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Abstract
We introduce Gated Chemical Units (GCUs), a
new type of gated recurrent cells which provide
fresh insights into the commonly-used gated re-
current units, and bridge their gap to biologically-
plausible neural models. We systematically derive
GCUs from Electrical Equivalent Circuits (EECs),
a widely adopted ordinary-differential-equations
model in neuroscience for biological neurons with
both electrical and chemical synapses. We fo-
cus on saturated EECs, as they are more stable,
and chemical synapses, as they are more expres-
sive. To define GCUs, we introduce a new kind of
gate, we call a time gate (TG), in the associated
difference-equations model of the EECs. The TG
learns for each neuron the optimal time step to
be used in a simple Euler integration scheme, and
leads to a very efficient gated unit. By observing
that the TG corresponds to the forget gate (FG)
in traditional gated recurrent units, we provide a
new formulation of these units as neural ODEs.
We also show that in GCUs, the FG is in fact its
liquid time constant. Finally, we demonstrate that
GCUs not only explain the elusive nature of gates
in traditional recurrent units, but also represent a
very competitive alternative to these units.

1. Introduction
In this paper we introduce Gated Chemical Units (GCUs), a
new type of gated recurrent units, which we formally derive
from Electrical Equivalent Circuits (EECs), the main neuron
model of neuroscience (Kandel et al., 2000; Wicks et al.,
1996). This way, we connect the true biological nature of
neurons to gated recurrent neural networks, for the first time.

Achieving a tight balance between biological relevance, effi-
ciency, and interpretability, is a challenging research area in
the development of neural-network architectures. Gated Re-
current Neural Networks (RNNs), which are computational
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Figure 1. Architecture of a Gated Chemical Unit (GCU), with a
sigmoidal forget gate σ(ft), with a hyperbolic-tangent update
τ(ut), and with a sigmoidal (a)symmetric time gate δ(wt).

models with a loose connection to biological processes, are
widely used in time-series tasks in a variety of fields in-
cluding communication, finance, and control engineering,
thanks to their design of appropriate gating mechanisms. To
apply them to safety-critical problems, there is a strong need
for a formal underpinning, interpretability, and robustness.

Gated RNNs have various forms, which often came about
from empirical evaluations that lack fundamental princi-
ples of why they work well. Long Short-Term Memory
(LSTMs) (Hochreiter & Schmidhuber, 1997) were the first
type of gated RNNs, designed to model long-term dependen-
cies in sequential data, by using three gating mechanisms.
Several attempts have been made to understand and fur-
ther simplify their structure, with systematic evaluations
of 8 variants of them in Greff et al. (2016). Gated Recur-
rent Units (GRUs) (Cho et al., 2014) employ a simplified
structure with fewer parameters, reduced to two gates, thus
providing computational efficiency compared to the more
complex LSTMs. Similarly to LSTMs, new variants of
GRUs have been tested to understand the significance of
their components (Józefowicz et al., 2015). In particular,
Minimal Gated Units (MGUs) (Zhou et al., 2016), further
decrease the number of gates to one, but interestingly, they
have a comparable performance to LSTMs and GRUs.

To capture the electrical behavior of biological neurons in a
formal mathematical fashion, neuro-scientists use ordinary-
differential-equations models (ODEs), called EECs (Kandel
et al., 2000; Wicks et al., 1996). Chemical synapses are
also called Liquid Time Constant Neural Networks (LTCs)
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Figure 2. Architecture of the saturated Electrical-Equivalent Cir-
cuits (EECs) for biological neurons with chemical synapses.

in Lechner et al. (2019); Hasani et al. (2020); Lechner
et al. (2020), due to the state-and-input dependent nature of
their time constant. These neural-ODE models are biolog-
ically plausible by construction, but solving them is most
often very challenging. This is due to the stiff, nonlinear
nature of the ODEs, which is characterized by solutions
with widely varying timescales. Consequently, adaptive
numerical-integration methods, balancing between accuracy
and efficiency, are often computationally expensive.

The stiffness of EECs can be slightly reduced as shown
in Farsang et al. (2023), by saturating the EEC (extended)
conductances to range between -1 and 1, a normalization
approach inspired by the various regulation mechanisms
present in biological neurons. However, solving saturated
EECs still remained very challenging, and the choice of the
solver thus significantly impacted the learning efficiency.

In this paper, we show that a surprisingly simple but unortho-
dox approach, can be used to tame the stiffness of saturated
chemical-synapse EECs, within a simple Euler integration
scheme. The main idea is to use a gate, which we call a
Time Gate (TG), in order to learn the optimal time step, for
every neuron and every integration step. We call the result-
ing cells, Gated Chemical Units (GCUs). Our approach not
only leads to a very efficient recurrent biological unit, but
also elucidates the elusive role of the Forget Gate (FG) in
traditional gated recurrent units. Moreover, restating the FG
as a TG in these units, allows us to provide a fresh and new
look at them, in form of Neural ODEs. In the context of
GCUs, we also show that the true nature of the FG is their
liquid time constant. Finally, by employing the standard
benchmarks developed for gated RNNs, we demonstrate
that GCUs provide a very competitive alternative, that has a
robust, interpretable, and formal biological underpinning.

In summary, the main results of our paper are as follows:

• We introduce Gated Chemical Units (GCUs), which
establish the formal connection between biological-
neuron models and gated RNNs, for the first time.
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Figure 3. Validation loss of saturated, chemical EECs for the Lane-
Keeping Task with a fixed time step, using either a single unfolding
step (blue) or 6 unfoldings, by dividing the time step by 6 (orange).

• We systematically derive GCUs from chemical-syna-
pse EECs, an ODEs model used in neuro-science, by
considering saturation and adding a new time gate.

• We provide a novel view of traditional gated RNNs as
various instances of neural ODEs, by identifying their
forget gate with our newly-introduced time gate.

• We show that in the context of GCUs, the forget gate
actually corresponds to a separate and distinct gate,
capturing the liquid time constant of the GCUs.

• Our experimental results on a wide range of bench-
marks, demonstrate that GCUs achieve very competi-
tive results, compared to traditional gated RNNs.

The rest of this paper is organized as follows. In Section 2
we review saturated, chemical-synapse EECs. In Section 3
we discuss EECs integration and introduce the time gate. In
Section 4 we give a fresh view of gated recurrent units as
Neural ODEs. In Section 5 we provide our experimental
results. Finally, in Section 6 we discuss our conclusions.

2. Background on Saturated EECs
EECs capture the relation between the membrane potentials
(states) of pre- and post-synaptic neurons, respectively, for
either electrical or chemical synapses (Kandel et al., 2000;
Wicks et al., 1996). Previous work showed that a saturated
variant of chemical-synapse EECs with m states and n in-
puts, is described by the ODEs below (Farsang et al., 2023):

ḣi = −σ(fi)hi + τ(ui) eli

fi =
∑m+n

j=1 gjiσ(ajiyj + bji) + gli

ui =
∑m+n

j=1 kjiσ(ajiyj + bji) + gli

(1)

The architecture of the EECs in Equations (1) is given in
Figure 2. They state that the rate of change of the membrane
potential hi of neuron i, is the sum of its negative forget
current −σ(fi)hi and its update current τ(ui) eli. Hence,
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the conductance σ(fi), is the liquid time constant of hi. In
the rest of the paper, we call σ(fi), the Forget Gate (FG) of
the EECs, and τ(ui), the update part of the EECs.

The sigmoid σ enclosing the forget conductance fi of neu-
ron i, saturates it to range within [0, 1]. This depends on
the state hj of presynaptic neurons j, and inputs xj , and
thus on y= [h, x]. Here, gji is the maximum conductance
of neuron i synaptic channels, and aji, bji are parameters
controlling the sigmoidal probability of these channels to be
open. Finally, gli is the membrane’s leaking conductance.

The hyperbolic tangent τ enclosing the signed state-input de-
pendent update conductance ui, saturates it to range within
[−1, 1]. Here, kji = gji/eji takes the sign of eji, which
is the channels’ reversal potential, that is, the membrane
potential at which there is no net flow through the channels.

Solving saturated, chemical-synapse EECs with popular
ODE-integration techniques, is still computationally expen-
sive. A hybrid forward-backward Euler method (Lechner
et al., 2020) for example, takes multiple unfolding rounds
for a given input, to achieve a good approximation of the
solution. In Figure 3 we show the validation loss of sat-
urated EECs, for the Lane-Keeping Task (Lechner et al.,
2022), where the state of the neurons is computed with a
fixed integration step δt. Diving this into 6 equidistant time
steps δt/6 within one update step, results in a considerably
better model, but at a higher cost of 622s versus 241s per
epoch. This results in a 2.6× longer computation time.

3. Integration Step as a Time Gate
Given the saturated, chemical-synapse EECs in Equation 1,
and assuming the use of a simple, Euler integration scheme
with a time-varying step δi,t for each neuron, we can rewrite
the EECs as a set of ordinary difference equations as below:

hi,t = (1− σ(fi,t) δi,t)hi,t−1 + τ(ui,t) δi,t eli

fi,t =
∑m+n

j=1 gjiσ(ajiyj,t + bji) + gli

ui,t =
∑m+n

j=1 kjiσ(ajiyj,t + bji) + gli

(2)

We regard Equations (2), as the model of a recurrent con-
troller (including state estimation), and the inputs x as obser-
vations of its environment. We thus define yt = [ht−1, xt] in
the forget and update conductances. This way, yt contains
the current, instead of the previous observation, respectively.

The first question this paper now asks, and solves in a sur-
prisingly simple way, is how to compute δi,t such that we ob-
tain a very efficient and fast-converging integration scheme?

One simple technique, known to physicists for a long time,
and discussed in Shampine & Witt (1995), is to keep the
change of dhi,t in ḣi,t = dhi,t/dt, fixed to a constant ci.
This technique results in a first approximation of δi,t as
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Figure 4. The shape of the various time-gates proposed for GCUs,
using Formulas (3-5) on the top, and Formulas (6-8) on the bottom.

wi,t = ci/(|ḣi,t|+ ϵi), where a small ϵi is used to avoid di-
vision by zero. Let us further scale wi,t to range between
[0, 1], symmetrically with regards to ḣ, with either a hy-
perbolic tangent or a difference of sigmoids, respectively.
Finally, if the time interval ∆t between two successive in-
puts in the time series x is available, and it is different from
unit 1, we use this to multiply wi,t as in Equations (4-5).
They are the first approximations of our Time Gate (TG):

wi,t = ci/(|ḣi,t|+ ϵi) (3)

δi,t = τ(wi,t ∆t) (4)
δi,t = σ(wi,t∆t + ki)− σ(−wi,t∆t + ki) (5)

In general, it is hard to find the adequate values for ci, ϵi,
and ki. We solve this problem, by simply learning them.
This is memory efficient, as it only requires 3m parameters.

We found however, that a TG learned from scratch, and
scaled with regard to y, either asymmetrically, with one
sigmoid, or symmetrically, with a difference of sigmoids,
leads to considerably better results in terms of accuracy and
convergence speed. Define the first approximation of the
time step as wi,t =

∑m+n
j=1 ojiyj,t + pj . Then the asymmet-

ric and symmetric TGs learned from scratch, respectively,
are given by the Equations (7-8). While these solutions are
more costly in terms of parameters, as one has to learn the
matrix o and the vectors p, k, the cost is clearly worth it.

wi,t =
∑m+n

j=1 ojiyj,t + pj (6)

δi,t = σ(wi,t∆t) (7)
δi,t = σ(wi,t∆t + ki)− σ(wi,t∆t − ki) (8)

In Figure 5, we compare the validation loss of the RNN
defined by Equations (2), for the Lane-Keeping Task, where
we compute the time step δi,t in five different ways. In the
first, as a baseline, we use a constant time-step of size 1.
In the next two, we use Equations (4-5), where we learn
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Figure 5. Validation loss of the RNN for the Lane-Keeping Task
with a fixed time step, and the four time steps of Equations (3-8).
The results for the TGs in Equations (4-5) are rather disappointing.
However, the results for the TGs in Equations (7-8) are very en-
couraging, both in terms of accuracy and convergence speed.

the parameters c, ϵ, and k. Finally, in the last two, we use
Equations (7-8), where we learn the parameters o, p, and k.

The results for the TGs defined by Equations (4-5) are rather
disappointing, as they do not visibly improve baseline’s
accuracy and convergence speed. While each neuron adapts
its time step in accordance with its current derivative ḣi,t, it
still keeps its change of state dhi,t fixed to a learned constant
value ci. One can generalize this TG by replacing constant
ci with a function ci,t = ci(yi,t), which similarly to ḣi,t

depends on yi,t, resulting in a nonlinear time step wi,t =

ci,t / (|ḣi,t| + ϵi). This time step however, can be learned
directly, as the scaled (a)symmetric TGs of Equations (7-8).
Using these TGs leads to a considerably faster convergence,
with a much smaller loss. In particular, the symmetric TG
achieves the best results, by essentially converging in less
than 10 epochs, to a loss of about 0.15. The baseline instead,
converges in about 60 epochs, at a loss of 0.22.

From now on, we will refer to the RNN defined by the Equa-
tions (2,7-8), as a Gated Chemical Unit (GCU) employing
either an (7) asymmetric, or a (8) symmetric TG, respec-
tively. The architecture of the GCU is provided in Figure 1.

4. Gated Recurrent Units as Neural ODEs
Starting from the Neural-ODEs model of saturated biologi-
cal neurons with chemical synapses (the saturated EECs),
we have shown that by first discretizing the ODEs in the
form of ordinary difference equations, and then by learning
their optimal-integration time step with a TG, leads to a very
accurate and efficient gated RNN, which we called a GCU.

For a linear ODE with state h, it is common practice to call
the constant, linearly multiplying the state, the time constant
of the ODE. This constant determines the rate at which the
ODE forgets its initial state. In GCUs, the time constant
becomes liquid, as it is a function of the state and the input.

In the following, we call this liquid time constant, the Forget
Gate (FG) of the GCU, as it is responsible for forgetting in
the associated EEC, and thus in the formally derived GCU.

Once GCUs are formally derived, it is naturally to ask how
do they relate to the popular gated RNNs? As mentioned in
Zhou et al. (2016), the most important gate of these RNNs
is their FG. This however, appears in the same parts of the
RNNs, and in the same form, as our asymmetric, sigmoidal
TG. This is very intriguing and requires further scrutiny.

The second question we thus ask in this paper, and answer
in a positive fashion, is whether the commonly-used gated
RNNs are in fact discretized forms of Neural ODEs, too?

In order to answer this question, we first identify a particular
gate in the GRU, MGU, and LSTM architectures, with the
asymmetric TG of GCUs. We then investigate what would
be in this case their associated Neural ODEs. We first anal-
yse GRUs, then continue with MGUs, as they can be seen
as a simplification of GRUs, and conclude with LSTMs, as
they are the most sophisticated. Finally, we compare these
simpler Neural-ODE versions to biological EECs.

Gated recurrent units (GRUs). The general form of a
GRU is defined as below in Cho et al. (2014):

hi,t = (1− σ(fi,t))hi,t−1 + σ(fi,t) τ(ui,t)

fi,t =
∑m+n

j=1 afji yj,t + bfj

ri,t =
∑m+n

j=1 arji yj,t + brj

ui,t =
∑m+n

j=1 auji y
′
j,t + buj

(9)

Here the vector yt occurring in functions fi,t and ri,t, is
defined as before, as yt = [ht−1, xt]. However, the vector y′t
occurring in ui,t is defined as y′t = [σ(rt)⊙ ht−1, xt].

In other words, the previous state ht−1 used in the update
part τ(ui,t) of the GRU, is pointwise scaled with a nonlinear
state-and-input dependent function σ(ri,t), whose param-
eters are to be learned. This function is called in GRUs a
Reset Gate (RG). Moreover, the state-and-input dependent
function σ(fi,t) is called in GRUs an Update Gate (UG).

The RG determines how the previous state ht−1 has to
be used in the update τ(ui,t). The UG σ(fi,t) controls
the amount (1 − σ(fi,t)) of the previous state hi,t−1, to
be remembered in the next state. However, this UG also
controls the amount of the update τ(ui,t) to be considered
in the next state, by using it to multiply the update.

This affine combination of previous state and update with
respect to GRU’s UG, remains quite elusive, until one iden-
tifies the GRU’s UG with the GCU’s TG. Indeed, if no
information about the time intervals within the input x is
available, and thus if ∆t is 1, the GRU’s UG σ(fi,t), is
identical to the GCU’s TG. Moreover, as a time step in
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the ordinary difference equation associated to an ODE, the
affine occurrence of the GRU’s UG makes perfectly sense.

Given the above discussion, GRUs can also be understood
as the ordinary difference equations associated to the Neural
ODEs below, where the optimal time steps are learned:

ḣi = −hi + τ(ui)

ri =
∑m+n

j=1 arji yj + brj

ui =
∑m+n

j=1 auji y
′
j + buj

(10)

Here the vector y= [h, x] is defined as before, and vector
y′ = [σ(r)⊙ h, x]. The RG occurring in y′ determines how
to use state h in the update part τ(ui) of the ODE.

The time constant of the GRU’s neural ODEs however, is
simply taken to be 1. In other words, the GRU discards the
fixed information h from the next state. As a consequence,
GRUs are less expressive compared to GCUs, where the
time constant is liquid, and thus, the amount of previous
state discarded depends on both the input x and the state h.

Minimal gated units (MGUs). The general form of an
MGU is defined as below in (Zhou et al., 2016):

hi,t = (1− σ(fi,t))hi,t−1 + σ(fi,t) τ(ui,t)

fi,t =
∑m+n

j=1 afji yj,t + bfj

ui,t =
∑m+n

j=1 auji y
′
j,t + buj

(11)

Here, vector yt is defined as before as yt = [ht−1, xt], and
y′t is defined as y′t = [σ(ft)⊙ ht−1, xt], that is, the previous
state ht−1 is pointwise multiplied with the function σ(ft).

As one can see from Equations (11), the MGU definition
simplifies the GRU definition, by insisting that the RG σ(rt)
and the UG σ(ft) of the GRUs should be identified as one
and the same gate σ(ft) in MGUs. This gate is is called a
Forget Gate (FG) in MGUs, as it controls the amount (1−
σ(fi,t)) of the previous state hi,t−1, to be remembered in
the next state. However, as already mentioned, this FG also
controls the amount of update τ(ui,t) to be considered in
the next state, by multiplying the update. As a consequence
we identify the FG of MGUs, with the TG of GCUs.

Given the above considerations, the MGU can be understood
as the ordinary difference equations associated to the Neural
ODEs below, where the optimal time step is learned:

ḣi = −hi + τ(ui)

ui =
∑m+n

j=1 kjiy
′
j + lj

(12)

Here y′ = [dt⊙h, x]. This is a somewhat tricky ODE, where
the term dt in dt⊙h can be understood as a quite refined hint
to the ODE integrator, to scale the previous state h within

the update part τ(ui) of the ODEs, with the same TG as the
one used for the time step. Since this identification works
well, dt might indeed be the proper gate for multiplying h.

As for the GRUs, the time constant of the Neural ODEs
associated to the MGUs, is 1. As a consequence, the control
of forgetfulness in MGUs, is considerably less expressive
compared to GCUs, where the time constant is liquid.

Long Short-Term Memory (LSTM). These RNNs are
the most complex of the examined gated RNNs. They are
defined as follows (Hochreiter & Schmidhuber, 1997):

ci,t = σ(fi,t) ci,t−1 + σ(ii,t) τ(ui,t)

hi,t = σ(oi,t) τ(ci,t)

fi,t =
∑m+n

j=1 afji yj,t + bfj

ii,t =
∑m+n

j=1 aiji yj,t + bij

oi,t =
∑m+n

j=1 aoji yj,t + boj

ui,t =
∑m+n

j=1 auji yj,t + buj

(13)

An LSTM distinguishes between a recurrent cell state ci,t
and an algebraic hidden state hi,t. These states are related to
each other, by defining the hidden state hi,t as the pointwise
product of the Output Gate (OG) σ(oi,t) with the scaled cell
state τ(ci,t). The two other gates are called the Forget Gate
(FG) σ(fi,t) and the Input Gate (IG) σ(ii,t). They deter-
mine the next cell’s state, by forgetting part of the previous
cell’s state and adapting the update information, respectively.
Finally the state-and-input vector equals yt = [ht−1, xt].

In order to derive the Neural ODEs associated to an LSTM
one has the following complication: the next cell state ci,t of
the LSTM is not an affine combination of the previous cell
state ci,t−1 and the update τ(ui,t), with respect to a given
gate. Instead, the previous cell state ci,t−1 is multiplied by
the FG, and the update τ(ui,t) is multiplied by the IG. One
can however obtain the desired affine combination, in two
steps. First, by using the identity σ(−ii,t) = 1 − σ(ii,t).
Second, by relating the gates with σ(fi,t) = σ(−ii,t). Us-
ing this approach, one obtains the following ODEs:

ċi = −ci + τ(ui)

hi = σ(oi) τ(ci)

oi, =
∑m+n

j=1 aoji yj + boj

ui =
∑m+n

j=1 auji yj + buj

(14)

where the vector y= [h, x] and σ(f)+σ(i) = 1. If the latter
equality holds, one essentially obtains the Neural ODE of
the GRUs. If it does not, one can still derive a Neural ODE,
by using the identity σ(fi) = 1− σ(−fi) and by replacing
the differential equation above in the following way:

ċi = −ci +
σ(ii)
dt τ(ui)

ii =
∑m+n

j=1 aiji yj + bij
(15)

5



Gated Chemical Units

Table 1. Accuracy results for the irregularly sampled person activ-
ity classification dataset. To achieve a somewhat similar number
of trainable parameters, we employed 64 cells for GCUs and 100
cells in the other models. We repeated the experiments 5 times.

Model Accuracy No. of param.

LSTM 82.90%± 0.31% 40k
GRU 82.76%± 0.41% 30k
MGU 83.35%± 0.30% 20k
GCU-STG 84.99%± 0.59% 20k
GCU-ATG 84.96%± 0.40% 20k
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Figure 6. Validation accuracy for the irregularly sampled person
activity dataset. GCUs converge a bit slower, yet they surpass the
validation accuracy of the other models after 100 epochs.

The differential Equations (15), together with the three alge-
braic equations of the ODEs defined in (14), give the most
general form of the Neural ODEs associated to LSTMs. As
it was the case for MGUs, the dt term occurring in above
equations, can be understood as hint to the integrator, to
divide the IG σ(ii) of the update, with the TG σ(−fi). This
makes perfectly sense, as one divides in principle two TGs.

Relationship among GCUs, GRUs, MGUs, and LSTMs.
As discussed in the previous paragraph, the general differen-
tial equation of LSTMs given in (15), simplifies to the one
of GRUs and MGUs, if the LSTM’s IG and FG sum up to 1.

Moreover, in these gated RNNs, the time constant of the
associated Neural ODEs is 1. This is less expressive com-
pared to the GCUs, as GCUs have instead a liquid time
constant, that is, a function which depends on both the input
and the state. We argued that this function is a proper FG,
as it determines the rate at which the previous state of the
ODEs is forgotten. The FG of the other RNNs is thus trivial.

LSTMs multiply the scaled cell state with the output gate in
the vector y= [σ(o)⊙ τ(c), x] when computing both the IG
σ(i) and the update τ(u). In GRUs, the update τ(u) also
scales the state with the RG, that is, y= [σ(r)⊙h, x], but the
UG of the GRU uses the simpler version y= [h, x]. Finally,
in MGUs, the FG gate uses y= [h, x], but the update τ(u)
uses y= [dt⊙ h, x]. GCUs have in this respect the simplest

Table 2. Accuracy results for the IMDB sentiment classification
problem. We used 64 cells in the GCUs and 100 cells in the other
models. Note that, the total number of parameters is influenced by
input and output, too. All the results are averaged over 3 runs.

Model Accuracy No. of param.

LSTM 86.56%± 0.49% 70k
GRU 86.32%± 0.51% 50k
MGU 85.18%± 0.85% 35k
GCU-STG 85.73%± 0.41% 40k
GCU-ATG 87.00%± 0.53% 40k
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Figure 7. Validation accuracy for the IMDB sentiment classifica-
tion problem. The GCU-ATG achieves the highest accuracy after
only 5 epochs, even though this decreases a bit over time.

update τ(u) el, where u is computed using y= [h, x].

In conclusion, GCUs, LSTMs, GRUs, and MGUs, all em-
ploy a sigmoidal TG, to compute the optimal time step,
when integrating their associated Neural ODEs. GCUs also
propose a symmetric form of TG, as a difference of sig-
moids. GCUs are the only ones to possess a proper FG, in
form of their liquid time constant. The FG of the other is
trivial, and equal to 1. LSTMs, GRUs, and MGUs however,
compensate for the lack of a proper FG, by using a gate to
scale the state used in the update part of the Neural ODEs.

Synaptic versus neural activation in GCUs. In the EECs
describing the behavior of biological neurons with chemical
synapses, each synapse has its own sigmoidal activation,
which corresponds to the probability of its synaptic channels
to be open. This is reflected in the parameters aji and bji of
the sigmoids. Consequently, EECs have more parameters.
If one assumes however, that all the outgoing synapses of
a neuron behave the same way, one can simplify the EECs
by computing the activation only once per neuron, as it is
customary in artificial neural networks. This leads to EECs:

ḣi = −σ(fi)hi + τ(ui) eli

fi =
∑m+n

j=1 gjiσ(ajyj + bj) + gli

ui =
∑m+n

j=1 kjiσ(ajyj + bj) + gli

(16)
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Table 3. Experimental results for the permuted sequential MNIST
classification task. The GCUs architecture uses 64 neurons,
whereas the architecture of the traditionally-used gated units uses
100 neurons, each. All gated-RNN models were run for 3 seeds.

Model Accuracy No. of param.

LSTM 91.20%± 0.10% 40k
GRU 90.20%± 0.44% 30k
MGU 87.78%± 0.82% 20k
GCU-STG 91.74%± 0.41% 20k
GCU-ATG 91.31%± 0.33% 20k
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Figure 8. Validation accuracy in the permuted sequential MNIST
dataset. GCUs demonstrate a sligtly better validation accuracy
when compared to GRUs and LSTMs in this challenging task.

The additional flexibility of the synaptic activation, which is
motivated by the behavior of biological neurons, not only im-
proves the accuracy of the resulting GCUs (even when one
considers the same number of parameters in the synaptic and
neural-activation models, respectively), but also increases
the interpretability of the learned GCUs. We therefore use
GCUs with synaptic activation in all of our experiments.

5. Experimental Results
In the previous sections we defined GCUs, as a new type
of gated RNNs possessing a biological underpinning, and
showed how they relate to commonly used gated RNNs.

The third question we now ask, and answer favourably, is
whether GCUs are competitive with respect to accuracy and
convergence speed, compared to the popular gated RNNs.

To answer this question we conduct experiments on a wide
range of time-series modeling applications, including the
classification of activities based on irregularly sampled lo-
calization data, IMDB movie reviews, and permuted sequen-
tial MNIST task. To achieve a somewhat similar number
of parameters, we use 64 cells for GCUs, and 100 cells
for the other. The total number of parameters in a model
also depends on the number of inputs and outputs of the
tasks considered. Finally, we also conduct experiments in
a relatively complex and high-dimensional, image-based
regression task for lane keeping in autonomous vehicles.

Figure 9. Lane-Keeping task. Red rectangle indicates the input and
blue line shows the predicted steering angle of the network. Left
is shown summer condition, and right is shown winter condition.

CNN head RNN

extracted
features

predictiont

Figure 10. The overall network architecture for the Lane-Keeping
task. The CNN head extracts the input features of a video stream.
They are passed to the recurrent policy, responsible for steering.

5.1. Localization Data for Person Activity

The localization data for the Person Activity dataset given
in Vidulin et al. (2010), captures the recordings of five in-
dividuals, which engage in various activities. Each person
wore four sensors at the left and the right ankle, at the chest,
and at the belt, while repeating the same activity five times.

The associated task, is to classify their activity based on the
irregularly sampled time-series. This task is a classification
problem, adapted from (Lechner & Hasani, 2020).

In Table 1 we present the experimental results for the accu-
racy of the classification, for LSTMs, GRUs, MGUs, and
GCUs. The experiments for the GCUs were done with both
the asymmetric sigmoidal TG (GCU-ATG), and the sym-
metric, difference of sigmoids TG (GCU-STG). As one can
see from the table, both GCUs considerably outperformed
the traditional gated RNNs. In particular, the GCU-STG
performed best, achieving an accuracy of 84.99% being
slightly better than the GCU-ATG.

In Figure 6 we show the validation accuracy for the consid-
ered models. While the GCUs converge somewhat slower,
they both surpass the other models after 100 epochs.

5.2. IMDB Movie Sentiment Classification

The IMDB movie-review sentiment classification dataset,
also known as the Large Movie Review Dataset (Maas et al.,
2011), is designed for binary sentiment classification. It
includes 25,000 movie reviews for both training and testing.
Each review is labeled with a positive or negative sentiment.

In Table 2, we present our experimental results, comparing
the accuracy the LSTMs, GRUs, MGUs, and GCUs. While
the GCU-STG achieved a performance which was compara-
ble to the one of the traditional RNNs, the GCU-ATG had
the best performance, by achieving an accuracy of 87%.
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Table 4. Accuracy results for the Lane-Keeping task, averaged over
3 seeds. The total number of parameters of the recurrent part is
8k, where the number of neurons used for LSTMs, GRUs, MGUs,
GCU-STG, and GCU-ATG are 23, 28, 38, 19, and 19 respectively.

Model Validation Loss Weighted Val. Loss

LSTM 0.139± 0.008 0.013± 0.001
GRU 0.145± 0.006 0.013± 0.001
MGU 0.139± 0.007 0.012± 0.001
GCU-STG 0.142± 0.004 0.011± 0.001
GCU-ATG 0.154± 0.005 0.010± 0.0003

In Figure 7, we show the validation accuracy for the consid-
ered models. GCU-ATG achieves the highest accuracy after
only 5 epochs, even though this decreases a bit over time.

5.3. Permuted Sequential MNIST

The Permuted Sequential MNIST dataset, is a variant of the
MNIST digits classification dataset, designed to evaluate
recurrent neural networks, adapted from Le et al. (2015). In
this task, the 784 pixels (originally 28×28 images) of digits
are presented sequentially to the network. The challenge
lies in predicting the digit category only after all pixels are
observed. This task tests the network’s ability to handle
long-range dependencies. To make the task more complex,
a fixed random permutation of the pixels is applied.

In Table 3, we present our experimental results, comparing
the accuracy the LSTMs, GRUs, MGUs, and GCUs. As
before, both GCUs surpass the accuracy of the other models.
In particular, the GCU-STG achieves the best results.

In Figure 8, we show the validation accuracy for the consid-
ered models. The GCUs achieve a slightly better validation
accuracy when compared to GRUs and LSTMs on this task.

5.4. Lane-Keeping Task

In the Lane-Keeping Task, the agent is provided with the
front-camera input, consisting of 48×160 pixels of RGB
channels, and required to autonomously navigate and main-
tain its position within the road, by predicting its curvature.
The predicted road curvature corresponds to the steering
action necessary for lane-keeping, and holds the advantage
of being vehicle-independent, as the actual steering angle
depends on the type of car used. The dataset for this task
is obtained from human-driving recordings, captured un-
der various weather conditions (Lechner et al., 2022), as
illustrated in Figure 9.

The network architecture contains a CNN-head for extract-
ing features from the camera input that we feed into the
gated recurrent models for the sequential-regression predic-
tion. This network architecture is illustrated in Figure 10.
This setup is adapted from Farsang et al. (2023).
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Figure 11. Weighted validation loss for the Lane-Keeping regres-
sion task. GCUs converge faster and to lower weighted validation
losses. The GCU with asymmetric time gate performs best, by
essentially converging after only 10 epochs, and to a loss of 0.01.

In Table 4, we report the losses of the models on the Lane-
Keeping task. As before, both GCUs obtain comparable val-
idation losses, with GCU-ATG achieving the best weighted-
validation loss, which is arguably the more important one.

In Figure 11 we show the weighted validation loss for the
considered models. Both GCUs converge faster and to a
lower loss, compared to the traditionally used gated RNNs.

6. Conclusion
In this paper we connected neuro-science to gated RNNs for
the first time, by introducing GCUs. The latter constitute
the first formal derivation of a gated RNN, from saturated
Electrical Equivalent Circuits (EECs), which describe the
behavior of biological neurons with chemical synapses as a
set of neural ordinary differential equations (Neural ODEs).

GCUs make the integration of the Neural ODEs associated
to the saturated EECs finally practicable, with an excellent
convergence and accuracy, by introducing a time gate (TG),
learning the optimal time step for every neuron and every
integration step. In GCUs we also identify the forget gate
(FG) with the liquid time constant of the GCUs, as this
determines the rate of forgetting the previous state in EECs.

By identifying the FG of GCUs with a particular gate in
the commonly-used gated RNNs, we are also able to shed
new light into the inner workings of these RNNs, by show-
ing that they can all be understood as instances of Neural
ODEs. These ODE instances posses a trivial FG, as their
time constant is 1. However, they use a more sophisticated
mechanism (one more gate) to adjust the state in the update.

Finally, we experimentally showed that GCUs perform as
well or better than their gated recurrent counterparts, on a
comprehensive set of tasks used to assess gated RNNs. For
future work, there might still be a better way of learning the
TG, which would make GCUs even more powerful. From a
wider perspective, this neuroscience-based gated RNN can
also serve as a new computational building block for more
sophisticated networks, in challenging time-series problems.
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A. Experiment Details
A.1. Localization Data for Person Activity

Considering that this is an irregularly sampled dataset, including separate extra timestep information per input, traditionally
used gated units need further modification when dealing with this task. For LSTMs, GRUs and MGUs we concatenate this
timestep information directly with the input features. This time step is used as the ∆t value of the Time Gate in GCUs.
LSTM, GRU and MGU networks contain 100 units, while GCUs have 100 units.

Table 5. Hyperparameters of the Localization Data for Person Activity experiment.

Variable Value

Learning rate 10−3

Optimizer RMSprop (Tieleman & Hinton, 2017)
Batch size 128
Training sequence length 32
Epochs 100

A.2. IMDB Movie Sentiment Classification

In the IMDB review dataset we keep the 20,000 most frequent words and truncate the sequences up to 256 characters. Token
embeddings of size 64 are used. LSTM, GRU and MGU have 100 units, while GCU variants have 100 cells in the networks.

Table 6. Hyperparameters of the IMDB Movie Sentiment Classification task.

Variable Value

Learning rate 10−3

Optimizer Adam (Kingma & Ba, 2017)
Batch size 64
Training sequence length 256
Epochs 30

A.3. Permuted Sequential MNIST

As in the other classification tasks, traditionally used gated networks, such as LSTMs, GRUs and MGUs, have 100 units,
and the proposed GCUs contain 64 units.

Table 7. Hyperparameters of the Permuted Sequential MNIST experiment.

Variable Value

Learning rate 10−3

Optimizer RMSprop (Tieleman & Hinton, 2017)
Batch size 64
Training sequence length 784
Epochs 200

During the training of this task, the computed loss values of MGUs became NaNs in 2 out of the 3 runs in the middle of the
experiments. Thus, for plotting the validation accuracy in Figure 8, we included only one full successful run for them.
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A.4. Lane-Keeping Task

For the Lane-Keeping task, we built up the networks from 23, 28, 38 and 19 units of LSTMs, GRUs, MGUs and GCUs,
respectively.

Table 8. Layers in the convolutional head in the Lane-Keeping task. Settings are adapted from Farsang et al. (2023).

Layer Type Settings

Input Input shape: (48, 160, 3)
Image-Norm. Mean: 0, Variance: 1
Conv2D Filters: 24, Kernel size: 5, Stride: 2, Activ.: ReLU
Conv2D Filters: 36, Kernel size: 5, Stride: 1, Activ.: ReLU
MaxPool2D Pool size: 2, Stride: 2
Conv2D Filters: 48, Kernel size: 3, Stride: 1, Activ.: ReLU
MaxPool2D Pool size: 2, Stride: 2
Conv2D Filters: 64, Kernel size: 3, Stride: 1, Activ.: ReLU
MaxPool2D Pool size: 2, Stride: 2
Conv2D Filters: 64, Kernel size: 3, Stride: 1, Activ.: ReLU
Flatten -
Dense Units: 64

Table 9. Hyperparameters of the Lane-Keeping experiment.

Variable Value

Learning rate cosine decay, 5 · 10−4

Optimizer AdamW (Loshchilov & Hutter, 2017)
Weight decay 10−6

Batch size 32
Training sequence length 32
Epochs 100
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