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The classical dynamics of the isotropic two-dimensional harmonic oscillator confined by an elliptic
hard wall is discussed. The interplay between the harmonic potential with circular symmetry and the
boundary with elliptical symmetry does not spoil the separability in elliptic coordinates; however,
it generates non-trivial energy and momentum dependencies in the billiard. We analyze the equi-
momentum surfaces in the parameters space and classify the kinds of motion the particle can have
in the billiard. The winding numbers and periods of the rotational and librational trajectories are
analytically calculated and numerically verified. A remarkable finding is the possibility of having
degenerate rotational trajectories with the same energy but different second constant of motion and
different caustics and periods. The conditions to get these degenerate trajectories are analyzed.
Similarly, we show that obtaining two different rotational trajectories with the same period and
second constant of motion but different energy is possible.
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I. INTRODUCTION

The study of billiards in the classical and quantum
regimes is valuable as it provides a simple way to model
physical phenomena, for example, particle trapping at
the nanometer scale, quantum-classical correspondence,
low disorder systems, quantum dots, chaotic systems,
laser dynamics in microcavities, ray-optics approxima-
tion in waveguides, among others [1–4].

An elliptic billiard consists of a point particle moving
inside a planar elliptic domain, bouncing elastically at
its hard boundary [5]. Investigation of the mathematical
and physical properties of elliptical billiards in both the
classical and quantum regimes has a long history [5–7]. It
is well-known that the elliptical billiard is an integrable
system with two well-defined constants of motion: the
energy and the product of angular momenta about the
foci [8–11]. The particle moves rectilinearly, forming a
polygonal trajectory with vertices on the billiard bound-
ary. The system presents two types of motion: rotational
and librational, depending on the sign of the second con-
stant of motion. The trajectories are always tangent to
elliptic caustics for rotational motion or hyperbolic caus-
tics for librational motion [10].

Various modifications to the elliptical geometry have
been studied, such as the transition to oval or circular
billiards [7, 12], or the annular [11] and open boundary
structures [13]. Variations of the potential to smooth
the sharp elliptical boundary have also been considered
[14]. Most of these properties have been verified exper-
imentally in recent years, thanks to the improvement of
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nanofabrication processes that allow the construction of
quantum corrals to confine electrons [15]. To this day,
interesting geometric properties of the trajectories in el-
liptic billiards continue to be discovered [16, 17].

In this paper, we study the dynamic properties of the
system formed by the elliptic billiard and the isotropic
harmonic potential attracting to the center of the el-
lipse. The trajectory is, in general, a self-intersecting
polygon whose sides are elliptical segments connecting
at the boundary. We present a derivation of the second
constant of motion and propose a suitable normalization
scheme that allows mapping all scenarios in the billiard.
The interplay between the harmonic potential with circu-
lar symmetry and the boundary with elliptical symmetry
does not affect the separability in elliptic coordinates, but
it generates non-trivial energy and momentum dependen-
cies in the billiard that are absent in the elliptic billiard
without potential. We will therefore discuss the behav-
ior of equi-momentum surfaces in the space of parameters
that allow the characterization of the four types of mo-
tion the particle can exhibit. We derive the conditions
to obtain periodic orbits in the billiard by applying the
Hamilton-Jacobi theory [18, 19]. The analytical evalua-
tion of the action-angle variables yields closed-form ex-
pressions for the winding numbers and the periods of the
librational and rotational orbits. From these expressions,
several geometric constructions can be developed. A re-
markable finding is the possibility of having degenerate
rotational trajectories with the same energy but different
second constant of motion and caustics and periods. The
conditions to get these degenerate trajectories are ana-
lyzed. Similarly, we show that obtaining two different
rotational trajectories with the same period and second
constant of motion but different energy is possible.

From a historical point of view, the antecedents of this
problem can be traced back to Jacobi, who, in 1884, an-
alyzed the problem of the motion of a particle along the
surface of a triaxial ellipsoid under the action of an elas-
tic force directed toward the center of the ellipsoid [20].
Suppose one of the axes of the ellipsoid tends to zero.
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In that case, the Jacobi problem reduces to the problem
of the oscillations of the harmonic oscillator inside an
ellipse. More recently, Wiersig studied the classical dy-
namics of the triaxial ellipsoidal billiard with harmonic
potential describing the motion in terms of the energy
surfaces in the space of action variables [21]. Dragović et
al. extended the study of the ellipsoids to n dimensions
but without potential [22].

The most direct antecedent of our work is the analysis
by M. Radnović, published in 2015, on elliptic billiards
with Hooke’s potential [23]. Radnović uses Fomenko
graphs to characterize the billiard’s topologies. Her anal-
ysis provides expressions for the caustics, their geometric
properties, and the bifurcation diagram. In this work,
we apply the Hamilton-Jacobi formalism in elliptic coor-
dinates, which allows for generating many additional an-
alytical results (not reported in Radnovic’s paper) such
as the Poincaré maps, the condition for periodic rota-
tional and librational trajectories, the winding number
function, the eigen-momentum surfaces, graphs of the
trajectories, the analytical expressions for the periods of
periodic orbits, among others. Additionally, our analysis
reveals that it is possible to have degenerate trajectories
with the same energy but different second constants of
motion, and we found the condition for this to happen.

The material in this paper focuses on the classical de-
scription of the billiard. It constitutes the first part of a
more extended analysis considering the quantum descrip-
tion and the semiclassical approximation. The classical
characterization of the elliptic billiard with harmonic po-
tential is sufficiently complex in terms of phenomena and
properties that its analysis is justified in separate papers.
This work consolidates and extends previous analysis of
classical billiards with harmonic potentials [23, 24].

II. STATEMENT OF THE PROBLEM

We consider the motion of a point particle with mass
M in an isotropic two-dimensional harmonic potential

U (r) =
1

2
Mω2r2 =

1

2
Mω2

(
x2 + y2

)
, (1)

where ω is the angular frequency of the oscillator. The
particle is confined in the region of the plane (x, y)
bounded by the ellipse

x2

a2
+

y2

b2
= 1, (b ≤ a) , (2)

whose foci are located at x± = ±f = ±(a2 − b2)1/2, as
shown in Fig. 1.

The particle moves inside the billiard under the effect
of the central force produced by the parabolic potential.
As it travels through the potential, the total (kinetic plus
potential) energy

E =
p2

2M
+

1

2
Mω2r2 = cons ≥ 0, (3)

x

y

 a

 b

ξ = ξ0

 − f  + f

r2 r1r

p

η = π/2

η = −π/2

η = 0
η = ±π

γ0 = sinh2 ξ0 = b2/f 2

FIG. 1. Geometry of the elliptic billiard with harmonic
potential. For a given focal distance f, the boundary is defined
by the radial elliptic coordinate ξ = ξ0 or, alternatively, by
the parameter γ0 = (b/f)2 = sinh2 ξ0.

and the angular momentum about the origin

L = r× p = Lẑ = (xpy − ypx) ẑ, (4)

remain constant along the trajectory. Here, p is the mo-
mentum of the particle, and p, px, py are their magnitude
and Cartesian components, respectively.
If the particle does not hit the boundary, it is well-

known that its orbit is a closed ellipse centered at the
origin whose size and orientation are determined by the
initial conditions [18, 19].
On the other hand, if the particle hits the boundary,

it makes a polygonal trajectory with elliptical segments
connecting at the reflection points. In this case, the en-
ergy E before and after each impact is still conserved
because the collisions are elastic, but the angular momen-
tum L changes because the force exerted by the elliptic
wall on the particle is not central. From the analysis of
the elliptic billiard with zero potential [8–10], it is known
that the quantity that is conserved in the reflection with
the elliptic wall is the product of the angular momenta
about the foci, i.e.,

L1 · L2 = (r1 × p) · (r2 × p) = L1L2, (5)

where r1 = (x− f) x̂ + yŷ and r2 = (x+ f) x̂ + yŷ, see
Fig. 1. By expanding Eq. (5), the product L1L2 can be
easily related to the angular momentum L as follows:

L1L2 = L2 − f2p2y, (6)

where py is the component of the momentum along the
y axis.
If the potential energy U(r) were zero in all points

of the billiard’s area, the quantity L1L2 would be con-
served as the particle moves rectilinearly inside the bil-
liard. However, as the particle moves elliptically within
the parabolic potential, L1L2 is not constant anymore;
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thus, it cannot serve as a second constant of motion for
our problem. It is then necessary to identify the second
constant of motion needed to characterize the elliptic bil-
liard with parabolic potential.

III. DERIVATION OF THE SECOND
CONSTANT OF MOTION

We begin by noting the total energy of the particle [Eq.
(3)] can be split into two Cartesian contributions

E = Ex + Ey

=

(
p2x
2M

+
Mω2x2

2

)
+

(
p2y
2M

+
Mω2y2

2

)
. (7)

Both Ex and Ey are individually conserved during the
motion through the harmonic potential. Now, when the
particle hits the boundary, the values of Ex and Ey of
the incident trajectory shift an amount W, i.e.

Ex → Ex −W, Ey → Ey +W, (8)

such the total energy E = Ex + Ey remains constant
after the collision. The shift W is attributable to a re-
arrangement of the kinetic energy contributions among
the x and y components since the potential energy is the
same before and after the impact.

To find W, we recall that L1L2 does not change at the
reflection with the boundary, i.e., ∆ (L1L2) = 0, then
from Eq. (6) we have

∆
(
L2
)
=�����:0

∆ (L1L2) + f2∆
(
p2y
)
= 2Mf2W, (9)

where we applied ∆
(
p2y
)
= 2M (∆Ey) = 2MW. Replac-

ing W in Eqs. (8) gives

Ex → Ex −
∆
(
L2
)

2Mf2
, Ey → Ey +

∆
(
L2
)

2Mf2
. (10)

To construct two conserved quantities, we compensate
Ex and Ey by the amount of energy that is lost (gained)
at the collision, that is

Ex ≡ Ex +
L2

2Mf2
, Ey ≡ Ey −

L2

2Mf2
. (11)

Both Ex and Ey remain constant at (a) each collision with
the elliptic boundary and (b) along the segments between
collisions because Ex, Ey, and L are conserved quantities
in the harmonic potential.

We can set combinations of Ex and Ey that are also
conserved quantities themselves. For instance

Ex + Ey = E, (12)

Ex − Ey = Ex − Ey +
L2

Mf2
. (13)

The first quantity is evidently the total energy of the
particle. The second quantity Eq. (13) can be rewritten,
using Eq. (6) and multiplying by Mf2, in the following
form

Γ ≡ L1L2 − f2M2ω2y2 = cons, (14)

where Γ has units of squared angular momentum.
Throughout the paper, we will consider the total en-

ergy E [Eq. (3)] and the quantity Γ as the two funda-
mental constants of motion of the billiard. We choose the
form of Eq. (14) because the parameters f and ω appear
explicitly as simple factors, allowing us to easily make
the transition to the elliptic billiard without potential (if
ω → 0 then Γ → L1L2), or to the case of the circular
billiard with harmonic potential (if f → 0 then Γ → L2).

IV. FORMULATION IN ELLIPTIC
COORDINATES

The problem is conveniently described in elliptic coor-
dinates

x = f cosh ξ cos η, y = f sinh ξ sin η, (15)

where ξ ∈ [0,∞) is the elliptic radial coordinate and
η ∈ (−π, π] is the elliptic angular coordinate. Lines of
constant ξ are confocal ellipses and lines of constant η
are confocal hyperbolae. The locus ξ = 0 corresponds to
the interfocal line |x| ≤ f.
The surface of the billiard is specified by the region

ξ ∈ [0, ξ0] , η ∈ (−π, π] , (16)

where

ξ = ξ0 = arctanh (b/a) , (17)

defines the elliptic boundary.
The constants of motion E and Γ can be expressed

in terms of the elliptical coordinates (ξ, η) and canonical
momenta (pξ, pη) , where pξ and pη are the radial and
angular components of the momentum vector in elliptic
coordinates, i.e.,

p = Mv =
(pξ
σ

)
ξ̂ +

(pη
σ

)
η̂, (18)

with

σ = σ (ξ, η) = f

√
cosh2 ξ − cos2 η, (19)

being the scaling factor of the elliptic coordinates. The
canonical momenta pξ and pη have units of momentum
per length, that is, angular momentum. In elliptic coor-
dinates, the total energy E [Eq. (3)] becomes

E =
p2ξ + p2η
2Mσ2

+
Mω2f2

2

(
cosh2 ξ − sin2 η

)
, (20)
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where we applied r2 = x2+y2 = f2(cosh2 ξ−sin2 η), and
the constant Γ [Eq. (14)] becomes

Γ =
f2

σ2

(
p2η sinh

2 ξ − p2ξ sin
2 η
)
− f4M2ω2 sinh2 ξ sin2 η.

(21)
Inspection of Eq. (14) or (21) reveals that Γ minimizes

when the particle moves along the y axis. By replacing
η = ±π/2 and pη = 0, we get after some calculations
Γmin = −2MEf2, where E is the total energy. On the
other hand, the maximum value of Γ occurs when the
particle moves tangentially along the elliptic boundary.
In this case, ξ = ξ0 and pξ = 0, and we obtain Γmax =
2MEb2. Consequently, the range of Γ is given by

Γ ∈
[
−2Mf2E, 2Mb2E

]
. (22)

At this point, it is convenient to introduce a normal-
ized version of Γ that will serve as a new dimensionless
constant of motion, namely

γ =
Γ

Γ0
≡ Γ

2Mf2E
∈ [−1, γ0] , (23)

where

Γ0 ≡ 2Mf2E, γ0 ≡ b2

f2
= sinh2 ξ0, (24)

Note that the upper limit γ0 is defined only by the geo-
metric parameters of the billiard boundary. In fact, sim-
ilar to the eccentricity ϵ = f/a = sechξ0, the parameter
γ0 could be used to specify the ellipticity of the boundary.
We now combine Eqs. (20) and (21) to decouple the

momenta pξ and pη. After some algebraic manipulations,
we get

p2ξ = Γ0

(
sinh2 ξ − γ − β sinh2 ξ cosh2 ξ

)
, (25)

p2η = Γ0

(
sin2 η + γ − β sin2 η cos2 η

)
, (26)

where

β ≡ Mω2f2

2E
=

Uf

E
, Uf =

1

2
Mω2f2, (27)

is a new dimensionless constant of motion associated with
the energy, and Uf is the potential energy at a radius
equal to f .

Each of the equations (25) and (26) can be interpreted
as a Hamiltonian system with one degree of freedom, with
effective potential Ueff (ξ) ∝ β sinh2 ξ cosh2 ξ − sinh2 ξ,
and Ueff (η) ∝ β sin2 η cos2 η − sin2 η, respectively.

The constant of motion β characterizes how strong
the coupling of the particle to the harmonic potential
is. It accounts for the effects of the energy E (a dy-
namic parameter), the mass M (particle’s property), the
frequency ω (potential’s property), and the distance f
(elliptic boundary’s property).

Low values of β correspond to a small coupling. In
this case the particle moves inside the billiard almost
as if it were a free particle, and thus their trajectory

−1
0

γ0 = 1.5

γ

0

u

γ0

β 1

0

1/γ0

u+(γ,β) u−(γ,β)

2

 (a)

 (b)

−1
0

γ0 = 1.5
β

1

1
γ

v

0

0

2

v+(γ,β)

v−(γ,β)

0

u

γ0

1

v

0

FIG. 2. a) Surfaces u± (γ, β) for γ ∈ [−1, γ0] , β ∈ [0, 2] , and
u ∈ [0, γ0] with γ0 = 1.5. Red curve is the branch line Eq.
(37). The surface is doubled-valued in the region defined by
Eq. (50). (b) Surfaces v± (γ, β) in the interval v ∈ [0, 1]. Red
curve is the branch line Eq. (40). The surface is doubled-
valued in the region defined by Eqs. (42).

segments become quasi-straight lines that collide with
the boundary. If β = 0, the system reduces to the well-
known elliptic billiard with a free particle inside [8–10].

On the other hand, high values of β correspond to a
strong coupling where the particle’s excursion around the
origin is small. In this case the trajectory does not reach
the boundary and thus becomes a closed ellipse centered
at the origin [18, 19].

Alternatively, β could be expressed as β = f2/R2,

where R =
√

2E/Mω2 is the amplitude that a one-
dimensional harmonic oscillator with energy E reaches
in the parabolic potential. In other words, R defines the
largest circular region where the particle could move for
a given energy E if there were no elliptical wall.

In what follows, the parameters γ and β will be con-
sidered as the constants of motion of the problem. β is
related to the energy, and γ to the constant Γ.
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V. EQUI-MOMENTUM SURFACES AND
CLASSIFICATION OF THE TRAJECTORIES

Equations (25) and (26) describe the dynamics of the
particle in the billiard. To facilitate their analysis we
rewrite them in the form

p2ξ (γ, β;u) = Γ0

[
−βu2 + (1− β)u− γ

]
, (28)

p2η (γ, β; v) = Γ0

[
βv2 + (1− β) v + γ

]
, (29)

where

u ≡ sinh2 ξ, and v ≡ sin2 η. (30)

The domains of the square canonical momenta p2ξ and

p2η in the three-dimensional spaces (γ, β;u) and (γ, β; v)
are

γ ∈ [−1, γ0] , β ∈ [0,∞),
u ∈ [0, γ0] , v ∈ [0, 1] ,

(31)

where γ0 = b2/f2 = sinh2 ξ0 [Eq. (23)]. Note that the
normalization scheme makes the upper limits of γ and u
equal to γ0.
To ensure that pξ and pη are real quantities, the triplets

(γ, β;u) and (γ, β; v) must lie within the regions

p2ξ ≥ 0 → −βu2 + (1− β)u− γ ≥ 0, (32)

p2η ≥ 0 → βv2 + (1− β) v + γ ≥ 0. (33)

We now analyze each condition separately.

A. Surface p2ξ (γ, β;u) = 0.

Let us first discuss the radial condition Eq. (32).
The locus p2ξ (γ, β;u) = 0 corresponds to an equi-
momentum surface in the three-dimensional parametric
space (γ, β;u) where all points on the surface have zero
radial momentum. This surface separates the valid re-
gion p2ξ > 0 from the forbidden region p2ξ < 0. Solv-
ing the quadratic equation for u, we see that the surface
p2ξ (γ, β;u) = 0 is composed of two sheets given by

u± (γ, β) =
1− β ±D

2β
, (34)

where

D = D (γ, β) =

√
(β − 1)

2 − 4γβ. (35)

Since D has to be real, then γ and β must satisfy the
condition

γ ≤ (β − 1)
2

4β
. (36)

The behaviors of u± (γ, β) are shown in Fig. 2(a) for
the valid ranges of the variables (γ, β;u) in Eq. (31). The
surfaces u+ (γ, β) and u− (γ, β) bifurcate at the curve

(γ, β, u) =

(
(β − 1)

2

4β
, β,

1− β

2β

)
, β ≥ 0, (37)

see the red line in Fig. 2(a).
Now, the variable u is limited to the range [0, γ0] .

The intersection of the plane u = γ0 with the surfaces
u± (γ, β) occurs at straight line

β =
γ0 − γ

γ0 (1 + γ0)
, (38)

that goes from the point (−1, 1/γ0; γ0) to the point
(γ0, 0; γ0) . The intersection of the plane u = 0 with the
surfaces u± (γ, β) corresponds to the line γ = 0, i.e., the
β axis in the space (γ, β;u) .

B. Surface p2η (γ, β; v) = 0.

The equi-momentum surfaces p2η (γ, β; v) = 0 are ob-
tained by solving Eq. (33), we get

v± (γ, β) =
β − 1±D

2β
, (39)

where D is given by Eq. (35).
Since the argument of the radical in D is the same

as Eq. (34), the condition in Eq. (36) applies for this
case as well. The curve where the surfaces v+ (γ, β) and
v− (γ, β) bifurcate is

(γ, β, v) =

(
(β − 1)

2

4β
, β,

β − 1

2β

)
, β ≥ 0, (40)

which is the reflection of the curve (37) on the plane
u = 0, as shown in Fig. 2(b). This result comes from the
fact that

v± (γ, β) = −u∓ (γ, β) , (41)

as can be corroborated from Eqs. (34) and (39).
The equi-momentum surface v(β, γ) is double-valued

at the region defined by

γ ∈

[
0,

(β − 1)
2

4β

]
, β > 1. (42)

The range of v is [0, 1] . The intersection of the planes
v = 0 and v = 1 with the surfaces v± (γ, β) are the
straight lines γ = 0 and γ = −1, respectively.

C. Classification of the trajectories

The results discussed above allow us to classify the
kinds of orbits the particle can exhibit in the billiard. As
shown in Fig. 3, the plane (γ, β) is divided into zones by
three curves:

• The (red) curve γ = (β − 1)
2
/4β separates the

valid region of pairs (γ, β) that generate allowed
trajectories within the billiard, from the forbidden
region where pξ and pη become imaginary. The
curve is tangent to the β axis at the point (0, 1) .
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FIG. 3. (a) Regions on the plane (γ, β) corresponding to
different types of trajectories in the billiard with γ0 = 1.5. (b)
Representative periodic trajectories and their caustics (red
dashed lines). Orbits (3, 7) for L- and R-motions.

• The (blue) straight line Eq. (38) separates the re-
gions where the particle hits the boundary (regions
below the line) from the regions where the parti-
cle does not hit the boundary (regions above the
line). The straight line is tangent to the curve at
the point

(γe, βe) =

(
γ2
0

2γ0 + 1
,

1

2γ0 + 1

)
, (43)

as shown in Fig. 3(a).

• The vertical axis γ = 0 separates the regions where
the particle always crosses the x axis between the
foci of the elliptic boundary (negative γ) from the
regions where it crosses the x axis outside the in-
terfocal line (positive γ). If γ = 0, the particle
successively passes through the foci of the elliptic
boundary.

Each zone in the plane (γ, β) corresponds to a kind of
orbit.

Rotational (R = R1+R2). Triangular region defined
by

0 < γ ≤ γ0, 0 ≤ β ≤ γ0 − γ

γ0 (1 + γ0)
, (44)

as shown in Fig. 3(a). For a point (γ, β) lying in the
R region, there is one real root for p2ξ (u) in the inter-

val u ∈ [0, γ0] and none for p2η (η) . The particle rotates
around the interfocal line making a polygonal trajectory
with vertices at the collision points on the boundary; see
Fig. 3(b). The particle always crosses the x axis out-
side the interfocal line. All segments of the trajectory
are tangent to a confocal elliptic caustic ξ = ξC . These
points of tangency with the caustic are just where the
radial momentum vanishes, i.e., p2ξ (ξC) = 0. From Eq.

(34) we obtain

ξC = arcsinh
(√

u−
)
= arcsinh

(√
1− β −D

2β

)
, (45)

where D is given by Eq. (35). The radial coordinate of
the particle is restricted to the range ξ ∈ [ξC , ξ0] , whereas
the angular coordinate η is not bounded. As shown in
Fig. 3, the region R is divided into two subregions, R1

and R2, by the vertical line γ = γe. The difference be-
tween both regions will be discussed later.

Librational (L). Trapezoidal region defined by

−1 ≤ γ < 0, 0 ≤ β ≤ γ0 − γ

γ0 (1 + γ0)
. (46)

For a point (γ, β) lying in this region, there is one real
root for p2η (v) in the interval v ∈ [0, 1] , and none for

p2ξ (ξ). The particle bounces alternately between the
top and bottom of the boundary, crossing the x axis
always between the two foci, see Fig. 3(b). Recalling
that v = sin2 η, the angular momentum pη vanishes at
η = ±ηC and η = ± (π − ηC) , where ηC ∈ (0, π/2).
Thus, the librational orbits are confined within two con-
focal hyperbolic caustics, as shown in Fig. 3(b). The
value of ηC is obtained with Eq. (39), namely

ηC = arcsin
(√

v+
)
= arcsin

(√
β − 1 +D

2β

)
, (47)

The range of the radial coordinate in the librational mo-
tion is full, i.e., ξ ∈ [0, ξ0].

Elliptical Inner (EI). Region defined by

−1 ≤ γ < 0,
γ0 − γ

γ0 (1 + γ0)
< β < ∞. (48)

For a point (γ, β) lying in this region, there is one root
for p2ξ (u) and one root for p2η (v) . The particle trajectory
is an ellipse that does not touch the billiard boundary.
Both foci of the billiard are located outside the particle
orbit; thus, it always crosses the x-axis within the inter-
focal line. The trajectory is confined by two hyperbolic
caustics and one elliptic caustic. The hyperbolic caustics
are the same as in the librational case, i.e., Eq. (47).
The elliptic caustic is determined with Eq. (34) taking
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the positive sign, namely

ξEIC = arcsinh
(√

u+

)
= arcsinh

(√
1− β +D

2β

)
. (49)

Elliptical Outer (EO). Region enclosed by the three
lines

γ = 0, β =
γ0 − γ

γ0 (1 + γ0)
, γ =

(β − 1)
2

4β
. (50)

For a point (γ, β) lying in this region, there are two dif-
ferent real roots for p2ξ (u) in the interval [0, 1] , and none

for pη (η) . The trajectory is again an ellipse that does
not touch the billiard boundary, but now the foci of the
billiard are located inside the particle’s orbit; thus, it al-
ways crosses the x axis outside the interfocal line. The
trajectory is confined by two elliptical confocal caustics
which can be calculated with Eqs. (45) and (49).

Vertical (V). If γ = −1, the particle becomes a one-
dimensional harmonic oscillator moving vertically along
the y axis. If β ≤ 1/γ0, the particle bounces at the cover-
tex points of the elliptic boundary located at y = ±b. If
β > 1/γ0 the oscillator does not touch the boundary.

Focal (F). The line γ = 0 is the separatrix be-
tween the librational and the rotational motions. In this
case, the particle crosses through one of the foci, then
bounces off the boundary and crosses through the other
focal point, and continues like that, crossing both foci
alternately. As the particle bounces back and forth, the
trajectories become more and more horizontal, and the
orbit tends to align with the x axis. Eventually, the orbit
is practically a horizontal harmonic oscillator after many
bounces. When the particle moves along the x axis, if
β ≤ 1/(1 + γ0) it bounces at the vertex points of the
boundary located at x = ±a; else if β > 1/(1 + γ0), the
horizontal oscillator does not reach the boundary.

Special points of the plane (γ.β):

• The point (γe, βe) [Eq. (43)] is the limiting case
when the two elliptic caustics of the EO motion col-
lapse into a single caustic equal to the boundary.
In this case, the particle moves tangentially to the
boundary without touching it. In other words, if we
remove the wall, the particle would continue mov-
ing on an ellipse identical to the billiard boundary
due exclusively to the attractive force of the har-
monic potential.

• The point (0, 1) is the limiting case when the two
elliptic caustics of the EO motion collapse into the
interfocal line. Then, the particle becomes a one-
dimensional harmonic oscillator moving horizon-
tally with amplitude f.

• The point (0, 1/(γ0 + 1)) is the meeting point of the
four regions L, R, EI, EO, and can be considered
the borderline case of the four types of motion. In
this case, the particle oscillates harmonically along
the ellipse’s major axis with amplitude a; that is, it
only touches the elliptical boundary at their vertex
points. Any slight perturbation of this condition
leads the particle to have one of the four main types
of motion.

• A point (γ, β) lying in the region Q1 (see Fig. 3)
produces real positives values of u± but both are
outside of the valid interval u ∈ [0, γ0]. Then, there
are not possible trajectories in this region.

• A point (γ, β) lying in the region Q2 leads to neg-
ative values of p2ξ , so there are no physically valid
solutions in that region either.

D. Poincaré maps

Figure 4 shows the Poincaré phase maps in the radial
(ξ, pξ) and angular (η, pη) position-momentum spaces for
several values of β. The level curves correspond to con-
stant values of γ in Eqs. (25) and (26). These expres-
sions are doubled-valued functions corresponding to the
two possible signs of the momenta. The particle moves
in the phase map in a trajectory where γ and β (i.e., the
energy E and the quantity Γ) remain constant.
We chose the values of β to illustrate the typical phase

map for each region in the trajectory chart in Fig. 3. If
β = 0, we recover the known phase maps of the elliptic
billiard without potential [10, 11]. The thick black line
corresponds to the separatrix γ = 0. Note in the maps
γ(ξ, pξ) that the area with positive γ decreases as β in-
creases. When γ = 1/(γ0 + 1) = 0.4, the thick black
line no longer touches the boundary ξ = ξ0, which means
that rotational trajectories can no longer exist in the bil-
liard. In the interval β ∈ [0.4, 1], the region with positive
γ corresponds to the EI trajectories, and as β grows, its
area reduces even more until it disappears when β = 1.
Finally, only negative γ values exist for β > 1. All these
results are consistent with the map of regions in Fig. 3.

As β increases, the two lobes of the angular map (η, pη)
become thinner and thinner until they separate defini-
tively for β > 1. The particle’s motion can be traced
along a specific iso-γ curve in phase space. For example,
a libration motion corresponds to a closed orbit in the
plane (η, pη) moving in a finite interval of the coordinate
η between both hyperbolic caustics.

In the radial map (ξ, pξ) , the particle moves towards
the boundary in the upper half-space pξ > 0; conversely,
it travels in the direction of the interfocal line when
pξ < 0. The reflections of the particle at the boundary
correspond to changes +pξ → −pξ that are represented
in the map (ξ, pξ) by a vertical jump along the line ξ = ξ0
connecting the upper and the lower level curves. The or-
bits in the map (ξ, pξ) are always circulated clockwise.
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ξ/ξ0
0 1 0 π−π

η

1

−1

0

1

−1

0

1

−1

0

1

−1

0

γ(ξ, pξ) γ(η, pη)

−1

−1 1.5−0.5 0

β = 0.2

β = 0.5

β = 0.8

β = 1.1

1

−1

0

β = 0
1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

pξ
Γ0

pη
Γ0

pξ
Γ0

pη
Γ0

pξ
Γ0

pη
Γ0

pξ
Γ0

pη
Γ0

pξ
Γ0

pη
Γ0

FIG. 4. Poincaré phase mappings (ξ, pξ) and (η, pη) of the
billiard with γ0 = 1.5 for several values of the energy parame-
ter β = {0, 0.2, 0.5, 0.8, 1.1}. The iso-γ lines are contour lines
of the surfaces γ (ξ, pξ;β) and γ (η, pη;β) obtained from Eqs.
(25) and (26), respectively.

For arbitrary values of γ and β, if the particle touches
the billiard boundary, its trajectory is open in general.
That is, the particle never returns to the starting point
with the initial momentum. Thus, after many bounces,
it fills densely the region bounded by the boundary and
the caustics. For specific values of γ and β, the trajec-
tory can close and form a self-intersecting polygon (whose
sides are elliptic arcs) inscribed about the caustics and
the elliptic wall. In the next section, we will derive the
conditions to get periodic trajectories in the billiard.

VI. PERIODIC TRAJECTORIES

The action variables for the canonical coordinates are
[18, 19]

Jξ =
1

2π

∮
pξ (ξ) dξ, Jη =

1

2π

∮
pη (η) dη, (51)

where the integrals are carried out over a complete period
of the coordinates ξ and η. Replacing pξ (ξ) and pη (η)
from Eqs. (25) and (26) we get

Jξ (γ, β) =
c

2π

∮
dξ
√

sinh2 ξ
(
1− β cosh2 ξ

)
− γ, (52)

Jη (γ, β) =
c

2π

∮
dη

√
sin2 η (1− β cos2 η) + γ. (53)

Given the values of γ, β, the actions Jξ and Jη are
proportional to the geometric area enclosed by the cor-
responding orbits on the Poincaré maps shown in Fig.
4.
According to the types of motion discussed in Sect.

VC and the phase maps in Fig. 4, the closed integrals
become open integrals whose limits are

Jξ
R-type

Jξ
L-type

Jη
R-type

Jη
L-type

2

∫ ξ0

ξC

, 2

∫ ξ0

0

, 4

∫ π/2

0

, 4

∫ π/2

ηC

,
(54)

where ξC and ηC are given by Eqs. (45) and (47), re-
spectively.

A. The winding number function

The winding number w of the system is the ratio of
the angle variables ωξ and ωη conjugate to the actions,
namely

w =
ωη

ωξ
=

∂H

∂Jη
∂H

∂Jξ

=
∂Jξ
∂Jη

=

∣∣∣∣∂Jξ∂γ

∣∣∣∣∣∣∣∣∂Jη∂γ

∣∣∣∣ , (55)

with H being the Hamiltonian. Clearly, the winding
number is a function of the constants (γ, β) .
The derivatives of the actions with respect to γ are

∂Jξ
∂γ

= − c

4π

∮
dξ√

sinh2 ξ
(
1− β cosh2 ξ

)
− γ

, (56)

∂Jη
∂γ

=
c

4π

∮
dη√

sin2 η (1− β cos2 η) + γ
, (57)

where the closed integrals are replaced by the correspond-
ing open integral in Eq. (54) depending on the particular
case.
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Carrying out the changes of variable u = sinh2 ξ and
v = sin2 η, the integrands of Eqs. (56) and (57) are
expressed in terms of square roots of fourth-order poly-
nomials in the variables u and v. This allows us to write
explicit results utilizing the incomplete F (ϕ, k) and the
complete K(k) elliptic integrals of the first kind [25, 26]

F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

, K(k) = F
(π
2
, k
)
. (58)

We obtain for the rotational (R) and librational (L)
motions

∂Jξ
∂γ

=


− c

2π

h√
D
F (ϕ1, h) , R-type,

− c

2π

1√
D
F

(
ϕ2,

1

h

)
, L-type,

(59)

∂Jη
∂γ

=


c

π

h√
D
K(h) , R-type,

c

π

1√
D
K

(
1

h

)
, L-type,

(60)

where D =
√

(β − 1)2 − 4γβ [Eq. (35)], and

h ≡

√
2D

1− β +D + 2γ
, (61)

sinϕ1 =
1

sinϕ2
=

√
1− β +D − 2γ/γ0

2D
. (62)

Replacing Eqs. (59) and (60) into Eq. (55), the wind-
ing number function is given by

w (γ, β) =


F (ϕ1, h)

2K(h)
, R region,

F (ϕ2, 1/h)

2K(1/h)
, L region,

1/2, EI and EO regions.

(63)

The analytical expressions of the winding number func-
tion are an important result of this work. They fully
characterize the particle trajectories in the billiard. Fig-
ure 5(a) shows the winding number function w (γ, β) for
a billiard with γ0 = 1.5. Waterfall lines in subplot 5(a)
show the behavior of w (γ, β) as a function of γ for con-
stant values of β; that is, they are lines of constant energy.

The contour plot in Fig. 5(b) shows the level curves
w = {0, 0.025, 0.05, ..., 0.5} of the winding number func-
tion. All points (γ, β) lying on a level curve have the
same winding number. Note the parallelism between the
region map in Fig. 3(a) with the winding number func-
tion.

Analysis of the function w (γ, β) plotted in Fig. 5 re-
veals the following properties:

• The winding number reaches the maximum of 1/2
when γ = 0, corresponding to focal F trajectories.

 (a)

 (b)

−1
0

γ0 = 1.5

β

1/2

1

γ

w

γ

Vortex
point

−1

1
β

0

0

wc(β)

γe

1/4

R1

R2

1/2

0

1/4

L
0

γ0 = 3/2γe = 9/16

βe = 4
1

γ0
1 = 3

2

γ0 +1
1 = 5

2 w = 1/4

0

EI EO

FIG. 5. (a) Winding number surface w (γ, β) with
γ0 = 1.5 showing curves iso-β. The cutoff condition
wc (β) is given by Eq. (64). (b) Iso-w level curves of
w(γ, β)= {0, 0.025, 0.05, ..., 0.5}. The winding number can-
not be greater than 1/2. (c) Detail of the R1 region. For
β > βe, the level curves have two roots of γ, which corre-
spond to degenerate orbits in the billiard. For γ = 0.4 we
have γp = 0.1525 and γq = 0.3284.

• The elliptical trajectories in regions EI and EO
have a winding number of 1/2, which tells us that
in an elliptic orbit, the angular coordinate η goes
through its range once, and the radial coordinate ξ
goes through its range twice.

• All iso-w lines in the librational region begin at the
baseline β = 0 with negative γ, increase monoton-
ically as γ decreases, and end at the vertical axis
γ = −1.

• A librational orbit with energy constant β can oc-
cur in the billiard only if its winding number lies in
the interval [wc, 1/2), where

wc = w (−1, β) =
1

π
arcsin

(√
γ0 (β + 1)

γ0 + 1

)
, (64)

is the cutoff winding number for librational orbits,
see Fig. 5(a).

• All iso-w lines in the rotational region begin at the
baseline β = 0 with γ > 0, and converge to the
vortex point (γe, βe) given by Eq. (43).

• The winding number at γ = γe is constant for all
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values of β, namely

w (γe, 0 ≤ β ≤ βe) = 1/4. (65)

• The iso-w line equal to 1/4 at γ = γe divides the
region R into the subregions R1 and R2, as shown
in Figs. 3 and 5. All rotational orbits lying in R1

(γ < γe) have w > 1/4, whereas orbits lying in
R2 (γ > γe) have w < 1/4 and β < βe. The level
curves in the subregion R2 tend monotonically to
the vortex point, whereas the curves in R1 grow,
reach a maximum, and descend to the vortex.

• Observe the value of the winding number along the
upper border of region R. In zone R1, its value is
w = 1/2, and in zone R2, we have w = 0. The
discontinuity occurs at the vortex point, where the
winding number is indeterminate. By adopting the
half-maximum convention, the value at the vortex
is, by definition, 1/4.

B. Degenerate trajectories

From the behavior of the winding number function
shown in Fig. 5, we observe that it is possible to get
two different trajectories with the same winding number
w and the same β, but different values of γ, as long as
w ∈ (1/4, 1/2) and β > βe. To explain this result, in Fig.
6(a), we plot the subregionR1 showing in more detail the
iso-w curves. For example, the horizontal line β = 0.3
is above the vortex [βe = 0.25] and intersects twice with
the contour curve w = 0.4. Conversely, the line γ = 0.2
is below βe; thus, there is only one cross-point with the
curve w = 0.4. Since all points lying in an iso-β line have
the same energy E, the trajectories that share the same
β and the same winding number w but a different γ can
be considered degenerate trajectories. By having differ-
ent γ, two degenerate trajectories have different elliptic
caustics, periods, and lengths.

To have degenerate trajectories, the point (γ, β) has
to lie within the triangular region defined by the straight
lines γ = 0, β = βe, and β = (γ0 − γ) /γ0(γ0 + 1). There
is not possible to have degenerate librational trajectories.

In Fig. 6(b), we show a pair of degenerate trajectories
with β = 0.3 and w = 0.4. The location of the corre-
sponding points (γp, β) and (γq, β) on the (γ, β) chart is
shown in Fig. 6(a). The vertices 1 in both trajectories
are located at the same point η = 75◦ to easily notice
that the corresponding vertices between both orbits are
located at different positions. As expected for degenerate
trajectories, their caustics, periods, and lengths differ.

γq = 0.3284
ξC = 0.7377

T/T0 = 1.8174

γp = 0.1525
ξC = 0.4750

T/T0 = 1.5722

1 1 R (2,5)
β = 0.3

γ
0

0.4
β

βe = 0.25
0.3

0.2

0.1

 (a)

γp γq

2 roots

1 root

γs γe = 9/16

w = 1/2

w = 0

 (b)

Vortex point

FIG. 6. Degenerate rotational trajectories (2, 5) for a billiard
with γ0 = 1.5. Both orbits have the same winding number
w = 0.4, the same energy β = 0.3, but different constant γ.
The values of the elliptic caustics ξC and the periods T in
units of T0 = 2π/ω are included for each orbit.

C. Characteristic equations of periodic trajectories

The periodic orbits are determined by the condition
that the winding number is equal to a rational number

w = wn
m =

n

m
, (66)

where n and m are two integer numbers. The periodic
trajectory closes afterm periods of the coordinate ξ and n
periods of the coordinate η. If w is an irrational number,
then the trajectory never closes and ends up filling the
available configuration space inside the billiard.
From Eqs. (63) and (66), the characteristic equations

to get periodic orbits (n,m) in the billiard are

wn
m =

F (ϕ1, h)

2K (h)
=

n

m
, R-type, (67a)

wn
m =

F (ϕ2, 1/h)

2K (1/h)
=

n

m
, L-type. (67b)

These equations have the same structure as the charac-
teristic equations of the elliptic billiard without potential
[9, 10], but the arguments are different.
The behavior of the iso-w lines on the plane (γ, β) is

shown in Fig. 5(b). For example, any point (γ, β) on the
iso-w line equal to 0.375 generates a closed path (n,m) =
(3, 8) that could be rotational or librational. If the value
of w is below the cutoff [Eq. (64)], for example w = 0.15,
only rotational trajectories can exist.



11

R(1,3) R(1,4) R(2,5)

R(2,7) R(3,8) R(4,11)

R(4,13) R(5,14) R(9,28)

L(2,6) L(3,8) L(3,8)

L(7,18) L(7,18) L(7,20)

L(9,26) L(10,26) L(11,26)

FIG. 7. Rotational (R) and librational (L) trajectories for
a billiard with γm = 1.5. Caustics are depicted with dashed
red lines. All orbits have β = 0.2.

Alternatively, the characteristic equations (67) can
be inverted by applying the Jacobian elliptic function
sn (x, α) [26, 27]. For rotational orbits, Eq. (67a) be-
comes

sn

[
2n

m
K (h) , h

]
=

√
1− β +D − 2γ/γ0

2D
. (68a)

This equation has real solutions for m ≥ 3 and n ≤ m/2.
The numbers m and n are the number of bounces at the
boundary and the number of turns the particle makes in
a cycle, respectively.

For librational orbits, Eq. (67b) becomes

sn

[
2n

m
K

(
1

h

)
,
1

h

]
=

√
2D

1− β +D − 2γ/γ0
, (68b)

which has real solutions for m ≥ 4 and n ≤ m/2, where
m must be an even integer to have closed librational tra-
jectories.

The process of determining the periodic trajectories in
the billiard is as follows: For a specific trajectory (n,m) ,

either rotational or librational, locate a point (γ, β) ly-
ing on the contour line with winding number w = n/m.
Usually, β is proposed (since it is equivalent to giving the
energy), and γ is calculated by finding the root of the cor-
responding characteristic equation, either using Eq. (67)
or (68). Determine the value of the caustics evaluating
either Eq. (45) or (49) at the point (γ, β). This infor-
mation lets us know the allowed region where the parti-
cle moves within the billiard. Later, set the coordinates
(ξ, η) of the starting point of the trajectory; they must
be within the valid region of motion of the particle. Typ-
ically, one chooses a point (η) on the boundary ξ = ξ0.
Now, Eqs. (18), (25), and (26) give the components pξ/σ
and pη/σ of the initial momentum p, which provides the
angle about the tangent to the boundary of the first seg-
ment of the trajectory, namely α = arctan (pξ/pη). Cal-
culate the first elliptic trajectory through the potential
and find the impact point with boundary. Calculate the
velocity vector after the bounce considering that the colli-
sion is elastic. From here, it is an iterative process. Trace
the complete orbit by calculating the successive elliptical
segments and the collision points on the boundary. The
trajectory will close after m bounces for R-motion and
2m bounces for L-motion.

Some rotational and librational periodic orbits are de-
picted in Fig. 7 for a billiard with γ0 = 1.5. For rotational
orbits, m is either the number of bounces at the bound-
ary or the number of sides, and n is the number of turns
around the interfocal line in a cycle. For librational or-
bits, 2m is the number of reflections at the boundary,
and n is the number of times the trajectory touches the
caustics. In most examples, we select the upper covertex
as the starting point of the trajectory, which produces
symmetric orbits about the y-axis. The topologies of
the rotational trajectories are straightforward, but in the
librational case, interesting phenomena can occur. For
example, the orbit L(3, 8) is shown twice; in the first im-
age, the particle bounces perpendicularly on the border,
and then it returns by the same path to complete the tra-
jectory; in the second, we choose another starting point
to unfold the trajectory. The path L(7, 18) is also shown
twice to illustrate that symmetric or non-symmetric li-
brational paths around the y-axis can be obtained. Fi-
nally, in the last line, we show three orbits with m = 26
but different n to show the effect of the gradual variation
of the winding number on the hyperbolic caustics.

The starting point of a given trajectory (n,m) does not
affect the calculation of the constants of motion (γ, β).
Thus, we can choose any point of the boundary, within
the allowed region, as the first vertex for constructing
the polygonal trajectory. Moving the initial point along
the boundary generates different orbits with the same
number of sides and, as we will see, the same period and
length. Indeed, in an integrable system, the periodic tori
are not isolated but form a continuous family that fills
the configuration space.
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D. Period of the periodic orbits

In the simple case when the particle does not hit the
boundary and its trajectory becomes an ellipse (winding
number w = 1/2), it is clear that the period of the orbit
is simply

T0 = 2π/ω. (69)

T0 can be considered as the characteristic constant of
time of the system.

On the other hand, when the particle describes a polyg-
onal trajectory, the calculation of the period is much
more complex. Fortunately, a general expression for the
period Tn

m of the trajectory (n,m) can be derived starting
from the definition of the Hamiltonian in terms of canon-
ical coordinates and momenta, i.e., H =

∑
j pj q̇j − L,

where L is the Lagrangian, and the over-dot means time
derivative. Integrating with respect to time over one cy-
cle yields

∑
j

∮
pjqj =

∮
H dt+

∮
L dt, (70a)

2π (mJξ + nJη) = ETn
m + S. (70b)

where S is the action, and Jξ and Jη are defined by Eqs.
(52) and (53). Because S is constant for a specific trajec-
tory, partial derivation with respect to the energy yields

Tn
m = 2π

(
m
∂Jξ
∂E

+ n
∂Jη
∂E

)
. (71)

which is the desired expression.

The evaluation of Eq. (71) is laborious, but the result
can be expressed in terms of the incomplete Π(ϕ, n, k)
and complete Π(n, k) elliptic integrals of the third kind
[25, 26]

Π(ϕ, n, k) =

∫ ϕ

0

dθ(
1− n sin2 θ

)√
1− k2 sin2 θ

, (72a)

Π(n, k) = Π (π/2, n, k) . (72b)

For rotational (R) trajectories, we get

Tn
m = T0

h

π

√
β

D

{
mu−Π

(
ϕ1,

1

s+
, h

)
+

2n

[
(1− v−)Π

(
1

v−
, h

)
+ v−K (h)

]}
, (73)

where D is given by Eq. (35), u± by (34), v± by (39), h
by (61), ϕ1,2 by (62), and

s± ≡ D − β ± 1

2D
. (74)

γ

Vortex
point

−1

1

β

R1

R2

1

0

1/2

L
0

γ0 = 3/2γe = 9/16

γ0
1 = 3

2

γ0 +1
1 = 5

2

0

EI EO

4
1βe =

FIG. 8. Period function Tn
m/T0 = mf (γ, β) with m = 2. The

period in the regions EI and EO is T0, as expected.

For librational (L) trajectories we get

Tn
m = T0

1

π

√
β

D
×{

mu−

[
F

(
ϕ2,

1

h

)
−Π

(
ϕ2, s+,

1

h

)]
+

2n

[
(1− v−)Π

(
s−,

1

h

)
+ v−K

(
1

h

)]}
. (75)

Equations (73) and (75) are formidable; they allow us
to evaluate the period of a periodic orbit in the billiard
analytically. We have compared the results of these equa-
tions with those obtained using numerical simulations of
the particle moving in the billiard, and the discrepancy
is less than 10−10.
If we now extract the index m from Eq. (71) and

use the definition of winding number wn
m = n/m, the pe-

riod writes as Tn
m = m 2π (∂Jξ/∂E + wn

m∂Jη/∂E) . From
here, we can infer that the expressions for the period can
be written in the normalized form

Tn
m/T0 = mτ (γ, β) , (76)

where τ (γ, β) is a dimensionless function that only de-
pends on the constants of motion (γ, β) and is valid in
the regions L and R.
The behavior of the period function Tn

m/T0 = mτ (γ, β)
with m = 2 is illustrated in Fig. 8. The image shows the
curves of constant period in the rotational and librational
regions. Setting m = 2 ensures the period at the border
with the regions EI and EO is continuous. The period
function for a trajectory (n,m) is the same, except for a
scale factor of m/2.
Figure 8 reveals other interesting results of the billiard.

As it happened in the winding number function in Fig.
5, it is possible to get two different orbits with the same
energy β but different γ as long as the points (γ, β) lie
in the upper triangular zone of the region R1 above βe.
Further analysis of the contour lines in Fig. 8 reveal that
it is also possible to get two different orbits in the region
R2 with the same γ and different energy β that share the
same period.
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Finally, it is worth mentioning that the period of the
orbit (n,m) can also be calculated with

Tn
m = π

mJξ (γ, β) + nJη (γ, β)

⟨Ek⟩
(77)

where ⟨Ek⟩ is the average value of the kinetic energy in
a complete cycle. The result is fully equivalent to Eqs.
(73) and (75).

VII. GEOMETRIC CONSTRUCTIONS

As illustrated in Fig. 9, the self-intersecting points of
a trajectory (n,m) with constants of motion (γ, β) lie on
ellipses (and hyperbolae) that are confocal to the bound-
ary. Any selection of these confocal ellipses can define a
new internal billiard that supports a new sub-trajectory
with the same (γ, β) but different indices (n′,m) . In the
same way, if we extend the elliptical segments beyond the
boundary (as if it did not exist), we can see that the outer
elliptic paths also intersect at confocal ellipses that could
be considered the wall of larger elliptic billiards. This re-
sult applies to both rotational and librational orbits. In
the following, we adopt the term SI -ellipses to refer to
the confocal ellipses outlined by the cross-points where
the elliptic paths intersect. Let us analyze the rotational
and librational cases separately.

A. Rotational orbits

For R orbits (n,m) with even m, there are m/2 SI -
ellipses distributed as follows: (n− 1) internal ellipses, 1
corresponding to the boundary, and (m/2− n) external
ellipses. These results are exemplified in Fig. 9(a) for a
rotational orbit with (n,m) = (3, 10) and β = 0.2. The
winding numbers w′ = n′/m of the trajectories (n′,m)
formed by the family of SI-ellipses are

w′ =

(n−1) internal︷ ︸︸ ︷
1

m
, · · · , n− 1

m
,

1 boundary︷︸︸︷
n

m
,

(m−2n)/2 external︷ ︸︸ ︷
n+ 1

m
, · · · , m/2

m
, (78)

where the index n′ is the number of turns around the
interfocal line that the particle makes in a complete orbit
with m bounces. Note that the amount of SI -ellipses
is defined exclusively by the number m of bounces at
the boundary. Thus, as long as m is constant, we can
gradually vary the physical parameters of the problem
and the number of SI -ellipses does not change.
The elliptical radii ξ0 of the SI -ellipses can be found

with the characteristic equation (68a). So far, we have
considered the winding number w as a function of (γ, β),
and the goal has been to calculate a pair (γ, β) for a given
w = n/m. Now, the problem can be inverted and formu-
lated as follows: Given (γ, β) and the winding numbers
w′ = n′/m, find the values of γ0 that satisfy Eq. (68a).

 (a)

 (b)

 (c)

 R(3,10)

 R(2,7)

 L(3,8)

 β = 0.2

 β = 0.1

 β = 0.2

FIG. 9. Self-Intersecting ellipses (dashed lines) for (a) ro-
tational trajectory (3,10) with β = 0.2 and γ = 0.403; (b)
rotational trajectory (2,7) with β = 0.1 and γ = 0.402, and
(c) librational trajectory (3,8) with β = 0.2 and γ = −0.158.

Solving γ0 from Eq. (68a), we get

γ
(n′,m)
0 = sinh2 ξ

(n′,m)
0

=
2γ

1− β +D − 2D sn2[2w′K (h) , h]
, (79)

where w′ = n′/m takes the values according to Eq. (78).
Note that D [Eq. (35)] and h [Eq. (61)] depend exclu-
sively on (γ, β).

The last SI -ellipse with w = n′/m = 1/2, corresponds
to the outermost elliptic caustic formed by the return
points of the external trajectories, see Fig. 9(a). Replac-
ing n′/m = 1/2 into Eq. (79) and using sn [K (h) , h] = 1,
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we get the radius ξ
(m/2)
0 of the extreme caustic

ξ
(m/2,m)
0 = arcsinh

(√
2γ

1− β −D

)
. (80)

The construction of the SI -ellipses for the case when
m is odd is shown in Fig. 9(b) for (n,m) = (2, 7) with
β = 0.1. Note that the cross-points which outline the
SI -ellipses correspond to the intersections of m ellipses
oriented at different angles. Consequently, the number
of SI -ellipses is doubled with respect to the case when m
is even. The winding numbers w′ = n′/m of the corre-
sponding orbits are

w′ =

(2n−1) internal︷ ︸︸ ︷
1

2m
, · · · , 2n− 1

2m
,

1 boundary︷︸︸︷
2n

2m
,

(m−2n) external︷ ︸︸ ︷
2n+ 1

2m
, · · · , m

2m
. (81)

The elliptic radii ξ
(n′,m)
0 of the SI -ellipses with odd m

can be also determined with Eq. (79) taking the winding
numbers from Eq. (81).

B. Librational orbits

Figure 8(c) shows the SI -ellipses for a librational or-
bit with (n,m) = (3, 8) and β = 0.2. In order to have
closed trajectories, m is always an even number for L
trajectories.

The winding numbers w′ = n′/m of the SI -ellipses are
given by Eq. (81), but now their elliptical radii ξ0 are
calculated by solving the characteristic equation (68b)
for γ0, we have

sinh2 ξ
(n′,m)
0 =

2γ

1− β +D − 2D/sn2 [2w′K (1/h)]
. (82)

The outermost SI-ellipse of the librational case can be
calculated with Eq. (80) as well.

Finally, in characterizing the SI -ellipses generated by
the self-intersections of the trajectories in the billiard,
we have partially solved the outer problem. In this prob-
lem, the particle moves outside the elliptic wall and is
attracted toward the origin by the parabolic potential.
The trajectory is created with the particle bouncing off

the boundary from the outside. The goal is to determine
the conditions to get rotational or librational periodic
trajectories. The rotational orbits in the outer problem
have similar characteristics to the rotational orbits we
reviewed above. Nevertheless, librational trajectories are
somewhat different since the particle cannot go through
the wall, so it can only move above or below the billiard,
as shown in Fig. 9. In any case, the main properties and
the basic equations of the outer problem can be inferred
from the inner problem we discussed in this paper.

VIII. CONCLUSIONS

In this paper, we characterize the particle trajectories
in an elliptic billiard with an attractive harmonic oscil-
lator potential, emphasizing the analysis of the periodic
trajectories.
It was found that there are four main motion scenar-

ios: rotational, librational, inner elliptical, and outer el-
liptical. Additionally, there are some particular cases,
such as rectilinear and focal motions. Two independent
constants of motion characterize the particle dynamics:
β, associated with the total energy, and γ, associated
with the angular momenta about the foci and the posi-
tion y within the billiard. The different scenarios can be
mapped in the (γ, β) plane, which helps to understand
the constraints and ranges of the constants of motion for
a particular trajectory to occur.
We derived closed analytical expressions for the wind-

ing number function w (γ, β) and the characteristic equa-
tions to get periodic trajectories with angular n and ra-
dial m indices. These are expressed in terms of elliptic
integrals of the first kind. We found that it is possible to
have two degenerate (n,m) rotational trajectories that
share the same energy β but different γ values. It is not
possible to get degenerate librational trajectories.
A notable result was the closed expressions of the time

period Tn
m of rotational and librational orbits. These

expressions are written in terms of elliptic integrals of
the third kind. It was also shown that it is possible to
obtain two different rotational trajectories with the same
period and γ but different β energy.
We analyzed the caustics and ellipses outlined by the

self-intersections of an orbit (n,m) in the billiard, both
for intersections occurring inside and outside the ellipti-
cal wall.
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