
QUANTISED sl2-DIFFERENTIAL ALGEBRAS

ANDREY KRUTOV AND PAVLE PANDŽIĆ

Abstract. We propose a definition of a quantised sl2-differential algebra and show that
the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised
Clifford algebra (defined by the authors) of sl2 are natural examples of such algebras.

1. Introduction

Let g be a Lie algebra. H. Cartan introduced the notion of g-differential algebras as
a generalisation of differential forms on manifolds with g-action, [Car1, Car2]. Later g-
differential algebras appeared in the study of equivariant cohomology [GS, AM1], in Chern–
Weil theory [AM2, Mei], and in relation to (algebraic) Dirac operators and Vogan’s conjec-
ture [AM1, HP1, HP2].

There have been several attempts to generalise the notion of g-differential algebras to the
setting of quantum groups and noncommutative geometry; for example, see [AC, SWZ, AS].
These works, however, assumed that we either work with a triangular Hopf algebra, or start
with a bicovariant calculus on a quantum group, so they do not directly apply the setting
of 𝑈𝑞(sl2) since it is only a quasitriangular, see [Dri1, Dri2], and its bicovariant differential
calculus does not have classical dimension [Wor], see also [Jur] for the general case.

In this paper we propose a definition of quantised sl2-differential algebras and give first
examples, certain quantised Clifford and exterior algebras. The advantage of our approach
is that we start with the quantum exterior algebra defined by Berenstein and Zwicknagl [BZ]
of the classical dimension instead of a bicovariant calculus. We use the coboundary structure
on the category of 𝑈𝑞(sl2)-modules, see [Dri2]. (As it was shown in [HK] such coboundary
structure is related to the category of crystals.)

The paper is organised as follows. In §2 we recall necessary facts about the Drinfeld–
Jimbo quantum group 𝑈𝑞(sl2), the quantised adjoint representation and its quantum exterior
algebra. In §3 we recall the definition of the 𝑞-deformed Clifford algebra of sl2 introduced
in [KP] and define Lie derivatives, contraction operators and the differential on it. We show
that the defined operations enjoy many features of their classical counterparts, in particular,
Cartan’s magic formula holds for them. In §4 we propose a definition of a quantised sl2-
differential algebra and show that the quantised exterior and Clifford algebras of sl2 are
examples of such algebras.
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2. Preliminaries

2.1. g-differential algebras. Let g be a complex Lie algebra. Let
⋀︀
[𝜉] be the Grassmann

algebra with one generator 𝜉, and let d := 𝜕𝜉 ∈ Der
⋀︀
[𝜉] be the derivation with respect to 𝜉.

Set ̂︀g := g⊗
⋀︀
[𝜉] A Cd. Then ̂︀g = ̂︀g−1 ⊕ ̂︀g0 ⊕ ̂︀g1 is a Z-graded Lie superalgebra wherê︀g−1 = g⊗ 𝜉, ̂︀g0 = g⊗ 1, ̂︀g1 = Cd.

For 𝑥 ∈ g, let 𝐿𝑥 := 𝑥 ⊗ 1 ∈ ̂︀g0, 𝜄𝑥 := 𝑥 ⊗ 𝜉 ∈ ̂︀g−1. The non-zero bracket relations in ̂︀g are
defined as

[𝐿𝑥, 𝜄𝑦] = 𝜄[𝑥,𝑦], [𝐿𝑥, 𝐿𝑦] = 𝐿[𝑥,𝑦], [𝜄𝑥, d] = 𝐿𝑥 for all 𝑥, 𝑦 ∈ g. (1)

2.1.1. Digression: semisimple Lie superalgebras. Assume that g is simple. Let
⋀︀
(𝑛)

denote the Grassmann algebra with 𝑛 generators 𝜉1, . . . , 𝜉𝑛. Then
⋀︀
(𝑛) has a natural Z-

grading given by deg 𝜉𝑖 = 1. Let vect(0|𝑛) := Der
⋀︀
(𝑛). Clearly, vect(0|𝑛) is a Z-graded Lie

superalgebra where deg 𝜕𝜉𝑖 = −1. Let vect(0|𝑛)−1 denotes the homogeneous component of
degree −1. As it was shown in [Che], any semisimple Lie superalgebra is the direct sum of
the following summands

s̃⊗
⋀︀
(𝑛) A v,

where s is a simple Lie superalgebra, s ⊆ s̃ ⊆ Der s, and v ⊂ vect(0|𝑛) is such that the
projection v → vect(0|𝑛)−1 is onto. In our case (for ̂︀g) we have that 𝑛 = 1, v = SpanC(𝜕𝜉),
s̃ = s = g.

2.2. g-differential spaces and algebras. A g-differential space is a superspace 𝑉 , to-
gether with a ̂︀g-module structure 𝜌 : ̂︀g → End(𝑉 ). A g-differential algebra is a superal-
gebra 𝐴, equipped with a structure of g-differential space such that 𝜌(𝑥) ∈ Der𝐴 for all
𝑥 ∈ ̂︀g. Observe that if 𝐴 is a g-differential algebra then the contraction operators 𝜄 de-
fine a g-equivariant representation of 𝑈(̂︀g−1) ∼=

⋀︀
g on 𝐴, where 𝑈(̂︀g−1) is the universal

enveloping algebra of the Lie superalgebra ̂︀g−1. The idea of a g-differential algebra is due to
H. Cartan [Car2, Car1]. We follow the terminology and notation from [Mei].

2.2.1. Example. Take 𝐴 =
⋀︀
g*, equipped with the coadjoint action of g denoted by 𝐿𝑥

for 𝑥 ∈ g. For 𝑥 ∈ g and 𝑓 ∈ g* =
⋀︀1g* define the contraction operator by 𝜄𝑥𝑓 = 𝑓(𝑥). The

odd map 𝑖𝑥 is extended to
⋀︀
g* by the super Leibniz rule. Let 𝑒𝑎 be a basis of g and 𝑓𝑎 be

the corresponding dual basis in g*. The Lie algebra differential on
⋀︀
g* may be written as

d∧ =
1

2

∑︁
𝑎

𝑓𝑎 ∘ 𝐿𝑒𝑎 ,

with 𝑓𝑎 acting by the exterior multiplication. Then
⋀︀
g* is a g-differential algebra. One can

show that 𝐻(
⋀︀
g*, d∧) ∼= (

⋀︀
g*)g.

2.2.2. Example. Suppose that g has a nondegenerate invariant symmetric bilinear form 𝐵
(for example, see review in [BKLS]), used to identify g ∼= g*. Let Cl(g) be the Clifford
algebra of g with respect to 𝐵 define by

Cl(g) = 𝑇 (g)/ ⟨𝑥⊗ 𝑦 + 𝑦 ⊗ 𝑥− 2𝐵(𝑥, 𝑦) | 𝑥, 𝑦 ∈ g⟩ .
Let 𝑧𝑖 be an orthonormal basis of g, then the Chevalley map (or quantisation) 𝑞Cl :

⋀︀
(g) →

Cl(g) is defined by

𝑧𝑖1 ∧ . . . ∧ 𝑧𝑖𝑘 ↦→ 𝑧𝑖1 . . . 𝑧𝑖𝑘 (and 1 ↦→ 1),

where 1 ≤ 𝑖1 < . . . < 𝑖𝑘 ≤ dim g. Set

𝛾 = − 1

12

dim g∑︁
𝑎,𝑏,𝑐=1

𝐵([𝑧𝑎, 𝑧𝑏], 𝑧𝑐)𝑧𝑎 ∧ 𝑧𝑏 ∧ 𝑧𝑐 ∈ (
⋀︀3g)g.
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Define the map 𝛼 : g → Cl(g) by

𝛼(𝑥) = −1

4

dim g∑︁
𝑎,𝑏=1

𝐵(𝑥, [𝑧𝑎, 𝑧𝑏])𝑧𝑎𝑧𝑏 for 𝑥 ∈ g.

The map 𝛼 extends to an algebra homomorphism 𝛼 : 𝑈(g) → Cl(g).
The Clifford algebra Cl(g) is a filtered g-differential algebra with differential, Lie deriva-

tives and contractions given as

dCl = [𝑞Cl(𝛾),−]Cl, 𝐿𝑥 = [𝛼(𝑥),−]Cl, 𝜄𝑥 =
1

2
[𝑥,−]Cl, for 𝑥 ∈ g,

where [−,−]Cl denotes the supercommutator in Cl(g). The quantisation map 𝑞Cl :
⋀︀
g →

Cl(g) intertwines the Lie derivatives and contractions, but does not intertwine the differential.
The cohomology of (Cl(g), dCl) is trivial in all filtration degrees (except if g is abelian, in
which case dCl = 0); for example, see [Mei, §7.1].

2.3. 𝑈𝑞(sl2). Fix a nonzero 𝑞 ∈ C which is not a root of unity. The quantised enveloping
algebra 𝑈𝑞(sl2) is the associative algebra with unit generated by the elements 𝐸, 𝐹 , 𝐾,
and 𝐾−1 subject to the relations

𝐾𝐸 = 𝑞2𝐸𝐾, 𝐾𝐹 = 𝑞−2𝐹𝐾, 𝐾𝐾−1 = 𝐾−1𝐾 = 1, 𝐸𝐹 − 𝐹𝐸 =
𝐾 −𝐾−1

𝑞 − 𝑞−1
.

A Hopf algebra structure on 𝑈𝑞(sl2) is given by

∆𝐸 = 𝐸 ⊗𝐾 + 1⊗ 𝐸, ∆𝐹 = 𝐹 ⊗ 1 +𝐾−1 ⊗ 𝐹, ∆𝐾 = 𝐾 ⊗𝐾, ∆𝐾−1 = 𝐾−1 ⊗𝐾−1,

𝑆(𝐸) = −𝐸𝐾−1, 𝑆(𝐹 ) = −𝐾𝐹, 𝑆(𝐾−1) = 𝐾, 𝑆(𝐾) = 𝐾−1,

𝜀(𝐸) = 𝜀(𝐹 ) = 0, 𝜀(𝐾) = 𝜀(𝐾−1) = 1,

where ∆ is the coproduct, 𝑆 is the antipode, and 𝜀 is the counit. In what follows we use
Sweedler notation for the coproduct ∆𝑥 =

∑︀
𝑥(1) ⊗ 𝑥(2).

Let h be a Cartan subalgebra of sl2, 𝒫 ⊂ h* be the weight lattice of sl2, and 𝒫+ be the
sublattice of dominant weights generated by the fundamental weight 𝜋. The category of finite
dimensional type 1 modules over 𝑈𝑞(sl2) is equivalent to the category of finite dimensional sl2
modules; for example, see [EGNO, §5.8] or [KS, §3]. For 𝜆 ∈ 𝒫+ we denote the corresponding
type 1 finite dimensional 𝑈𝑞(sl2)-module with highest weight 𝜆 by 𝑉𝜆.

Let sl𝑞(2) denote the vector subspace of 𝑈𝑞(sl2) spanned by the elements

𝑋 = 𝐸, 𝑍 = 𝑞−2𝐸𝐹 − 𝐹𝐸, 𝑌 = 𝐾𝐹.

The space sl𝑞(2) is closed with respect to the left adjoint action of 𝑈𝑞(sl2) on itself defined
by

ad𝑥 𝑦 =
∑︁

𝑥(1)𝑦𝑆(𝑥(2)) for 𝑥, 𝑦 ∈ 𝑈𝑞(sl2).

It is easy to see that as a 𝑈𝑞(sl2)-module, sl𝑞(2) is isomorphic to the quantised adjoint
representation 𝑉2𝜋 of sl2. In what follows we will use notation sl𝑞(2) to emphasise that
elements 𝑋, 𝑍, and 𝑌 belong to sl𝑞(2) ⊂ 𝑈𝑞(sl2). In the case when 𝑉2𝜋 is treated as an
abstract 𝑈𝑞(sl2)-module and in the case when we will construct quantum exterior and Clifford
algebras, we will use the following notation for basis elements in 𝑉2𝜋:

𝑣2 = 𝑋, 𝑣0 = 𝑍, 𝑣−2 = 𝑌.
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2.4. Normalised braiding. The following construction is due to Drinfeld [Dri2]. Let C
be a braided monoidal category linear over C[[ℏ]] and assume that the braiding satisfies
𝜎𝑊,𝑉 ∘ 𝜎𝑉,𝑊 = id𝑉⊗𝑊 +𝑂(ℏ). Then the map

�̃�𝑉,𝑊 = 𝜎𝑉,𝑊 ∘ (𝜎𝑊,𝑉 ∘ 𝜎𝑉,𝑊 )−1/2,

is called a normalised braiding and defines a coboundary structure on C in the sense of [Dri2].
For details see [EGNO, Exercise 8.3.25 on p. 202]. In particular, we have that �̃�2 = id.

The category of type one finite-dimensional 𝑈𝑞(sl2)-module is a braided monoidal category
where the braiding 𝜎 is given by the universal 𝑅-matrix; see [EGNO, §8.3] for details. The
𝑅-matrix braiding 𝜎 satisfies the above condition. In what follows we denote by �̃� the
corresponding normalised braiding.

2.5. Quantum exterior algebras. Following [BZ] define the quantum exterior algebra
⋀︀

𝑞𝑉2𝜋

of 𝑉2𝜋 as ⋀︀
𝑞𝑉2𝜋 = 𝑇 (𝑉2𝜋)/⟨𝑣 ⊗ 𝑤 + �̃�(𝑣 ⊗ 𝑤) | 𝑣, 𝑤 ∈ 𝑉2𝜋⟩

The algebra
⋀︀

𝑞𝑉2𝜋 is generated by 𝑣2, 𝑣0, 𝑣−2 subject to the following relations

𝑣2 ∧ 𝑣2 = 0, 𝑣−2 ∧ 𝑣−2 = 0,

𝑣0 ∧ 𝑣2 = − 𝑞−2𝑣2 ∧ 𝑣0, 𝑣−2 ∧ 𝑣0 = − 𝑞−2𝑣0 ∧ 𝑣−2,

𝑣0 ∧ 𝑣0 =
(1− 𝑞4)

𝑞3
𝑣2 ∧ 𝑣−2, 𝑣−2 ∧ 𝑣2 = − 𝑣2 ∧ 𝑣−2.

We note that
⋀︀

𝑞𝑉2𝜋 is a Z-graded super algebra in the braided monoidal category of type 1

finite-dimensional 𝑈𝑞(sl2)-modules. The Z2-grading corresponding to a super algebra struc-
ture is given by setting 𝑝(𝑣2) = 𝑝(𝑣0) = 𝑝(𝑣−2) = 1̄, where 𝑝(𝑣) ∈ Z2 = {0̄, 1̄} denotes the
parity of the element 𝑣. The algebra

⋀︀
𝑞𝑉2𝜋 is (super)commutative with respect to normalised

braiding, i.e. 𝑣 ∧ 𝑤 = (−1)𝑝(𝑣)𝑝(𝑤) ∧ ∘ �̃�(𝑣 ⊗ 𝑤) for all parity homogeneous 𝑣, 𝑤 ∈
⋀︀

𝑞𝑉2𝜋.

3. Motivating example: Cl𝑞(sl2)

Fix a non-zero constant 𝑐 ∈ C[𝑞, 𝑞−1]. First recall from [KP, §2.7] that 𝑉2𝜋 admits a non-
degenerate 𝑈𝑞(sl2)-invariant bilinear form given by

⟨𝑣2, 𝑣−2⟩ = 𝑐, ⟨𝑣0, 𝑣0⟩ = 𝑞−3(1 + 𝑞2)𝑐, ⟨𝑣−2, 𝑣2⟩ = 𝑐𝑞−2,

Note that the form ⟨·, ·⟩ is symmetric with respect to the normalised braiding �̃�, i.e., ⟨·, ·⟩ =
⟨·, ·⟩∘�̃�. The 𝑞-deformed Clifford algebra of sl2 was defined in [KP, §3] as filtered deformation
of

⋀︀
𝑞𝑉2𝜋 by the bilinear form ⟨·, ·⟩:

Cl𝑞(sl2) = 𝑇 (𝑉2𝜋)/⟨𝑣 ⊗ 𝑤 + �̃�(𝑣 ⊗ 𝑤)− 2⟨𝑣, 𝑤⟩ | 𝑣, 𝑤 ∈ 𝑉2𝜋⟩,

As it was shown in [KP, Lemma 3.3], the algebra Cl𝑞(sl2) is generated by 𝑣2, 𝑣0, 𝑣−2 satisfying
the following relations

𝑣2𝑣2 = 0, 𝑣−2𝑣−2 = 0,

𝑣0𝑣2 = − 𝑞−2𝑣2𝑣0, 𝑣−2𝑣0 = − 𝑞−2𝑣0𝑣−2,

𝑣0𝑣0 =
1− 𝑞4

𝑞3
𝑣2𝑣−2 +

𝑞2 + 1

𝑞
𝑐1, 𝑣−2𝑣2 = − 𝑣2𝑣−2 +

𝑞2 + 1

𝑞2
𝑐1.

It is easy to see that Cl𝑞(sl2) is a filtered super algebra in the (braided) monoidal category
of 𝑈𝑞(sl2)-modules. We note that Cl𝑞(sl2) is a filtered 𝑈𝑞(sl2)-module where the elements
of 𝑈𝑞(sl2) act by operators of degree 0.
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3.1. �̃�-commutators. For 𝑥, 𝑦 ∈ Cl𝑞(sl2) homogeneous with respect to parity set

[𝑥, 𝑦]�̃� :=
(︀
𝑚Cl𝑞 − (−1)𝑝(𝑥)𝑝(𝑦)𝑚Cl𝑞 ∘ �̃�

)︀
(𝑥⊗ 𝑦),

where𝑚Cl𝑞 denotes the multiplication map in Cl𝑞(sl2). The map [−,−]�̃� is extended to Cl𝑞(sl2)
by linearity. By construction [−,−]�̃� is 𝑈𝑞(sl2)-equivariant since it is composed from equi-
variant maps.

3.1.1. Lemma. The bracket [−,−]�̃� is �̃�-skew-symmetric:

[𝜔, 𝜇]�̃� = −(−1)𝑝(𝜔)𝑝(𝜇)[−,−]�̃� ∘ �̃�(𝜔 ⊗ 𝜇) for 𝜔, 𝜇 ∈ Cl𝑞(sl2),

and has the filtration degree −1.

Proof. The �̃�-skew-symmetricity follows form the definition of [−,−]�̃�. Since Cl𝑞(sl2) is
a filtered deformation of the �̃�-supercommutative algebra

⋀︀
𝑞𝑉2𝜋, it follows from the definition

that the bracket [−,−]�̃� has the filtration degree −1. □

3.2. The 𝛼 and 𝛽 maps and Lie derivatives. The quantum moment map (in the sense
of [Lu]) is the algebra map 𝛼𝑞 : 𝑈𝑞(sl2) → Cl𝑞(sl2) defined in [KP, §3.7]. It is given on
generators by

𝛼𝑞(𝐸) = − 𝑞

(1 + 𝑞2)𝑐
𝑣2𝑣0, 𝛼𝑞(𝐹 ) = − 𝑞2

(1 + 𝑞2)𝑐
𝑣0𝑣−2,

𝛼𝑞(𝐾) =
𝑞3 − 𝑞

(1 + 𝑞2)𝑐
𝑣2𝑣−2 + 𝑞−1, 𝛼𝑞(𝐾

−1) = − 𝑞3 − 𝑞

(1 + 𝑞2)𝑐
𝑣2𝑣−2 + 𝑞.

Since 𝛼𝑞 is an algebra map it follows that

𝛼𝑞(𝑍) =
1

𝑐
𝑣2𝑣−2 − 1, 𝛼𝑞(𝑌 ) = − 𝑞

(1 + 𝑞2)𝑐
𝑣0𝑣−2.

As it was shown in [KP, Lemma 3.7.1] the inner 𝑈𝑞(sl2)-action defined by 𝛼 coincides with
the natural one:

𝑥 ◁ 𝜔 =
∑︁

𝛼𝑞(𝑥(1))𝜔𝛼𝑞(𝑆(𝑥(2))) for 𝑥 ∈ 𝑈𝑞(sl2), 𝜔 ∈ Cl𝑞(sl2),

where 𝑥 ◁ 𝜔 denotes the 𝑈𝑞(sl2)-action on Cl𝑞(sl2).
Following the classical situation we define Lie derivatives on Cl𝑞(sl2) with respect to ele-

ments of 𝑈𝑞(sl2) by

𝐿𝑥𝜔 := 𝑥 ◁ 𝜔 for 𝑥 ∈ 𝑈𝑞(sl2), 𝜔 ∈ Cl𝑞(sl2).

Classically, the map 𝛼 defined the (adjoint) action of g by taking the (super)commutator;
see Example 2.2.2. This is no longer true in the quantum case for �̃�-commutators. Define
a linear map 𝛽𝑞 : sl𝑞(2) → Cl𝑞(sl2) by

𝛽𝑞(𝑋) =
1 + 𝑞2

𝑞
𝛼𝑞(𝑋), 𝛽𝑞(𝑌 ) =

1 + 𝑞2

𝑞
𝛼𝑞(𝑍), 𝛽𝑞(𝑍) =

1 + 𝑞2

𝑞
𝛼𝑞(𝑌 ).

The definition of 𝛽𝑞 is motivated by the following lemma.

3.2.1. Proposition. The 𝛽𝑞-map defines the quantum Hamiltonian with respect to the �̃�-
commutator for the action of elements of sl𝑞(2) ⊂ 𝑈𝑞(sl2) on Cl𝑞(sl2). Namely, we have
that

𝐿𝑥𝜔 = [𝛽𝑞(𝑥), 𝜔]�̃� for 𝑥 ∈ sl𝑞(2), 𝜔 ∈ Cl𝑞(sl2).

Proof. For 𝑋 ∈ sl𝑞(2) and 𝑣2 ∈ Cl𝑞(sl2), we have that

[𝛽𝑞(𝑋), 𝑣2]�̃� = − 1

2𝑐
𝑣2𝑣0𝑣2 +

1

2𝑐
𝑣2𝑣2𝑣0 =

1

2𝑞2𝑐
𝑣2𝑣2𝑣0 = 0 = 𝑋 ◁ 𝑣2.

The computations for other elements of sl𝑞(2) and Cl𝑞(sl2) are analogous. □
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3.3. Differential. Recall from [KP, §3.4] that the element

𝛾𝑞 = − 1

2𝑐2
(𝑐𝑣0 + 𝑣2𝑣0𝑣−2) ∈ Cl(3)𝑞 (sl2)

squares to a scalar. Therefore, we can define a differential on Cl𝑞(sl2) by

dCl𝑞𝜔𝑞 = [𝛾𝑞, 𝜔]𝜎 = 𝛾𝑞𝜔 − (−1)𝑝(𝜔)𝜔𝛾𝑞, 𝜔 ∈ Cl𝑞(sl2).

3.3.1. Proposition. We have that

(1) dCl𝑞𝑥 = 2𝛽𝑞(𝑥) for 𝑥 ∈ sl𝑞(2);
(2) the differential dCl𝑞 is 𝑈𝑞(sl2)-equivariant.

Proof. (1) We have that

dCl𝑞𝑣2 = − 1

2𝑐2
(𝑣2(𝑐𝑣0 + 𝑣2𝑣0𝑣−2) + (𝑐𝑣0 + 𝑣2𝑣0𝑣−2)𝑣2)

= − 1

2𝑐2
(𝑐𝑣2𝑣0 − 𝑞−2𝑐𝑣2𝑣0 − 𝑣2𝑣0𝑣2𝑣−2 +

𝑞2 + 1

𝑞2
𝑐𝑣2𝑣0)

= − 1

2𝑐2
𝑐𝑞2 − 𝑐+ 𝑞2𝑐+ 𝑐

𝑞2
𝑣2𝑣2 = −1

𝑐
𝑣2𝑣0 = 2𝛽𝑞(𝑋),

dCl𝑞𝑣0 = − 1

2𝑐2
(𝑣0(𝑐𝑣0 + 𝑣2𝑣0𝑣−2) + (𝑐𝑣0 + 𝑣2𝑣0𝑣−2)𝑣0)

= − 1

2𝑐2

(︂
2𝑐(1− 𝑞4)

𝑞3
𝑣2𝑣−2 +

2𝑐2(𝑞2 + 1)

𝑞
− 2𝑞−2𝑣2𝑣0𝑣0𝑣−2

)︂
= − 1

2𝑐2

(︂
2𝑐(1− 𝑞4)

𝑞3
𝑣2𝑣−2 +

2𝑐2(𝑞2 + 1)

𝑞
− 2𝑐(𝑞2 + 1)

𝑞3
𝑣2𝑣−2

)︂
=

𝑞2 + 𝑞

2𝑐𝑞
(𝑣2𝑣−2 − 𝑐) = 2𝛽𝑞(𝑍),

dCl𝑞𝑣0 = − 1

2𝑐2
(𝑣−2(𝑐𝑣0 + 𝑣2𝑣0𝑣−2) + (𝑐𝑣0 + 𝑣2𝑣0𝑣−2)𝑣−2)

= − 1

2𝑐2
(−𝑞−2𝑐𝑣0𝑣−2 + 𝑞−2𝑣2𝑣−2𝑣−2𝑣0 +

𝑞2 + 1

𝑞2
𝑐𝑣0𝑣−2 + 𝑐𝑣0𝑣−2)

= − 1

𝑐
𝑣0𝑣−2 = 2𝛽𝑞(𝑌 ).

(2) The equivariance of dCl𝑞 follows from the equivariance of the bracket [−,−]�̃�. □

3.4. Contractions. Following the classical case, see Example 2.2.2, define

𝜄𝑥𝜔 =
1

2
[𝑥, 𝜔]�̃�, 𝑥 ∈ 𝑉2𝜋, 𝜔 ∈ Cl𝑞(sl2).

This definition is motivated by the fact that for linear 𝑣 ∈ 𝑉2𝜋 ⊂ Cl(1)𝑞 (sl2) we have that

𝜄𝑥𝑣 =
1

2
[𝑥, 𝑣]�̃� =

1

2
(𝑥𝑣 +𝑚Cl𝑞 ∘ �̃�(𝑥⊗ 𝑣)) =

1

2
(2⟨𝑥, 𝑣⟩) = ⟨𝑥, 𝑣⟩,

where𝑚Cl𝑞 is the multiplication map in Cl𝑞(sl2). Furthermore, 𝜄𝑥 has the filtration degree−1.

3.4.1. Proposition. For 𝑥, 𝑦 ∈ 𝑉2𝜋 let 𝑥𝑖, 𝑦𝑖 ∈ 𝑉2𝜋 be defined by �̃�(𝑥⊗𝑦) =
∑︀

𝑖 𝑦𝑖⊗𝑥𝑖, then
for all 𝜔 ∈ Cl𝑞(sl2) the contraction operators satisfy

𝜄𝑥𝜄𝑦𝜔 +
∑︁
𝑖

𝜄𝑦𝑖𝜄𝑥𝑖
𝜔 = 0.

Hence the map 𝜄 : 𝑉2𝜋 → End(Cl𝑞(sl2)) extends to a 𝑈𝑞(sl2)-equivariant morphism of super-
algebras 𝜄 :

⋀︀
𝑞𝑉2𝜋 → End(Cl𝑞(sl2)).
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Proof. For 𝑣2, 𝑣0 ∈ 𝑉2𝜋 =
⋀︀1

𝑞𝑉2𝜋 we have that

𝑣2 ⊗ 𝑣0 + �̃�(𝑣2 ⊗ 𝑣0) =
2

1 + 𝑞4
(︀
𝑞2𝑣0 ⊗ 𝑣2 + 𝑣2 ⊗ 𝑣0

)︀
.

For 𝑣2𝑣0𝑣−2 ∈ Cl𝑞(sl2) we have that

𝜄𝑣2𝜄𝑣0(𝑣2𝑣0𝑣−2) = 𝜄𝑣2
(︀
(𝑞2 − 1)(𝑞2 + 1)𝑞−3𝑐2 − (1 + 𝑞2)𝑞−1𝑣2𝑣−2

)︀
= (1 + 𝑞2)𝑞−1𝑐2𝑣2,

and

𝜄𝑣0𝜄𝑣2(𝑣2𝑣0𝑣−2) = 𝜄𝑣0(𝑐𝑣2𝑣0) = −(1 + 𝑞2)𝑞−3𝑐2𝑣2 = −𝑞−2𝜄𝑣2𝜄𝑣0(𝑣2𝑣0𝑣−2).

The computations for other elements of
⋀︀

𝑞𝑉2𝜋 and Cl𝑞(sl2) are analogous. The 𝑈𝑞(sl2)-

equivariance follows from the equivariance of the bracket [−,−]�̃�. □

3.5. Theorem. For 𝑥 ∈ sl𝑞(2) = 𝑉2𝜋 the operators 𝐿𝑥, 𝜄𝑥, and dCl on Cl𝑞(sl2) satisfy
Cartan’s magic formula

𝐿𝑥 = 𝜄𝑥 ∘ dCl𝑞 + dCl𝑞 ∘ 𝜄𝑥.
In particular, cochain maps 𝐿𝑥 are homotopic to 0, with 𝜄𝑥 as homotopy operators. Therefore,
𝐿𝑥 induces the zero action on cohomology.

Proof. Direct computations. For example, for 𝑣2 ∈ sl𝑞(2) = 𝑉2𝜋 and 𝑣−2 ∈ Cl𝑞(sl2) we have
that

𝐿𝑣2𝑣−2 = 𝑣0

and

𝜄𝑣2dCl𝑞𝑣−2 + dCl𝑞𝜄𝑣2𝑣−2 = − 1

𝑐
𝜄𝑣2𝑣0𝑣−2 + 𝑐dCl𝑞(1) = 𝑣0.

The computations for other cases are similar. □

3.6. Remark. First note that the element 𝛾𝑞 generates a 𝑈𝑞(sl2)-invariant subalgebra

in Cl𝑞(sl2). Moreover, the element 𝛾𝑞 satisfies 𝛾2
𝑞 = 1+𝑞2

4𝑐𝑞
. Therefore, by the universal

property of Clifford algebras, we have that

Cl𝑞(sl2)
𝑈𝑞(sl2) = Cl(𝑃𝑞(sl2), 𝐵𝑞),

where 𝑃𝑞(sl2) is the space of primitive invariants spanned by 𝛾𝑞 equipped with nondegen-

erate symmetric bilinear form 𝐵𝑞 given by 𝐵𝑞(𝛾𝑞, 𝛾𝑞) = 1+𝑞2

4𝑐𝑞
. It is now easy to see that

𝐻(Cl𝑞(sl2), dCl𝑞) = 0.

Since the element 𝛾𝑞 is 𝑈𝑞(sl2)-invariant we have that [𝜔, 𝛾𝑞]�̃� = −(−1)𝑝(𝜔)[𝛾𝑞, 𝜔]�̃� for all
parity homogeneous 𝜔 ∈ Cl𝑞(sl2). Therefore, for 𝑥 ∈ sl𝑞(2) we have that

𝜄𝑥𝛾 = [1
2
𝑥, 𝛾𝑞]�̃� = [𝛾𝑞,

1
2
𝑥]�̃� = 1

2
dCl𝑞(𝑥) = 𝛽𝑞(𝑥) ∈ im𝛼𝑞.

Moreover, direct computations show that for 𝑥 ∈ sl𝑞(2) we have

𝜄𝑥𝛾𝑞 · 𝛾*
𝑞 = 𝑥,

where 𝛾*
𝑞 = 4𝑞𝑐

1+𝑞2
𝛾𝑞 is the dual to 𝛾𝑞 with respect to 𝐵𝑞. This leads to the quantum analogue

of the 𝜌-decomposition from [Kos]:

Cl𝑞(sl2) = Cl(𝑃𝑞(sl2), 𝐵𝑞)⊗ im𝛼𝑞.

We emphasise that in this case the braided tensor product of algebras in the braided monoidal
category of finite-dimensional type 1 𝑈𝑞(sl2)-modules reduces to the usual tensor product of
algebras since the elements of Cl(𝑃𝑞(sl2), 𝐵𝑞) are 𝑈𝑞(sl2)-invariant.
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4. The general definition

4.1. Definition. A supervector space 𝑊 is called a quantised sl2-differential space if it is
equipped with

(1) Lie derivatives 𝐿𝑥 ∈ End(𝑊 ) for 𝑥 ∈ 𝑈𝑞(sl2) which define a 𝑈𝑞(sl2)-module structure
on 𝑊 ;

(2) a 𝑈𝑞(sl2)-equivariant action 𝜄 :
⋀︀

𝑞𝑉2𝜋 ⊗𝑊 → 𝑊 of
⋀︀

𝑞𝑉2𝜋;

(3) a 𝑈𝑞(sl2)-equivariant differential d𝑊 : 𝑊 → 𝑊 ;

such that they satisfy Cartan’s magic formula

𝐿𝑥 = 𝜄𝑥 ∘ d𝑊 + d𝑊 ∘ 𝜄𝑥 for 𝑥 ∈ sl𝑞(2).

A morphism between two quantised sl2-differential spaces is a morphism in the category of
𝑈𝑞(sl2)-modules which intertwines contractions and differentials (and also Lie derivatives).

4.2. Definition. An algebra𝐴 is called a quantised sl2-differential algebra if it is a quantised
sl2-differential space such that

(1) the Lie derivatives satisfy

𝐿𝑥(𝑎𝑏) =
∑︁

(𝐿𝑥(1)
𝑎)(𝐿𝑥(2)

𝑏) for 𝑎, 𝑏 ∈ 𝐴, 𝑥 ∈ 𝑈𝑞(sl2),

in other words, 𝐴 is an algebra in the monoidal category of 𝑈𝑞(sl2)-modules;
(2) the differential d𝐴 satisfies the (graded) Leibniz rule.

A morphism between two quantised sl2-differential algebras is an algebra morphism in the
category of 𝑈𝑞(sl2)-modules which intertwines contractions and differentials (and also Lie
derivatives).

4.3. Quantum exterior algebra. First note that the associated graded algebra of Cl𝑞(sl2)
is the quantum exterior algebra

⋀︀
𝑞𝑉2𝜋. For 𝑥 ∈ sl𝑞(2), the associated graded maps 𝐿𝑥 :

⋀︀
𝑞𝑉2𝜋 →

𝑉2𝜋 to the Lie derivatives 𝐿𝑥 : Cl𝑞(sl2) → Cl𝑞(sl2) define an action of 𝑈𝑞(sl2) since the filtra-
tion on Cl𝑞(sl2) is compatible with 𝑈𝑞(sl2)-action.

The differential dCl𝑞 has filtered degree one. Therefore, we can define the associated graded
map d∧𝑞 :

⋀︀
𝑞𝑉2𝜋 →

⋀︀
𝑞𝑉2𝜋 which is 𝑈𝑞(sl2)-equivariant by construction. It is easy to see, c.f.

Example 2.2.1, that d∧𝑞 is nonzero only for

d∧𝑞(𝑣2) = −1

𝑐
𝑣2 ∧ 𝑣0, d∧𝑞(𝑣0) =

1 + 𝑞2

𝑞𝑐
𝑣2 ∧ 𝑣−2, d∧𝑞(𝑣−2) = −1

𝑐
𝑣0 ∧ 𝑣−2.

It is straightforward to check that d2
∧𝑞

= 0 and that it satisfies the graded Leibniz rule, so it

defines a differential on
⋀︀

𝑞𝑉2𝜋. Moreover, we have the quantised version of the formula for
differential, see Example 2.2.1,

d∧𝑞 =
𝑞4

1 + 𝑞4

(︂
1

𝑐
𝑣2𝐿𝑌 +

𝑞

(1 + 𝑞2)𝑐
𝑣0𝐿𝑍 +

1

𝑞2𝑐
𝑣−2𝐿𝑋

)︂
.

Note that the formulas for the differential depend on the parameter 𝑐 since we identify
⋀︀

𝑞𝑉
*
2𝜋

with
⋀︀

𝑞𝑉2𝜋 via the bilinear form ⟨·, ·⟩.
Similarly, for 𝑥 ∈

⋀︀
𝑞𝑉2𝜋 we define the contraction operator 𝜄𝑥 :

⋀︀
𝑞𝑉2𝜋 →

⋀︀
𝑉2𝜋 as the asso-

ciated graded map for the contraction operator on Cl𝑞(sl2). By construction, the operators
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𝜄𝑥 define a 𝑈𝑞(sl2)-equivariant representation of
⋀︀

𝑞𝑉2𝜋. In particular, we have that

𝜄𝑣2𝑣2 = 0, 𝜄𝑣0𝑣2 = 0, 𝜄𝑣−2𝑣2 = 𝑞−2𝑐,

𝜄𝑣2𝑣0 = 0, 𝜄𝑣0𝑣0 = 𝑞−3(1 + 𝑞2)𝑐, 𝜄𝑣−2𝑣0 = 0,

𝜄𝑣2𝑣−2 = 𝑐, 𝜄𝑣0𝑣2 = 0, 𝜄𝑣−2𝑣−2 = 0,

𝜄𝑣2𝑣2 ∧ 𝑣0 = 0, 𝜄𝑣0𝑣2 ∧ 𝑣0 = −1+𝑞2

𝑞3
𝑐𝑣2, 𝜄𝑣−2𝑣2 ∧ 𝑣0 = 𝑐𝑣0,

𝜄𝑣2𝑣2 ∧ 𝑣−2 = −𝑐𝑣2, 𝜄𝑣0𝑣2 ∧ 𝑣−2 =
1−𝑞2

𝑞2
𝑐𝑣0, 𝜄𝑣−2𝑣2 ∧ 𝑣−2 = 𝑞−2𝑐𝑣−2,

𝜄𝑣2𝑣0 ∧ 𝑣−2 = −𝑐𝑣0, 𝜄𝑣0𝑣0 ∧ 𝑣−2 =
1+𝑞2

𝑞
𝑐𝑣−2, 𝜄𝑣−2𝑣0 ∧ 𝑣−2 = 0,

𝜄𝑣2𝑣2 ∧ 𝑣0 ∧ 𝑣−2 = 𝑐𝑣2 ∧ 𝑣0, 𝜄𝑣0𝑣2 ∧ 𝑣0 ∧ 𝑣−2 = −1+𝑞2

𝑞
𝑐𝑣2 ∧ 𝑣−2, 𝜄𝑣−2𝑣2 ∧ 𝑣0 ∧ 𝑣−2 = 𝑐𝑣0 ∧ 𝑣−2.

Cartan’s magic formula for associated graded maps 𝐿𝑥, 𝜄𝑥, and d∧𝑞 on
⋀︀

𝑞𝑉2𝜋 follows from

the fact that Cartan’s magic formula on Cl𝑞(sl2) has degree 0. It can also be checked by

direct computations as follows. First note that for elements of
⋀︀0𝑉2𝜋 and

⋀︀3𝑉2𝜋 Cartan’s
magic formula holds trivially. The operator d∧𝑞 ∘ 𝜄𝑥 acts by zero on

⋀︀1𝑉2𝜋. We have that

𝜄𝑣2d∧𝑞𝑣−2 = −1

𝑐
𝜄𝑣2(𝑣0 ∧ 𝑣−2) = 𝑣0 = 𝐿𝑣2𝑣−2.

The operator 𝜄𝑥 ∘ d∧𝑞 acts by zero on
⋀︀2𝑉2𝜋. We have that

d∧𝑞𝜄𝑣2(𝑣0 ∧ 𝑣−2) = −𝑐d∧𝑞𝑣0 = −1 + 𝑞2

𝑞
𝑣2 ∧ 𝑣−2 = 𝐿𝑣2(𝑣0 ∧ 𝑣−2).

Therefore, we have proved the following theorem.

4.4. Theorem. The algebras Cl𝑞(sl2) and
⋀︀

𝑞𝑉2𝜋 are quantised sl2-differential algebras.

4.5. Remark. Similarly to the case of Cl𝑞(sl2), see Remark 3.6, we can now compute
the cohomology of

⋀︀
𝑞𝑉2𝜋 using Cartan’s magic formula. First note that the subalgebra of

𝑈𝑞(sl2)-invariant elements in
⋀︀

𝑞𝑉2𝜋 is spanned by 1, 𝑣2 ∧ 𝑣0 ∧ 𝑣−2. Therefore, we have the
quantised analogue of Hopf–Koszul–Samelson theorem

𝐻(
⋀︀

𝑞𝑉2𝜋, d∧𝑞) = (
⋀︀

𝑞𝑉2𝜋)
𝑈𝑞(sl2) =

⋀︀
𝑃∧𝑞(sl2),

where 𝑃∧𝑞(sl2) is the space of primitive invariants spanned by 𝑣2 ∧ 𝑣0 ∧ 𝑣−2.
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[HP2] J.-S. Huang and P. Pandžić, Dirac operators in representation theory, Mathematics: Theory &
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