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ABSTRACT

We present a parameter-efficient method for continual video question-answering
(VidQA) learning. Our method, named DAM, uses the proposed Dynamic
Adapter Merging to (i) mitigate catastrophic forgetting, (ii) enable efficient adap-
tation to continually arriving datasets, (iii) handle inputs from unknown datasets
during inference, and (iv) enable knowledge sharing across similar dataset do-
mains. Given a set of continually streaming VidQA datasets, we sequentially
train dataset-specific adapters for each dataset while freezing the parameters of
a large pretrained video-language backbone. During inference, given a video-
question sample from an unknown domain, our method first uses the proposed
non-parametric router function to compute a probability for each adapter, re-
flecting how relevant that adapter is to the current video-question input instance.
Subsequently, the proposed dynamic adapter merging scheme aggregates all the
adapter weights into a new adapter instance tailored for that particular test sample
to compute the final VidQA prediction, mitigating the impact of inaccurate router
predictions and facilitating knowledge sharing across domains. Our DAM model
outperforms prior state-of-the-art continual learning approaches by 9.1% while
exhibiting 1.9% less forgetting on 6 VidQA datasets spanning various domains.
We further extend DAM to continual image classification and image QA and
outperform prior methods by a large margin. The code is publicly available at:
https://github.com/klauscc/DAM.

1 INTRODUCTION

The role of video in our lives has increased tremendously over the recent years, with millions of
hours of video uploaded to the Internet daily. Due to such rapid video growth and the emergence of
video-language models (Yu et al., 2021; Yang et al., 2022; Cheng et al., 2023; Wang et al., 2023d;
Pramanick et al., 2023b;a), video question-answering (VidQA) has become one of the most impor-
tant tasks in video understanding. However, modern VidQA models often assume static conditions
with fixed training datasets. In contrast, many real-world applications increasingly demand adapt-
ability to distribution shifts of continually arriving datasets. For instance, a VidQA model trained
only on movie videos may struggle when questioned about instructional or social media videos due
to stark domain disparities. Additionally, even within a single domain, a model trained on videos
collected before 2020 may fail to answer questions about videos recorded in 2024 due to a substan-
tial time difference between training and testing videos.

One could address these issues by fine-tuning a VidQA model each time new data is introduced.
However, it would cause the model to forget previously acquired knowledge – a phenomenon com-
monly referred to as catastrophic forgetting (McClelland et al., 1995; McCloskey & Cohen, 1989).
An alternative strategy is to retrain the model by incorporating both existing training data and the
newly acquired data. However, training the model on the combined data is impractical due to the
even larger computational cost (Zellers et al., 2021; Fu et al., 2021; Li et al., 2023c; Wang et al.,
2022a). These challenges underscore the necessity for continual VidQA learning, where the VidQA
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Figure 1: A high-level overview of our proposed Domain-Incremental Learning (DIL) framework
for Video Questions-Answering (VidQA). Our model is continually trained on sequentially arriving
datasets and evaluated on test samples with unknown dataset identities. Our framework (i) incorpo-
rates dataset-specific modules to allow specialization and mitigate forgetting, (ii) enables efficient
adaptation to continually streaming datasets, (iii) ensures robustness to incorrect module selections,
and (iv) facilitates knowledge-sharing across similar datasets.

model gradually learns to incorporate knowledge from continuously evolving video training data
with minimal training cost.

In this work, we focus on the Domain-Incremental Learning (DIL) subproblem of continual learn-
ing (Kirkpatrick et al., 2017; Wang et al., 2023b), since it matches the above-discussed challenges of
continuously adapting to datasets spanning different domains and time shifts. The key challenges in
DIL arise from distribution shifts between sequentially-arriving training datasets. When the distri-
bution shifts between datasets are large, the optimal representation for each distribution can be very
different, thus leading to poor performance among regularization-based DIL methods (Kirkpatrick
et al., 2017; Li & Hoiem, 2017), which use fully shared parameters across datasets. Recent prompt-
based approaches (Wang et al., 2022b;e) alleviate this issue by using dataset-specific prompts in-
dependently trained on each dataset. During inference, these methods rely on a router function to
predict the dataset identity and select the corresponding prompts. However, when distribution shifts
between datasets are subtle, predicting dataset identity becomes challenging, adversely affecting the
performance of such methods. Additionally, selecting individual dataset-specific prompts prevents
knowledge-sharing between datasets, which may be suboptimal when the training datasets are simi-
lar. Thus, as shown in Fig. 1, an ideal DIL method should (i) incorporate dataset-specific modules to
allow specialization and limit catastrophic forgetting, (ii) enable efficient adaptation to continually
arriving datasets, (iii) be robust to incorrect dataset-specific module selections, and (iv) facilitate
knowledge-sharing across similar domains.

Motivated by these observations, we propose Dynamic Adapter Merging (DAM), a highly-
performant, generalizable, and parameter-efficient continual VidQA learning scheme. Our model
consists of (i) an adapter for each continually arriving dataset, (ii) a non-parametric router, and (iii)
a dynamic adapter merging module. Given a sequence of VidQA datasets spanning different data
distributions, we begin by training a dataset-specific adapter for each dataset while freezing the pre-
trained video-language backbone (e.g., CLIP (Radford et al., 2021) and DeBERTa (He et al., 2020)).
Afterward, given a test sample from an unknown dataset during inference, we use a non-parametric
video-language router to estimate probabilities for each dataset-specific adapter. These probabilities
reflect the relevance of each adapter to that particular video-question input instance. Subsequently,
the proposed dynamic adapter merging module merges all the adapter weights into a new adapter
instance tailored for that particular test sample to compute the final VidQA prediction. As a result,
even if the router produces partially inaccurate probabilities, DAM could still answer the VidQA
problem as our dynamic merging scheme incorporates knowledge from multiple adapters, often in-
cluding those associated with the correct domain. Therefore, the proposed dynamic merging scheme
mitigates the impact of inaccurate router predictions and also facilitates knowledge sharing across
distributions, thereby enhancing VidQA performance.
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Our DAM method outperforms prior prompt-based DIL models (Wang et al., 2022b;e) by 9.1% on
6 sequentially-introduced VidQA datasets from various domains while exhibiting 1.9% less forget-
ting. DAM can also be easily extended to tasks such as image classification ( +9.32% on CORe50)
and image question-answering (+4.4% on a benchmark with 4 datasets). Furthermore, we conduct
extensive ablation studies to analyze the relationship between dynamic merging and router, eluci-
dating the key success factors of our approach. We will release our code and pretrained models
to enable the community to develop models for this emerging research area of domain-incremental
VidQA learning.

2 RELATED WORK

Video Question Answering (VidQA) represents a fundamental task in video-language understand-
ing, aiming to answer natural language questions from video inputs. Most commonly used methods
(Yang et al., 2022; Yu et al., 2023; Xiao et al., 2022; Cheng et al., 2023; Lei et al., 2021; Li et al.,
2020; Miech et al., 2019; Sun et al., 2019) leverage video-language models (VLMs) with trans-
former architecture (Xiao et al., 2022; Lei et al., 2021; Cheng et al., 2023) and large pre-trained
language models (Yang et al., 2022; Yu et al., 2023). FrozenBiLM (Yang et al., 2022) handles the
multimodal input using a pretrained bidirectional language model and casts VidQA as a masked
language modeling problem. SeViLA (Yu et al., 2023) builds upon a large image-language model,
BLIP-2 (Li et al., 2023b), and extends it to accommodate video input for VidQA. However, none
of these methods are designed to handle continual shifts in training data distribution, which is our
focus in this work.

Continual Learning (CL) focuses on developing frameworks that can continually learn from
streaming training datasets. This is a fundamental challenge for many deep learning methods due
to catastrophic forgetting (McClelland et al., 1995). Continual learning methods can be categorized
into regularization-based approaches (Kirkpatrick et al., 2017; Li & Hoiem, 2017), replay-based
approaches (Cha et al., 2021a; Riemer et al., 2018), optimization-based approaches (Lopez-Paz
& Ranzato, 2017; Chaudhry et al., 2018) and representation-based approaches (Gao et al., 2023;
Foret et al., 2020; Ermis et al., 2022; Douillard et al., 2022). Several recent CL approaches use
pre-trained models for the vision-language domain, including CLiMB (Srinivasan et al., 2022) for
task-incremental learning, VQACL (Zhang et al., 2023) and CL-CrossVQA (Zhang et al., 2022) for
rehearsal-based Domain-Incremental Learning (DIL). Rehearsal-based methods require storing data
of previously used training datasets, which may not be possible in real-world settings due to privacy
or intellectual property concerns. In contrast, rehearsal-free CL approaches (Li & Hoiem, 2017;
Smith et al., 2023b; 2021; Jung et al., 2023; Li et al., 2023d; Zuo et al., 2024; Wang et al., 2023c;a)
do not require storing any previous training data. Among these, several recent prompt-based meth-
ods such as L2P (Wang et al., 2022e), DualPrompt (Wang et al., 2022d), S-Prompts (Wang et al.,
2022b) and CODA-Prompt (Smith et al., 2023a) used visual prompts (Liu et al., 2023) prepended
to a pre-trained transformer and extended prompt-based learning for continual learning scenarios.
Unlike these prior prompt-based DIL methods, we propose dynamic adapter merging to alleviate the
issues of inaccurate router predictions and enable cross-domain knowledge sharing.

Model Merging aims to merge multiple domain models into a single model that can be used for
inference on these domains. The work in (Wortsman et al., 2022b; Ilharco et al., 2022b) com-
putes the merged weights as an element-wise arithmetic mean of the weights of all domain mod-
els. Subsequently, several methods proposed to improve the performance of the model merging
using techniques such as Fisher Merging (Matena & Raffel, 2022), RegMean (Jin et al., 2022), Git
Re-Basin (Ainsworth et al., 2022), Task Arithmetic (Ilharco et al., 2022a) and TIES-Merging (Ya-
dav et al., 2023). Model merging has been applied to many scenarios, including federated learn-
ing (McMahan et al., 2017), improving out-of-domain generalization (Cha et al., 2021b), and im-
proving performance on a single target task (Gupta et al., 2020; Wortsman et al., 2022a). Recently,
the method in (Guerrero-Peña et al., 2022) proposed a Sinkhorn re-basin network for replay-based
class incremental continual learning but only experimented with small models (e.g., ResNet18 (He
et al., 2016)) on small datasets (e.g., CIFAR-100 (Krizhevsky et al., 2009)). Unlike existing model
merging methods that create a single merged model for all datasets, we dynamically generate a new
model instance tailored for each test sample with minimal computational overhead.
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3 TECHNICAL APPROACH

3.1 UNIFIED FORMULATION

We first consolidate recent DIL methods (Wang et al., 2022b;e) into a unified formulation. Specifi-
cally, most existing DIL methods share a common structure comprising a frozen pretrained backbone
fθ with parameters θ, dataset-specific modules (i.e., prompts) M = {m1, ...,mT }, and a router. For
the dataset arriving at time t, only the dataset-specific module mt is trained, while the backbone
fθ and all previously learned modules m1, ...,mt−1 are frozen to prevent forgetting. During infer-
ence, given a test sample x with an unknown dataset identity, the inference process is formulated as
Eqn. 1, where fθ,mi represents the pretrained backbone augmented with a dataset-specific module
mi, p is the predicted probability depicting how relevant x to each dataset-specific module, and x
and y denote the input and output, respectively.

p = router(fθ(x))
i = argmax(p)
y = f(θ,mi)(x)

(1)

We identify suboptimal aspects in the formulation of Eqn. 1, notably (i) potential errors introduced
by the router’s incorrect probability predictions leading to the erroneous selection of a dataset-
specific module mi and (ii) the lack of knowledge-sharing among modules m1, ...,mT .

Next, in Eqn. 2, we propose a more general formulation that replaces the argmax operation with
a composer function. Rather than selecting a single module corresponding to the highest router
probability, the composer aggregates multiple dataset-specific modules into one, offering robustness
to imperfect router predictions and enabling knowledge sharing among dataset-specific modules.

p = router(fθ(x))

m′ = composer(M,p)

y = f(θ,m′)(x)

(2)

In the next section, we describe how we instantiate our above-described general formulation with
specific modeling components.

3.2 DAM: DYNAMIC ADAPTER MERGING

Based on the formulation in Eqn. 2, we propose DAM , a framework that can learn to model sequen-
tially streaming data Dt with little forgetting and minimal computational overhead. As shown in
Fig. 2, our method consists of four main components: (i) a frozen pretrained video-language back-
bone fθ, (ii) dataset-specific modules m1, ...,mT implemented as adapters (Houlsby et al., 2019)
for each training dataset, (iii) a non-parametric video-language router that predicts probabilities for
selecting the most relevant adapters for a given test-time VidQA input instance, and (iv) a dynamic
adapter merging scheme as a composer to aggregate all the adapter modules. We now describe each
component in more detail.

Backbone. Our backbone fθ is a large-scale pretrained VidQA model (e.g. FrozenBiLM (Yang
et al., 2022)), implemented with Transformers (e.g. CLIP ViT-L/14 (Radford et al., 2021) and
DeBERTa-V2-XL (He et al., 2020)). In practice, our framework can be applied to arbitrary back-
bones as shown in Sec. 4.3.

Dataset-Specific Modules. We propose implementing our dataset-specific modules m1, ...,mT

using adapters (Houlsby et al., 2019). These adapter modules are then used to learn from sequentially
streaming data Dt, introduced to the model at time t. Compared to visual prompts, commonly used in
DIL methods (Smith et al., 2023a; Wang et al., 2022b;e), adapters have several important advantages.
First, the larger modeling capacity of adapters is beneficial as it enables us to effectively capture
distribution-specific information from each dataset Dt. Furthermore, the high parameter efficiency
of adapters (e.g., ∼ 3% of total parameters in a pretrained backbone) allows us to efficiently train
our framework every time new data Dt is received.

Specifically, we use an adapter At = {A(ℓ)
t }Lℓ=1 consisting of L adapter layers for each sequentially

streaming dataset Dt. We use the standard adapter structure as in (Houlsby et al., 2019; Yang et al.,
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Figure 2: An overview of our Dynamic Adapter Merging (DAM) framework. (a) Our model is
continually trained on sequentially arriving datasets {D1, ...,DT }. During training on dataset Dt,
we only train the adapter At = {A(ℓ)

t }Lℓ=1 while keeping previously learned adapters fixed. (b)
During inference, given a test sample (a video and a text question), we use the proposed router to
predict the probability of each adapter being relevant to that particular input instance. Afterward, we
dynamically merge multiple dataset-specific adapters in parameter space to reduce the impact of in-
correct router predictions and leverage cross-domain VidQA cues. Finally, the pretrained backbone,
together with the merged adapter, is used to make the final VidQA predictions.

2022), and insert an adapter layer A(ℓ)
t after each self-attention and feed-forward network layer in

our pretrained backbone. During training on dataset Dt, we only train an adapter At while keeping
previously learned adapters fixed. This allows each adapter to focus on a single dataset, which is
advantageous for maximizing dataset-specific performance while alleviating catastrophic forgetting.
Additionally, to inherit previously acquired knowledge, we initialize At with the weights of adapter
At−1 trained in the preceding time step t− 1, which we denote as continual initialization.

Router. To handle unknown dataset identity during inference, we employ a non-parametric router
to predict the probability for each adapter, estimating their relevance to a given video-question in-
put instance from an unknown distribution. Specifically, during training, we calculate the cen-
troid ct =

1
Ns

t

∑Ns

i=1 fθ(x
s
t,i) ∈ Rd of each dataset Dt by averaging all multimodal video-language

features extracted by the frozen pretrained backbone fθ without adapters. Then, for a test sam-
ple x during inference, we calculate adapter-specific probabilities pt = exp(lt/τ)∑T

i=1 exp(li/τ)
. Here,

lt = cos(fθ(x), ct) is the cosine similarity between a feature fθ(x) and a centroid ct, T is the
total number of datasets up to the current point, and τ is the temperature hyperparameter. We find
our simple non-parametric router is more effective and computationally cheaper than other more
complex design choices, including the ones used in prior DIL methods (Smith et al., 2023a; Wang
et al., 2022e), as we will show in Sec. 5.2.

Composer. To improve our DIL framework’s robustness to incorrect router predictions and enable
knowledge-sharing across dataset-specific modules, we implement our composer function drawing
the ideas from the model merging research community (Jin et al., 2022; Ainsworth et al., 2022; Ya-
dav et al., 2023). In particular, recent model merging techniques (Wortsman et al., 2022a; Jin et al.,
2022) have demonstrated the effectiveness of merging multiple domain models in the parameter
space into a single model that generalizes to all the merged domains, thus, effectively eliminating
the need for dataset identity predictions and naturally leveraging knowledge-sharing. However, a
single fixed model may lack the expressiveness required to handle numerous domains, as observed
in (Yadav et al., 2023), where the performance of the merged model drops significantly (e.g., > 10%)
when the number of domains is large (e.g., 8 domains).
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Motivated by these considerations, we implement our composer using our proposed Dynamic
Adapter Merging (DAM) scheme that dynamically merge multiple dataset-specific adapters for
each test-time input instance (Figure 2b). Our composer is implemented through a simple instance-
wise adapter weight merging using soft router-predicted probabilities. Note that all dataset-specific
adapters share the same architecture, enabling element-wise merging of all adapters in their param-
eter space. Specifically, given adapter weights for all T observed datasets A = {A1, . . . , AT }, and
input-specific router probabilities p ∈ RT , the merged adapter weights AM =

∑T
t=1 pt · At are

incorporated with the pretrained backbone for the final VidQA prediction.

Our dynamic adapter merging scheme is advantageous since it enhances robustness to incorrect
dataset identity predictions. In particular, even when the router function produces partially incor-
rect dataset-identity probability predictions for the adapter selection, our dynamic merging scheme
incorporates knowledge from multiple adapters, often including those associated with the correct
domain. Additionally, such a dynamic adapter merging scheme facilitates knowledge sharing be-
tween dataset-specific adapters through parameter-space merging, proving beneficial when multiple
datasets stem from similar domains. Unlike existing model merging techniques (Wortsman et al.,
2022a; Jin et al., 2022), which produce a single fixed model for all test samples, our method produces
a model that is uniquely tailored for each test sample, thus, offering greater modeling expressivity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. We perform experiments on 9 Video Question Answering (VidQA) datasets,
which include iVQA (Yang et al., 2021), MSVD-QA (Xu et al., 2017), MSRVTT-QA (Xu et al.,
2017), LSMDC (Maharaj et al., 2017), ActivityNet-QA (Yu et al., 2019), TGIF-QA (Jang et al.,
2017), TrafficQA (Xu et al., 2021), EnvQA (Gao et al., 2021) and AGQA (Grunde-McLaughlin
et al., 2021). MSVD-QA, MSRVTT-QA, and ActivityNet-QA involve social media videos, with
ActivityNet-QA featuring notably longer videos (i.e., on average 2 minutes in length versus 30 sec-
ond average duration of the videos in the first two datasets). iVQA, LSMDC, TGIF-QA, TrafficQA,
EnvQA, and AGQA represent instructional, movie, short-GIF, traffic, virtual, and indoor human
videos, respectively. We train the models on these sequentially arriving datasets. After training the
model on the last dataset, we evaluate the resulting checkpoint on the test set of all trained datasets.
During the evaluation, the dataset identity of each testing sample is assumed to be unknown. Follow-
ing (Wang et al., 2022c;b), we use the average accuracy and forgetting as the evaluation metrics.
See Appendix B for formal definitions.

DIL Baselines. For all of our continual learning baselines (including our approach), we use the
recent FrozenBiLM (Yang et al., 2022) VidQA model, implemented using CLIP ViT-L/14 (Radford
et al., 2021) and DeBERTa-V2-XL (He et al., 2020) video and language backbones and contain-
ing 1.2B parameters in total. In our comparisons, we include three recent Prompt-based methods
L2P (Wang et al., 2022e), CODA-Prompt (Smith et al., 2023a), and S-Prompts (Wang et al., 2022b),
and two regularization-based methods, EwC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017).
We also incorporate several naive baselines: (i) Zero-Shot, which directly evaluates the pretrained
model on all datasets without any training, and (ii) Seq-FT, which sequentially finetunes the model
on the sequentially arriving datasets. The upper bound performance for the adapter and prompt-
based variants is obtained by multitask finetuning jointly on all training datasets.

Model Merging Baselines. We also compare with two model merging methods, Average Merg-
ing (Wortsman et al., 2022a; Ilharco et al., 2022a) and RegMean (Jin et al., 2022). In our imple-
mentation, both methods merge all the dataset-specific adapters into a single fixed adapter, which is
then applied to all the test samples. This is in contrast to our framework, which produces a uniquely
tailored adapter module for each test sample.

We refer readers to Appendix A for detailed implementations of our framework and all the baseline
methods.

6



DAM: Dynamic Adapter Merging for Continual Video QA Learning

Table 1: Comparison with state-of-the-art on Domain-Incremental VidQA Learning. We obtain
the upper-bound performance by multitask finetuning jointly on all the datasets. The zero-shot
baseline directly evaluates the pretrained model on all datasets without any training, while the Seq-
FT baseline sequentially finetunes a single model on all the datasets. We also reimplement prior
methods (EwC, LwF, L2P, CODA-Prompt, S-Prompts) using our strong video-language backbone,
as these methods were not initially designed for VidQA. All continual learning methods are trained
sequentially from left to right in the table. Our proposed DAM outperforms the current state-of-the-
art by 9.1% while exhibiting 1.9% less forgetting.

Training Order: iVQA → MSVD → MSR-VTT → LSMDC → ANet → TGIF

Method Downstream VidQA Accuracy (Forgetting) (%)

iVQA MSVD MSR-VTT LSMDC ANet TGIF Avg.

Zero-Shot 26.8 33.0 15.0 51.5 25.5 41.9 32.3
Seq-FT 28.4 36.0 23.7 52.1 31.2 67.6 39.8

Multitask Finetuned (Upper-Bounds)
Adapters 39.7 56.6 46.7 62.9 42.2 67.8 52.6
Prompt Tuning 35.0 49.0 37.1 57.4 33.9 59.2 45.3

Regularization-based methods
EwC 29.9 39.3 25.5 54.9 32.4 67.5 41.6 (-10.9)

LwF 28.3 38.2 25.8 56.4 33.6 68.5 41.8 (-10.7)

Prompt-based methods
L2P 32.8 43.3 32.1 54.8 27.2 54.4 40.8 (-4.6)

CODA-Prompt 32.9 44.8 28.7 50.7 23.9 54.7 39.6 (-5.7)

S-Prompts 31.8 45.5 30.2 54.9 27.9 56.1 41.1 (-4.2)

DAM (Ours) 39.1 53.6 42.2 63.0 36.3 66.8 50.2 (-2.3)

4.2 COMPARISON WITH STATE-OF-THE-ART

Comparison with Domain-Incremental Learning (DIL) Methods. Tab. 1 compares our method
and state-of-the-art DIL approaches. Our findings demonstrate that our proposed DAM scheme out-
performs the leading DIL method, S-Prompts, by a substantial margin of 9.1% in average accuracy
while also exhibiting 1.9% less forgetting. Among prompt-based methods, L2P, CODA-Prompt,
and S-Prompts show reduced forgetting compared to regularization-based methods EwC and LwF.
However, these prompt-based methods achieve lower overall accuracy, which can be attributed to
their smaller learning capacity. Overall, these results show the effectiveness of our proposed frame-
work.

Comparison with Model Merging Methods. Next, we compare our method with two model merg-
ing methods, Average Merging (Wortsman et al., 2022a) and RegMean (Jin et al., 2022). For a
fair comparison, all the methods merge the same set of adapters, each individually fine-tuned on
each dataset without our continual initialization scheme. As shown in Tab. 2, DAM outperforms
RegMean by 6.0% and average merging by 7.5% in average accuracy. We hypothesize that the sig-
nificantly better performance of our model comes from the fact that DAM produces a custom model
instance for each input instance. This makes our methods a lot more expressive than the existing
model merging methods that use a single merged model instance for all data samples.

Computational Complexity Analysis. In addition to standard accuracy metrics, we also analyze
the computational cost of our proposed approach. We note that each dataset-specific adapter in
DAMcontributes merely 2.5% of the pretrained model’s parameters (CLIP-L/14 + DeBerTa-V2-
XLarge), totaling 30M parameters. In terms of computational cost, merging adapter parameters
incurs just 0.09 GFLOPs (30M *(2k-1), k=2 in our case), notably lower than the 162 GFLOPs re-
quired by CLIP-L/14 for a single image processing. Therefore, these results show that our proposed
DAM can efficiently adapt to a reasonably large number of continually arriving datasets.
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Table 2: Comparison with existing model merging techniques. For a fair comparison, all the meth-
ods merge the same set of adapters, each individually fine-tuned on each dataset without our contin-
ual initialization scheme (i.e., using random initialization). Our DAM outperforms existing model
merging methods by a large margin on average.

Method iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

Multitask (upper-bound) 39.7 56.6 46.7 62.9 42.2 67.8 52.6

Avg. Merging 38.0 45.7 27.7 54.5 27.0 56.6 41.6
RegMean 36.6 49.7 32.5 54.0 27.7 57.8 43.1
DAM (Ours) 36.5 51.6 39.5 63.0 36.5 67.7 49.1

Table 3: Domain-Incremental Learning on image classification. Our upper-bound is obtained by
finetuning a shared adapter jointly on all domains. For a fair comparison, we de-emphasize S-
Prompts with CLIP encoder since it is pretrained with much more data than the ImageNet-pretrained
ViT-B/16 backbone used by our method.

Method Backbone Buffer size Avg. Accuracy (%)
CORe50 DomainNet

Multitask (upper-bound) ViT-B/16 - 94.59 ± 0.21 71.95

DyTox ViT-B/16 50/class 79.21 ± 0.10 62.94

LwF ViT-B/16

0/class

75.45 ± 0.40 49.19
L2P ViT-B/16 78.33 ± 0.06 40.15
S-Prompts ViT-B/16 83.13 ± 0.51 50.62
S-Prompts CLIP ViT-B/16 89.06 ± 0.86 67.78

DAM(Ours) ViT-B/16 0/class 92.45 ± 0.25 69.23

4.3 GENERALIZATION TO IMAGES

To further showcase the generalizability of our approach, we extend DAM to two image tasks: 1)
image classification and 2) image question-answering.

Image classification. We conduct experiments on two standard DIL benchmarks: CORe50
(Lomonaco & Maltoni, 2017) and DomainNet (Peng et al., 2019). CORe50 (Lomonaco & Mal-
toni, 2017) contains 50 categories across 11 domains. Following prior work, we continually train
the model on 8 domains (120K images) and evaluate the trained model on the remaining 3 domains
(40K images). DomainNet contains 345 categories across 6 domains. The DIL setup on Domain-
Net is the same as Wang et al. (2022b); Fini et al. (2022). Following standard evaluation protocol,
we use ViT-B/16 (Dosovitskiy et al., 2020) pretrained on ImageNet as our backbone. As shown in
Tab. 3, DAM surpasses the current state-of-the-art S-Prompts by 9.32% and 18.61% using the same
ImageNet-pretrained ViT-B/16 backbone on CORe50 and DomainNet, respectively. These results
suggest that our model can also be effectively applied to DIL image classification tasks.

Image question-answering. Next, we also extend our model to the visual question-answering
(VQA) task on images. We integrate our proposed DAM and the best performing prompt-based
baseline S-Prompts with the state-of-the-art VQA model, BLIP-2 (Li et al., 2023a), which uses
CLIP ViT-G/14 (Radford et al., 2021) and FlanT5-XL (Chung et al., 2022) as its vision-language
backbone and has 4.1B parameters in total. We then continually train both models on 4 mainstream
VQA datasets: OK-VQA (Marino et al., 2019), aOK-VQA (Schwenk et al., 2022), GQA (Hudson
& Manning, 2019) and VQAv2 (Goyal et al., 2017). The results are shown in Tab. 4. Our proposed
DAM outperforms S-Prompts by 4.4% with 1.2% less forgetting, thus, demonstrating the generality
of our approach.
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Table 4: We extend our proposed DAM method to continual visual question-answering (VQA) task
on image datasets. For these experiments, we use the recent BLIP-2 model (Li et al., 2023b) as our
visual-language backbone. The proposed DAM outperforms the existing state-of-the-art method (S-
Prompts) by 4.4% in average accuracy while exhibiting 1.2% less forgetting.

Method OK-VQA
(test)

aOK-VQA
(val)

GQA
(val)

VQAv2
(val) Avg.

Zero-Shot 40.7 35.7 44.0 63.1 45.9
Multitask (upper-bound) 49.2 51.8 58.7 76.2 58.8
S-Prompts 42.9 (-5.3) 46.1 (-2.2) 47.3 (-7.1) 65.3 (-6.0) 50.4 (-5.2)

DAM 45.1 (-4.1) 50.4 (-1.4) 54.1 (-4.6) 69.8 (-6.4) 54.8 (-4.0)

Table 5: We investigate the number of dataset-specific adapters to merge for best performance. The
Top-K adapters are selected according to the highest router predicted probabilities. The first 4 rows
depict the downstream VidQA accuracy, whereas the last row is the router accuracy. We highlight
the largest accuracy gap between adapter merging and non-merging variants. Merging adapters is
typically useful when the router makes many incorrect predictions.

Top-K MSVD MSR-VTT ActivityNet iVQA TGIF LSMDC

1 (no-merging) 49.0 40.4 37.4 37.5 66.3 62.9

2 53.6 42.2 36.3 (-1.1) 39.1 66.8 63.0
3 54.6 42.4(+2.0) 34.0 39.3 67.0(+0.7) 63.0
6 (merge all) 54.9(+5.9) 41.9 33.0 39.6(+2.1) 66.9 63.1(+0.2)
Router Acc 51.0 69.6 76.4 81.6 96.1 100

5 ANALYSIS

5.1 ADAPTER MERGING ANALYSIS
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Figure 3: We study the normalized
performance gain of dynamic adapter
merging as a function of router accu-
racy. Our results show that dynamic
adapter merging leads to a larger boost
when the router is inaccurate.

In this section, we analyze the effectiveness of dynamic
adapter merging. Specifically, in Tab. 5, we present a
comprehensive breakdown of downstream VidQA accu-
racy and the router’s accuracy on each dataset, consider-
ing various adapter merging variants. The table highlights
an intriguing trend: as the router’s accuracy decreases,
the benefits derived from adapter merging become more
pronounced. Specifically, when the router’s accuracy is
at 51.0% and 69.6%, adapter merging yields substantial
downstream accuracy improvements of 5.9% and 2.0%
on the MSVD and MSR-VTT datasets, respectively. In
contrast, when the router approaches near-perfect accu-
racy, the gains from adapter merging become less sig-
nificant (as seen with a marginal 0.2% improvement on
LSMDC).

To further validate this observation, Fig. 3 provides in-
sights into the average performance gain of dynamic
adapter merging over non-merging variants as a function
of router accuracy. The data points are generated by creating a series of routers manually, each
predicting dataset probabilities with a specified accuracy. The figure confirms the trend in Tab. 5,
showcasing that adapter merging offers a 30% relative improvement when the router’s accuracy
drops to 0%.

Based on these results, we can conclude that our proposed DAM is particularly advantageous when
dealing with many datasets. In such complex scenarios, dataset prediction becomes notably chal-

9



DAM: Dynamic Adapter Merging for Continual Video QA Learning

Table 6: We study the effectiveness of different router functions. Specifically, we incorporate
router functions from several prior methods into our DAM method and measure our model’s per-
formance on the downstream VidQA task with each of these routers. Our results suggest that our
non-parametric router function leads to the best downstream VidQA performance.

Router random L2P’s CODA-Prompt’s S-Prompts’ GMM Learnable MLP Ours

router Acc. 16.6 67.4 - 76.4 79.0 78.7 79.1
VidQA Acc. 40.2 48.6 45.3 49.7 49.4 48.9 50.2

Table 7: Domain-Incremental Learning (DIL) on 4 datasets from different domains. DAM has
negligible forgetting rate on datasets with large domain gaps.

Method LSMDC AGQA Env-QA TrafficQA( 12 ) Avg.

Upper-Bound 63.0 63.4 32.3 67.8 56.6
DAM 63.0 63.3 32.0 67.8 56.5

Router Acc. of DAM 100 99.9 99.2 99.7 99.7

lenging for the router. These collective findings underscore the practical significance and scalability
of our proposed approach in real-world domain-incremental VidQA learning scenarios.

5.2 ROUTER ANALYSIS

In this section, we compare our router design with three router designs from prior DIL methods:
L2P (Wang et al., 2022e), CODA-Prompt (Smith et al., 2023a), as well as Gaussian Mixture Model
(GMM) and Learnable MLP. We incorporate these router functions into our DAM method and mea-
sure our model’s performance on downstream VidQA task with each of these routers. We also
measure the accuracy of each router function for correctly classifying the dataset/domain of a given
VidQA input instance. Note that we cannot calculate CODA-Prompts’ router’s accuracy as it does
not explicitly predict the domain identity. From Tab. 6, we observe that higher router accuracy typ-
ically leads to higher downstream VidQA accuracy, thus indicating the importance of an accurate
router function. Second, we notice that jointly training router and domain-specific modules as was
done in previous methods (L2P, CODA-Prompt) leads to worse downstream VidQA accuracy than
disjoint training (S-Prompts, Ours). Lastly, our results suggest that despite the simplicity of our
non-parametric router function, it produces the best performance.

5.3 DOMAIN ANALYSIS

In this section, we analyze the performance of our method through experiments on datasets with
both large and small domain gaps.

Large Domain Gap. To validate the effectiveness of our framework on datasets with large do-
main/distribution gaps, we experiment with 4 datasets from 4 different domains: movie videos
(LSMDC-QA), indoor human videos (AGQA), traffic videos (TrafficQA), and virtual videos (Env-
QA). Tab. 7 presents DAM’s vidQA accuracy and the router’s domain identity prediction accuracy.
We observe that DAM exhibits negligible forgetting on the 4 datasets. We attribute such good perfor-
mance of our method to 1) dataset-specific adapters that can effectively specialize for modeling each
dataset and 2) the high router’s accuracy across most datasets in this setting. Consequently, these
results indicate that our proposed DAM can be effectively applied to datasets with large domain
gaps.

Small Domain Gap. Next, we evaluate our approach on datasets within the same domain but
collected at different times. Such time-based distribution shifts are typically much smaller than for
the previously considered datasets spanning entirely different domains (Tab. 7). Thus, such a setting
necessitates knowledge sharing and the ability to handle incorrect router predictions. Specifically,
we evaluate our model in this setting by dividing the iVQA dataset into 5 non-overlapping subsets
based on the video upload date to YouTube. We continually train the model on these five subsets and
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Table 8: We evaluate the ability of our framework to adapt to subtle time-distribution shifts. To do
this, we divide the iVQA dataset into 5 subsets according to the video upload date to YouTube. We
then train our model on these 5 sequentially arriving subsets. Our results indicate that our dynamic
adapter merging scheme still works effectively, even when the dataset domains/characteristics are
quite similar.

Method Multitask
(upper-bound)

Router
Acc.

DAM
(no merging)

DAM
(merging top-k = 2)

DAM
(merging all)

VidQA Acc. 39.8 43.8 37.1 38.4 39.3

Table 10: DAM benefits from the proposed continual initialization scheme.

Method iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

DAM 39.1 53.6 42.2 63.0 36.3 66.8 50.2
w/o continual initialization 36.5 51.6 39.5 63.0 36.5 67.7 49.1

then evaluate on iVQA’s original test set that spans 5 time distributions. Tab. 8 shows that unlike in
the previous setting, in this case, the router attains an accuracy of only 43.8%. This can be explained
by the fact that the dataset/domain-identity prediction problem becomes a lot more challenging
due to minor distribution shifts between subsets. In this scenario, the model variant that merges
all adapters surpasses the variant without merging by 2.2% and experiences only 0.5% forgetting.
This underscores the effectiveness of dynamic adapter merging and emphasizes the importance of
knowledge sharing in settings where domains or datasets are similar.

5.4 OTHER ANALYSES

Order of the Datasets. In Tab. 9, we study how the order of the training datasets affects our
model’s performance. We randomly sample 5 different orders and train our framework on those
orders. Based on the results, we observe that the performance of our approach is quite stable across
all 5 orders (50.56 ± 0.26%). This indicates our method is robust to the order of training datasets.

Table 9: Ablations on the order of
datasets. We randomly sampled 5 or-
ders and obtained average accuracies
for each order. V: iVQA; D: MSVD;
T: MSR-VTT; L: LSMDC; A: Activi-
tyNet; G: TGIF.

Domain Order Avg. Acc (%)

V D T L A G 50.2
L T G D A V 50.8
V A D G T L 50.4
G T A V D L 50.9
V A G D T L 50.5

Continual Initialization Scheme. In Section 3.2, we in-
troduced a continual initialization scheme for initializing
a current distribution-specific adapter using the weights
of a previously learned adapter. In Tab. 10, we validate
the effectiveness of this scheme and show that it leads to a
notable 1.1% average accuracy improvement. These im-
provements are particularly pronounced for the datasets
that are used first, such as iVQA and MSVD. We posit
that the benefits of continual initialization stem from the
fact that the weights of continually learned adapters reside
in a more similar parameter space. This phenomenon re-
duces interference disagreements when merging adapters
(Yadav et al., 2023).

6 DISCUSSION AND CONCLUSION

In this work, we investigate the challenging and rel-
atively unexplored problem of rehearsal-free domain-
incremental VidQA learning. Our proposed DAM framework outperforms existing state-of-the-art
by 9.1% with 1.9% less forgetting on a benchmark with six distinct video domains. The proposed
method DAM is simple and flexible, and we further extend it to image classification tasks and vi-
sual question-answering, demonstrating our method’s generalization beyond video-level scenarios.
Despite effective results, we also observe a few limitations of our proposed approach. Firstly, our
approach employs a straightforward weighted averaging technique for merging adapter weights,
leaving room for more advanced merging methods that could enhance knowledge sharing among
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domains. Secondly, our validation encompasses a relatively small number of domains (≤ 7 in our
case), consistent with previous domain-incremental learning research. It would be valuable to assess
the effectiveness of our method and existing domain-incremental learning methods across a more
extensive domain spectrum, potentially involving a substantial number of domains (e.g., 100). We
plan to explore these research directions in our future work.
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APPENDIX

In this appendix, we present the following:

A. Implementation details.

B. Evaluation Metrics.

C. Extension to other types of continual learning.

D. Dataset descriptions.

A IMPLEMENTATION DETAILS

Details of our DAM approach. Our choice for the VidQA model is FrozenBiLM (Yang et al.,
2022), a state-of-the-art (SOTA) model in the VidQA domain. To align with this model, we utilize a
vocabulary encompassing the 3635 most frequent answers. Adhering to the FrozenBiLM approach,
we integrate adapters into each layer of the DeBERTa-XL (He et al., 2020) language model, employ-
ing a downsampling rate of 8. The loss function is the same as the original FrozenBiLM model, i.e.,
the cross-entropy loss between the predicted tokens and ground-truth answer tokens. For the initial-
ization of dataset-specific adapters during the commencement of continual learning (first dataset),
we use the weights from FrozenBiLM, which is pre-trained on a substantial dataset comprising
10 million video-text pairs (WebVid10M (Bain et al., 2021)). In the training of domain-specific
adapters for each subsequent domain, we conduct 20 epochs of training with an initial learning rate
of 5e − 5. The learning rate undergoes a linear warm-up for the first 2 epochs, followed by a lin-
ear decay to 0. Our proposed DAM introduces only two hyperparameters. Specifically, we set the
temperature parameter (τ ) to 0.01 and merge top-k=2 adapters for the adapter merging process. We
normalize the router’s predicted probabilities by setting the sum of the top-k probabilities to 1 and
the remaining probabilities to 0.

Network Structures: Our frozen pretrained backbone is FrozenBiLM (Bain et al., 2021), compris-
ing a language model DeBERTa-XL and a vision model CLIP-L/14. The input features to the router
consist of the concatenation of the averaged hidden states from the 4th last layer of DeBERTa-
XL and the averaged hidden states from the last layer of CLIP-L/14, without the incorporation
of adapters. For each dataset, we employ an adapter comprising L adapter layers, inserting an
adapter layer after each self-attention layer and feed-forward network layer in DeBERTa-XL. Fol-
lowing (Yang et al., 2022; Houlsby et al., 2019; Yang et al., 2022), each adapter layer in our approach
includes a downsampling and an upsampling linear layer, along with a residual connection. The lin-
ear layers are configured with an 8× downsample scale to an intermediate hidden size, and the
upsampler maps back to the original dimensionality.

Continual Learning Baselines. Since our work is the very first exploration of continual VidQA
learning, we implement a number of continual learning baselines (focused on image classification)
to VidQA task, including three recent Prompt-based methods L2P (Wang et al., 2022e), CODA-
Prompt (Smith et al., 2023a), and S-Prompts (Wang et al., 2022b)and two regularization-based
methods EwC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017). For a fair comparison,
we use the same pretrained model and preserve most hyper-parameter settings with our approach.
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• L2P (Wang et al., 2022e). For the prompt settings, we set the prompt length to 10 and the
size of the prompt pool to 6. The dimension of the prompt key is configured to be 3072,
matching the dimension of the router input feature in our method. The prompt dimension is
set to 1536, aligning with the input dimension of the frozen language model. We sweep the
learning rate between 1e − 2 and 1e − 5 with an interval of 3.33×. The best performance
is achieved with an initial learning rate 3e-3.

• CODA-Prompt (Smith et al., 2023a). For a fair comparison, we adopt the same prompt
settings as our L2P baseline for CODA-Prompt. Following (Smith et al., 2023a), we
apply orthogonality initialization to initialize the prompts, their keys, and their attention
matrices. The dimension of prompt attention is set to 3072, consistent with the dimension
of the prompt key. For optimal performance, we configure the learning rate to 1e-3.

• S-Prompts (Wang et al., 2022b). We use exactly the same prompt settings as in our imple-
mentation for L2P. For their K-Means router, we set K = 3 as the number of centroids for
each domain and 1-first-nearest neighbor with the centroids to search for the best prompts.

• EwC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017). We follow their original
implementations, except that the regularization is only applied to adapters as all the other
parameters are frozen. A single adapter is shared for all the domains.

B EVALUATION METRICS

Following (Wang et al., 2022b;d;e; Smith et al., 2023a), we employ standard evaluation metrics, in-
cluding average accuracy and forgetting. The average accuracy metric evaluates both learning ca-
pacity and catastrophic forgetting, whereas the forgetting metric specifically addresses catastrophic
forgetting. As an illustration, the pretrained zero-shot model attains 0% forgetting but may exhibit
relatively low average accuracy.

Formally, let St,τ denote the accuracy on the τ -th dataset after training on the t-th dataset (task).
After the training on the t-th dataset, we compute the average accuracy At and forgetting Ft as
follows:

At =
1

t

t∑
τ=1

St,τ (3)

Ft =
1

t

t∑
τ=1

max
τ ′∈{1,...,t}

(Sτ ′,τ − St,τ ) (4)

Upon completion of training on all T datasets, we report the final average accuracy AT and forget-
ting FT .

C EXTENSION TO OTHER TYPES OF CONTINUAL LEARNING

To show the flexibility of our framework, we also extend DAM to two other types of continual
learning: 1) Class-Incremental Learning (CIL) and 2) Task-Incremental Learning (TIL) on VidQA.

CIL. In standard CIL, there are no overlapping classes between tasks, and the training of each split or
dataset is treated as a separate task. To simulate CIL, we treat each unique answer as a class, similar
to the protocol commonly used in continual learning for image classification (Wang et al., 2022e).
We conduct experiments in two distinct settings: 1) MSRVTT-QA 10 subsets , where the classes do
not overlap between subsets, and 2) 4-Datasets (iVQA, MSVD, LSMDC, ActivityNet), excluding
samples with answers that overlap across datasets. In the first setting, the model is continually
trained on these disjoint subsets of the data, while in the second setting, we train our model on
the 4 continually arriving datasets. The results, presented in Tab. 11, show that DAM consistently
outperforms S-Prompts (Wang et al., 2022b), achieving 18.2% and 8.5% improvement on average
accuracy on MSRVTT-QA 10-tasks and 4-Datasets respectively.
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Table 11: Class-Incremental Learning (CIL) experiments are conducted under two settings: contin-
ually training our model on 1) 10 data subsets of MSR-VTT without overlapping classes (answers),
and 2) 4 sequentially arriving datasets (iVQA, MSVD, LSMDC, ActivityNet) that do not have any
overlap between their classes (answers). The proposed DAM outperforms S-Prompts by a large
margin in both settings.

MSRVTT-QA 10 subsets 4-Datasets
Method Average Acc. Forgetting Average Acc. Forgetting

Multitask (upper-bound) 47.3 - 51.6 -

S-Prompts 15.4 -23.5 42.2 -3.3
DAM (Ours) 33.6 -13.7 50.7 -0.9

Table 12: Application of our model to Task-Incremental Learning (TIL). Our proposed framework
generalizes well to TIL achieving only 0.1% lower accuracy than the upper-bound multitask learning
baseline.

Method iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

Multitask (upper-bound) 39.7 56.6 46.7 62.9 42.2 67.8 52.6
DAM 39.8 54.8 46.7 63.0 42.4 68.0 52.5

TIL. To extend our framework to TIL, we treat the training on each dataset as a task. Unlike DIL
or CIL, in TIL, each test sample during inference is provided with a dataset identity. As shown in
Tab. 12, DAM obtains only 0.1% lower accuracy than the upper-bound multitask learning baseline.
This is because in this setting, DAM can always use the correct dataset-specific adapters, which are
individually trained on their corresponding datasets and perform comparable to multitask training.

D DATASET DESCRIPTIONS

Video Question Answering(VidQA). We perform experiments on 9 Video Question Answering
(VidQA) datasets, which include iVQA (Yang et al., 2021), MSVD-QA (Xu et al., 2017), MSRVTT-
QA (Xu et al., 2017), LSMDC (Maharaj et al., 2017), ActivityNet-QA (Yu et al., 2019), TGIF-
QA (Jang et al., 2017), TrafficQA (Xu et al., 2021), EnvQA (Gao et al., 2021) and AGQA (Grunde-
McLaughlin et al., 2021). MSVD-QA, MSRVTT-QA, and ActivityNet-QA involve social media
videos, with ActivityNet-QA featuring notably longer videos (i.e., on average 2 minutes in length
versus 30 second average duration of the videos in the first two datasets). iVQA, LSMDC, TGIF-
QA, TrafficQA, EnvQA, and AGQA represent instructional, movie, short-GIF, traffic, virtual, and
indoor human videos, respectively.

• iVQA (Yang et al., 2021) is an open-ended VidQA dataset with reduced language biases
and high-quality redundant manual annotations. It contains 10K video clips and 10K ques-
tions, split into 6K/2K/2K for training/validation/testing.

• MSVD-QA (Xu et al., 2017) is an open-ended VidQA dataset based on Microsoft Research
Video Description Corpus (Chen & Dolan, 2011). It contains 1.8K video clips and 51K
question-answer pairs, split into 32K/6K/13K for training/validation/testing.

• MSRVTT-QA (Xu et al., 2017) is an open-ended VidQA dataset based on MSR-VTT
dataset (Xu et al., 2016). It contains 10K video clips and 243K question-answer pairs, split
into 158K/12K/73K for training/validation/testing.

• ActivityNet-QA (Yu et al., 2019) is an open-ended VidQA dataset based on long videos
(Caba Heilbron et al., 2015) (averaging 180 seconds) and human annotation. It contains
5.8K video clips and 58K question-answer pairs, split into 32K/18K/8K for training/ vali-
dation/ testing.

• TGIF-QA (Jang et al., 2017) is an open-ended VidQA dataset based on the Tumblr GIF
(TGIF) dataset (Li et al., 2016). It contains 46K GIFs and 53K question-answer pairs, split
into 39K/13K for training/testing.
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• LSMDC-FiB (Maharaj et al., 2017) is an open-ended video-conditioned fill-in-the-blank
task that consists of predicting masked words in sentences that describe short movie
clips (Rohrbach et al., 2015). It contains 119K video clips and 349K question-answer
pairs, split into 297K/22K/30K for training/validation/testing.

• Traffic-QA (Xu et al., 2021) is a dataset designed for video QA, comprising 10,080 in-the-
wild videos and annotated with 62,535 QA pairs. It serves as a benchmark for assessing the
cognitive capability of causal inference and event understanding models in complex traffic
scenarios. Our experiments focus on setting-1/2, where the model receives a question-
answer pair as input and is tasked with predicting the correctness of the answer (yes or
no).

• Env-QA (Gao et al., 2021) is a new video QA dataset to evaluate the ability of understand-
ing the composition, layout, and state changes of the environment presented by the events
in videos. It contains 23.3K videos collected in AI2-THOR simulator and 85.1K questions.

• AGQA (Grunde-McLaughlin et al., 2021) is a benchmark for compositional spatio-
temporal reasoning. AGQA contains 192M unbalanced question answer pairs for 9.6K
videos. We experiment on AGQA-v2 that contains a balanced subset of 2.27M question
answer pairs to mitigate language bias.

Visual Question Answering(VQA). Follow (Li et al., 2023b), we evaluate our model on 4
mainstream VQA datasets: OK-VQA (Marino et al., 2019), aOK-VQA (Schwenk et al., 2022),
GQA (Hudson & Manning, 2019) and VQAv2 (Goyal et al., 2017).

• OK-VQA (Marino et al., 2019) is a knowledge-based visual question-answering bench-
mark with 14k images and 14k questions.

• aOK-VQA (Schwenk et al., 2022) is an augmented successor of OK-VQA (Marino et al.,
2019) and contains a diverse set of 25K questions requiring a broad base of commonsense
and world knowledge to answer.

• GQA (Hudson & Manning, 2019) is a large-scale visual question-answering dataset with
real images from the Visual Genome (Krishna et al., 2017) dataset and balanced question-
answer pairs.

• VQAv2 (Goyal et al., 2017) consists of 1.1M questions about COCO images (Chen et al.,
2015) each with 10 answers. It is the balanced version of the original VQA (Antol et al.,
2015) dataset.
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