
Forward Direct Feedback Alignment for Online
Gradient Estimates of Spiking Neural Networks

Florian Bacho1 and Dominique Chu1*

1*CEMS, School of Computing, University of Kent, Kennedy Building,
Canterbury, CT2 7NF, Kent, United Kingdom.

*Corresponding author(s). E-mail(s): d.f.chu@kent.ac.uk;
Contributing authors: f.bacho@outlook.fr;

Abstract
There is an interest in finding energy efficient alternatives to current state of the art neural
network training algorithms. Spiking neural network are a promising approach, because
they can be simulated energy efficiently on neuromorphic hardware platforms. How-
ever, these platforms come with limitations on the design of the training algorithm. Most
importantly, backpropagation cannot be implemented on those. We propose a novel neuro-
morphic algorithm, the Spiking Forward Direct Feedback Alignment (SFDFA) algorithm,
an adaption of Forward Direct Feedback Alignment to train SNNs. SFDFA estimates the
weights between output and hidden neurons as feedback connections. The main contribu-
tion of this paper is to describe how exact local gradients of spikes can be computed in
an online manner while taking into account the intra-neuron dependencies between post-
synaptic spikes and derive a dynamical system for neuromorphic hardware compatibility.
We compare the SFDFA algorithm with a number of competitor algorithms and show that
the proposed algorithm achieves higher performance and convergence rates.

Keywords: Spiking Neural Networks, Tradeoffs, Time-To-First-Spike, Error Backpropagation

1 Introduction
The backpropagation algorithm (BP) (Rumelhart et al, 1986) underpins a good part of modern
neural network (NN) based AI. BP-based training algorithms continue to be the state of the
art in many areas of machine learning ranging from benchmark problems such as the MNIST
datasetLeCun et al (2010) to the most recent transformer-based architectures (Launay et al,
2020). While its success is undeniable, BP has some disadvantages. The main one is that BP

1

ar
X

iv
:2

40
3.

08
80

4v
1 

 [
cs

.N
E

] 
 6

 F
eb

 2
02

4



is computationally expensive and relies on sequential processing of layers during both the
forward and backward pass, limiting its scope for parallelisation. This is sometimes called
backward locking (Huo et al, 2018).

Furthermore, under BP the update of any particular connection weight in a neural network
requires global information about the entire network. This entails intense data processing
needs (Crafton et al, 2019) and consequently high energy consumption Crafton et al (2019);
Han and Yoo (2019). Most importantly, BP is also not compatible with neuromorphic hard-
ware platforms (Neftci et al, 2017a), such as Loihi (Davies et al, 2018) or SpiNNaker (Furber
et al, 2014), because neuromorphic hardware cannot save the past states of neurons or reverse
time.

In the light of this, there has been some recent interest in alternatives to BP that alleviate
these issues. In the context of SNNs, random feedback learning, and particularly the Direct
Feedback Alignment (DFA) algorithm is an interesting alternative to BP for online gradient
approximation (Neftci et al, 2017b; Bellec et al, 2020; Rostami et al, 2022; Lee et al, 2020;
Shrestha et al, 2019, 2021). For example, the Event-Driven Random Backpropagation (eRBP)
(Neftci et al, 2017b) and the e-prop (Bellec et al, 2020; Rostami et al, 2022) algorithms use
random feedback connections to send error signals to hidden neurons at every time steps, thus
continuously accumulating gradients during the inference. Unlike BP, DFA algorithms can
be run efficiently on neuromorphic hardware. However, these algorithms constantly project
errors to hidden neurons which can lead to significant computation and energy consumption
on hardware.

Alternatives such as the Spike-Train Level Direct Feedback Alignment (ST-DFA) (Lee
et al, 2020) or the Error-Modulated Spike-Timing-Dependent Plasticity (EMSTDP) (Shrestha
et al, 2019, 2021) algorithms accumulate local changes of weights during the inference and
send a single error signal to hidden neurons through random direct feedback connections.
These approaches are more energy-efficient because the error projection is only performed
once, thus requiring fewer operations. They have also have been successfully implemented
on neuromorphic hardware and demonstrated promising performance and lower energy con-
sumption compared to offline training on GPUs (Lee et al, 2020; Shrestha et al, 2021; Rostami
et al, 2022).

However, they have significant shortcomings. The most important one is that the perfor-
mance of the algorithms is far behind the state of the art, i.e. far behind BP. It is generally
thought that DFA algorithms rely on the alignment between weight and feedback connec-
tions (Nøkland, 2016; Refinetti et al, 2021). In the context of rate-coded neural networks it
has recently been shown that the strong bias introduced by the random feedback connec-
tions affects the convergence rate of DFA. A solution for this was proposed in the form of
the FDFA algorithm (Bacho and Chu, 2024), which enhanced DFA by learning the feedback
matrices using Forward-AD. This proved to be highly successful in the context of rate-coded
(non-spiking) neurons.

The main contribution of this paper is the Spiking Forward Direct Feedback Alignment
(SFDFA) algorithm and adaptation of FDFA to SNNs. While the main idea of the two algo-
rithms are the same, a number of conceptual modifications were necessary for SFDFA. Firstly,
Forward-AD is not suitable for SNNs, and we use instead, as an alternative, graded spikes
to estimate the weight between output and hidden neurons. Secondly, since spikes are non-
differentiable, new different approaches are necessary in order compute gradients. Here we

2



choose an approach based on (Göltz et al, 2021) which computes gradients of spike times of
neurons. Unlike, (Göltz et al, 2021), however, we allow multiple spikes per neurons, which in
turn required a novel approaches to compute local gradient (see (Bacho and Chu, 2023) for
a similar approach). Thirdly, as we found, the approach we took leads to a singularity where
the the gradient diverges; we propose an ad-hoc solution for this. Using extensive simulations
on a variety of benchmark problems, we demonstrate that SFDFA is effective, outperform-
ing previous neuromorphic algorithms on a variety of tasks. However, it remains consistently
below the current state of the art, as set by BP.

2 Neuron model and notation

2.1 Leaky Integrate-and-Fire Neuron
Ie this work, we use networks of Leaky Integrate-and-Fire (LIF) neurons with the following
membrane potential ui(t) dynamics for the post-synaptic neuron i:

ui(t) =
∑
j∈Pi

wi,j

∑
tzj∈Tj

Θ
(
t− tzj

) [
exp

(
tzj − t

τ

)
− exp

(
tzj − t

τs

)]

− ϑ
∑
tki ∈Ti

Θ
(
t− tki

)
exp

(
tki − t

τ

) (1)

where t is the current time, Pi is the set of pre-synaptic neurons j connected to the post-
synaptic neuron i, tkj is the time of the k-th (postsynaptic) spike of neuron j, and Tj :=

{t1j , tj2, . . . t
nj

j } is the set of timings of all nj postsynaptic spikes of neuron j, wi,j ∈ R is the
strength of the synaptic connection between the post-synaptic neuron i and the pre-synaptic
neuron j, τs and τ are respectively the synaptic and membrane time constants, ϑ ∈ R is the
spiking threshold of the neuron and

Θ(x) =

{
1 if x ≥ 0

0 otherwise
(2)

is the Heavyside step function that only triggers events that occurred in the past.
In essence, the LIF neuron integrates pre-synaptic spikes over time through its synapses,

thus affecting its membrane potential. When the membrane potential ui(t) reaches the neu-
ron’s threshold ϑ ∈ R at time t, a post-synaptic spike at time is fired at the output of the
neuron and the membrane potential is reset to zero.

2.2 Exact Gradients of SNNs using Error Backpropagation
Inspired by its success with DNNs, the error Backpropagation (BP) algorithm has
been successfully adapted to SNNs using various approximations that sidestep the non-
differentiability aspect and the lack of closed form solution of spikes (Bohté et al, 2000;
Shrestha and Orchard, 2018; Zheng et al, 2020; Wu et al, 2018; Jin et al, 2018). More recent
approaches have successfully derived exact gradients by using implicit functions describing

3



the relation between membrane potential and spike timings (Wunderlich and Pehle, 2021).
Alternatively, more recent methods such as Fast & Deep (Göltz et al, 2021) and its multi-spike
extension introduce constraints to isolate explicit and differentiable closed-form solutions for
spike times (Mostafa, 2016; Comsa et al, 2020; Göltz et al, 2021). By fixing the decay param-
eters of the membrane potential in eq. 1 to τ = 2τs, a closed form solution for the spike
timings tki can be found.

txi = τ ln

(
2axi

bxi + χx
i

)
(3)

where

axi :=
∑
j∈Pi

wij

x∑
z=1

exp

(
tzj
τs

)

bxi :=
∑
j∈Pi

wij

x∑
z=1

exp

(
tzj
τ

)
− ϑ

x∑
z=1

exp

(
tzi
τ

)

and
χx
i :=

√
(bxi )

2 − 4axi ϑ (4)
This explicit expression of post-synaptic spike timings thus allows for exact differentiation
— see (Göltz et al, 2021) for more details about this method.

In the context of event-based SNNs, the gradient of given a differentiable loss function L
of a neural network with L layers is defined by all the partial derivatives ∂L

∂wpq
, such as:

∂L
∂wpq

= ∂iLx ∂t
x,(L)
i

∂t
y,(L−1)
j

∂t
y,(L−1)
j

· · · . . .
· · ·
∂tzk

∂t
z,(l)
k

∂w
(l)
pq

(5)

To simplify the notation, we introduced the shorthand ∂iLk := ∂L
∂t

k,(L)
i

and used the conven-

tion that repeated indices are summed over. Note that the txi superscripted index runs from 1
to ni. To simplify notation, we will henceforth omit the layer super-script whenever this can
be inferred from context. We will henceforth refer to ∂tki

∂wpq
as the local derivative of the spike

timing.
Under BP, the update of weights ∆BPwpq is then proportional to ∂L

∂wpq
, with the learning

rate η as the proportionality factor. While this version of BP has yielded good results on
SNNs in a number of contexts (), it has two major drawbacks. (i) Updates using BP require
information that is non-local to the neuron, which is difficult to achieve on neuromorphic
hardware. (ii) BP requires the hardware to retain a memory of the past states of neurons,
which is not compatible with neuromorphic principles.

A simple solution to this is the above mentioned DFA algorithm, whereby the updates
of the weights are not proportional to the gradient of the loss function but are instead made
according to the modified DFA learning rule

∆DFAwpq := η1x∂iLxb
(l)
ik

∂t
z,(l)
k

∂w
(l)
pq

1z (6)

4



Here b(l)ik are the elements of a randomly drawn, but fixed feedback matrix B(l) for layer l. The
symbol 1x is an indexed constant of value 1 which implements the sum over the derivatives
of the individual spikes.

DFA sidesteps the need for backpropagating errors backward through space and time
and allows for online error computation. In addition, because all post-synaptic spikes receive
the same projected error, a local gradient of spikes can be locally computed during the
inference without immediately requiring an error signal. For this reason, DFA has been suc-
cessfully implemented in several neuromorphic hardware (Lee et al, 2020; Shrestha et al,
2021; Rostami et al, 2022).

While efficient to compute, the performance of DFA is typically not competitive with BP.
Previously (Bacho and Chu, 2024), we showed in the context of rate-coded neural networks
that the performance can be increased substantially by updating the feedback matrices along
with the weights themselves. In order to compute the update to the feedback matrix, we
require the neuron to store an additional value (the grade, denoted by di) locally. The grade
is initialised to zero, and then updated as follows:

• Upon receiving an input spike from neuron j, the grade is increased by wij0 · dj0 (note the
summation convention does not apply here).

• Upon generating the first spike at time t0i a random number is drawn from a normal
distribution and stored as p0i .

• Upon generating a spike the grade is reset to zero.

During training, the feedback matrices are then updated as follows
As in FDFA, we define an update rule for the feedback connection bo,i that performs an

exponential average of the weight estimate, such as:

bji ← (1− α) bji + αdjp
1
i (7)

where 0 < α < 1 is the feedback learning rate.
In the case of a single hidden layer this learning rule has a clear interpretation. It is

straightforward to show that the feedback matrices lead become over time similar to the
forward weights wij .

do =
∑
tko∈To

dko

=
∑
i∈Po

wo,i

∑
tzi∈Ti

dzi

=
∑
i∈Po

wo,i

∑
tki ∈Ti

pki

=
∑
i∈Po

wo,i p
1
i

(8)

5



Multiplying do by the perturbation p1i then leads to an unbiased estimate of the weight
wo,i.

E
[
do p1i

]
=E

∑
j∈Po

wo,j p
1
j p1i


=

∑
j∈Po

wo,j E
[
p1j
]
E
[
p1i
]

=wo,i

(9)

In that sense, SFDFA then approximates BP.

Algorithm 1 Inference of a single hidden neuron i with the Spiking Forward Direct Feedback
Alignment algorithm.

1: Input: The neuron index i, the neuron weights w, the reset current ϑ = ϑ − urest,
the random perturbation p ∼ N (0, 1) and the set Tpre of pre-synaptic graded spikes(
j, tzj , d

z
j

)
∈ Tpre sorted in time where j is a pre-synaptic neuron index, tzj is a timing and

dzj is a spike grade.
2: Initialize: the factors a = 0 and b = 0, the spike count k, the local gradient ∇locw = 0,

the set of output events Tpost = {}, the internal directional derivatives s = 0, and the local
derivatives synaptic traces f = 0 and h = 0.

3: for all
(
j, tzj , d

z
j

)
in Tpre do

4: fj ← fj exp
(

tzj
τs

)
{Update local derivative traces}

5: hj ← hj exp
(

tzj
τ

)
6: a← a+ wj exp

(
tzj
τs

)
{Integrate pre-synaptic spike into quadratic factors}

7: b← b+ wj exp
(

tzj
τ

)
8: s← s+ wj d

z
j {Update internal directional derivative}

9: if the neuron fires a valid spike then
10: continue
11: end if
12: t← τ ln

(
2a

b+
√
b2−4aϑ

)
{Compute post-synaptic spike timing}

13: t′ ← − τ

ak
i exp(−t

τs
)

[
h exp

(−t
τ

)
− f exp

(
−t
τs

)]
{Compute spike derivative}

14: ∇locw ←∇locw + t′ {Update local gradient}
15: h← h− ϑ

τ exp
(
t
τ

)
t′ {Apply recurrence}

16: b← b− ϑ exp
(
t
τ

)
{Reset of membrane potential}

17: d← s+ p if k = 0 else s {Compute directional derivative as spike grade}
18: add (i, t, d) to Tpost
19: end for
20: return Tpost, ∇locw

6



Algorithm 2 Weights update of a single hidden neuron i with the Spiking Forward Direct
Feedback Alignment algorithm.

1: Input: the neuron weights w, the local gradient ∇locw, the feedback connections b, the
random perturbation p, the output directional derivatives d, the output errors δ and the
learning rates λ and α.

2: w ← w − λ δb∇locw {Update weights}
3: b← (1− α) b+ α pd {Update feedback connections}
4: return w, b

2.3 Computing the DFA update rule
In this section, we now describe how we implemented the SFDA learning rule in practice
in the context of this paper. Many definitions exist for these local gradients of spikes. For
example, the gradient of the membrane potential at spike times (Lee et al, 2020) or surrogate
local gradients (Bellec et al, 2020) can be used. Other works, such as EMSTDP (Shrestha
et al, 2021), use biologically-plausible local gradients like STDP or simple accumulations of
the number of pre-synaptic spikes as in eRBP (Neftci et al, 2017b). Here we show that within

our framework we can explicitly compute the errors ∂iLx and the of the local gradient ∂t
z,(l)
k

∂w
(l)
pq

in eq. 6. In the following two subsections we will show how to do this.

2.3.1 Computing the error

In the particular examples that we consider here, we will use a spike count n to decode the
output, with a loss function defined as:

L(n) :=
∑
i

(yi − ni)
2 (10)

Here, yi is a particular training example and ni the actual spike count of the output neuron of
the spiking network; the sum runs over a mini-batch.

The spike count n is a complicated function of the spike timings of the output neurons,
and consequently the spike timings of hidden neurons as well, as per eq. 6. We can then see
that for this particular choice the error term in eq. 6 can be split up as follows.

1x∂iLx =
∂L
∂n

1x
∂n

∂txi
(11)

Computing the partial derivatives with respect to spike timings is computationally expensive.
To simplify the computation, we absorb those into the random feedback matrices, which gives
the following simplified DFA update rule:

∆DFAwpq := η
∂L
∂n

b
(l)
k

∂t
z,(l)
k

∂w
(l)
pq

1z (12)

Here, again, we used the notation that repeated indices are summed over.

7



2.3.2 Computing the local gradient

Next, we describe how to compute the local gradient in eq. 6. We observe that in eq. 3 txi
depends explicitly on wij , and also depends on tx−1

i , which in turn depends on wij and its
preceding spikes (cf. eq. 4). In order to capture the gradient accurately, we therefore need to
replace the partial derivative in eq. 6 by the total derivative of the spike timing with respect
to the weight wpq. To compute this, we use the general formula for the total derivative as an
ansatz.

dtxi
dwij

=
∂txi
∂wij

+
∂txi

∂tx−1
i

dtx−1
i

dwij
+ · · ·+ ∂txi

∂t1i

dt1i
dwij

(13)

Substituting in the explicit expressions for txi as given by eq. 3 and evaluating the derivatives,
we find after some straightforward, albeit tedious algebra an expression for the total derivative
of the spike timing,

dtxi
dwij

=
τ

axi

[
1 +

ϑ

χx
i

exp

(
txi
τ

)]
fx
ij −

τ

χx
i

hx
ij , (14)

where we used the shorthands

fx
ij =

∑
{z:tzj≤txi }

exp

(
2tzj
τ

)
(15)

and

hx
ij =

∑
{z:tzj≤txi }

exp

(
tzj
τ

)
−

x∑
z=1

(
ϑ

τ
exp

(
tzi
τ

)
dtzi
dwij

)
(16)

and used the condition that τ = 2τs.
In appendix B, we derive a mathematically equivalent, but computationally more conve-

nient and faster form of this equation.

dtxi
dwij

=
τ

axi exp
(

−2txi
τ

)
− ϑ

[
fx
ij exp

(−2txi
τ

)
− hx

ij exp

(−txi
τ

)]
(17)

2.4 Critical Points of Local Gradients
It is apparent from eq. 14 that the local gradient diverges when χ → 0 or equivalently when
axi exp

(
−txi
τs

)
= ϑ (cf. (Wunderlich and Pehle, 2021; Takase et al, 2009a,b) for similar obser-

vation). A common solution to mitigate gradient explosion is adding additional mechanisms
to limit the size of the gradient such as gradient clipping (Wunderlich and Pehle, 2021; Hong
et al, 2020). However, gradient clipping requires computing the norm of the gradient, which
cannot be locally performed on neuromorphic hardware. In this work, we propose a simple
ad-hoc modification of the local gradient to remove the cause of the critical points.

8



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

∆ϑ

x
Fa

ct
or

τ
x−∆ϑτ
x

Fig. 1: Original factor τ
x−ϑ (red line) and the modified factor τ

x as a function of x =

aki exp
(

−tki
τs

)
. As aki exp

(
−tki
τs

)
approaches ϑ, the original factor diverges towards infinity

while the modified factor is bounded.

Our solution is to drop ϑ from eq. 17, thus obtaining:

dtxi
dwij

=
τ

axi exp
(

−txi
τs

) [
fx
ij exp

(−txi
τs

)
− hx

ij exp

(−txi
τ

)]
(18)

Here, τ

ak
i exp

(
−tk

i
τs

) ≤ τ
ϑ has an upper bound and does not diverge towards infinity (see Figure

1). While this creates an additional bias in the gradient estimates, dropping the term ϑ avoids
exploding gradients and improves the stability of the weights updates.

2.5 Neuromorphic Hardware Compatibility
The local gradient in Equation 18 is adapted for computation on von Neumann computers.
Therefore, to make the SFDFA algorithm compatible with neuromorphic hardware, we derive
an eligibility trace that can be evaluated with a system of ordinary differential equations on
hardware.

Eq. 18 can be written as:
dtxi
dwij

= − τ

Ii(txi )
eij(t

x
i ) (19)

where

Ii(t) =axi exp

(−t
τs

)
=

∑
j∈Pi

wij

∑
{z:tzj≤t}

α
(
t− tzj

) (20)

9



is the synaptic current at the spike time, which is computed by the LIF neuron (Gerstner and
Kistler, 2002), and

eij(t) =
∑

{z:tzj≤t}

[
exp

(
tzj − t

τ

)
− exp

(
tzj − t

τs

)]
︸ ︷︷ ︸

=ϵ(t−tzj )

−
∑

{z:tzj≤t}

ϑ exp

(
tzi − t

τ

)
︸ ︷︷ ︸

=η(t−tzi )

dtxi
dwij

1

τ

(21)

is an eligibility trace computed over time that coincides with the desired expression required
by the local gradient at the spike time tki . We can observe that Equation 21 has a form that is
similar to the mapping of the LIF neuron to the SRM model. Therefore, this expression can
be implemented on neuromorphic hardware using a LIF model at each synapse and locally be
used at post-synaptic spike times for the computation of local gradients.

3 Empirical Results
We now present our empirical results with our proposed SFDFA algorithm. We empirically
highlight the critical points in the exact local gradient of spikes and demonstrate the effec-
tiveness of our modified local gradient in preventing gradient explosions. We then compare
the performance and convergence rate of SFDFA with DFA and BP on several benchmark
datasets as well as the weight and gradient alignment of DFA and SFDFA.

3.1 Critical Points Analysis
We now analyze the stability of the exact local gradient of spikes and compare it with our
modified local gradient, defined in Equation 18. To gain an intuitive understanding of the
problem, we first consider a toy example of a two-input neuron receiving four pre-synaptic
spikes. We evaluate the local gradient with the exact derivative of spikes (Equation 17) and
with our modified local gradient (Equation 18). Figure 2 shows the respective gradient fields
computed using the exact and modified local gradients. It can be observed in Figure 2a that
the exact local gradient contains several critical points where its norm is significantly larger
than neighboring vectors.

To investigate the cause behind these large norms, we examined the neuron’s internal
state over time at one of these critical points (marked in red in Figure 2). Figure 3 depicts the
temporal evolution of the membrane potential, input current, factor τ

Ii(t)−ϑ , and the computed
local gradient. Notably, it can be observed that the last post-synaptic spike fired by the neuron
narrowly crosses the threshold (i.e. hair trigger) due to a low input current. This low current
leads to the factor τ

Ii(t)−ϑ becoming large due to its divergence when Ii(t) approaches ϑ (see
Figure 1). Consequently, the local gradient at this spike time significantly increases.

On the other hand, Figure 2 demonstrates that our proposed modified local gradient main-
tains a consistent norm across the weight space without any instability points where the norm
deviates abnormally from neighboring vectors. Additionally, Figure 3 illustrates that, at the

10



0 1 2 3 4 5
0

1

2

3

4

5

wi,1

w
i,
2

(a) Exact local gradient

0 1 2 3 4 5
0

1

2

3

4

5

wi,1

w
i,
2

(b) Modified local gradient

Fig. 2: Gradient fields of a single neuron with two inputs computed using the exact local
gradients (a) and the modified local gradients (b). We can observe that the exact local gradient
contains critical points where the norm is abnormally large compared to neighboring regions.
However, with the modified local gradients, the norm of the gradient is consistent throughout
the weight space, mitigating the gradient explosion caused by the critical points. The red
crosses at correspond to the critical point visualized in Figure 3. See main text for details on
how this figure was generated. For these simulations, we used τs = 0.01, θ = 0.01 and the
time window was of length 0.01 seconds.

spike time when the membrane potential narrowly reaches the threshold, the modified fac-
tor τ

Ii(t)
exhibits a significantly lower value compared to the original factor τ

Ii(t)−ϑ . This is
because the modified factor is upper-bounded, as shown in Figure 1. As a result, the contri-
bution of this spike to the modified local gradient is substantially reduced in comparison to
its contribution to the exact local gradient.

11



0 5 10 15 20 25 30 35 40 45 50
0

0.2
0.4
0.6
0.8

u
i(
t)

Memb. potential Threshold Spike times

(a) Membrane potential

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

I i
(t
)

Input current Spike times

(b) Input current

0 5 10 15 20 25 30 35 40 45 50
0
2
4
6
8
·10−2

Time (ms)

Fa
ct

or
va

lu
e

τ
Ii(t)−ϑ

τ
Ii(t)

(c) Factors

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

Time (ms)

∇
lo

cw
i,
2
(t
)

Exact grad. Modified grad. Spike times

(d) Local gradient

Fig. 3: Evolution over time of the membrane potential (a), input current (b), gradient factors
(c) and local gradients (d) at an instability point (wi,1 = 2.5 and wi,2 = 2.0 in Figure 2)
in a minimal example of a single spiking neuron with two inputs. Here all vertical dotted
lines correspond to post-synaptic spike times. The red lines in both (c) and (d) represent the
original factor and local gradient, while the blue lines represent the modified factor and local
gradient. These figures show that the last post-synaptic spike fired by the neuron occurs when
the membrane potential narrowly reaches the threshold. This narrow threshold crossing is
attributed to the low input current Ii(t) which causes large factors τ

Ii(t)−ϑ and consequently
large local gradients. In contrast, our modified factor τ

Ii(t)
restricts the amplitude of the factor,

thereby moderating the scale of the gradient. For these simulations, we used τs = 0.01,
θ = 0.01 and the time window was of length 0.01 seconds.

To assess the impact of critical points on the convergence of SNNs, we conducted an
experiment using the MNIST dataset. Identical SNNs were trained, both containing two lay-
ers of fully connected neurons and sharing the same hyperparameters. These networks were
initialized with identical weights, differing only in the type of local gradient used for training.
One network was trained with the exact local gradient, while the second network was trained
with the modified gradient defined in Equation 18.

Figure 4 shows the evolution of the training loss, training accuracy, test loss, and test
accuracy for each network during the training of each network. It can notably be observed
that the network trained with the modified local gradient converges slightly faster than the
SNN trained with the exact local gradient. This suggests that the modified gradient mitigates
the impact of instabilities on convergence, leading to enhanced learning.

12



0 10 20 30
98

98.5

99

99.5

100

Epoch

A
cc

ur
ac

y
(%

)

(a) Train accuracy

0 10 20 30
97

97.5

98

98.5

Epoch

A
cc

ur
ac

y
(%

)

Exact grad.
Modified grad.

(b) Test accuracy

0 10 20 30
2

4

6

8

10

12

Epoch

L
os

s

(c) Train loss

0 10 20 30

6

8

10

Epoch

L
os

s

(d) Test loss

Fig. 4: Evolution of the training accuracy (Figure 4a), test accuracy (Figure 4b), train loss
(Figure 4c) and test loss (Figure 4d) during the training of a two-layers SNN on the MNIST
dataset. Red lines correspond to the metrics of the SNN updated using the exact local gradient
while blue lines correspond to the metrics of the SNN updated using the modified local gradi-
ent defined in Equation 18. These figures show that the modified gradient converges slightly
faster than the exact local gradient.

3.2 Performance
We evaluate the performance of the proposed SFDFA algorithm as well as BP and DFA in
SNNs with four benchmark datasets, namely MNIST (LeCun et al, 2010), EMNIST (Cohen
et al, 2017), Fashion MNIST (Xiao et al, 2017) and the Spiking Heidelberg Digits (SHD)
dataset (Cramer et al, 2022). To encode the pixel values of static images (e.g. MNIST,
EMNIST, and Fashion MNIST) into spikes that can be used as inputs of SNNs, we applied a
coding scheme with an encoding window of T = 100 ms. To do this, we normalised the pixel
values and calculated the spike time t for a pixel value x as

t = T (1− x) (22)

13



where T is the length of encoding window, which was chosen to be 100ms throughout. For
pixel values of 0 (i.e. black), no spikes were generated. In this way, TTFS therefore produces
sparse temporal encoding of greyscale images that are fast to process in my event-based
simulator. For the SHD dataset, I used the spike trains as provided by the dataset.

We used a spike count strategy to decode the output spike counts of the SNNs. Specifi-
cally, each output neuron of the network encoded a possible category for the data. The target
spike count for the correct category was set to 10, whereas the target spike count for the incor-
rect category was set to 3. Note that we did not choose a target of 0 for the latter to avoid
dead neurons. We then used a spike count Mean Squared Error loss function for training.
We benchmarked our method with fully-connected SNNs of different sizes. For MNIST and
EMNIST, we used two-layer SNNs with 800 hidden neurons, for Fashion MNIST, a three-
layer SNN with 400 hidden neurons per hidden layer, and a two-layer SNN with 128 hidden
neurons for the SHD dataset. We also compared it with BP applied to an SNN, as described
in Bacho and Chu (2023),

Table 1 summarizes the performance of each method on each dataset. We can observe
that both the DFA and SFDFA algorithms achieve test performances similar to that of BP for
the MNIST, EMNIST, and Fashion MNIST datasets. However, for the SHD dataset, neither
algorithm attains a level of accuracy comparable to BP. This indicates that the direct feedback
learning approach with a single error signal fails to effectively generalize when applied to
temporal data.

Table 1: Average best test performance of BP, DFA and the proposed
SFDFA on the MNIST, EMNIST, Fashion MNIST and SHD datasets.

Dataset Architeture BP DFA SFDFA
MNIST 800-10 98.88 ± 0.02% 98.42 ± 0.06% 98.56 ± 0.04%

EMNIST 800-47 85.75 ± 0.06% 79.48 ± 0.11% 82.33 ± 0.10%
Fashion MNIST 400-400-10 90.19 ± 0.12% 89.41 ± 0.12% 89.73 ± 0.17%

SHD 128-20 66.79 ± 0.66% 52.70 ± 2.30% 54.63 ± 1.16%

Despite this limitation, the proposed SFDFA algorithm consistently outperforms DFA
across all benchmarked datasets. However, there remains a noticeable gap between the
performance of SFDFA and BP, particularly as the complexity of the task increases.

3.3 Convergence
The FDFA algorithm introduced in (Bacho and Chu, 2024) demonstrated improvements in
terms of convergence compared to DFA. To evaluate if this is also the case in SNNs, we
recorded the train loss, train accuracy, test loss, and test accuracy of SNNs trained with the
DFA and SFDFA algorithms on each dataset.

14



0 10 20 30

96

98

100

Epoch

A
cc

ur
ac

y
(%

)

(a) Test accuracy

0 10 20 30
95

96

97

98

99

Epoch

A
cc

ur
ac

y
(%

)

BP
DFA

SFDFA

(b) Test accuracy

0 10 20 30
2

4

6

8

10

12

Epoch

L
os

s

(c) Train loss

0 10 20 30
2

4

6

8

10

12

Epoch

L
os

s

(d) Test loss

Fig. 5: Evolution of the averaged train accuracy (Figure 5a), test accuracy (Figure 5b), train
loss (Figure 5c) and test loss (Figure 5d) during the training of two-layers SNNs on the
MNIST dataset. Black dashed lines correspond to BP. Blue and red solid lines correspond to
the SFDFA and DFA algorithms respectively.

15



0 10 20 30
50

60

70

80

90

Epoch

A
cc

ur
ac

y
(%

)

(a) Train accuracy

0 10 20 30
50

60

70

80

90

Epoch

A
cc

ur
ac

y
(%

)

BP
DFA

SFDFA

(b) Test accuracy

0 10 20 30
20

40

60

80

Epoch

L
os

s

(c) Train loss

0 10 20 30
20

40

60

80

Epoch

L
os

s

(d) Test loss

Fig. 6: Evolution of the averaged train accuracy (a), test accuracy (b), train loss (Figure 5c)
and test loss (Figure 5d) during the training of two-layers SNNs on the EMNIST dataset.
Black dashed lines correspond to BP. Blue and red solid lines correspond to the SFDFA and
DFA algorithms respectively.

16



0 10 20 30
85

90

95

Epoch

A
cc

ur
ac

y
(%

)

(a) Train accuracy

0 10 20 30

86

88

90

Epoch

A
cc

ur
ac

y
(%

)

BP
DFA

SFDFA

(b) Test accuracy

0 10 20 30
10

20

30

40

Epoch

L
os

s

(c) Train loss

0 10 20 30
10

20

30

40

Epoch

L
os

s

(d) Test loss

Fig. 7: Evolution of the averaged train accuracy (a), test accuracy (b), train loss (Figure 5c)
and test loss (d) during the training of two-layers SNNs on the Fashion MNIST dataset. Black
dashed lines correspond to BP. Blue and red solid lines correspond to the SFDFA and DFA
algorithms respectively.

17



0 20 40 60 80 100 120
0

20

40

60

80

Epoch

A
cc

ur
ac

y
(%

)

(a) Train accuracy

0 20 40 60 80 100 120
0

20

40

60

Epoch

A
cc

ur
ac

y
(%

)

BP
DFA

SFDFA

(b) Test accuracy

0 20 40 60 80 100 120

40

60

80

100

Epoch

L
os

s

(c) Train loss

0 20 40 60 80 100 120

40

60

80

100

Epoch

L
os

s

(d) Test loss

Fig. 8: Evolution of the averaged train accuracy (a), test accuracy (b), train loss (c) and test
loss (d) during the training of two-layers SNNs on the Spiking Heidelberg Digits dataset.
Black dashed lines correspond to BP. Blue and red solid lines correspond to the SFDFA and
DFA algorithms respectively.

Figures 5, 6, 7 and 8 show the evolution of the different metrics with the MNIST,
EMNIST, Fashion MNIST and SHD datasets respectively. It can be observed that a gap exists
in both the train and test loss between the BP and DFA algorithms. In contrast, the train and
test loss for the proposed SFDFA algorithm closely follow the loss values of BP, indicating
similar convergence rates. Interestingly, during the initial stage of training, both the train and
test accuracies of the SFDFA algorithm increase faster than both BP and DFA. This behav-
ior is particularly prominent in Figures 5 and 8. However, in the later stage of training, the
test accuracy of SFDFA plateaus while the test accuracy of BP continues to improve. This
suggests that the proposed SFDFA algorithm does not generalize as much as BP on test data.
However, compared to DFA, the test accuracy of the SFDFA algorithm increases signifi-
cantly faster, especially on temporal data (see Figure 8). Altogether, we find that the SFDFA
algorithm shows better convergence than DFA, especially for more difficult tasks.

18



0 10 20 30
20

40

60

80

100

120

Epoch

A
ng

le
(d

eg
re

e)

(a) DFA

0 10 20 30
20

40

60

80

100

120

Epoch

A
ng

le
(d

eg
re

e)

Layer 1
Layer 2
Layer 3

(b) SFDFA

Fig. 9: Layerwise alignment between spiking gradient estimates and the true gradient com-
puted using BP. These figures show that the SFDFA algorithm Figure (b) aligns better with
the true gradient than DFA (a), especially in layers close to the outputs.

0 10 20 30
20

40

60

80

Epoch

A
ng

le
(d

eg
re

e)

DFA
SFDFA

Fig. 10: Evolution of the alignment between the output weights and last hidden layer feed-
backs in a 4-layer SNN trained on MNIST with DFA (red line) and SFDFA (blue line). The
weights and feedback connections align faster and better with the SFDFA algorithm than with
DFA. Moreover, the weights alignment in SNNs correlates with the gradient alignment (see
Figure 9).

3.4 Weights and Gradient Alignment
We measured the bias of the gradient estimates by recording the layer-wise alignment between
the approximate gradients and the true gradients computed using BP (see (Bacho and Chu,
2024)). For this experiment, we trained a 4-layer SNN on the MNIST dataset for 30 epochs
using both the DFA and SFDFA algorithms to compute gradient estimates. We then calculated
the angles between these estimates and the true gradient computed by BP.

The evolution of the resulting angles during training is given in Figure 9. It can be
observed that the gradient estimates provided by FDFA align faster and exhibit a lower angle

19



with respect to BP when compared with DFA. This indicates that the proposed SFDFA algo-
rithm achieves a lower level of bias earlier than DFA, with weight updates that better follow
BP. However, it is important to note that the gap in alignment between SFDFA and DFA
diminishes with the depth of the layer. Specifically, when comparing the alignments of the
third layer (i.e. closest to the output) trained with SFDFA and DFA, the former demon-
strates significantly better alignment. However, in the case of the first layer, both methods
exhibit similar levels of alignment. This suggests that the benefits of SFDFA become more
pronounced in layers close to the outputs.

In contrast with the FDFA algorithm which estimates derivatives, the SFDFA algorithm
approximates the derivatives of spikes by estimating the weights connections between hidden
and output neurons. Therefore, in addition to the layer-wise gradient alignment, we measured
the angle between the vectors represented by the output weights and the vector represented
by the feedback connections for the last hidden layer. Also known as weight alignment, it is
believed to be the main source of gradient alignment in DFA (Refinetti et al, 2021). Figure 10
shows the evolution of the alignment between the flattened output weights and the flattened
feedback connections to the last hidden layer. The alignments for deeper hidden layers were
ignored as the exact forward weights for these layers are unknown. We can see in this figure
that the output weight and the feedback connections trained with the SFDFA algorithm align
faster and better than those trained with DFA. Moreover, we can observe that the weight
alignment correlates with the gradient alignment of the third layer in Figure 9. This suggests
that estimating the forward weights as feedback connections makes the approximate gradients
align with the true gradients.

4 Discussion
In this paper, we proposed the SFDFA algorithm, a spiking adaptation of FDFA that trains
SNNs in an online and local manner. The proposed algorithm computes local gradients of
post-synaptic spikes by taking into account all intra-neuron dependencies and uses direct
feedback connections to linearly project output errors to hidden neurons without unrolling
the neuron’s dynamics through space and time. Similarly to the FDFA algorithm, SFDFA
estimates the derivatives between hidden and output neurons as feedback connections by
propagating directional derivatives as spike grades during the inference. More precisely,
SFDFA estimates the weights between output and hidden layers and ignores the temporal
relationships between spikes to avoid large variances that could hinder the convergence of
feedback connections.

We also demonstrated the existence of critical points where the norm of the exact local
gradient diverges towards infinity. These critical points have previously been discovered in
other formulations of exact gradients (Takase et al, 2009a,b; Wunderlich and Pehle, 2021) of
spikes. In our work, we identified the cause of these critical points in the computation of the
exact local gradients and proposed a simple modification of the derivatives that suppresses
gradient explosions. While this ad hoc solution introduces an additional bias to the gradient
estimates, we showed that it enabled faster convergence of SNNs than the exact gradient when
trained with SFDFA. This implies that the rate of convergence of our algorithm benefits from
the improved stability of our modified local gradient.

20



Our empirical results showed that the proposed SFDFA consistently converges faster
and achieves higher performance than DFA on all benchmark datasets. However, while our
method also performs better than DFA on the SHD dataset, a significant gap still exists with
BP. This suggests that the learning procedure used in both DFA and SFDFA has limitations
when applied to highly temporal data. Therefore, future work could explore alternative update
methods to improve this performance gap with BP on temporal data.

In our experiments, we measured the alignment between the approximate gradients com-
puted by DFA and SFDFA and the true gradient computed by BP. Our results showed that the
approximate gradients computed by the proposed SFDFA algorithm align faster with the true
gradient than DFA. This suggests that weights are updated with steeper descending direc-
tions in SFDFA than in DFA. This could explain the increased convergence rate experienced
by our algorithm. However, we observed that the gradient estimates in SNNs align less than
the FDFA algorithm applied to DNNs. This weak alignment can be explained by two factors.
First, by bounding the local derivatives, the modified local gradient of our method slightly
changes the direction of the weight updates. Second, the complex temporal relationships
between spikes are ignored in the computation of the directional derivatives to avoid intro-
ducing large variances in the feedback updates. Ignoring these temporal relationships could
make the approximate gradients further deviate from the true gradient.

In addition to the gradient alignment, we measured the alignment between the network
weights and feedback connections in both DFA and SFDFA. We observed a stronger differ-
ence in weight alignment between DFA and SFDFA than in gradient alignment. This could be
explained by the fact that our method estimates the weight connections between output and
hidden neurons as feedback rather than derivatives. In particular, we observed that the weight
alignment of SFDFA correlates with the gradient alignment of the last layer, suggesting that
estimating weights contributes to the gradient alignments. However, it is still unclear why
deeper layers fail to align more than in DFA. Future work could therefore focus on improv-
ing the gradient alignment of deep layers to improve the rate of convergence as well as the
performance of SNNs when trained with SFDFA.

From an engineering point of view, the local gradients of spikes can be locally com-
puted by neurons by implementing dedicated circuits that evaluate the dynamical system of
the LIF neuron. Moreover, the computation and propagation of directional derivatives dur-
ing the inference can be implemented through the grades of spikes. Spike grades are features
that have recently been added to several large-scale neuromorphic platforms such as Loihi
2 (Frady et al, 2022) and SpiNNaker (Furber et al, 2014). Traditionally used to modify the
amplitude of spikes for computational purposes, our work instead proposes the use of spike
grades for learning purposes. Finally, direct feedback connections have widely been imple-
mented on various neuromorphic platforms, thus supporting the hardware compatibility of
SFDFA.

Therefore, by successfully addressing the limitations of BP, the proposed SFDFA algo-
rithm represents a promising step towards the implementation of neuromorphic gradient
descent. While there are still areas for improvement and exploration, our findings contribute
to the growing body of knowledge aimed at improving the field of neuromorphic computing.

Acknowledgements. This study was part funded by EPSRC grant EP/T008296/1.

Data and code availability. All data used in this paper is publicly available benchmark data
and has been cited in the main text (LeCun et al, 2010; Xiao et al, 2017; Cramer et al, 2022).

21



Conflict of interest. The authors declare that there is no conflict of interest.

Appendix A Experimental Settings
In this section, we describe the experimental settings used to produce our empirical results,
including the benchmark datasets, encoding and decoding, network architectures, the loss
function, hyperparameters as well as the software and hardware settings.

A.1 Firing Rate Regularization
Without additional constraint, neurons may exhibit high firing rates to achieve lower loss
values which could increase energy consumption and computational requirements. To prevent
this issue, we implemented a firing rate regularization that drives the mean firing rate of
neurons towards a given target during training. By incorporating firing rate regularization, the
neural network is encouraged to find a balance between learning from the data and avoiding
high firing rates. This can lead to improved generalization, reduced energy consumption, and
enhanced stability.

Formally, a penalty term for high firing rates is added to the loss function, such as:

Lreg(x) = L(x) + β
∑
i

(
E
x
[ni]− n̂

)2

(A1)

where β > 0 is a constant defining the strength of the regularization and E
x
[ni] is the mean

firing rate of the hidden neuron i. The mean firing rate can be estimated in an online manner
by computing a moving average or an exponential average of the firing rate over the last
inference. If batch learning is used, a mean firing rate can be computed from the batch.

A.2 Update Method and Hyperparameters
We used the Adam (Kingma and Ba, 2017) algorithm to update both the weights and the
feedback connections. We used the default values of β1 = 0.9, β2 = 0.999 and ϵ = 10−8

(Kingma and Ba, 2017) and a batch size of 50 for fully-connected SNNs. We used a learning
rate of λ = 0.003 for image classification and λ = 0.001 for audio classification with the
SHD dataset. In addition, we used a feedback learning rate of α = 10−4 in every experiment.

Experimental conditions were standardized for BP, DFA and SFDFA. We used the same
hyperparameters as the method proposed in

A.3 Event-Based Simulations on GPU
To simulate and train SNNs, we reused the event-based simulator used in (Bacho and Chu,
2023).We adapted the GPU kernels related to the inference to compute local gradients as well
as directional derivatives in an online manner. Moreover, we replaced the code performing
error backpropagation with feedback learning. Similarly to neuromorphic hardware, our sim-
ulator never backpropagates errors backward through time and performs all computations in
an online manner.

22



Appendix B Deriving eq. 17
To reduce the computational requirements of the local gradient evaluation, Equation 14 can
be further simplified by re-introducing the post-synaptic spike time tki into the equation:

dtxi
dwij

=
exp

(
−txi
τs

)
exp

(
−txi
τs

) τ

axi

1 + exp
(

−txi
τ

)
exp

(
−txi
τ

) ϑ

xx
i

exp

(
txi
τ

) fx
i −

exp
(

−txi
τ

)
exp

(
−txi
τ

) τ

xx
i

hx
i

=
τ

axi exp
(

−txi
τs

)
1 + ϑ

xx
i exp

(
−txi
τ

)
 fx

i exp

(−txi
τs

)
− τ

xx
i exp

(
−txi
τ

) hx
i exp

(−txi
τ

)
(B2)

Then we can isolate an expression for xx
i exp

(
−txi
τ

)
, such as:

txi = τ ln

(
2axi

bxi + xx
i

)
⇔ exp

(
txi
τ

)
=

2axi
bxi + xx

i

⇔ exp

(
txi
τ

)
exp

(−txi
τ

)
= exp

(−txi
τ

) exp
(

−txi
τ

)
exp

(
−txi
τ

) 2axi
bxi + xx

i

⇔ exp

(
txi − txi

τ

)
=

2axi exp
(

−txi
τs

)
(bxi + xx

i ) exp
(

−txi
τ

)
⇔1 =

2axi exp
(

−txi
τs

)
(bxi + xx

i ) exp
(

−txi
τ

)
⇔xx

i exp

(−txi
τ

)
= axi exp

(−txi
τs

)
− ϑ

(B3)

as of the constraint between the synaptic and membrane time constant τ = 2τs ⇔
exp

(
−txi
τ

)2

= exp
(

−tki
τs

)
.

u(txi ) = bxi exp

(−txi
τ

)
− axi exp

(−txi
τs

)
= ϑ

⇔bxi exp

(−txi
τ

)
= axi exp

(−txi
τs

)
+ ϑ

(B4)

23



Therefore, the local gradient dtxi
dwij

of spikes simplifies to:

dtxi
dwij

=
τ

axi exp
(

−txi
τs

)
axi exp

(
−txi
τs

)
− ϑ

axi exp
(

−txi
τs

)
− ϑ

+
ϑ

axi exp
(

−txi
τs

)
− ϑ

 fx
i exp

(−txi
τs

)

− τ

axi exp
(

−txi
τs

)
− ϑ

hx
i exp

(−txi
τ

)

=
τ

axi exp
(

−txi
τs

)
− ϑ

[
fx
i exp

(−txi
τs

)
− hx

i exp

(−txi
τ

)]
(B5)

References
Bacho F, Chu D (2023) Exploring tradeoffs in spiking neural networks. Neural Computation

35(10):1627–1656. URL https://kar.kent.ac.uk/101545/

Bacho F, Chu D (2024) Low-variance forward gradients using direct feedback
alignment and momentum. Neural Networks 169:572–583. https://doi.org/https://doi.
org/10.1016/j.neunet.2023.10.051, URL https://www.sciencedirect.com/science/article/
pii/S0893608023006172

Bellec G, Scherr F, Subramoney A, et al (2020) A solution to the learning dilemma for recur-
rent networks of spiking neurons. Nature Communications 11(1). https://doi.org/10.1038/
s41467-020-17236-y

Bohté SM, Kok JN, Poutré HL (2000) Spikeprop: backpropagation for networks of spiking
neurons. In: The European Symposium on Artificial Neural Networks, URL https://api.
semanticscholar.org/CorpusID:14069916

Cohen G, Afshar S, Tapson J, et al (2017) Emnist: Extending mnist to handwritten letters. In:
2017 International Joint Conference on Neural Networks (IJCNN), pp 2921–2926

Comsa IM, Potempa K, Versari L, et al (2020) Temporal coding in spiking neural networks
with alpha synaptic function: Learning with backpropagation

Crafton B, Parihar A, Gebhardt E, et al (2019) Direct feedback alignment with sparse
connections for local learning. Frontiers in neuroscience 13:525

Cramer B, Stradmann Y, Schemmel J, et al (2022) The heidelberg spiking data sets for the
systematic evaluation of spiking neural networks. IEEE Transactions on Neural Networks
and Learning Systems 33(7):2744–2757

Davies M, Srinivasa N, Lin TH, et al (2018) Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro 38(1):82–99. https://doi.org/10.1109/MM.2018.112130359

24

https://kar.kent.ac.uk/101545/
https://doi.org/https://doi.org/10.1016/j.neunet.2023.10.051
https://doi.org/https://doi.org/10.1016/j.neunet.2023.10.051
https://www.sciencedirect.com/science/article/pii/S0893608023006172
https://www.sciencedirect.com/science/article/pii/S0893608023006172
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
https://api.semanticscholar.org/CorpusID:14069916
https://api.semanticscholar.org/CorpusID:14069916
https://doi.org/10.1109/MM.2018.112130359


Frady EP, Sanborn S, Shrestha SB, et al (2022) Efficient neuromorphic signal processing with
resonator neurons. Journal of Signal Processing Syst 94(10):917?927. https://doi.org/10.
1007/s11265-022-01772-5

Furber SB, Galluppi F, Temple S, et al (2014) The spinnaker project. Proceedings of the IEEE
102(5):652–665. https://doi.org/10.1109/JPROC.2014.2304638

Gerstner W, Kistler WM (2002) Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge University Press, https://doi.org/10.1017/CBO9780511815706

Göltz J, Kriener L, Baumbach A, et al (2021) Fast and energy-efficient neuromorphic deep
learning with first-spike times 3(9):823–835

Han D, Yoo Hj (2019) Direct feedback alignment based convolutional neural network training
for low-power online learning processor. In: 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), pp 2445–2452

Hong C, Wei X, Wang J, et al (2020) Training spiking neural networks for cognitive tasks: A
versatile framework compatible with various temporal codes. IEEE Transactions on Neu-
ral Networks and Learning Systems 31(4):1285–1296. https://doi.org/10.1109/tnnls.2019.
2919662, URL https://doi.org/10.1109/tnnls.2019.2919662

Huo Z, Gu B, Yang Q, et al (2018) Decoupled parallel backpropagation with convergence
guarantee. 1804.10574

Jin Y, Zhang W, Li P (2018) Hybrid macro/micro level backpropagation for training deep
spiking neural networks. Curran Associates Inc., Red Hook, NY, USA

Kingma DP, Ba J (2017) Adam: A method for stochastic optimization. 1412.6980

Launay J, Poli I, Boniface F, et al (2020) Direct feedback alignment scales to modern deep
learning tasks and architectures. In: Proceedings of the 34th International Conference on
Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA,
NIPS’20

LeCun Y, Cortes C, Burges C (2010) Mnist handwritten digit database. ATT Labs [Online]
Available: http://yannlecuncom/exdb/mnist 2

Lee J, Zhang R, Zhang W, et al (2020) Spike-train level direct feedback alignment: Sidestep-
ping backpropagation for on-chip training of spiking neural nets. Frontiers in Neuroscience
14. https://doi.org/10.3389/fnins.2020.00143

Mostafa H (2016) Supervised learning based on temporal coding in spiking neural networks.
IEEE Transactions on Neural Networks and Learning Systems PP

Neftci EO, Augustine C, Paul S, et al (2017a) Event-driven random back-propagation:
Enabling neuromorphic deep learning machines. Frontiers in Neuroscience 11:324

25

https://doi.org/10.1007/s11265-022-01772-5
https://doi.org/10.1007/s11265-022-01772-5
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1109/tnnls.2019.2919662
https://doi.org/10.1109/tnnls.2019.2919662
https://doi.org/10.1109/tnnls.2019.2919662
1804.10574
1412.6980
https://doi.org/10.3389/fnins.2020.00143


Neftci EO, Augustine C, Paul S, et al (2017b) Event-driven random back-propagation:
Enabling neuromorphic deep learning machines. Frontiers in Neuroscience 11. https:
//doi.org/10.3389/fnins.2017.00324, URL https://doi.org/10.3389/fnins.2017.00324

Nøkland A (2016) Direct feedback alignment provides learning in deep neural networks. In:
Lee D, Sugiyama M, Luxburg U, et al (eds) Advances in Neural Information Processing
Systems, vol 29. Curran Associates, Inc.

Refinetti M, D’Ascoli S, Ohana R, et al (2021) Align, then memorise: the dynamics of
learning with feedback alignment. In: International Conference on Machine Learning, pp
8925–8935

Rostami A, Vogginger B, Yan Y, et al (2022) E-prop on SpiNNaker 2: Exploring online
learning in spiking RNNs on neuromorphic hardware. Frontiers in Neuroscience 16. https:
//doi.org/10.3389/fnins.2022.1018006, URL https://doi.org/10.3389/fnins.2022.1018006

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-
propagating errors. nature 323(6088):533–536

Shrestha A, Fang H, Wu Q, et al (2019) Approximating back-propagation for a biologically
plausible local learning rule in spiking neural networks. In: Proceedings of the International
Conference on Neuromorphic Systems. Association for Computing Machinery, New York,
NY, USA, ICONS ’19, https://doi.org/10.1145/3354265.3354275

Shrestha A, Fang H, Rider DP, et al (2021) In-hardware learning of multilayer spiking neu-
ral networks on a neuromorphic processor. In: 2021 58th ACM/IEEE Design Automation
Conference (DAC), pp 367–372, https://doi.org/10.1109/DAC18074.2021.9586323

Shrestha SB, Orchard G (2018) Slayer: Spike layer error reassignment in time. In: Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems.
Curran Associates Inc., Red Hook, NY, USA, NIPS’18, p 1419?1428

Takase H, Fujita M, Kawanaka H, et al (2009a) Obstacle to training spikeprop networks ?
cause of surges in training process ?. pp 3062–3066, https://doi.org/10.1109/IJCNN.2009.
5178756

Takase H, Fujita M, Kawanaka H, et al (2009b) Obstacle to training spikeprop networks ?
cause of surges in training process ?. In: 2009 International Joint Conference on Neural
Networks, pp 3062–3066, https://doi.org/10.1109/IJCNN.2009.5178756

Wu Y, Deng L, Li G, et al (2018) Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in Neuroscience 12. https://doi.org/10.
3389/fnins.2018.00331

Wunderlich TC, Pehle C (2021) Event-based backpropagation can compute exact gradients
for spiking neural networks. Scientific Reports 11(1)

26

https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2022.1018006
https://doi.org/10.3389/fnins.2022.1018006
https://doi.org/10.3389/fnins.2022.1018006
https://doi.org/10.1145/3354265.3354275
https://doi.org/10.1109/DAC18074.2021.9586323
https://doi.org/10.1109/IJCNN.2009.5178756
https://doi.org/10.1109/IJCNN.2009.5178756
https://doi.org/10.1109/IJCNN.2009.5178756
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.3389/fnins.2018.00331


Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms

Zheng H, Wu Y, Deng L, et al (2020) Going deeper with directly-trained larger spik-
ing neural networks. In: AAAI Conference on Artificial Intelligence, URL https://api.
semanticscholar.org/CorpusID:226290189

27

https://api.semanticscholar.org/CorpusID:226290189
https://api.semanticscholar.org/CorpusID:226290189

	Introduction
	Neuron model and notation
	Leaky Integrate-and-Fire Neuron
	Exact Gradients of SNNs using Error Backpropagation
	Computing the DFA update rule
	Computing the error
	Computing the local gradient

	Critical Points of Local Gradients
	Neuromorphic Hardware Compatibility

	Empirical Results
	Critical Points Analysis
	Performance
	Convergence
	Weights and Gradient Alignment

	Discussion
	Acknowledgements
	Data and code availability
	Conflict of interest



	Experimental Settings
	Firing Rate Regularization
	Update Method and Hyperparameters
	Event-Based Simulations on GPU

	Deriving eq. 17

