_{q}} \omega_{q}=\left[\gamma_{q}, \omega\right]_{\sigma}=\gamma_{q} \omega-(-1)^{p(\omega)} \omega \gamma_{q}, \quad \omega \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right) .
$$

3.3.1. Proposition. We have that
(1) $\mathrm{d}_{\mathrm{Cl}_{q}} x=2 \beta_{q}(x)$ for $x \in \operatorname{sl}_{q}(2)$;
(2) the differential $\mathrm{d}_{\mathrm{Cl}_{q}}$ is $U_{q}\left(\mathfrak{s l}_{2}\right)$-equivariant.

Proof. (1) We have that

$$
\begin{aligned}
\mathrm{d}_{\mathrm{Cl}_{q}} v_{2} & =-\frac{1}{2 c^{2}}\left(v_{2}\left(c v_{0}+v_{2} v_{0} v_{-2}\right)+\left(c v_{0}+v_{2} v_{0} v_{-2}\right) v_{2}\right) \\
& =-\frac{1}{2 c^{2}}\left(c v_{2} v_{0}-q^{-2} c v_{2} v_{0}-v_{2} v_{0} v_{2} v_{-2}+\frac{q^{2}+1}{q^{2}} c v_{2} v_{0}\right) \\
& =-\frac{1}{2 c^{2}} \frac{c q^{2}-c+q^{2} c+c}{q^{2}} v_{2} v_{2}=-\frac{1}{c} v_{2} v_{0}=2 \beta_{q}(X), \\
\mathrm{d}_{\mathrm{Cl}_{q}} v_{0} & =-\frac{1}{2 c^{2}}\left(v_{0}\left(c v_{0}+v_{2} v_{0} v_{-2}\right)+\left(c v_{0}+v_{2} v_{0} v_{-2}\right) v_{0}\right) \\
& =-\frac{1}{2 c^{2}}\left(\frac{2 c\left(1-q^{4}\right)}{q^{3}} v_{2} v_{-2}+\frac{2 c^{2}\left(q^{2}+1\right)}{q}-2 q^{-2} v_{2} v_{0} v_{0} v_{-2}\right) \\
& =-\frac{1}{2 c^{2}}\left(\frac{2 c\left(1-q^{4}\right)}{q^{3}} v_{2} v_{-2}+\frac{2 c^{2}\left(q^{2}+1\right)}{q}-\frac{2 c\left(q^{2}+1\right)}{q^{3}} v_{2} v_{-2}\right) \\
& =\frac{q^{2}+q}{2 c q}\left(v_{2} v_{-2}-c\right)=2 \beta_{q}(Z), \\
\mathrm{d}_{\mathrm{Cl}_{q}} v_{0} & =-\frac{1}{2 c^{2}}\left(v_{-2}\left(c v_{0}+v_{2} v_{0} v_{-2}\right)+\left(c v_{0}+v_{2} v_{0} v_{-2}\right) v_{-2}\right) \\
& =-\frac{1}{2 c^{2}}\left(-q^{-2} c v_{0} v_{-2}+q^{-2} v_{2} v_{-2} v_{-2} v_{0}+\frac{q^{2}+1}{q^{2}} c v_{0} v_{-2}+c v_{0} v_{-2}\right) \\
& =-\frac{1}{c} v_{0} v_{-2}=2 \beta_{q}(Y) .
\end{aligned}
$$

(2) The equivariance of $\mathrm{d}_{\mathrm{Cl}_{q}}$ follows from the equivariance of the bracket $[-,-]_{\tilde{\sigma}}$.
3.4. Contractions. Following the classical case, see Example 2.2.2, define

$$
\iota_{x} \omega=\frac{1}{2}[x, \omega]_{\tilde{\sigma}}, \quad x \in V_{2 \pi}, \omega \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right) .
$$

This definition is motivated by the fact that for linear $v \in V_{2 \pi} \subset \mathrm{Cl}_{q}^{(1)}\left(\mathfrak{S l}_{2}\right)$ we have that

$$
\iota_{x} v=\frac{1}{2}[x, v]_{\tilde{\sigma}}=\frac{1}{2}\left(x v+m_{\mathrm{Cl}_{q}} \circ \tilde{\sigma}(x \otimes v)\right)=\frac{1}{2}(2\langle x, v\rangle)=\langle x, v\rangle,
$$

where $m_{\mathrm{Cl}_{q}}$ is the multiplication map in $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$. Furthermore, ι_{x} has the filtration degree -1 .
3.4.1. Proposition. For $x, y \in V_{2 \pi}$ let $x_{i}, y_{i} \in V_{2 \pi}$ be defined by $\tilde{\sigma}(x \otimes y)=\sum_{i} y_{i} \otimes x_{i}$, then for all $\omega \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ the contraction operators satisfy

$$
\iota_{x} \iota_{y} \omega+\sum_{i} \iota_{y_{i}} \iota_{x_{i}} \omega=0
$$

Hence the map $\iota: V_{2 \pi} \rightarrow \operatorname{End}\left(\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)\right)$ extends to a $U_{q}\left(\mathfrak{s l}_{2}\right)$-equivariant morphism of superalgebras $\iota: \bigwedge_{q} V_{2 \pi} \rightarrow \operatorname{End}\left(\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)\right)$.

Proof. For $v_{2}, v_{0} \in V_{2 \pi}=\bigwedge_{q}^{1} V_{2 \pi}$ we have that

$$
v_{2} \otimes v_{0}+\tilde{\sigma}\left(v_{2} \otimes v_{0}\right)=\frac{2}{1+q^{4}}\left(q^{2} v_{0} \otimes v_{2}+v_{2} \otimes v_{0}\right) .
$$

For $v_{2} v_{0} v_{-2} \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ we have that

$$
\iota_{v_{2}} \iota_{v_{0}}\left(v_{2} v_{0} v_{-2}\right)=\iota_{v_{2}}\left(\left(q^{2}-1\right)\left(q^{2}+1\right) q^{-3} c^{2}-\left(1+q^{2}\right) q^{-1} v_{2} v_{-2}\right)=\left(1+q^{2}\right) q^{-1} c^{2} v_{2},
$$

and

$$
\iota_{v_{0}} \iota_{v_{2}}\left(v_{2} v_{0} v_{-2}\right)=\iota_{v_{0}}\left(c v_{2} v_{0}\right)=-\left(1+q^{2}\right) q^{-3} c^{2} v_{2}=-q^{-2} \iota_{v_{2}} \iota_{v_{0}}\left(v_{2} v_{0} v_{-2}\right) .
$$

The computations for other elements of $\bigwedge_{q} V_{2 \pi}$ and $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ are analogous. The $U_{q}\left(\mathfrak{s l}_{2}\right)$ equivariance follows from the equivariance of the bracket $[-,-]_{\tilde{\sigma}}$.
3.5. Theorem. For $x \in \mathfrak{s l}_{q}(2)=V_{2 \pi}$ the operators L_{x}, ι_{x}, and d_{Cl} on $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ satisfy Cartan's magic formula

$$
L_{x}=\iota_{x} \circ \mathrm{~d}_{\mathrm{Cl}_{q}}+\mathrm{d}_{\mathrm{Cl}_{q}} \circ \iota_{x} .
$$

In particular, cochain maps L_{x} are homotopic to 0 , with ι_{x} as homotopy operators. Therefore, L_{x} induces the zero action on cohomology.

Proof. Direct computations. For example, for $v_{2} \in \mathfrak{s l}_{q}(2)=V_{2 \pi}$ and $v_{-2} \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ we have that

$$
L_{v_{2}} v_{-2}=v_{0}
$$

and

$$
\iota_{v_{2}} \mathrm{~d}_{\mathrm{Cl}_{q}} v_{-2}+\mathrm{d}_{\mathrm{Cl}_{q}} \iota_{v_{2}} v_{-2}=-\frac{1}{c} \iota_{v_{2}} v_{0} v_{-2}+c \mathrm{~d}_{\mathrm{Cl}_{q}}(1)=v_{0} .
$$

The computations for other cases are similar.
3.6. Remark. First note that the element γ_{q} generates a $U_{q}\left(\mathfrak{s l}_{2}\right)$-invariant subalgebra in $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$. Moreover, the element γ_{q} satisfies $\gamma_{q}^{2}=\frac{1+q^{2}}{4 c q}$. Therefore, by the universal property of Clifford algebras, we have that

$$
\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)^{U_{q}\left(\mathfrak{s l}_{2}\right)}=\mathrm{Cl}\left(P_{q}\left(\mathfrak{s l}_{2}\right), B_{q}\right)
$$

where $P_{q}\left(\mathfrak{s l}_{2}\right)$ is the space of primitive invariants spanned by γ_{q} equipped with nondegenerate symmetric bilinear form B_{q} given by $B_{q}\left(\gamma_{q}, \gamma_{q}\right)=\frac{1+q^{2}}{4 c q}$. It is now easy to see that $H\left(\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right), \mathrm{d}_{\mathrm{Cl}_{q}}\right)=0$.

Since the element γ_{q} is $U_{q}\left(\mathfrak{s l}_{2}\right)$-invariant we have that $\left[\omega, \gamma_{q}\right]_{\tilde{\sigma}}=-(-1)^{p(\omega)}\left[\gamma_{q}, \omega\right]_{\tilde{\sigma}}$ for all parity homogeneous $\omega \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$. Therefore, for $x \in \mathfrak{s l}_{q}(2)$ we have that

$$
\iota_{x} \gamma=\left[\frac{1}{2} x, \gamma_{q}\right]_{\tilde{\sigma}}=\left[\gamma_{q}, \frac{1}{2} x\right]_{\tilde{\sigma}}=\frac{1}{2} \mathrm{~d}_{\mathrm{Cl}_{q}}(x)=\beta_{q}(x) \in \operatorname{im} \alpha_{q} .
$$

Moreover, direct computations show that for $x \in \mathfrak{s l}_{q}(2)$ we have

$$
\iota_{x} \gamma_{q} \cdot \gamma_{q}^{*}=x
$$

where $\gamma_{q}^{*}=\frac{4 q c}{1+q^{2}} \gamma_{q}$ is the dual to γ_{q} with respect to B_{q}. This leads to the quantum analogue of the ρ-decomposition from Kos:

$$
\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)=\mathrm{Cl}\left(P_{q}\left(\mathfrak{s l}_{2}\right), B_{q}\right) \otimes \operatorname{im} \alpha_{q} .
$$

We emphasise that in this case the braided tensor product of algebras in the braided monoidal category of finite-dimensional type $1 U_{q}\left(\mathfrak{s l}_{2}\right)$-modules reduces to the usual tensor product of algebras since the elements of $\operatorname{Cl}\left(P_{q}\left(\mathfrak{s l}_{2}\right), B_{q}\right)$ are $U_{q}\left(\mathfrak{s l}_{2}\right)$-invariant.

4. The general Definition

4.1. Definition. A supervector space W is called a quantised $\mathfrak{s l}_{2}$-differential space if it is equipped with
(1) Lie derivatives $L_{x} \in \operatorname{End}(W)$ for $x \in U_{q}\left(\mathfrak{s l}_{2}\right)$ which define a $U_{q}\left(\mathfrak{s l}_{2}\right)$-module structure on W;
(2) a $U_{q}\left(\mathfrak{s l}_{2}\right)$-equivariant action $\iota: \bigwedge_{q} V_{2 \pi} \otimes W \rightarrow W$ of $\bigwedge_{q} V_{2 \pi}$;
(3) a $U_{q}\left(\mathfrak{s l}_{2}\right)$-equivariant differential $\mathrm{d}_{W}: W \rightarrow W$;
such that they satisfy Cartan's magic formula

$$
L_{x}=\iota_{x} \circ \mathrm{~d}_{W}+\mathrm{d}_{W} \circ \iota_{x} \quad \text { for } x \in \mathfrak{s l}_{q}(2) .
$$

A morphism between two quantised $\mathfrak{s l}_{2}$-differential spaces is a morphism in the category of $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules which intertwines contractions and differentials (and also Lie derivatives).
4.2. Definition. An algebra A is called a quantised $\mathfrak{s l}_{2}$-differential algebra if it is a quantised $\mathfrak{s l}_{2}$-differential space such that
(1) the Lie derivatives satisfy

$$
L_{x}(a b)=\sum\left(L_{x_{(1)}} a\right)\left(L_{x_{(2)}} b\right) \quad \text { for } a, b \in A, x \in U_{q}\left(\mathfrak{s l}_{2}\right),
$$

in other words, A is an algebra in the monoidal category of $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules;
(2) the differential d_{A} satisfies the (graded) Leibniz rule.

A morphism between two quantised $\mathfrak{s l}_{2}$-differential algebras is an algebra morphism in the category of $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules which intertwines contractions and differentials (and also Lie derivatives).
4.3. Quantum exterior algebra. First note that the associated graded algebra of $\mathrm{Cl}_{q}\left(\mathfrak{S l}_{2}\right)$ is the quantum exterior algebra $\bigwedge_{q} V_{2 \pi}$. For $x \in \mathfrak{s l}_{q}(2)$, the associated graded maps $L_{x}: \bigwedge_{q} V_{2 \pi} \rightarrow$ $V_{2 \pi}$ to the Lie derivatives $L_{x}: \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ define an action of $U_{q}\left(\mathfrak{s l}_{2}\right)$ since the filtration on $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is compatible with $U_{q}\left(\mathfrak{S l}_{2}\right)$-action.

The differential $\mathrm{d}_{\mathrm{Cl}_{q}}$ has filtered degree one. Therefore, we can define the associated graded $\operatorname{map} \mathrm{d}_{\wedge_{q}}: \bigwedge_{q} V_{2 \pi} \rightarrow \bigwedge_{q} V_{2 \pi}$ which is $U_{q}\left(\mathfrak{s l}_{2}\right)$-equivariant by construction. It is easy to see, c.f. Example 2.2.1, that $\mathrm{d}_{\wedge_{q}}$ is nonzero only for

$$
\mathrm{d}_{\wedge_{q}}\left(v_{2}\right)=-\frac{1}{c} v_{2} \wedge v_{0}, \quad \mathrm{~d}_{\wedge_{q}}\left(v_{0}\right)=\frac{1+q^{2}}{q c} v_{2} \wedge v_{-2}, \quad \mathrm{~d}_{\wedge_{q}}\left(v_{-2}\right)=-\frac{1}{c} v_{0} \wedge v_{-2} .
$$

It is straightforward to check that $\mathrm{d}_{\wedge_{q}}^{2}=0$ and that it satisfies the graded Leibniz rule, so it defines a differential on $\bigwedge_{q} V_{2 \pi}$. Moreover, we have the quantised version of the formula for differential, see Example 2.2.1,

$$
\mathrm{d}_{\wedge_{q}}=\frac{q^{4}}{1+q^{4}}\left(\frac{1}{c} v_{2} L_{Y}+\frac{q}{\left(1+q^{2}\right) c} v_{0} L_{Z}+\frac{1}{q^{2} c} v_{-2} L_{X}\right) .
$$

Note that the formulas for the differential depend on the parameter c since we identify $\bigwedge_{q} V_{2 \pi}^{*}$ with $\bigwedge_{q} V_{2 \pi}$ via the bilinear form $\langle\cdot, \cdot\rangle$.

Similarly, for $x \in \bigwedge_{q} V_{2 \pi}$ we define the contraction operator $\iota_{x}: \bigwedge_{q} V_{2 \pi} \rightarrow \bigwedge V_{2 \pi}$ as the associated graded map for the contraction operator on $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$. By construction, the operators
ι_{x} define a $U_{q}\left(\mathfrak{s l}_{2}\right)$-equivariant representation of $\bigwedge_{q} V_{2 \pi}$. In particular, we have that
$\iota_{v_{2}} v_{2}=0$,
$\iota_{v_{0}} v_{2}=0$,
$\iota_{v_{2}} v_{0}=0$,
$\iota_{v_{0}} v_{0}=q^{-3}\left(1+q^{2}\right) c$,
$\iota_{v_{-2}} v_{2}=q^{-2} c$,
$\iota_{v_{2}} v_{-2}=c$,
$\iota_{v_{0}} v_{2}=0$,
$\iota_{v_{-2}} v_{0}=0$,
$\iota_{v_{2}} v_{2} \wedge v_{0}=0$,
$\iota_{v_{0}} v_{2} \wedge v_{0}=-\frac{1+q^{2}}{q^{3}} c v_{2}$,
$\iota_{v_{-2}} v_{-2}=0$,
$\iota_{v_{2}} v_{2} \wedge v_{-2}=-c v_{2}$,
$\iota_{v_{0}} v_{2} \wedge v_{-2}=\frac{1-q^{2}}{q^{2}} c v_{0}$,
$\iota_{v_{-2}} v_{2} \wedge v_{0}=c v_{0}$,
$\iota_{v_{2}} v_{0} \wedge v_{-2}=-c v_{0}$,
$\iota_{v_{0}} v_{0} \wedge v_{-2}=\frac{1+q^{2}}{q} c v_{-2}$,
$\iota_{v_{-2}} v_{2} \wedge v_{-2}=q^{-2} c v_{-2}$,
$\iota_{v_{2}} v_{2} \wedge v_{0} \wedge v_{-2}=c v_{2} \wedge v_{0}$
$\iota_{v_{0}} v_{2} \wedge v_{0} \wedge v_{-2}=-\frac{1+q^{2}}{q} c v_{2} \wedge v_{-2}$,
$\iota_{v_{-2}} v_{0} \wedge v_{-2}=0$,

Cartan's magic formula for associated graded maps L_{x}, ι_{x}, and $\mathrm{d}_{\wedge_{q}}$ on $\bigwedge_{q} V_{2 \pi}$ follows from the fact that Cartan's magic formula on $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ has degree 0 . It can also be checked by direct computations as follows. First note that for elements of $\bigwedge^{0} V_{2 \pi}$ and $\bigwedge^{3} V_{2 \pi}$ Cartan's magic formula holds trivially. The operator $\mathrm{d}_{\wedge_{q}} \circ \iota_{x}$ acts by zero on $\Lambda^{1} V_{2 \pi}$. We have that

$$
\iota_{v_{2}} \mathrm{~d}_{\wedge_{q}} v_{-2}=-\frac{1}{c} \iota_{v_{2}}\left(v_{0} \wedge v_{-2}\right)=v_{0}=L_{v_{2}} v_{-2} .
$$

The operator $\iota_{x} \circ \mathrm{~d}_{\Lambda_{q}}$ acts by zero on $\bigwedge^{2} V_{2 \pi}$. We have that

$$
\mathrm{d}_{\wedge_{q} v_{v_{2}}}\left(v_{0} \wedge v_{-2}\right)=-c \mathrm{~d}_{\wedge_{q}} v_{0}=-\frac{1+q^{2}}{q} v_{2} \wedge v_{-2}=L_{v_{2}}\left(v_{0} \wedge v_{-2}\right) .
$$

Therefore, we have proved the following theorem.
4.4. Theorem. The algebras $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ and $\bigwedge_{q} V_{2 \pi}$ are quantised $\mathfrak{s l}_{2}$-differential algebras.
4.5. Remark. Similarly to the case of $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$, see Remark 3.6, we can now compute the cohomology of $\bigwedge_{q} V_{2 \pi}$ using Cartan's magic formula. First note that the subalgebra of $U_{q}\left(\mathfrak{s l}_{2}\right)$-invariant elements in $\bigwedge_{q} V_{2 \pi}$ is spanned by $1, v_{2} \wedge v_{0} \wedge v_{-2}$. Therefore, we have the quantised analogue of Hopf-Koszul-Samelson theorem

$$
H\left(\bigwedge_{q} V_{2 \pi}, \mathrm{~d}_{\wedge_{q}}\right)=\left(\bigwedge_{q} V_{2 \pi}\right)^{U_{q}\left(\mathfrak{s l}_{2}\right)}=\bigwedge_{\wedge_{q}}\left(\mathfrak{s l}_{2}\right),
$$

where $P_{\wedge_{q}}\left(\mathfrak{s l}_{2}\right)$ is the space of primitive invariants spanned by $v_{2} \wedge v_{0} \wedge v_{-2}$.

References

[AC] P. Aschieri and L. Castellani, An introduction to noncommutative differential geometry on quantum groups, Internat. J. Modern Phys. A 8 (1993), no. 10, 1667-1706, arXiv:hep-th/9207084
[AM1] A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000), no. 1, 135-172, arXiv:math/9903052 [math.DG]
[AM2] A. Alekseev and E. Meinrenken, Lie theory and the Chern-Weil homomorphism, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 303-338, arXiv:math/0308135 [math.RT].
[AS] P. Aschieri and P. Schupp, Vector fields on quantum groups, Internat. J. Modern Phys. A 11 (1996), no. 6, 1077-1100, arXiv:q-alg/9505023.
[BKLS] S. Bouarroudj, A. Krutov, D. Leites, and I. Shchepochkina, Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras, Algebr. Represent. Theory 21 (2018), no. 5, 897-941, arXiv:1806.05505 [math.RT].
[BZ] A. Berenstein and S. Zwicknagl, Braided symmetric and exterior algebras, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3429-3472, arXiv:math/0504155 [math.QA]
[Car1] H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 57-71.
[Car2] H. Cartan, Notions d'algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson \& Cie, Paris, 1951, pp. 15-27.
[Che] S.-J. Cheng, Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras, J. Algebra 173 (1995), no. 1, 1-43.
[Dri1] V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798-820.
[Dri2] V. G. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114-148.
[EGNO] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015.
[GS] V. W. Guillemin and S. Sternberg, Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999, With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)].
[HK] A. Henriques and J. Kamnitzer, Crystals and coboundary categories, Duke Math. J. 132 (2006), no. 2, 191-216, arXiv:math/0406478 [math.QA]
[HP1] J.-S. Huang and P. Pandžić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), no. 1, 185-202.
[HP2] J.-S. Huang and P. Pandžić, Dirac operators in representation theory, Mathematics: Theory \& Applications, Birkhäuser Boston, Inc., Boston, MA, 2006.
[Jur] B. Jurčo, Differential calculus on quantized simple Lie groups, Lett. Math. Phys. 22 (1991), no. 3, 177-186.
[Kos] B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ-decomposition $C(\mathfrak{g})=$ End $V_{\rho} \otimes C(P)$, and the \mathfrak{g}-module structure of $\bigwedge \mathfrak{g}$, Adv. Math. 125 (1997), no. 2, 275-350.
[KP] A. Krutov and P. Pandžić, Cubic Dirac operator for $U_{q}\left(\mathfrak{s l}_{2}\right)$, arXiv:2209.09591 [math.RT]
[KS] A. Klimyk and K. Schmüdgen, Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
[Lu] J.-H. Lu, Moment maps at the quantum level, Comm. Math. Phys. 157 (1993), no. 2, 389-404.
[Mei] E. Meinrenken, Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013.
[SWZ] P. Schupp, P. Watts, and B. Zumino, Cartan calculus on quantum Lie algebras, vol. 4, 1994, Differential geometric methods in theoretical physics (Ixtapa-Zihuatanejo, 1993), pp. 125-134.
[Wor] S. L. Woronowicz, Twisted $\mathrm{SU}(2)$ group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117-181.

Mathematical Institute of Charles University, Sokolovská 83, Prague, Czech Republic
Email address: andrey.krutov@matfyz.cuni.cz
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Email address: pandzic@math.hr

[^0]: 2020 Mathematics Subject Classification. 16T20, 81R50, 17B37.
 Key words and phrases. Quantum group, Clifford algebra, quantised exterior algebra, \mathfrak{g}-differential algebra.
 A. Krutov was supported by the GAČR projects $24-10887 \mathrm{~S}$ and by HORIZON-MSCA-2022-SE-01-01 CaLIGOLA. P. Pandžić was supported by the project "Implementation of cutting-edge research and its application as part of the Scientific Center of Excellence for Quantum and Complex Systems, and Representations of Lie Algebras", PK.1.1.02, European Union, European Regional Development Fund. This article is based upon work from COST Action CaLISTA CA21109 supported by COST (European Cooperation in Science and Technology, www.cost.eu).

