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Superconductors exhibit a nonlinear interaction with an applied light, which can resonantly excite
the collective amplitude (Higgs) mode. Here we study light-induced dynamics of layered supercon-
ductors, where each layer is coupled to adjacent layers via the Josephson coupling and the first
few layers near the surface are driven by an in-plane-polarized light. We study the system under
the assumption that the interlayer Coulomb interactions are sufficiently screened out and that the
phase-difference mode becomes available in the low-energy regime. We find that interlayer transport
is induced via excitations of the collective amplitude and phase-difference modes, even when the
applied electric field is parallel to the planes. We provide analytic calculations as well as numerical
simulations of the real-time dynamics, and investigate the influence on the light-induced interlayer
Josephson current and intralayer third-harmonic generation.

I. INTRODUCTION

Ever since the discovery of high-Tc superconductiv-
ity in cuprates, the studies of layered superconductors
have attracted the interest of many researchers [1–6].
Their highly anisotropic superconducting and normal
state properties are well described by intrinsic Josephson
junctions (IJJ) [5], i.e., two-dimensional superconducting
layers of CuO2 separated by insulating barriers.

Many of the interesting physical effects in these sys-
tems arise from the anomalous Josephson current [7–9],
which is associated with the tunneling of Cooper pairs,
rather than quasiparticles [10]. Among these is the oc-
currence of a plasma mode normal to the superconduct-
ing layers [3, 4, 11–14], that is typically in the GHz to
THz regime and can be detected by a sharp drop in the
c-axis reflectivity of the materials above a characteristic
energy ωJ (Josephson plasma edge). This gap arises, be-
cause in charged superconductors, Coulomb interactions
give rise to a mass of the otherwise gapless phase mode
[15] that couples to the gauge field. Remarkably, one can
retrieve the acoustic dispersion of the Goldstone mode
near Tc, where the large number of normal electrons com-
pletely screen out interlayer Coulomb interactions [15–17]
(Carlson-Goldman mode).

Below ωJ the excitation of surface plasma modes,
which arise as solutions to the interlayer sine-Gordon
equation with imaginary frequency [13] has been con-
sidered theoretically [18, 19]. However, exciting these
modes experimentally is far from trivial, making the use
of atomic force microscope tips or total internal reflection
of prisms [5] necessary. On the other hand, it is possible
to optically induce interlayer superconducting transport
by applying c-axis polarized light with high field tran-
sients of tens of kVcm−1 which induces interlayer voltage
drops [2].

In this way, past studies on optically induced c-axis

transport in layered superconductors have focused on c-
axis polarized light. In contrast, to our knowledge, the
possibility of c-axis transport induced by in-plane polar-
ized light has not been well explored to this date. We
propose a mechanism resulting in the propagation of col-
lective excitations in the direction normal to the layers
using the in-plane ploarized light, based on the Ander-
son’s pseudospin picture [20].
It is known that the dynamics of superconductors can

be effectively mapped to that of spin systems (Ander-
son’s pseudospins) within the time-dependent Bardeen-
Cooper-Schrieffer (BCS) mean-field theory, which pro-
vides a useful way to represent and visualize a time-
evolving superconducting state. In clean systems, pseu-
dospins are defined in the momentum space, where the z
component of pseudospins corresponds to the occupation
of electrons, while the x and y components represent the
density of Cooper pairs for each momentum [20]. This
formalism is well-suited to describe the quadratic inter-
action with an ac electric field, since it corresponds to a
coherent precession of the pseudospins in an oscillating
pseudomagnetic field (i.e., an effective magnetic field act-
ing on pseudospins) [21–25]. If an ac field with frequency
Ω is applied to a superconductor, the superconducting
order parameter exhibits oscillations with frequency 2Ω,
which has been shown to resonate with collective ampli-
tude and phase modes [21–23, 26–28].
Let us consider the application of an ab-axis-polarized

light to a layered structure (see Fig. 1(a)). If the thick-
ness of a single layer is at least of the order of the London
penetration depth (as can be the case for systems of arti-
ficial stacks of Josephson junctions [1]), pseudospin pre-
cession is expected to be confined to the first few layers.
However, the precessing pseudospins generate a pseudo-
magnetic field that also acts on adjacent layers, even if
they are not directly affected by the incident light. This
will induce pseudospin precession throughout the entire
layered structure, indicating a highly nonlocal nature of
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FIG. 1. (a) Schematic picture of a Josephson-coupled three-
layer superconductor driven by light. (b) Free energy land-
scape of a three-layer system: A Mexican-hat potential is as-
sociated with each superconducting layer. The phase modes
of the individual layers combine to form two phase-difference
modes and one global phase mode with all the phases oscillat-
ing in unison. The latter one is the Nambu-Goldstone mode
of the layered system which is pushed to the plasma frequency
by the Anderson-Higgs mechanism. What remain at low ener-
gies are the phase-difference modes (one of which is indicated
by the green arrows). There are also Higgs amplitude modes
for each layer (shown by the blue arrows).

this phenomenon. We will find that the application of
light to the first layer is sufficient to induce resonant ex-
citation of the collective Higgs amplitude mode in all the
layers. Similarly, a phase-difference mode can be excited
to propagate along the c-axis, despite the applied ac-field
light being polarized in the ab-plane.

This paper is organized as follows: In Sec. II, we will
study a phenomenological Ginzburg-Landau (GL) the-
ory of layered superconductors, revealing that it is ul-
timately insufficient to describe the propagation of the
2Ω oscillations that we would expect on the basis of the
preceding naive discussion. In Sec. III we present a min-
imal microscopic model of Josephson coupled layered su-
perconductors based on the BCS mean-field Hamiltonian
and derive linearized equations of motion for the ampli-
tude and phase of the superconducting order parameters
based on a formalism developed in [21, 23]. In Sec. IV
we subsequently study analytic solutions that describe
the nonlinear excitations of collective modes, and com-

pare these results with numercial simulations. Section V
is then devoted to the two main observables, the nonlin-
ear ab-current that results in third-harmonic-generation
and the interlayer Josephson current.
Throughout the paper, we will use the natural units

and set the lattice constant a = 1.

II. PHENOMENOLOGICAL
GINZBURG-LANDAU THEORY

We will start by discussing a phenomenological GL the-
ory of Josephson coupled layered superconductors. Even
though we will ultimately conclude that the GL-approach
is insufficient to describe the physics one would expect
based on the naive discussion of the pseudospin picture,
it provides a good intuition about the collective modes.
A schematic picture of the GL free energy is shown in
Fig. 1(b) for the case of three layers, but the general-
ization to n layers is straightforward. The free energy of
each of the n layers is described by a Mexican-hat po-
tential. Fluctuations around the minimum give rise to n
independent Higgs amplitude modes (one for each layer).
Additionally, there are n phase degrees of freedom, one
of which is the Nambu-Goldstone mode for the total U(1)
phase that gets pushed to the plasma frequency by the
Anderson-Higgs mechanism. The remaining n−1 modes
correspond to oscillations of the phase difference.
In the rest of this section, we will restrict ourselves to

a bilayer system for simplicity. Nevertheless, this model
illustrates the essential features that were introduced in
the preceding heuristic discussion. The GL free energy
density for the superconducting order parameter Ψ of two
Josephson-coupled superconducting layers with inversion
symmetry in the presence of a gauge field A(r) can be
written down as [21, 29, 30]:

F =
∑
i=1,2

Fi + F1,2, (1)

where the free energy density of an individual layer is
given by:

Fi = c1|Ψi(r)|2 +
c2
2
|Ψi(r)|4 +

1

2m∗ |DiΨi(r)|2, (2)

and the Josephson-coupling between the two layers is de-
scribed by:

F1,2 = ϵΨ1(r)Ψ
∗
2(r) + ϵ1D∗

1Ψ
∗
1(r)D2Ψ2(r) + c.c. (3)

Here, r labels the two-dimensional coordinate in the ab-
plane, while the index i ∈ {1, 2} is used to distinguish be-
tween individual layers and Di = −i∇−e∗Ai(r). e

∗ = 2e
is the charge of a Cooper pair, m∗ is its mass and Ai(r)
is the electromagnetic vector potential on the i-th layer,
which we assume to be polarized in the ab-plane. c1
and c2 are coupling constants. We take a polar decom-
position, Ψi = (Ψi

0 + Hi(r))e
iθi(r), where Ψi

0 denotes
the superconducting order parameter in equilibrium and
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Hi(r), θi(r) ∈ R describe fluctuations of the amplitude
(Higgs) and phase (Nambu-Goldstone) modes for each
layer. In the following, we will suppress the dependence
on r for notational convenience.
Let us first consider the case for ϵ = ϵ1 = 0, where the

two layers are decoupled. We begin by expanding the
single-layer free energy Fi in terms of the fluctuations
Hi and θi, which results in

Fi = 2c1H
2
i − 1

2m∗ (∇Hi)
2

− e∗2

2m∗

(
Ai −

1

e∗
∇θi

)2 (
Ψi

0 +Hi

)2
+ · · · . (4)

We observe that the free energy density F is invari-
ant under the local gauge transformations of the form
Ψi(r) → eie

∗χi(r)Ψi(r),Ai(r) → Ai(r) +∇χi(r). Hence,
we can gauge out θi in the combination Ai − 1

e∗∇θi and
thus remove the phase degree of freedom. This results
in the Anderson-Higgs mechanism, where the Nambu-
Goldstone mode is pushed to the plasma frequency. Af-
ter the gauge transformation, Fi takes the following form
to the first order in the fluctuations:

Fi = −e∗2Ψi2
0

2m∗ A2
i +

e∗2Ψi
0

m∗
A2

iHi +O(H2
i , θ

2
i , Hiθi). (5)

The first term describes the mass of the gauge field that is
generated by the Anderson-Higgs mechanism. The sec-
ond term results in a nonlinear excitation of the Higgs
mode through the squared electromagnetic field [21],
which can microscopically induce precession of Ander-
son’s pseudospins.

We now turn to the case of Joephson-coupled supercon-
ductors with ϵ, ϵ1 ̸= 0. Specifically, we define Fϵ1 to be
the term proportional to ϵ1, which describes interactions
with the electromagnetic field. Once again, expanding in
terms of θi and Hi yields:

Fϵ1 =2e∗2
[
ℜ(ϵ1)

(
A1 −

1

e∗
∇θ1

)(
A2 −

1

e∗
∇θ2

)
+ℑ(ϵ1)θrelA1A2

]
×
(
Ψ2

0 +H2

) (
Ψ1

0 +H1

)
+ · · · ,

(6)

where we defined the relative phase θrel = θ1− θ2. While
the Nambu-Goldstone modes of the individual layers can
be gauged out in the first term, their difference, θrel can-
not be removed simultaneously and thus survives the
Anderson-Higgs mechanism. This mode is known as the
Leggett mode in the studies of multiband superconduc-
tors [31] and becomes the Josephson plasma mode in lay-
ered superconductors with N ≫ 2 layers. This mode is
not subject to the Anderson-Higgs mechanism, as it does
not constitute a Goldstone mode, generated by U(1) sym-
metry. It is therefore not pushed to the plasma frequency
of the individual layers, but a gap opens up in the pres-
ence of the screened Coulomb repulsion. Similarly to the
case of the Higgs mode, the phase-difference mode may

be excited nonlinearly by the squared vector potential
[23].
Now we consider the case, where the thickness of the

first layer exceeds the London penetration depth. Then,
we can assume that A2 ≈ 0. In this case, however, nei-
ther the Higgs mode of the second layer nor the phase
difference mode can be optically excited according to the
GL analysis. This is in stark contrast to what we would
expect based on the naive discussion of the pseudospin
picture in the introduction. Hence, we must turn to a mi-
croscopic description of layered superconductors in order
to resolve this discrepancy.

III. MICROSCOPIC MODEL

After discussing the GL theory, we turn to a micro-
scopic model based on the BCS mean-field Hamiltonian.
We start from a pairing Hamiltonian describing a stack of
N s-wave superconductors separated by insulating barri-
ers and each interacting with its adjacent layers via the
tunneling of Cooper pairs:

HN =
∑
k,σ,n

ϵn,k−eAn(t)c
†
kσ,nckσ,n

+
∑

k,k′,n

Vn,nc
†
k↑,nc

†
−k↓,nc−k′↓,nck′↑,n (7)

+
∑

k,k′,n

Vn,n+1c
†
k↑,n+1c

†
−k↓,n+1c−k′↓,nck′↑,n + h.c.,

where n ∈ {1, ..., N} labels the nth superconducting

layer, c†kσn creates an electron with momentum k and
energy ϵn,k (measured relative to the Fermi surface) in
the nth layer and Vn,n+1 = V ∗

n+1,n is the amplitude for
a Cooper pair to travel from the nth to the (n + 1)th
layer. We further use the open boundary conditions:
V0,1 = VN,N+1 = 0. Note that this model does not
take into account Coulomb interlayer interactions. This
approximation models scenarios in which the interlayer
Coulomb interactions are sufficiently screened out. This
can happen either as a consequence of the properties of
the insulating barriers between the superconducting lay-
ers (which can be fine-tuned in systems of artificial stacks
of Josephson junctions [1]), or near the critical tempera-
ture by the presence of a large number of normal electrons
[16]. As one would expect ωJ = 0 for neutral superflu-
ids, our approximation should yield accurate results for
ωJ ≪ 2∆. We will heuristically discuss the impact of
this contribution where differences in real materials are
to be expected. Still, we note that the model adopted
here can serve as a pedagogical model that outlines the
mechanism of the propagation of collective pseudospin
excitations in layered superconductors.

The system is driven by an incident beam of light, rep-
resented by the electromagnetic vector potential An(t)
polarized in a direction parallel to the layers, which is
included via the Peierls substitution in the Hamiltonian
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(8). We adopt the temporal gauge with zero scalar po-
tential. The index n is used to model a layer dependent
electromagnetic field, while keeping a uniform electro-
magnetic field within each layer.

We proceed by defining the order parameters in the
following way:

∆n = ∆single
n +

Vn,n+1

Vn+1,n+1
∆single

n+1 +
Vn,n−1

Vn−1,n−1
∆single

n−1 , (8)

where the single-layer order parameters ∆single
n are de-

fined as

∆single
n = −Vn,n

∑
k

⟨c†k↑,nc
†
−k↓,n⟩. (9)

Note that ∆n is the order parameter that defines the
energy of quasiparticle excitations and collective modes,
whereas ∆single

n is simply introduced as a shorthand for
the momentum sum over the pair correlation functions
of a single layer. After switching to the BCS mean-field
description, HN , becomes (up to a constant)

HN =
∑
k,σ,n

ϵn,k−eAn(t)c
†
kσ,nckσ,n

+
∑

k,k′,n

Vn,nc
†
k↑,nc

†
−k↓,nc−k′↓,nck′↑,n (10)

−
∑
k,n

[
∆∗

nc
†
k↑,nc

†
−k↓,n +∆nc−k↓,nck↑,n

]
.

We adopt the Anderson pseudospin description [20], by
defining:

σk,n =
1

2
Ψ†

k,nτΨk,n, (11)

with Ψk,n = (ck↑,n, c
†
−k↓,n)

T defining the Nambu-spinor
of the nth layer and τ being the vector of Pauli matrices.
Thus, the Hamiltonian (8) finally takes the form (up to
a constant):

HN =
∑
n

HBdG
n , HBdG

n = 2
∑
k

bk,n · σk,n. (12)

This is easily recognized as the Bogoliubov-de Gennes
(BdG) Hamiltonian of N seemingly-uncoupled supercon-
ductors subject to the pseudomagnetic field:

bk,n =

(
−∆′

n,−∆′′
n,

ϵn,k−eAn(t) + ϵn,k+eAn(t)

2

)
. (13)

Here, ∆′
n and ∆′′

n are the real and imaginary parts of
the order parameters, respectively. From the Heisenberg

equation
∂σk,n

∂t = i [HN ,σk,n], one finds a Bloch-type
equation of motion for the expectation values of the pseu-
dospins:

∂⟨σk,n⟩
∂t

= 2bk,n × ⟨σk,n⟩. (14)

All the information about the coupling between individ-
ual layers is encoded in the self-consistency condition:

∆′
n = −

∑
k,in

Vn,in⟨σx
k,in⟩,

∆′′
n = −

∑
k,in

Vn,in⟨σ
y
k,in

⟩,
(15)

where in ∈ {n− 1, n, n+ 1} labels the layer itself as well
as adjacent layers.

A. Thermal Equiblibrium State

In the absence of light, i.e., An = 0 for all n, the
thermal equilibrium state at temperature T can be found
to be [23]

⟨σx,eq
k,n ⟩ = ∆eq

n

2Ek,n
tanh

(
Ek,n

2kBT

)
,

⟨σy,eq
k,n ⟩ = 0,

⟨σz,eq
k,n ⟩ = − ϵn,k

2Ek,n
tanh

(
Ek,n

2kBT

)
.

(16)

Here, we have made use of the U(1) symmetry to choose
real and non-negative order parameters. The gap energy
Ek,n is given by:

Ek,n =
√

ϵ2n,k + (∆eq
n )2. (17)

In the following, we will focus on symmetrical Joseph-
son junctions with Vn,n = −U , Vn,n+1 = −J, ϵn,k = ϵk
and U, J > 0. The interaction strength is then charac-
terized by dimensionless numbers λU = N(0)Vn,n and
λJ = N(0)Vn,n+1, where N(0) is the density of states
at the Fermi surface for each layer. This leads to par-
allel alignment of the order parameters in thermal equi-
librium. Observe that even in equilibrium, the order pa-
rameter will exhibit a gradient, since the boundary layers
n = 1, N only couple to one partner, while the bulk layers
(n ̸= 1, N) exchange Cooper pairs with two neighbors.
By numerically solving the equilibrium self-consistency
equation (16) for small enough Vn,n+1, we find that this
dependence can be modelled by (see Fig. 2):

∆eq
n =

{
∆∂ for n = 1, N

∆ for n ̸= 1, N
, (18)

with ∆∂ ̸= ∆. The pseudospins and single-layer order
parameter will exhibit the same inhomogeneity. Equilib-
rium quantities dressed with the subscript ∂ will denote
boundary quantities, for which the boundary order pa-
rameter ∆∂ is to be used. If no such label is present,
quantities are to be expressed in terms of the bulk or-
der parameter ∆. Since the inhomogeneity of the order
parameter is restricted to the outermost layers, its influ-
ence on the system may be neglected in the limitN → ∞.
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FIG. 2. Spatial dependence of the superconducting order pa-
rameter along the c-axis at T = 0 with several values of the
interlayer tunneling strength |λJ |. Here, n represents the layer
index. The dispersion is taken to be ϵk = −2t cos(k)+ ϵ0 and
the parameters are t = 1, U = 4, N = 10 and ϵ0 = 0.8. The
layers consist of one-dimensional chains.

During the discussion of the collective mode excitations,
we will devote special attention to effects related to this
inhomogeneity.

B. Optically Driven System

So far, we have considered the equilibrium state, de-
fined by An(t) = 0 for all n. To describe the interaction
with light, we now allow for a non-zero ac-field and derive
linearized equations of motion for the real and imaginary
parts of the order parameter. In particular, we consider
monochromatic light with frequency Ω, where A(t) is
given by: A(t) = A(t)p̂ with A(t) = E

Ω · sin(Ωt). Here, p̂
is a polarization unit vector in the ab-plane and E is the
electric field amplitude.

The interaction with light will drive the system out of
equilibrium. For small amplitudes of A(t), we may write

∆n(t) = ∆eq
n + δ∆n(t) where δ∆n(t)

∆eq
n

≪ 1 and likewise

⟨σk,n⟩(t) = ⟨σeq
n ⟩+δσk,n(t). The equation of motion (14)

is then linearized in the deviations from the equilibrium
solution. After a Fourier transformation t → ω, it takes
the following form:δσx

k,n

δσy
k,n

δσz
k,n

 = Σk,n

−δ∆′
n

−δ∆
′′

n

δbzk,n

 , (19)

where

Σk,n = −
σx
k,n

∆γ(4E2
k,n − ω2)

 4ϵ2k,n 2iωϵk,n 4∆nϵk,n
−2iωϵk,n 4E2

k,n −2iω∆n

4∆nϵk,n 2iω∆n 4∆2
n

 .

For reasons of readability, we have suppressed the fre-
quency dependence of δ∆n, δσk,n and δbzk,n as well as

the label eq and the brackets denoting expectation val-
ues, i.e. ⟨σx,eq

k,n ⟩ = σx
k,n and ∆eq

n = ∆n.

IV. COLLECTIVE MODE EXCITATIONS

In this section, we seek solutions for Eq. (19) near
the Fermi surface ϵk = 0. In this regime, the real and
imaginary parts of the order parameter decouple from
each other. Furthermore, we assume the density of states
to be constant near the Fermi surface. Since (16) holds in
equilibrium, it is clear that a similar equation must hold
for δ∆n and δσk,n to the first order in δ. Substituting
(19) into this equation, we find linearized equations that
determine δ∆n self consistently. These solutions will turn
out to describe the excitation of amplitude and phase-
difference modes.

A. Analytical Description

If the individual layers are inversion symmetric, we
can expand δbzk,n to the lowest order in A: δbzk,n ≃
e2

2 A
2
n(ω)(p̂ · ∇k)

2ϵk,n. Here, A2(ω) is the Fourier trans-
form of the squared vector potential. As discussed above,
the dynamics of the real and imaginary part of the order
parameter can be approximated by solving a linearized
problem in the frequency domain. It turns out that due
to the specific structure of the matrix, an analytic solu-
tion is available for an arbitrary number of layers N .

1. Amplitude Oscillations

For small deviations from equilibrium, we can approx-
imate |∆n| ≈ ∆′

n, since the equilibrium order parameter
was initialized to be real. At the Fermi surface, Eq. (19)
can be written as a matrix equation:

Tijδ∆j(ω) = − e2

2ζ(ω)

(
δiin

U

J
+ 1

)
A2

in(ω)Xin(ω), (20)

where summation over repeated indices is implied, in
once again labels layers adjacent to the i-th layer and
and the definitions of Xin(ω) and ζ(ω) can be found in
Table I alongside other functions used throughout this
paper. The non-zero elements of the matrix T(ω) are
given by

Tii =
Uζ(ω)− 1

Jζ(ω)
i ̸= 1, N,

T11 = TNN =
Uζ∂(ω)− 1

Jζ(ω)
,

Tii+1 = Tjj−1 = 1 1 ≤ i ≤ N − 2 2 ≤ i ≤ N,

T21 = TN−1N =
ζ∂(ω)

ζ(ω)
.
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F (ω) = 1
N(0)

∑
k

σx
k

4E2
k
−ω2 Y (ω) = 1

N(0)

∑
k

σx
k

4E2
k
−ω2 (p̂·∇k)

2ϵk Γ(ω) = 1
∆

(
∆single

U
+ ω2N(0)F (ω)

)
G(ω) = (4∆2 − ω2)F (ω) X(ω) =

∑
k

4σx
kϵk

4E2
k
−ω2 (p̂·∇k)

2ϵk ζ(ω) = 1
∆

(
∆single

U
−G(ω)

)

TABLE I. Definition of functions used throughout this paper. N(0) denotes the density of states at the Fermi surface for each
layer and ∆single is the single-layer order parameter introduced in Eq. (9). These functions are defined in terms of the bulk order
parameters/pseudospins. If they appear with a subscript ∂, the definition is to be adjusted by performing the substitutions
∆ → ∆∂ and σx

k → σx
∂,k.

The solution to the problem is now readily available by
multiplying with the inverse matrix elements. As derived
in Appendix A, an analytic expression for these is avail-
able for arbitrary N . To gain a better understanding of
the physics of this solutions, we set A1(ω) = A(ω) and
An(ω) = 0 for 2 ≤ n ≤ N , i.e., we assume that the
electromagnetic vector potential only penetrates the first
layer. This assumption can be realized in artificial stacks
of Josephson junctions, where the thickness of a single
layer is typically of the order of the London penetration
depth [1], for example in NbN/Al junctions where the
thickness of the NbN layers exceeds 390nm [32]. In sin-
gle crystals with intrinsic Josephson junctions like high-
Tc cuprates, the layers are much thinner. However, one
might still use this approximation to qualitatively de-
scribe the expulsion of electromagnetic fields within a
limited amount of layers due to the associated computa-
tional cost We then arrive at the following solution:

δ∆′
n = − e2

2ζ(ω)
A2(ω)X∂(ω)

(
U

J
T−1
n1 + T−1

n2

)
. (21)

Note that if we apply monochromatic light with fre-
quency Ω to the first layer, i.e. A(t) = A sin(Ωt), with
A = E

Ω and E being the electric field amplitude, then

A2(ω) is given by

A2(ω) = A2δ(ω − 2Ω), (22)

leading to oscillations of δ∆′
n with twice the frequency of

the applied light. This corresponds to a collective preces-

3.00 3.02 3.04 3.06 3.08 3.10 3.12 3.14
0

500

1000

1500

2000

(
(

)(U
J)

1)
2

2 | J|
0.01
0.02
0.05
0.08
0.1

FIG. 3. The function (ζ∂(ω)(U − J)− 1)−2 for several values
|λJ |.The parameters are the same as in Fig. 2. The dashed
lines indicate values of 2∆∂ for the corresponding parameters.

sion of the Anderson pseudospins in the oscillating pseu-
domagnetic field [21]. Note, however, that even though
only the first layer is subject to the incident light, Ander-
son pseudospin precession persists throughout all layers.
The propagation of these oscillations can be explained as
follows: The precession of the pseudospins σk,n of the
nth layer results in oscillations of the order parameter
∆n, with ω = 2Ω. The pseudospins create an oscillating
pseudomagnetic field, and from Eqs. (8) and (13) it is
clear, that this field also acts on adjacent layers, thereby
inducing order parameter oscillations throughout the en-
tire layered structure. When ignoring boundary effects
(i.e., dropping the subscript ∂) the matrix Tij becomes
tridiagonal. For ω < ω+, where ω± satisfy ζ(ω±) =

1
U±2J

(see Appendix A), one can apply Theorem 2.9 in Ref. [33]
to estimate the decay of the amplitude of these oscilla-
tions:

δ∆′
n

δ∆′
1

≃ T−1
n1

T−1
11

≤ e−(n−1)κ, (23)

where we assumed J
U ≪ 1, showing that the decay is

bounded by an exponential function with an exponent κ
to leading order in J

U . The decay constant κ is defined

by Uζ(ω)−1
Jζ(ω) = −2 cosh(κ).

2. Resonance with Higgs mode

The poles of the inverse matrix elements T−1
ij signify

the energy of collective amplitude modes. It turns out
that poles are only found in the regime ω < ω+. ForN ≫
1, the denominator of T−1

ij can be factorized, leading to
the following simplified equation for the poles:

(ζ∂(ω)(U − J)− 1)
2
sinh(Nκ) sinh(κ) = 0 (24)

We find one pole at ω = 2∆ coming from the sinh factor,
which is attributed to the Higgs mode of the bulk su-
perconducting layers. Note that even though the factor
((ζ∂(ω)(U − J)− 1))−2 remains finite, it shows a peak
as ω → 2∆∂ (see Fig. 3), which is interpreted as the
existence of a second Higgs mode associated with the
boundary layers. Hence at 2Ω = 2∆ or 2Ω = 2∆∂ , the
poles of the bulk or boundary Higgs mode and pseudospin
precession merge in the expression (21), leading to the
well-known resonant excitation of the Higgs amplitude
mode, characterised by a diverging amplitude of the 2Ω
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oscillations of δ∆′
n [21]. Remarkably, as both the An-

derson pseudospin precession and the Higgs mode occur
in all the layers, the resonant behavior is not limited to
the layer that directly interacts with light. It is worth
pointing out that the divergences at 2∆ and 2∆∂ in the
bulk layers have different origins. The former is a res-
onant excitation of the bulk Higgs mode, while the lat-
ter originates from the enhanced oscillation amplitude of
the pseudomagnetic field from resonance in the bound-
ary layer. Furthermore we can observe that the factor
X∂(ω) diverges for 2∆∂ ≤ ω ≤ maxk{2E∂,k}. This is
interpreted as light-induced quasiparticle excitations in
the top layer ∆∂ , tunneling to the adjacent layers.

3. Phase Oscillations

Similarly to the amplitude of the order parameter, for
small deviations from equilibrium, we have the phase
ϕn = arg(∆n) proportional to the imaginary part of the

order parameter: δϕn ≃ δ∆′′
n

∆n
. This time, we restrict

ourselves to frequencies ω ≤ ωmax, where ωmax is the so-
lution of Γ(ωmax) =

1
U−2J and for the definition of Γ(ω)

we refer to Table I. In this regime, excitations of the
phase difference mode can be found. We adopt the con-
vention, where the interlayer phase mode is referred to
as phason in the system without Coulomb interactions
that we are studying in this paper, as opposed to the
Josephson plasma mode in the presence of Coulomb in-
teractions. The system of linear equations governing the
time evolution of δ∆′′

n is then found to be:

Tijδ∆j(ω) = − ωe2

iΓ(ω)

(
δiin

U

J
+ 1

)
A2

in(ω)Yin(ω) (25)

The non-zero elements of the matrix Tij(ω) are given by

Tii =
UΓ(ω)− 1

JΓ(ω)
i ̸= 1, N,

T11 = TNN =
UΓ∂(ω)− 1

JΓ(ω)
,

Tii+1 = Tjj−1 = 1 1 ≤ i ≤ N − 2 2 ≤ i ≤ N,

T21 = TN−1N =
Γ∂(ω)

Γ(ω)
.

As in Eq. (21), we study the solution for A1 ̸= 0:

δ∆′′
n =

ωe2

iΓ(ω)
Y∂(ω)A

2(ω)

(
U

J
T−1
n1 + T−1

n2

)
. (26)

The solution for the phase has a similar structure to the
amplitude, featuring tunneling induced Anderson pseu-
dospin precession and light induced pair-hole excitations.
Unlike for the amplitude, the lattice filling has a signif-
icant influence on the phase-difference oscillations: We

expand ∂2ϵk
∂k2 in powers of ϵ to obtain:

Y∂(ω) =

∫ ∞

−∞
dϵ

∆tanh(
√

ϵ2 +∆2
∂/2kBT )

2
√
ϵ2 +∆2(4ϵ2 + 4∆2

∂ − ω2)

×
(
c0 + c1ϵ+ c2ϵ

2 + ...
)
. (27)

Note that for a cosine dispersion ϵk = ϵ0−2t
∑

ki
cos(ki)

at half filling (ϵ0 = 0), we have c0 = 0, c1 = −1 and
cn = 0 for n > 1. Since the term linear in ϵ vanishes
due to symmetry, phase oscillations are only obtained for
partial filling, which is consistent with previous studies
[24].

4. Resonance with phase-difference modes

Compared to the amplitude mode, elements of the in-
verse matrix T−1

ij now take a different form (see Appendix

A). Hence the eigenspectrum of the phase differs greatly
from that of the amplitude.
In the limit N → ∞ one can once again factor the

denominator of the inverse matrix elements and then find
an equation for the poles:

(Γ∂(ω)(U − J)− 1)
2
sin(Nκ) sin(κ) = 0, (28)

where this time we have −2 cos(κ) = UΓ(ω)−1
JΓ(ω) .

To find solutions to the above equation, we introduce
an approximation for the function F (ω) (see Table I),
which also yields an approximation for Γ(ω). Note that
close to the Fermi surface, we can replace the summation
over the momenta k by an integral,

∑
k → N(0)

∫ ωD

−ωD
dϵ

where ωD is the Debey frequency and N(0) is the density
of states at the Fermi surface. In the BCS approxima-
tion one can then proceed by replacing the boundaries
of the integrals with infinity, i.e.,

∫ ωD

−ωD
→

∫∞
−∞. Note

also, that since the phase-difference modes are typically
of frequencies ω ≪ 2∆, we can approximate at T = 0 as
follows:

F (ω) =

∫ ∞

−∞
dϵ

∆tanh(
√
ϵ2 +∆2/2kBT )

2
√
ϵ2 +∆2(4ϵ2 + 4∆2 − ω2)

≈ 1

4∆
. (29)

Using Eq. (29) an analytic solution for Eq. (28) is avail-
able at T = 0, yielding a discrete excitation spectrum
with frequencies given by

ω2
m =

8|λJ |∆2(1− cos(πmN ))

(2|λJ |+ |λU |)(|λU |+ 2|λJ | cos(πmN ))
, (30)

where m = 1, 2 . . . N . This yields N nonzero solutions
for ωm. However, ωN is also a root of the numerator of
T−1
ij , reducing the number of modes to N − 1. Also, Eq.

(30) only depends on ∆ and not on ∆∂ , suggesting that
the spectrum is independent of the boundary conditions.



8

However, if ∆∂ = ∆, i.e. if boundary effects are ignored,
it can be shown that the same excitation spectrum is
found, but by replacing πm

N → πm
N+1 . Applying the same

reasoning as above, the number of modes increases from
N − 1 to N . This has the following interpretation: For
a system with N layers, there are N independent phase
degrees of freedom. However, as seen in Sec. II, a global
rotation of the phase can be gauged out, thereby pushing
the global phase mode to the plasma frequency, leaving
N − 1 physical degrees of freedom. Hence, we conclude
that the equilibrium gradient in the order parameter re-
stores gauge invariance by fixing the number of discrete
excitations. These excitations can be understood as fol-
lows: The physical effect of the Josephson coupling is,
to align the order parameters parallel to each other. If
the order parameter of a layer is rotated away from the
parallel alignment, the attractive potential of the Joseph-
son coupling aims to realign adjacent order parameters,
leading to harmonic oscillations. The eigenmodes of these
coupled harmonic oscillators are the phason modes. We
observe that independent of the system size, the energy
of the collective phase excitations has an upper bound of:

ω2
m < ω2

N = ω2
max =

|λJ |∆2

(|λU |2 − 4|λJ |2)
. (31)

For finite system sizes, the phason mode remains gapped,
with the energy of the gap decreasing with increasing
the number of layers, yielding a gapless phason in the
interval (0, ωmax] as N → ∞. The pole defined by
Γ∂(ω)(U − J) = 1 encapsulates boundary effects. How-
ever, it lies within the aforementioned continuum and
thus yields no new excitation. When considering the
presence of interlayer Coulomb interactions, a gap is ex-
pected to open up in the dispersion of the phason mode,
corresponding to the Josephson plasma edge ωJ [3]. As
discussed, their omission may be justified if ωJ ≪ 2∆.
Interlayer Coulomb interactions should be considered for
real materials, however, they usually leave the amplitude
mode unchanged. Their effect on the phase mode may
be included in this formalism by a perturbation to the

T-matrix, Tij → Tij + T
(1)
ij . Applying the first order

perturbation theory for linear operators, the eigenval-

ues change ωm → ωm + ω
(1)
m , which will open up the

gap. Still, Anderson’s pseudospin resonance will occur
when the poles of the inverse matrix match 2Ω. Hence
the mechanism of Anderson pseudospin resonance with
the phase mode should also be present in the presence
of interlayer Coulomb interaction, but with a change in
the dispersion relation. This, however, should be inves-
tigated by future research, especially because ωJ is typi-
cally of the order of GHz to THz, i.e. of the same order
of magnitude as ∆. Hence, the first order perturbation
theory might not be sufficient in the cases of interest. To
sharpen our understanding of the phason mode, it is nec-
essary to find the dependence of the eigenenergies (30) on
the momentum k along the c-axis. For this purpose, we
consider the normal modes, i.e. the generalized eigenvec-
tors δ∆

′′norm
m ∈ ker(T(ωm)). As we can neglect bound-

0 2
l k
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0.8
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2 | J|
0.05
0.1
0.2

FIG. 4. Dispersion relation of the phason at T = 0. The
dots are numerically obtained. Lines are plots of Eq. (33)
for a system with N = 10 for various values of the interlayer
tunneling strength |λJ |. The other parameters are the same
as in Fig. 3.

ary effects in the large N limit, we assume ∆∂ = ∆. In
this case, the T-matrix becomes a tridiagonal, symmet-
ric Toeplitz matrix, for which one can show, that the
eigenvectors are of the following form [34]:

δ∆norm′′

m (xn, t) ∝ sin(xn
mπ

L
) cos(ωmt), (32)

where we assumed the thickness of the entire stack (inl-
cuding superconducting layers and insulating barriers)
to be L. Hence xn = L

N+1n ≈ L
N n is the position of

the nth layer measured along the c-axis. Eq. (32) repre-
sents standing wave solutions to the wave equation with
momentum k = mπ

L along the c-axis. Here ωm refers to
the eigenvalues of the problem without boundary effects.
However, based on our discussion above, we replace them
by the actual ones to restore gauge invariance. Hence at
T = 0, we have the following dispersion relation for the
phason mode:

ω2
k =

(8|λJ |∆2(1− cos(l · k)))
(2|λJ |+ |λU |)(|λU |+ 2|λJ | cos(l · k))

, (33)

where l = L
N is the thickness of the insulating barriers

between the superconducting layers. For small k, the
dispersion becomes linear:

ω ≃ cP k, cP =
√

|λJ |
2∆l

2|λJ |+ |λU |
, (34)

where cP is the phason sound velocity. In the presence of
the interlayer Coulomb interaction, described by a per-

turbed T-matrix with matrix elements Tij + T
(1)
ij , the

eigenvectors associated with the first order corrections
of the eigenvalues are precisely the unperturbed eigen-
vectors. Hence the normal modes are stable to the first
order in the perturbation.
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FIG. 5. (a)-(d): The oscillation amplitude ξ|δ∆′′
n(ωm)| for

m = 1, . . . , 4, where ξ = sign(ℜ(δ∆′′
n(ωm))) as determined by

simulations. The 10-dimensional vectors are normalized by
|| · ||∞. Grey lines show the normal modes with momentum
km = m π

L
from Eq.(32).

B. Numerical Results

Numerical simulations are performed through the self-
consistent second-order Runge-Kutta algorithm for the
equation of motion (14). For the sake of computational
efficiency, we assume that each layer consists of a one-
dimensional chain with the dispersion ϵk = −2t cos(k) +
ϵ0. This is expected to yield qualitatively similar results
as two-dimensional layers for processes near the Fermi-
surface, as the dimension only enters via k-space inte-
gration, which can be replaced by an energy integral∑

k → N(0)
∫∞
−∞ with the constant density of states

N(0) near the Fermi surface. Hence, the dimension of
the layers enters the formalism only via the density of
states at the Fermi surface and can thus be absorbed into
the amplitude of the hopping term. The parameters are
taken to be t = 1, ϵ0 = 0.8, U = 4, E = 0.15 and N = 10.
To achieve a good resolution in the frequency space, we
conducted long-time simulations (tmax = 1000). We
study a more realistic case of shorter pulses in Section
V when discussing the third-harmonic generation. We
apply the ac field only to the first layer.

Figure 4 shows the T = 0 dispersion relation for the
phason (Eq. (30)) for different values of the interlayer
coupling compared to the frequencies of the phase modes
as determined by the real-time simulation. Note that the
simulation and calculation disagree as ω increases, since
here the approximation in Eq. (29) fails.

In Fig. 5, the oscillation amplitude of the order param-
eter phase in each layer is shown at resonance with the
four lowest energy phason modes. The grey lines indicate
the analytical result for the corresponding eigenmodes
from Eq. (32). As Eq. (32) was obtained by setting
∆∂ = ∆, Fig. 5 demonstrates that boundary effects do
not significantly influence the eigenmodes.

FIG. 6. Numerical results from long time simulations (tmax =
1000) for δ∆′

n(ω), 1 ≤ n ≤ 4 for different values of the
driving frequency Ω where only the first layer was subject to
the drive. Parameters are taken to be ϵ0 = 0.8, t = 1, U =
4, E = 0.15, N = 10, and (a) 2Ω = 1.2∆, (b) 2Ω = 2∆∂ , and
(c) 2Ω = 2∆. The grey shaded area marks the quasiparticle
spectrum of the boundary layers.

Figure 6 shows representative plots of the Fourier
transform δ∆′

n(ω) of the real part of the order param-
eters of the first four layers for different frequencies of
the periodic drive. If 2Ω does not match the resonance
condition of the Higgs mode (see Fig. 6(a)), we observe a
dominant peak at 2Ω in the first layer which we attribute
to pseudospin precession. In accordance with our analyt-
ical predictions, there are visible, though quickly decay-
ing peaks at the same frequencies in the underlying lay-
ers, demonstrating numerically the propagation of light-
induced pseudospin precession. Additionally, there is a
band of peaks starting at 2∆∂ which can be attributed
to the predicted light-induced quasiparticle excitations.
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There are also nine smaller peaks at frequencies smaller
than 2Ω. Their number and frequency matches that of
the phason modes. For long time simulations, processes
involving particles away from the Fermi surface occur.
Here, the real and imaginary parts are coupled in the
linearized BdG-equation (19) leading to an interaction of
the amplitude and phase modes.

At 2Ω = 2∆∂ (Fig. 6(b)), one observes a resonance
with the Higgs mode of the boundary layer, signified by
a strongly enhanced oscillation amplitude. This also re-
sults in amplified oscillations in other layers. However,
their amplitude still remains damped compared to the
amplitude of the first layer. The behavior qualitatively
changes at 2Ω = 2∆ (Fig. 6(c)), where the resonance
condition for the bulk layers is fulfilled. Here, all the
bulk layers feature a resonant amplification of the order
parameter oscillations, even if they do not directly inter-
act with the incident beam of light.

V. JOSEPHSON CURRENT AND THIRD
HARMONIC GENERATION

0 50 100
t

0.0

0.5

1.0

jc /I
c

FIG. 7. Josephson current jcJ/Ic between adjacent layers for
a ten-layer system at 2Ω = ω1. Parameters are J = 0.2, ϵ0 =
0.8, β−1 = 0.4, U = 4, t = 1. All the currents are centered
around 0 (grey dashed lines), but have been shifted up and
down for visibility. The vector potential is plotted in arbitrary
units, and the dotted lines are a guide to the eye, representing
the minima of A2(t).

Due to the characteristic anisotropy of layered super-
conductors, the current response to the interaction with
light also exhibits a strong anisotropy. In particular, one
can differentiate between the interlayer current along the
c-axis, i.e. the Josephson current, and an intralayer cur-
rent that flows within the ab-plane of each layer. The
former is given by jcn,n+1 = Ic sin(ϕn − ϕn+1), where ϕn

is the phase of the order parameter of the nth layer and
Ic is a parameter of the Josephson junction known as the
Josephson critical current. As we noted before, notable

oscillations of the phase are only obtained at partial fill-
ing. Figure 7 shows this current at the point of resonance
2Ω = ω1 (see Eq. (30)) for a ten-layer system. After a
few cycles of the ac field, in-phase oscillations of the cur-
rent start to emerge, with frequency 2Ω throughout the
entire stack. Due to the resonance, their amplitude is
rapidly increasing. We observe that the currents in the
bottom half of the stack (n = 6, · · · , 10) exhibit a phase
shift of π with respect to the currents in the top half
(n = 1, · · · , 5). This is understood by the fact that the
ω1 mode has a node (see Fig. 5(a)) in the middle of the
stack, resulting in different signs of the oscillation ampli-
tude in the upper and lower half of the stack.
Apart from the Josephson current, that flows normal

to the layers, there is also a current within the ab-plane.
The layer dependent current operator is given by [23]

jabn (t) = e
∑
kσ

∇kϵn,k−eAn(t)c
†
kσ,nckσ,n

= e
∑
kσ

∇k

(
ϵn,k−eAn(t) − ϵn,k−eAn(t)

)(
σz
k,n(t) +

1

2

)
+ const., (35)

where the last term is constant in the mean-field approx-
imation. By writing σz

k,n(t) = σz,eq
k,n + δσz

k,n(t) we obtain
the light induced nonlinear current:

jab,(3)n (t) = −2eA2
n(t)

∑
k

∇k (p̂ · ∇k) δσ
z
k,n(t). (36)

Note that since the current is proportional to An(t), only
layers that are illuminated by light exhibit this oscillat-
ing current, which is in contrast to the Josephson cur-
rent, that penetrates through the entire stack at reso-
nance with the phason modes. Observe that δσz

n,k(t)
oscillates with 2Ω due to the precession of Anderson’s
pseudospins. Thus the current exhibits oscillations with
3Ω, and since the emitted radiation is proportional to
this current, third-harmonic generation (THG) can be
observed.
Since we simulate one-dimensional layers, the polariza-

tion vector p̂ is naturally fixed. Using the linearized BdG
equation in Fourier space, Eq. (19), we then obtain the
following expression [23]:

jab,(3)n (t) = −2eA2
n(t)

∫ ∞

−∞

dω

2π
eiωt

∑
k

∂2ϵk
∂k2

σx
n,k

4E2
n,k − ω2

×
(
4ϵkδ∆

′
n(ω) + 2iωδ∆′′

n(ω)− 2∆ne
2A2(ω)

∂2ϵk
∂k2

)
. (37)

This shows that the THG current splits into three differ-
ent contributions. These three summands are attributed
to: Amplitude mode, phase mode and quasiparticle exci-
tations, respectively. At resonances with the Higgs and
phason modes, the amplitude of their oscillations grows,
leading to resonantly enhanced THG. This was first ex-
perimentally demonstrated for NbN by Matsunaga et al.
[22, 35]. Note that the resonant enhancement of THG at
2Ω = 2∆ is attributed both to quasiparticle excitations



11

0.0 0.5 1.0
1/Tc

0

1

2

3

4 (a) 2
2

0.6 0.8 1.0
1/Tc

0.0

0.5

1.0 (b) |j(3)ab
n (3 1)|

j(3)ab
1

0.8 1.0
1/Tc

0.0

0.2

0.4 (c) |j(3)ab
n (3 2)| j(3)

1

j(3)
2

0.2 0.4 0.6
1/Tc

0.00

0.05

0.10

0.15 (d) |j(3)ab
n (3 3)|

j(3)
1

j(3)
2

FIG. 8. (a) Energy of the phason and Higgs modes compared
to 2Ω depending on temperature. Parameters are U = 4, J =
0.2, ϵ0 = 0.8, and t = 1. (b) Nonlinear current in arbitrary
units for A1 ̸= 0, An = 0 (n > 1), and Ω = Ω1. (c)-(d):

Nonlinear current j
ab,(3)
n normalized by the largest amplitude

for Ω = Ω2,3 and A1 = A2 ̸= 0, An = 0 (n > 2). For all the
simulations, illumination time was tmax = 50.

and the Higgs mode, where the contribution of the for-
mer depends on the polarization of the incident light [24].
However, in the one-dimensional case presented here, the
polarization dependence is not present. The resonance of
the THG is mediated by 2Ω oscillation of pseudospins.
Such a coherent 2Ω oscillation has been observed in a
pump-probe spectroscopy for both NbN [22] and high-Tc

cuprates [36].

Figure 8(a) shows the temperature dependence of the
energy of the collective modes (Higgs modes in black and
phason modes in color) as well as 2Ω for three different
frequencies of the incident light (Ωi, i ∈ {1, 2, 3}). At
temperatures where these lines cross, our theory predicts
resonant enhancement of the nonlinear current.

At Ω = Ω1 = 0.55, we choose a single layer illumi-
nation, i.e. A1 ̸= 0, An = 0 (∀n > 1). We find three
peaks associated with the resonant excitation of the pha-
son modes, with a broad peak from the excitation of the
mode with the lowest momentum. Figure 8(a) predicts
five resonances with phason modes. However, we observe,
that the peak intensity and width seem to decrease with
increasing momentum, and hence we conjecture that the
contributions from high-momentum modes are too small
to be separated from the background. We also observe a
dominant peak from the resonance at 2Ω1 = 2∆∂ . This
contains contributions from quasiparticle excitations as
well as the resonance with the Higgs mode. In Fig.
8(c) and (d), we choose a two-layer illumination, i.e.
A1(t) = A2(t) ̸= 0 and An(t) = 0 (∀n ̸= 1, 2). In Fig.

8(c), both |jab,(3)1 | and |jab,(3)2 | show resonant behavior,
when 2Ω2 = 1.25 crosses the energy of the respective
Higgs-mode. This is in contrast to Fig. 8(d), where
the boundary Higgs mode has no crossing point with

2Ω3 = 1.67 and does not exhibit a resonance, whereas we
find a resonance with bulk the Higgs mode in the second

layer. Remarkably, one can also observe that |jab,(3)1 | ex-
hibits a small peak when |jab,(3)2 | is resonantly enhanced
and vice versa. This is in accordance with the analytical
predictions from Sec. IV, where we found poles in δ′n(ω)
at ω = 2∆∂ and ω = 2∆ in all the layers. Here, the
resonance with the Higgs mode in the first (second) layer
leads to enhanced oscillations of the pseudomagnetic field
acting on the second (first) layer, which in return results
in an amplification of the pseudospin precession. Hence a
small peak in the nonlinear current occurs even in layers
that are off-resonant.

VI. CONCLUSION

In summary, we have demonstrated that in Josephson
coupled layered superconductors the light induced pre-
cession of Anderson’s pseudospin propagates through the
system along the c-axis. Strikingly, this leads to resonant
excitation of collective modes in all of the layers, even if
the electromagnetic field can only penetrate the surface
of the layered structure. We have shown that the ab-
polarized light leads to an oscillating Josephson current
along the c-axis at resonance with the phason modes,
which also contribute to the THG spectrum. Our re-
search, however, was restricted to a simple toy model.
Hence, additional research is required to make quanti-
tative predictions for experiments. Firstly, one should
incorporate inter- and intralayer Coulomb interactions,
which as discussed should open up a gap for the phase
mode, as well as quasiparticle tunneling. One should
also consider the effect of impurities, which have been
discussed to affect the THG spectrum [26–28, 37–39]. In
addition, numerical simulations can be performed away
from the static mean-field limit in the attractive Hubbard
model through DMFT simulations. This is promising, as
Anderson pseudospin precession has already been demon-
strated by DMFT simulations in the case of a single layer
[21].
Experimental observation of the Higgs-mode resonance

in the undriven layers seems hard, as the nonlinear cur-
rent is proportional to the applied vector-potential and
thus the undriven layers do not contribute to THG. How-
ever, the observation of additional peaks from the phase-
difference mode as in Fig. 8 would serve as experimental
evidence for propagation of a collective mode excitation
along the c-axis, induced by in-plane polarized light. For
that it is practical to prepare a system with very few lay-
ers, resulting in well-separated phase-difference modes.
Lastly, we would like to relate our results to a similar

topic, namely that of the Leggett phase-difference mode
in two-band superconductors, which also has its origin
in Cooper pair exchange between the bands. Even when
Coulomb interactions are not considered, this mode is
found to be gapped [23]. In light of the preceding anal-
ysis, we can understand this gap as a finite size effect:
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In the limit of the infinite number of bands this mode
becomes massless. However, the finite number of bands
leads to the occurrence of a gap, which reduces to zero
in the continuum limit.
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Appendix A: Matrix inverse for Eqs. (20) and (25)

In this Appendix, we derive the inverse matrix for the
linear equations determining δ∆′

n and δ∆′′
n in Eqs. (20)

and (25). In both cases, the matrices have the following
form:

T =


D1 1 0 0 ...
B D 1 0 ...
0 1 D 1 ...

...
... ... 1 D B

... 0 1 D1

 . (A1)

In the case of D1 = D and B = 1 (which holds if
∆∂ = ∆), this would be a symmetric tridiagonal Toeplitz
matrix, for which analytic expressions for the inverse ex-
ist. Due to the similarity of the problem, we adapt the
proof in [40] to the present situation. By definition, the
elements of the inverse are given by

T−1
ij = (−1)i+j Aij

detT
, (A2)

where Aij is the co-factor, determined by dropping the
ith row and jth column of T and then evaluating the
determinant of the resulting matrix. Let us denote the
determinant of a k-dimensional symmetric, tridiagonal
matrix by Mk. If one discards the ith row and jth col-
umn, the matrix obtained can be dissected into three

blocks of dimension (i−1), (j− i), (N−j), where j ≥ i is
assumed (similar for i > j). The (j−i) block has the unit
diagonal and thus the unit determinant. Developing the
determinant with respect to the first column/row yields

Aij = (D1Mi−2 −BMi−3) (D1MN−j−1 −BMN−j−2) ,
(A3)

where M1 = D,M0 = 1 and Mn = 0 for n < 0. The
determinant of the whole matrix is given by

detT = D2
1MN−2 − 2D1BMN−3 +B2MN−4. (A4)

By defining

D =


−2 cosh(κ) for D < −2

−2 cos(κ) for − 2 ≤ D ≤ 2

2 cosh(κ) for D > −2

, (A5)

and using the analytical expression for Mk from [40]

Mk =

⌊k/2⌋∑
i=0

(−1)i
(

i

k − i

)
Dk−2i, (A6)

where ⌊k/2⌋ denotes the integer part of k
2 , we find the

following: [41]

Mk =


(−1)k sinh((k+1)κ)

sinh(κ) for D < −2

(−1)k sin((k+1)κ)
sin(κ) for − 2 ≤ D ≤ 2

sinh((k+1)κ)
sinh(κ) for D > −2

. (A7)

Hence, the inverse element is found to be

T−1
ij =

D1 sinh((i− 1)κ)−B sinh((i− 2)κ)

sinh(κ)
×

(D1 sinh((N − j)κ)−B sinh((N + j − 1)κ))

D2
1 sinh((N − 1)κ)− 2D1B sinh((N − 2)κ) +B2 sinh((N − 3)κ))

(A8)

forD < −2 as needed for the amplitude mode. By replac-
ing sinh with sin, one obtains the inverse matrix elements
in the regime −2 ≤ D ≤ 2 as in the case of the phason
excitations.
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105, 037006 (2010).

[30] T. Kamatani, S. Kitamura, N. Tsuji, R. Shimano, and
T. Morimoto, Physical Review B 105, 094520 (2022).

[31] A. J. Leggett, Progress of Theoretical Physics 36, 901
(1966).

[32] D. Montemurro, D. S. Golubev, S. Kubatkin, F. Tafuri,
T. Bauch, and F. Lombardi, Physical Review B 107,
094517 (2023).

[33] G. Meurant, Siam Journal on Matrix Analysis and Ap-
plications - SIAM J MATRIX ANAL APPLICAT 13,
10.1137/0613045 (1992).

[34] S. Noschese, L. Pasquini, and L. Reichel, Numerical Lin-
ear Algebra with Applications 20, 302 (2013).

[35] R. Matsunaga, N. Tsuji, K. Makise, H. Terai, H. Aoki,
and R. Shimano, Phys. Rev. B 96, 020505 (2017), pub-
lisher: American Physical Society.

[36] K. Katsumi, N. Tsuji, Y. I. Hamada, R. Matsunaga,
J. Schneeloch, R. D. Zhong, G. D. Gu, H. Aoki, Y. Gal-
lais, and R. Shimano, Phys. Rev. Lett. 120, 117001
(2018), publisher: American Physical Society.

[37] M. Silaev, Phys. Rev. B 99, 224511 (2019), publisher:
American Physical Society.

[38] Y. Murotani and R. Shimano, Phys. Rev. B 99, 224510
(2019), publisher: American Physical Society.

[39] N. Tsuji and Y. Nomura, Physical Review Research 2,
043029 (2020).

[40] G. Y. Hu and R. F. O’Connell, Journal of Physics A:
Mathematical and General 29, 1511 (1996).

[41] Note that [40] defines D = 2 cos(κ) for −2 ≤ D ≤ 2 in
(A5), however (A6) in conjunction with Eq. 1.331 from
[42] yields the correct result with D = −2 cos(κ).

[42] I. S. GradshteinI and I. Ryzhik, Tables Of Integrals, Se-
ries And Products (Elsevier/Academic Press, Amster-
dam, 2007).

https://doi.org/10.1103/RevModPhys.36.216
https://doi.org/10.1103/RevModPhys.36.216
https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1103/PhysRevLett.10.486
http://link.springer.com/10.1007/978-1-4757-5714-9
https://doi.org/10.1103/PhysRevResearch.4.023112
https://doi.org/10.1103/PhysRevResearch.4.023112
https://doi.org/10.1103/PhysRevLett.117.227001
https://doi.org/10.1103/PhysRevLett.117.227001
https://doi.org/10.1103/PhysRevB.50.12831
https://doi.org/10.1088/0034-4885/73/2/026501
https://doi.org/10.1088/0034-4885/73/2/026501
https://doi.org/10.1143/JPSJ.66.2437
https://doi.org/10.1143/JPSJ.66.2437
https://doi.org/10.1103/PhysRevLett.31.880
https://doi.org/10.1103/PhysRevLett.31.880
https://doi.org/10.1103/PhysRevB.37.5644
https://doi.org/10.1103/PhysRevB.37.5644
https://doi.org/10.1103/PhysRevLett.95.187002
https://doi.org/10.1103/PhysRevLett.95.187002
https://doi.org/10.1038/s41535-020-00272-8
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRevB.92.064508
https://doi.org/10.1103/PhysRevB.92.064508
https://doi.org/10.1126/science.1254697
https://doi.org/10.1103/PhysRevB.95.104503
https://doi.org/10.1103/PhysRevB.95.104503
https://doi.org/10.1103/PhysRevB.93.180507
https://doi.org/10.1103/PhysRevB.93.180507
https://www.sciencedirect.com/science/article/pii/B9780323908009002560
https://www.sciencedirect.com/science/article/pii/B9780323908009002560
https://doi.org/10.1146/annurev-conmatphys-031119-050813
https://doi.org/10.1146/annurev-conmatphys-031119-050813
https://doi.org/10.48550/arXiv.2311.09310
https://doi.org/10.48550/arXiv.2311.09310
https://doi.org/10.48550/arXiv.2403.03980
https://doi.org/10.48550/arXiv.2403.03980
https://doi.org/10.48550/arXiv.2403.03980
https://doi.org/10.1103/PhysRevLett.105.037006
https://doi.org/10.1103/PhysRevLett.105.037006
https://doi.org/10.1103/PhysRevB.105.094520
https://doi.org/10.1143/PTP.36.901
https://doi.org/10.1143/PTP.36.901
https://doi.org/10.1103/PhysRevB.107.094517
https://doi.org/10.1103/PhysRevB.107.094517
https://doi.org/10.1137/0613045
https://doi.org/10.1002/nla.1811
https://doi.org/10.1002/nla.1811
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevLett.120.117001
https://doi.org/10.1103/PhysRevLett.120.117001
https://doi.org/10.1103/PhysRevB.99.224511
https://doi.org/10.1103/PhysRevB.99.224510
https://doi.org/10.1103/PhysRevB.99.224510
https://doi.org/10.1103/PhysRevResearch.2.043029
https://doi.org/10.1103/PhysRevResearch.2.043029
https://doi.org/10.1088/0305-4470/29/7/020
https://doi.org/10.1088/0305-4470/29/7/020
http://archive.org/details/GradshteinI.S.RyzhikI.M.TablesOfIntegralsSeriesAndProducts
http://archive.org/details/GradshteinI.S.RyzhikI.M.TablesOfIntegralsSeriesAndProducts

	Light-driven interlayer propagation of collective-mode excitations  in layered superconductors
	Abstract
	Introduction
	Phenomenological Ginzburg-Landau Theory
	Microscopic Model
	Thermal Equiblibrium State
	Optically Driven System

	Collective Mode Excitations
	Analytical Description
	Amplitude Oscillations
	Resonance with Higgs mode
	Phase Oscillations
	Resonance with phase-difference modes

	Numerical Results

	Josephson Current and Third Harmonic Generation 
	Conclusion
	Acknowledgments
	Matrix inverse for Eqs. (20) and (25)
	References


