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We study the formation and the subsequent dynamics of shock waves in repulsive one-dimensional Bose gases
during the free expansion of a density hump. By building coherent Fermi states for interacting Bethe fermions,
we define a quantum fluctuating initial state expressed in terms of universal quantities, namely the density and the
Luttinger parameter. In the integrable case, this fluctuating state is then evolved by generalized hydrodynamics
(GHD) and, differently from non-fluctuating initial states, it develops density ripples on top of the hydrodynamic
mean value. Our analysis gives a general theory of quantum ripples and wave breaking in integrable and
quasi-integrable one-dimensional liquids and clarifies the role of the interaction strength. In particular, for
strongly/intermediately interacting bosons, we find quantum ripples originating from low-energy modes at the
Fermi surface interfering when transported by GHD. In the low coupling limit, near the quasicondensate regime,
we find instead that density ripples have a semi-classical nature, and their description requires information on the
curvature of the Fermi surface.

I. INTRODUCTION

Quantum gases in one dimension often respond to external
perturbations through collective excitations rather than
single-particle effects. An illustrative perturbation consists
of a spatial modulation of the fluid density, induced e.g. by
an external potential (Figure 1), with Tomonaga-Luttinger
liquid theory [1–4] providing a universal method for small
amplitude perturbations in linear response. Beyond linear
response, a fascinating class of phenomena emerges. A
celebrated example is the formation of shock waves in a fluid
of impenetrable bosons (or noninteracting fermions). Here,
denser regions have higher particle velocities, causing an
overturn of fast modes over the background, and initiating
nonlinear physics after the shock time ts ∼ ∆x/∆ρ, see
Fig. 1. Shock waves in free Fermi gases have been have been
discussed in many works, e.g. [5–15], and more recently
studied in interacting integrable models through the use of
Generalized Hydrodynamics (GHD) [16–22], often together
with Gross-Pitaevskii equation, truncated Wigner approach
and different numerical methods [19–26]. However a full char-
acterization, especially in presence of non-trivial interactions,
is far from being complete. For integrable, or quasi-integrable,
gases, GHD, and in particular its zero-temperature limit
(zero-entropy GHD), gives an accurate mean description of the
pre and post-shock dynamics, but it fails to capture quantum
fluctuations, particularly in scenarios like the one in Figure 1.
Indeed, at low temperatures, quantum fluctuations play an
important role in the dynamics, as with dynamics the so-called
quantum ripples are transported on large scales, giving this
way macroscopic wave effects. Therefore they need to be
included for a complete hydrodynamic description. One way
to do it is by the so-called quantum GHD e.g. [27–33], where
linearized modes around the zero-entropy GHD background
are quantized in terms of Tomonaga-Luttinger chiral bosons,
and evolved according to an effective quadratic Hamiltonian.
Although intriguing, this method encounters some technical
challenges, primarily in handling the evolution of bosonic
correlations within the GHD framework.

FIG. 1. Illustration of a shock wave forming from a density pertur-
bation in one-dimensional quantum gases. Red curves depict the
corresponding evolution of velocities (or rapidity for interacting inte-
grable systems): when fast modes overturn the background a shock
wave is formed.

In this work, we take a different path to merge quantum
fluctuations with hydrodynamic descriptions, in particular
focusing on the case of shock wave dynamics. Analogously
to what is done in classical fluctuating hydrodynamics, we
construct an initial state containing quantum fluctuations, and
we use it to build a fluctuating phase-space occupation func-
tion nFluct(x, k) that can be evolved with the standard GHD
equations of Refs. [34, 35], or once provided a Boltzmann-like
equation for the non-integrable case [36–42]. Expectation
values of local densities are then obtained as weighted
integrals in quasimomentum space, displaying fluctuations
around their mean value. This approach allows us to give
a complete characterization of quantum and semi-classical
density ripples during the formation and propagation of the
shock, thereby establishing a direct relation between the types
of ripples and the underlying microscopic interaction in the gas.

In general, characterizing such fluctuating initial states for
an interacting quantum gas is a hard task. In the case of Fig. 1
and restricting to noninteracting fermions, the system is found
in a coherent Fermi state [43–47], a superposition of particle-
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FIG. 2. Illustration of the quantum fluctuations generating around
position x at time t > ts after the shock formation. The number of
Bethe fermions δNF (x) undergoing quantum interference is obtained
as the area on the initial density hump between those points that
are transported by Euler hydrodyamics to position x, and it must be
compared to the total number of Bethe fermions ∆NF in the hump.

hole excitations generated by the external potential on top of a
Fermi sea. Here we extend this description of coherent states
of fermions to interacting quantum gases, such as the inter-
acting Lieb-Liniger model. Namely, we construct fluctuating
initial states obtained as coherent states of the refermionized
degrees of freedom describing quantum fluctuations at low
energies. In particular, for a given initial macroscopic den-
sity pertubation ρ(x), we find a density of Bethe fermions
ρF (x) = ρ(x)/

√
K(x), with K(x) the local Luttinger pa-

rameter describing the emergent one-dimensional quantum
fluid [1, 48]. The resulting fermionic occupation function,
nFluct(x, k) is universal, being dependent only on the density
ρ(x) and on the Luttinger parameter K(x). In the integrable
case, its time evolution is carried out with GHD, which proved
its efficacy in numerous studies e.g. [49–58], including differ-
ent experimental tests [59–68]. In the non-integrable case, one
can consider the kinetic picture for the refermionized quasipar-
ticles proposed in Ref. [69].

Our analysis finally clarifies the different nature of density
ripples in one-dimensional shock waves depending on the
interaction coupling of the gas. To clarify this, we focus on
the post-shock dynamics t > ts and we consider a number of
Bethe fermions δNF (x) contained within a small subregion
of size δx ∼ O(ℓhydro) around position x, see Fig. 2 for an
illustration. Here, we introduced the hydrodynamic scale ℓhydro
satisfying ℓhydro ≪ ℓ, with ℓ ∼ ρ/|∂xρ| the scale of the exter-
nal perturbation. A quantization condition in this subregion
requires that momenta satisfy (δk · δx)/∆NF = δNF /∆NF ,
with ∆NF the total number of particles in the hump. We then
distinguish the following cases:

– Quantum regime, if δNF /∆NF ∼ O(1). Quantum
ripples are associated to the notion of a quantized phase space,
and are generated from the interference of low-energy modes
at the Fermi surface. This class includes those effects that are
captured by field-theory approaches, such as quantum GHD,
e.g. [27, 30, 32].

– Semi-classical regime, if δNF /∆NF ≪ 1. In this case,
to properly characterize the density ripples around position
x, further information on the Fermi surface in a surrounding
region scaling as ∼ O(ℓ2/3) becomes necessary. Such
semi-classical ripples might be viewed as a background effect

originating from higher-derivative corrections [70–73], and/or
by universal corrections in the form of Airy kernels at the
propagating front, e.g. [5, 11, 43, 74–78].
Both quantum and semi-classical ripples are captured by our
fluctuating state, with the dominant contribution fixed by
the choice of the initial density hump ∆ρ and the value of
the coupling. At strong repulsion c → ∞, Bethe fermions
coincide with physical degrees of freedom (K = 1), thus one
can choose a density perturbation such that δN(x) ∼ O(∆N),
and quantum ripples give the leading contribution inside the
shock region. Moreover, since the gas is non homogeneous,
semi-classical ripples are also present, particularly in regions
∼ O(ℓ2/3) around the shock fronts [11, 43]. In the weak
coupling regime c → 0+ and ρ ∼ 1/c ∼ O(ℓ) to the quasi-
condensate, the density ripples only exhibit a semi-classical
nature. In this limit, the Luttinger parameter diverges as
K ∼ 1/

√
c [79], leading to a diverging Bethe fermion density

ρF ∼ 1/
√
c, with semi-classical ripples spreading over a size

O(c−2/3). Finally, for intermediate couplings both quantum
and semi-classical ripples are present with the quantum ones
rapidly vanishing as interactions are decreased.

Outline.— The paper is organized as follows. In Sec. II, we
introduce the Lieb-Liniger model, its Bethe ansatz solution,
and the description of its low-energy universal excitations by
refermionization methods. In Sec. III, we revisit the case at
strong repulsion (after Ref. [43]): we build the fluctuating ini-
tial state, and we evolve it with Euler hydrodynamics. We then
provide analytical expressions for the density ripples (both
quantum and semi-classical). Sec. IV contains our argument
to construct fluctuating initial states at finite interactions. The
semi-classical limit of Lieb-Liniger to the quasicondensate
regime is considered in Sec. IV B, unveiling the importance
of higher-order corrections to the saddle point contribution at
small coupling. Sec. V discusses our results in comparison
with numerical simulations. Finally, Sec.VI contains our con-
clusions and some perspectives. Some technicalities and some
further discussions are deferred to the Appendixes A-E.

II. MODEL AND REFERMIONIZATION OF LOW-ENERGY
EXCITATIONS

Our analysis takes the Lieb-Liniger model [80, 81] as a
foundational reference, although our derivation maintains full
generality. Describing N contact-interacting bosonic particles
subject to an external potential V (x), the Lieb-Liniger model’s
Hamiltonian is

Ĥ = −1

2

N∑
i=1

∂2

∂xi2
+ c

N∑
i<j=1

δ(xi − xj) +

N∑
i=1

V (xi), (1)

with the local density operator ρ̂(x) =
∑

j δ(x − xj)/L and
with L the system size. Below we specify to the repulsive
regime c > 0 and we shall use γ = c/ρ as the rescaled coupling
strength. This model serves as a paradigmatic representation
for one-dimensional interacting systems and cold atomic gases,
as extensively discussed in Refs. [82–84].
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In the absence of external potentials (or equivalently when
V (x) = const), the Hamiltonian (1) is integrable. Namely,
for even (resp. odd) N , an eigenstate of Ĥ is associated to a
sequence of half-integers (resp. integers) {Ii}Ni=1 that specifies
the set quasi-momenta θi ∈ [−∞,∞] (or rapidities) through
the solution of the Bethe equations

θj =
2πIj
L

+

N∑
k=1

ϕ(θj − θk) (2)

with scattering phase ϕ(θ) = 2 arctan(θ/c) and the as-
sociated scattering shift T = ∂θϕ. Physically, one can
interpret 2πIj/L as the momenta of N non-interacting
fermions, and the Bethe equations as a non-trivial quantization
condition accounting for the interactions. The system’s
eigenstates can be parameterized by either the integers or
the rapidities, by application of the mapping from |{Ii}Ni=1⟩
to |{θi}Ni=1⟩ given in eq. (2). For instance, the ground state
set of rapidities {θi}Ni=1 is obtained by solving (2) from an
equally spaced sequence of Bethe integers {Ii ≡ i− N−1

2 }Ni=1.

In the thermodynamic limit N,L→ ∞, the set of rapidities
densely populate the real line and it is conveniently described
in terms of a density distribution. Precisely, macrostates of
the Lieb-Liniger gas are described in terms of a Fermi-Dirac
occupation function n(θ) (usually called filling function) for
fermionic quasiparticles featuring a bare energy ε(θ) = θ2/2
and bare momentum p(θ) = θ. Its precise expression is dic-
tated by the value of temperature and chemical potential, see
e.g. Ref. [85] for a detailed discussion. At zero temperature,
the filling function becomes a perfect Fermi sea between the
two Fermi edges ±θF , namely n(θ) = Θ(θ2 − θ2F ) where
Θ(·) is the Heaviside step function. Expectation values of local
observables are then obtained as integrals in rapidity space
weighted with n(θ). The density is ρ0 =

´
dθ
2π1

dr
[n](θ)n(θ),

with dressing operation respect to filling n, defined as

fdr[n](θ) = f(θ) +

ˆ
dα

2π
T (θ − α)n(α)fdr[n](α), (3)

and similarly for other quantities.

As n(θ) describes a perfect Fermi sea, any information on
ground state fluctuations is lost. A standard way to reintro-
duce these quantum fluctuations is offered by refermionization
methods. For instance, quantum fluctuations of the density
operator δρ̂(x) = ρ̂(x)− ρ0, can be written as

δρ̂(x) =
√
K(ψ̂†

+(x)ψ̂+(x) + ψ̂†
−(x)ψ̂−(x)) + h.o.c. (4)

where ψ̂± are chiral fermions whose properties are established
by a free massless Dirac field theory, see e.g. Refs. [86, 87] for
further discussion. The two-point function is

⟨ψ̂†
σ(x)ψ̂σ′(y)⟩ = δσ,σ′

iσ(x− y)
, σ, σ′ = ± (5)

and higher correlations can be obtained using Wick’s theorem.
Alternatively, one can encode low-energy fluctuations in

terms of Tomonaga-Luttinger chiral bosons φ̂± satisfying
⟨φ̂σ(x)φ̂σ′(y)⟩ = δσ,σ′ log(iσ(x− y)). The two descriptions
are connected via bosonization, ψ̂σ(x) ∝: e−iσφ̂σ(x) : (where
: · : is the normal ordering of fields), see Appendix A for more
details.

Eq. (4) can be also understood on physical grounds. Low-
energy states of the Lieb-Liniger model can be obtained by
creating particle-hole pairs around the left/right Fermi edges,
and can be realized by left/right fermionic operators ĉ†p≶0 =´
dx e−

i2πpx
L ψ̂†

∓(x) acting on the sequence of ground state
Bethe integers. For instance,

ĉ†N
2

ĉN+1
2

|{. . . •
N−1

2

•
N+1

2

◦
N
2

}⟩ = |{. . . •
N−1

2

◦
N+1

2

•
N
2

}⟩ . (6)

Hence, Eq. (4) encodes the quantum fluctuations of density
as coming from particle-hole pairs generated at the Fermi
edges. The amplitude in eq. (4) can be in fact interpreted as the
thermodynamic form factor ⟨part.-hole|δρ̂(0)|g.s.⟩/L =

√
K

[88, 89], with K = (1dr(±θF ))2 the Luttinger parameter of
the gas. Notice that there are short-wavelength non-universal
corrections to Eq. (4) accounting for backscattering processes
between the two Fermi edges. Since below we are interested
in the evolution of chiral states, we shall not consider these
terms in the density expansion.

In the presence of an external potential V (x), integrability
is lost. A first approximation that is usually considered is the
local density approximation (LDA): at each position x the state
is a Fermi sea with a θF (x) fixed by the local density ⟨ρ̂(x)⟩.
We denote filling functions obtained this way as nLDA(θ, x) =
Θ(θ2 − θ2F (x)). Such filling functions however do not include
any quantum fluctuations. Therefore, in the rest of this work,
we shall incorporate in the Bethe ansatz description of the gas
the fluctuating part (4) obtained via refermionization. As a
result, we obtain an improved initial state, denoted below as
nFluct(x, θ). In doing so, our starting point is Ref. [43] (which
we revisit in the following section) where the case at strong
repulsion c→ ∞ has been investigated.

III. TONKS-GIRARDEAU LIMIT AND FERMI COHERENT
STATES

At strong repulsion c → ∞, the system enters the Tonks-
Girardeau regime. For simple observables having no Jordan-
Wigner strings, the latter is equivalent to a free Fermi gas, with
fermionic degrees of freedom θi = 2πIi/L now coinciding
with the physical ones. In this limit, as K ≡ 1, there is no need
to distinguish the fermionic from the bosonic density in eq. (4).
Focusing on the right chirality, the density operator is

δρ̂+(x) = ψ̂†
+ψ̂+ =

∑
k>0

eikxÂ†
+,k (7)

with Â+,k creating a right-moving phonon, or equivalently a
superposition of particle-hole pairs generated around the right
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Fermi edge Â†
+,k =

∑
p>0 ĉ

†
pĉp+k [89].

Now, as anticipated in the introduction, Fermi gases in a
chiral potential V (x) are found in a coherent state |V ⟩ = Û |0⟩,
obtained as unitary transformation of the ground state operated
by

Û = exp

(
i

ˆ
Φ(x)ρ̂(x)dx

)
. (8)

The function Φ(x) is fixed by the expectation value of den-
sity, namely

1

π

dΦ

dx
= ⟨V |ρ̂(x)|V ⟩ ≡ ρLDA(x) =

pF (x)

π
(9)

since no corrections to LDA are expected in the thermody-
namic limit for an infinite system. Here, the two Fermi edges
±pF (x) = ±

√
2(µ− V (x)) and nLDA = Θ(θ2 − p2F (x)),

such that

ρLDA(x) =

ˆ
dθ

2π
nLDA(θ, x) =

pF (x)

π
. (10)

Φ(x) carries also the physical interpretation of a semi-classical
phase for long-wavelength modulation of density, similarly to a
height field in the bosonization language, see e.g. Refs. [1, 82].

Importantly, Â+,k |V ⟩ = pk |V ⟩, with eigenvalues given
by the Fourier modes pk =

´
e−ikxdΦ(x). We can therefore

conclude that: i) |V ⟩ is a coherent state for the low-energy
quantum fluctuations in (4); ii) it has a density of excitations
modulated by the external potential V (x) via eq. (9).

At this point, by noticing that the unitary transformation on
the chiral fermi operators amounts to an overall phase [43]

Û ψ̂±(x) Û† = e∓iΦ(x) ψ̂±(x), (11)

we can compute two-point function on |V ⟩ as

⟨V |
∑
σ=±

ψ̂†
σ(x1)ψ̂σ(x2)|V ⟩ =

2 sin(
´ x2

x1
pF (x

′)dx′)

x1 − x2
. (12)

Taking the Wigner transform of the two-point function, one
obtains the occupation function

nFluct(x, θ) =

ˆ
dyeiyθ

sin(
´ x+y/2

x−y/2
pF (x

′)dx′)

πy
(13)

or, equivalently, in terms of the initial potential

nFluct(x, θ) =

ˆ
dyeiyθ

sin(
´ x+y/2

x−y/2

√
2(µ− V (x′))dx′)

πy
,

(14)
where the notation nFluct(x, θ) denotes a (fluctuating) filling
function taking also negative values, i.e. carrying the physical
interpretation of a quasi-probability of finding a particle in
the same spirit of semi-classical Wigner functions [90–93].

FIG. 3. Evolution of a density hump for the Tonks-Girardeau gas.
Top panels – Color plot of nFluct in phase-space x-θ, obtained from
eq. (13) for times t = 0 (left) and after the shock time t > ts (right).
Dashed lines show the evolution of nLDA. Bottom panels – Corre-
sponding particle density in eq. (16) (solid curve), compared to the
LDA value (dashed curve) and to exact diagonalization numerics (ED)
(thick shaded curve); dashed gray axes mark the boundaries x±(t) of
the shock region. Inset: ED is compared to the saddle point approxi-
mation in eq. (31) (dark solid curve) and to the expansions in eq. (35)
near the shock points (dashed curves); dash-dotted cyan axes mark
the regions ∆x± around the shock points. In this figure, the density
hump is generated by µ− V (x) = 0.178 + 0.8 exp(−x2/202), and
numerics are done for a finite-size system of L = 4000 sites. Density
is rescaled as ∆ρ(t)/∆ρ(0) = ⟨ρ̂(t,x)⟩−ρ0

⟨ρ̂(0,0)⟩−ρ0
, where ρ0 =

√
2µ/π is

the LDA background value.

In the limit where the external potential is switched off, then
pF = const and the integral in eq. (13) gives nFluct = nLDA.

As shown already e.g. in Refs. [11, 13, 30, 32, 43, 69, 76,
94], the time evolution after a trap release of such fluctuating
state can be described by the hydrodynamic equation

∂tnFluct = −θ∂xnFluct, (15)

with solution nFluct(t;x, θ) = nFluct(0;x− θt, θ).

A. Corrections to LDA density during the gas expansion

Our focus is on the profile of particle density during the gas
expansion of Fig. 1, obtained at each time as

⟨ρ̂(t, x)⟩ =
ˆ

dθ

2π
nFluct(x− θt, θ), (16)

and particularly to determine the deviations from its LDA value
ρLDA(t, x) =

´
dθ
2πnLDA(x − θt, θ). In the Tonks-Girardeau

limit, such deviations can be analytically determined. Below,
we report the main passages and comment on the results,
leaving technical derivations and further details to Appendix B.
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(a) (b)

FIG. 4. Evolution of the density hump ∆ρ(t)/∆ρ(0) = ⟨ρ̂(t,x)⟩−ρ0
⟨ρ̂(0,0)⟩−ρ0

for the Lieb-Liniger gas at γ = 1 (left panel) and γ = 100 (right panel),
γ = c/ρ0 where ρ0 is the LDA background density. Post shock, the density exhibits ripples of different and distinct characteristics in the two
regimes. For low values of γ (left), low-frequency ripples are observed near the propagation fronts, which are identified with semi-classical
waves, whereas in the Tonks regime (right) the ripples are dominated by high-frequency oscillations spreading all over the shock region, which
characterize what we refer to as quantum ripples. Both density humps were generated by the potential V (x)− µ = α+ β exp(−x2/σ2), with
α, β chosen such that 0.05 ≤ ρ(t = 0, x) ≤ 0.2 and σ = 25, 20 for the left and right plots, respectively.

To begin with, we associate a vector x = (x, θ) to each
phase-space point, and define the Fermi contour as the geomet-
ric locus satisfying at t = 0

Γ0 = {(x, θ) : θ2 = p2F (x)}. (17)

Γ0 can be described as a simple curve in phase space since the
system is characterized by two symmetric Fermi edges ±pF (x)
at each x. In order to take advantage of this, we introduce a
coordinate s(x) ∈ R along Γ0 such that (with slight abuse of
notation)

Γ0(s) = {s(x) : θ0(s) = pF (x0(s))}. (18)

For simplicity, below we specialise to the right-moving front of
density x > 0 (the left-moving front is obtained by symmetry).
It is then possible to choose the coordinate s to be

s(x0) =

ˆ x0

−∞

dx′

pF (x′)
, (19)

which conveniently replaces the spatial coordinate dx with
the propagating time ds = dx/pF (x) on the non-flat Fermi
surface, see e.g. Refs. [95–97]. This curve holds also another
physical meaning, being directly related to a phase-space quan-
tization condition, see Refs. [98, 99] and Appendix B. In terms
of this coordinate, the dynamics generated by eq. (15) is en-
coded in the equation of motion: (θt(s) ≡ θ0(s) is conserved)

xt(s) = x0(s) + tθ0(s) (20)

which can be solved requiring that xt(s) ≡ x, yielding the
replacement of x0 with x− θt in eq. (19).

We then write the time-evolved density in eq. (16) as

⟨ρ̂(t, x)⟩ =
¨

dθ dy

2π2

√∣∣∣∣ds(x1)dx

∣∣∣∣ ∣∣∣∣ds(x2)dx

∣∣∣∣
×

sin
(´ x2

x1
dx0

dx′
t

dx0
pF (x

′
t)
)
eiθy

(s(x2)− s(x1))
, (21)

with backward-evolved coordinates

x1,2 = x− θt∓ y/2, (22)

and time-dependent phase difference

∆Φt(x1, x2) =

ˆ x2

x1

dx0(s)
dx′t(s)

dx0(s)
pF (x

′
t(s))

=

ˆ x2

x1

dx′ pF (x
′) +

t p2F (x
′)

2

∣∣∣∣x2

x1

. (23)

The second term in (23) is nothing but the dynamical phase
cumulated by a single particle with momentum pF (x) that
freely expands for a time t [30, 48, 100]. The jacobians are
easily evaluated as (see Appendix B)

ds(x1,2)

dx
=

1

pF (x1,2)[1 + tp′F (x1,2)]
. (24)

One can then introduce the semi-classical action

S(θ, y) = −θy +∆Φt(x1, x2) (25)

and look for the saddle point configuration ∇S(θ, y) = 0.
Away from singularities, the saddle point fixes the major con-
tribution to eq. (21) as coming from y → 0,

⟨ρ̂(t, x)⟩ ≈ lim
y→0

∑
x1∈{x⋆+y/2}
x2∈{x⋆−y/2}

√∣∣∣∣ds(x1)dx

∣∣∣∣ ∣∣∣∣ds(x2)dx

∣∣∣∣
× sin (∆Φt(x1, x2))

2π(s(x2)− s(x1))
(26)
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with x1,2 = x⋆ ± y/2 projected to the Fermi contour value,
that is

x⋆ = x− tpF (x
⋆). (27)

Clearly, x⋆ ≡ x⋆(t;x). This self-consistent equation can dis-
play multiple solutions. Precisely, multiple solutions are found
in the shock region x−(t) ≤ x ≤ x+(t) with boundaries x±(t)
satisfying

p′F [x
⋆(t;x)]

∣∣∣∣
x=x±(t)

= ∞, (28)

as also explained in Appendix B.

It is then easy to see that for x /∈ [x−(t);x+(t)], the
limit y → 0 corresponds to x1 → x2, and one recov-
ers the LDA result for the density from eq. (26) since
limx1→x2

∆Φt(x1, x2) ≈ pF (x
⋆)y. On the other hand, in-

side the shock region corrections to LDA density are observed,
as derived below. For convenience, we separate the x ≈ x±(t)
region from the rest of the shock region, x−(t) < x < x+(t),
discussion.

1. Saddle point contribution in the shock region

In the region x−(t) < x < x+(t), eq. (27) has three differ-
ent solutions x⋆j satisfying x⋆1 < x⋆2 < x⋆3. They correspond to

12 terms in the sum of eq. (26). The “diagonal” contributions
x1,2 = x⋆j ± y/2 reproduce the LDA result, that is

ρLDA(t, x) =
pF (x

⋆
1)− pF (x

⋆
2)

2π
+
pF (x

⋆
3)

2π
+
ρ0
2
, (29)

ρ0 =
√
2µ/π, while the non-diagonal terms give rise to LDA

corrections

⟨δρ̂(t, x)⟩
∣∣∣∣
x⋆
i ,x

⋆
j

≈

√∣∣∣∣ds(x⋆i )dx

∣∣∣∣ ∣∣∣∣ds(x⋆j )dx

∣∣∣∣
×

sin
(
∆Φt(x

⋆
i , x

⋆
j )− Iij π

2

)
2π(s(x⋆i )− s(x⋆j ))

,

(30)

where Iij is the Maslov index along the path s(x⋆i ) → s(x⋆j ) on
the Fermi surface, see Appendix B for more details. Combining
all terms together, we obtain

⟨δρ̂(t, x > 0)⟩ = −J12
cos (∆Φt(x

⋆
1, x

⋆
2))

π|s(x⋆1)− s(x⋆2)|
+ J23

cos (∆Φt(x
⋆
2, x

⋆
3))

π|s(x⋆2)− s(x⋆3)|
− J13

sin (∆Φt(x
⋆
1, x

⋆
3))

π|s(x⋆1)− s(x⋆3)|
, (31)

where the shorthand Jij =
√

|ds(x⋆j )/dx||ds(x⋆i )/dx| has
been used for convenience. Notice that the same analyti-
cal expression in eq. (31) can be obtained from quantum
GHD [32, 101]. It is easy to see that ∆Φt(x

⋆
i , x

⋆
j ) is noth-

ing but the number of particles in the hump between points
s(x⋆i ) and s(x⋆j ) along the time-evolved Fermi surface (cf.
Fig. 2), see Appendix B for more details. Eq. (31) gives a
non-vanishing correction only if ∆Φt ∼ O(∆N), ∆N the
total number of particles in the hump, therefore it can be un-
derstood as a quantum correction to LDA density according to
the classification of Sec. I.

2. Expansion at the shock points

Close to the shock points x ≈ x±(t), the limit y → 0 be-
comes more complicated. If we approach the shock points
from inside the shock region, namely x = x±(t)∓ ϵ for ϵ→ 0,
two roots in eq. (27) coincide and lead to contact singularities
in eq. (31). On the other hand, if x→ x± ± ϵ then eq. (27) is
single valued and (26) reproduces the LDA density.

As noted already in Refs. [11, 19, 43, 78], a good characteriza-
tion of this region requires an expansion of the phase difference
in eq. (21) beyond saddle-point contribution, that is

Φ(x2)− Φ(x1) ≈ pF (x
⋆)y +

p′′F (x
⋆)y3

24
. (32)

Using this, one finds universal corrections at the edges of the
shock region in the form of a Airy kernel [11, 19, 43, 70, 78]

⟨ρ̂(0, x)⟩ =

ˆ
dθ

2πi
Ai1

(
θ − pF (x

⋆)
3
√
ip′′F (x

⋆)/8

)
, (33)

Ai1(·) being the incomplete Airy function defined as Ai1(x) =´
dq/(2πi) exp(iqx+ iq3/3)/q. By recasting the expression

in terms of Fermi positions at t = 0, an equivalent expression
close to x±(t) and valid for any time t after the shock formation
time is found [11]

⟨ρ̂(t, x)⟩ =

ˆ
dθ

2π
Ai1

(
x− x⋆

3
√
x′′F (θ

⋆)/(8i)

)
(34)

this expression is single-valued for x ≈ x±(t). Here, xF (θ) is
defined such that pF (xF (θ)) = θ, and xF (θ⋆) ≡ x⋆ = x−θ⋆t.
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(b) (a)

FIG. 5. (a) – Color map of nFluct in the x–θ plane for different γ = 0.5, 1, 100 (rows) and different times t/σ = 0, 20, 50 (columns). Red solid
lines show the evolution of nLDA obtained from zero-entropy GHD [19]. (b) – Cross-section of nFluct at t = 0 and x = 0, shown as function of
θ. In this figure, θmax = max(θF (t = 0, x)) and the density hump is initially generated by the potential V (x)− µ = α+ β exp(−x2/σ2)
with α, β chosen such that 0.05 ≤ ρ(t = 0, x) ≤ 0.2 and σ = 20.

By expanding this result for small δx± = ∓(x− x±(t)), one
obtains the following correction to the LDA density

⟨δρ̂(t, x ≈ x±(t))⟩ = (κ±)2
[
δx±[Ai(κ±δx±)]2

− [Ai′(κ±δx±)]2

κ±

]
(35)

where κ± = [2i/(x′′F (θ
⋆))]

1/3 ∼ O(ℓ2/3). This result can
be combined with the LDA solution (29) and with regular
terms of (31) to correctly determine the behavior of density at
the shock points. Finally, we briefly comment on the range
of validity of eq. (35). Since these corrections are centered
around the shock points x±(t) where the local number of
excess particles becomes very small, limy→0 ∆Φt = 0, they
cannot belong to the quantum regime. On the other hand, the
total number of particles contained in the density hump ∆N ,
provides a useful estimate as to the width of the Fermi surf and
sets the range of validity to be approximately |δx±| ≤ ∆x± ∼
(∆N)2/3/κ± [11], which is indeed finite in the semi-classical
regime.

In Fig. 3, we show the evolution of the fluctuating initial
state in eq. (15) and the corresponding evolution of the particle
density (16) for the setup illustrated in Fig. 1. As one can see,
the density curve obtained through nFluct shows oscillations on
top of the LDA value inside the shock region, and it perfectly
matches the exact diagonalization numerical data. In the in-
set of Fig. 3, the analytical results for the density ripples in
eqs. (31) and (35) are compared with exact numerics. We see
that around the shock points x±(t) one finds the regions ∆x±
inside which eq. (35) gives a good approximation of (16) while

(31) shows contact singularities. Outside these regions, the
saddle point approximation (31) is regular and it reproduces
the numerical data extremely well.

IV. FLUCTUATING INITIAL STATE AT FINITE
INTERACTION

At finite interactions, a (universal) fermionized description
of the quantum fluctuations of the Bose gas is given by Eq. (4).
For non-homogeneous systems,

ρ̂(x) =
√
K(x)ρ̂F (x) (36)

where we denoted ρ̂F =
∑

σ ψ̂
†
σψ̂σ and K(x) is the LDA

value of the Luttinger liquid constant, related to the local com-
pressibility of the gas [1, 83]. It is then possible to build a
coherent Fermi state as in Sec. III but now for the refermion-
ized degrees of freedom, see also Ref. [69]. We write this state
as

|V ⟩ = exp

(
i

ˆ
dx Φint(x)ρ̂F (x)

)
|0⟩ (37)

with function Φint(x) again fixed by the expectation value of
density. Using eq. (36), we have√

K(x)

π

dΦint

dx
= ⟨V |ρ̂(x)|V ⟩ = ρLDA(x) (38)

implying that dΦint/dx = πρLDA(x)/
√
K(x) and therefore,

repeating the previous steps
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FIG. 6. Evolution of the density hump ∆ρ(t)/∆ρ(0) = ⟨ρ̂(t,x)⟩−ρ0
⟨ρ̂(0,0)⟩−ρ0

for the Lieb-Liniger gas at different γ = c/ρ0, with ρ0 the LDA
background density. γ increases from leftmost to rightmost panels. In each panel we find: i) dashed-line curves showing the LDA value of
density, obtained with zero-entropy GHD; ii) dot-dashed curve showing the density profile at the shock time ts, estimated as tangent point in the
Fermi contour evolution (see Ref. [19]). iii) fluctuating density: top row – numerical data obtained with tDMRG [102], see main text for a
discussion; bottom row – prediction obtained using nFluct and Euler GHD, see eq. (16); we checked that higher-order corrections to Euler GHD
can be neglected. In this figure, the density hump at t = 0 is generated by the potential V (x)− µ = α+ β exp(−x2/σ2) with α, β chosen
such that ρ(0, 0) = 0.2 and ρ0 = 0.05; σ = 20 for γ = 5, 10, 100, σ = 40 for γ = 2. The lattice model used for the numerics has L = 1000
sites and open boundaries conditions.

nFluct(x, k) =

ˆ
dyeiyk

sin

(´ x+y/2

x−y/2
πρLDA(x

′)√
K(x′)

dx′
)

πy
. (39)

This expression is universal, as it depends only on the value
of density ρLDA and on the Luttinger parameter K of the one-
dimensional gas. Specifying to the Lieb-Liniger model, we can
express the phase in eq. (39) as dΦint/dx = pDr

F /π. Here we
have introduced the physical momentum, which differs from
the momentum pF of a noninteracting system due to scattering
shift in eq. (2). The physical dressing operation (notice that
this “Dr” operation is different from “dr” appearing in eq. (3))
of a function h(θ) respect to any filling n, is written as

hDr
[n](θ) = h(θ) +

ˆ
dα

2π
ϕ(θ − α)(h′)dr[n](α)n(α). (40)

We denote with pDr
F (x) ≡ pDr

[n](θF (x)) the dressed Fermi mo-
mentum computed at the Fermi point, which is related to the
LDA density as

ρLDA(x) =

ˆ θF (x)

−θF (x)

dθ

2π
1dr[nLDA]

(x, θ) =

ˆ pDr
F (x)

−pDr
F (x)

dp

2π
. (41)

Using the relation

pDr
F (x) = θdrF (x)

√
K(x), (42)

with θdrF (x) ≡ θdr[n](x, θF (x)), and dressing in eq. (3) per-
formed using nLDA(x, θ) at each position x, we rewrite (39)
as

nFluct(x, k) =

ˆ
dyeiyk

sin
(´ x+y/2

x−y/2
dx′θdrF (x′)

)
πy

. (43)

This object carries the physical interpretation of quasi-
probability in the same sense of eq. (13), but for refermionized
degrees of freedom rather than for the physical ones. It be-
comes clear then that the fluctuating macrostate in (43) is
related to the macrostate of rapidities nFluct(x, θ) via a (non-
linear) reparametrization of the quasimomentum space

nFluct(x, θ) = nFluct(x, k ≡ pDr
[nFluct]

(θ, x)/
√
K(x)). (44)

This also shows that the density (and all other thermodynamic
quantities) can be obtained as

ρ(x) =
√
K(x)

ˆ
dk

2π
nFluct(x, k)

=

ˆ
dθ

2π
1dr[nFluct]

(x, θ) nFluct(x, θ). (45)

Eq. (43) together with the mapping to standard rapidities,
eq. (44), (or equivalently eq. (39) for the non-integrable gas)
represent our main result. It specifies the quantum fluctuating
initial state for the interacting Bose gas in terms of universal
quantities. Its time evolution requires the knowledge of a
Boltzmann-like equation in phase space [36–42]. For instance,
one can consider the kinetic equation for the refermionized
quasiparticles (39) proposed in Ref. [69]. For the Lieb-Liniger
gas, it can be easily carried out using GHD, as discussed in the
following paragraph.
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A. Hydrodynamic evolution

In this paragraph, we discuss the evolution of the setting in
Fig. 1 for the interacting Lieb-Liniger gas γ = c/ρ0 ∼ O(1),
with ρ0 the LDA background density. The latter is evolved
using standard GHD equations [34, 35]

∂tnFluct(t;x, θ) + veff[nFluct]
(θ)∂xnFluct(t;x, θ) = 0, (46)

with effective velocity veff[n](θ) = θdr[n](θ)/1
dr
[n](θ). Higher-order

corrections to eq. (46), in particular dispersive terms ∝ ∂3x, are
present, see eq. (69). Their expression has been determined in
Ref. [72]. However, we checked that these terms remain small
in the setup of Fig. 1 for the times that we investigate, and thus
will be neglected in the following. Moreover we remark that
for small initial modulation of the density, namely when we can
approximate the Luttinger parameter to be space independent
K(x) ≃ K0, we can also write the evolution directly in the
coordinate k as

∂tn(t; k, x) +
√
K0 ∂kθ

Dr
[nFluct]

∂xn(t; k, x) = 0. (47)

We recall that applying Euler GHD (46) to nLDA(t;x, θ)
yields to the so-called zero-entropy (or zero-temperature) GHD
[19], with Fermi points being the only hydrodynamic modes
governing the time evolution. Indeed, by applying spatial and
time derivatives to the LDA state give Dirac delta functions
δ(θ − θζF (t, x)) around the Fermi points θζF (t, x), allowing to
recast (∂t + veff∂x)nLDA = 0 as∑

ζ=±

ζδ(θ − θζF )[∂tθ
ζ
F + veff(θζF )∂xθ

ζ
F ] = 0. (48)

Here, we assumed that there is a single Fermi sea with
boundaries θ±F (t, x), the generalization to multiple Fermi
seas proceeds similarly, see Ref. [19]. However, this is not
the case when considering nFluct(t;x, θ) as initial state, and
retaining the full θ-dependence becomes necessary to properly
characterize the hydrodynamic evolution.

In order to illustrate this, we focus on the simplified case
where the spatial inhomogeneity is large ℓ ∼ ∂xρLDA/ρLDA ≫
1, so that only the semi-classical ripples of nFluct need be
considered. In this case, ∂xθF ∼ O(1/ℓ) and thus one can
expand the phase difference entering in eq. (43) as

ˆ x+y/2

x−y/2

θdrF (x′)dx′ ≈ θdrF (x)y +
y3

24
∂2xθ

dr
F (x). (49)

This expansion motivates the definition of α ≡ ∂2xθ
dr
F /8, and

can be reinserted into nFluct (43) to determine

nFluct =

ˆ
dy

πy
eiyk sin

(
θdrF y +

y3

24
∂2xθ

dr
F + . . .

)
=

ˆ
dq
[
Θ(k + θdrF − qα

1
3 )−Θ(θdrF − k + qα

1
3 )
]

×Ai(q). (50)

Now, it follows that the application of a spatial derivative acts
only on θdrF and α so that

∂xΘ(k + θdrF − qα
1
3 ) = δ(k + θdrF − qα

1
3 )

×(∂xθ
dr
F − q

∂3xθ
dr
F

24α
2
3

). (51)

As a result, it follows that, for the case of generic number of
Fermi points, labelled by the index ζ, and with signs sζ , such
that Fermi point position is θζF (t, x), we obtain

∂xn(k = θdr) =
∑
ζ

sζ
δθdr(θζF )

δ(θζF )

Ai(k+θdr(θζ
F )

α1/3 )

α1/3
∂xθ

ζ
F+O(∂3x),

(52)
and, since

´
dkα−1/3Ai(kα−1/3) = 1, we find

Ai(k+θdr(θζ
F )

α1/3 )

α1/3
= δ(k + θdr(θζF )) +O(ℓ−2/3). (53)

Hence, at small α ∼ 1/ℓ2 (or equivalently for large spatial
variations ℓ≫ 1), zero-temperature Euler GHD (48) is indeed
recovered. However, higher-order corrections coming from
the second term in eq. (51) generates also higher-order hydro-
dynamics terms, precisely dispersive terms at leading order,
correcting the Euler evolution of the Fermi points

∑
ζ

sζ
24α

Ai′′
(
k + θdrF (θζF )

α
1
3

)
∂3xθ

dr
F (θζF ). (54)

Here, we used the known identity xAi(x) = Ai′′(x). Impor-
tantly, the hydrodynamic coefficient in eq. (54) has a finite
limit in terms of derivative of Dirac delta for large ℓ, that is

Ai′′(k+θdr(θσ
F )

α1/3 )

α

ℓ≫1
≈ δ′′(k + θdr(θσF )). (55)

Remarkably, this shows that the Euler evolution of nFluct con-
tains dispersive hydrodynamics terms even at large ℓ ≫ 1,
once expressed in terms of only LDA quantities, such as the
Fermi points θζ . It moreover shows that even for large ℓ (or
small c, see Sec. IV B), the phase terms of nFluct cannot be
neglected, if one wants to go to times which are beyond Euler
scale.

B. Gross-Pitaevskii limit

An important question concerns what happens to nFluct in
the limit of weak interaction c→ 0+, especially at large den-
sity ρ ∼ 1/c. In this limit, it is known that the ground state
of (1) is a quasicondensate [79, 103], and it is described by a
bosonic mean-field single-particle wavefunction Ψ(x, t) play-
ing the role of order parameter for the superfluid regime. Its
dynamics is captured by the Gross-Pitaevskii equation (GPE)
[6, 104–109], which is purely classical and reads as

i∂tΨ =

(
−∂

2
x

2
+ V (x)− µ+ c|Ψ|2

)
Ψ. (56)
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In the homogeneous case V (x) = 0, GPE is known in the math-
ematical literature as Non-Linear Schrödinger (NLS) equation.
The thermodynamic Bethe ansatz structure of NLS has been
considered in detail in Ref. [108].

The limit of the zero temperature condensate in the NLS is
particularly tricky. One of the best way to proceed is to take
the c→ 0+ limit of the Lieb-Liniger dressing and express the
result in terms of principal value integral p.v.

´
≡
ffl

,

ˆ θF

−θF

dα

2π
T (θ − α)fdr[nLDA](α)

= fdr[nLDA](θ)− 2c

 θF

−θF

dα

2π

∂αf
dr
[nLDA](α)

θ − α
, (57)

so that the NLS dressing operation in the quasi-condensate
becomes

f(θ) = 2c

 θF

−θF

dα

2π

∂αf
dr
[nLDA](α)

θ − α
. (58)

From this expression (see Appendix C), fdr(θ) can be ex-
plicitly determined. In particular, one finds the well known
semi-circle distribution for the 1dr(θ),

1dr[nLDA](θ) =
1

c

√
θ2F − θ2 +O(c−

1
4 ), (59)

with Fermi edges ±θF given in terms of the density ρ as

ρ(x) =

ˆ
dθ

2π
1dr[nLDA](θ) =

(θF (x))
2

4c
=
µ− V (x)

c
. (60)

This expression agrees with the ground state density compute
in LDA from the GP equation (56): in the bulk the gradient
term can be put to zero giving (60). As explicitly derived be-
low, the zero coupling limit of nFluct yields the semi-classical
ripples only. In this case, one can expand the phase in eq. (43)
around the Fermi surface as done in Sec. IV A. Our starting
point in assessing the zero coupling limit of nFluct is therefore
the calculation of θdr(θF ) for the quasicondensate. A simple
calculation, based on Tricomi formula to invert the dressing
operation (58), gives

θdr[nLDA](θ) =
θ

2
1dr[nLDA](θ) (61)

implying that the zero-temperature effective velocity
veff[nLDA](θ) = θ/2, half of the bare one, for the θ lying in-
side the Fermi points, and veff[nLDA](θ) = θ for the θ outside.
Now, the problem is that eq. (61) together with eq. (59) im-
plies θdr(θF ) = 0 in a non-analytic fashion. The behavior of
dressed functions near the Fermi edges is hard to access in the
low-coupling expansion as it requires to go beyond the leading
terms in the expansion (57) at low c. We can however circum-
vent this problem by using the identity derived in Appendix D,
giving this way the result

1dr[nLDA](θF ) =
√
π
(ρ
c

)1/4
+ . . . (62)

which, given that 1dr(θF ) =
√
K, this implies K = π/γ1/2

at low coupling as known from Bogoliubov theory [79]. Eq.
(62) implies, using eqs. (59) and (61), the following form for
the dressed momentum at the Fermi point

πρ√
K

=
√
πρ3/4c1/4 =

√
π/c ρ

3/4
NLS, (63)

where, in order to take the limit to the classical NLS evolution,
we have defined the rescaled NLS density in the limit c→ 0+

ρ = ρNLS/c, (64)

such that the Fermi edges θF = 2
√
ρc = 2

√
ρNLS have a

finite value in the limit c → 0. Starting from eq. (43), using
θdrF (x) ≡ θdr(x, θF (x)) in (63), we obtain at weak interactions
the fluctuating state

nFluct(x, k) =

ˆ
dy eiyk

×
sin
(√

π
c

´ x+y/2

x−y/2
(µ− V (x′))3/4dx′

)
πy

. (65)

Within the approximation where pDr is computed using the
LDA dressing (valid when nFluct is a small modification of the
LDA filling), in the low coupling limit the mapping between
k and θ can be computed exactly using that ϕ(θ)/(2π) →
sgn(θ)/2, giving this way

pDr
[n](θ) ≃ θ +

1

2c

ˆ θF

−θF

dα sgn(θ − α)
√
θ2F − α2. (66)

Performing the integral and using that
√
K = ρ

1/4
NLS

√
π/c, the

mapping reads

√
c k(θ;x) =

√
1

2θF (x)

(
2c θ + θ

√
(θF (x))2 − θ2

+ (θF (x))
2 arctan

(
θ√

(θF (x))2 − θ2

))
, (67)

for θ ∈ [−θF , θF ] and k(θ;x) = k(±θF ;x) for θ ≷ ±θF .

First, we notice how in the homogeneous case V (x) = 0,
the integral over y gives a unit step function for θdr(−θF ) ≤
k ≤ θdr(θF ), hence reproducing the LDA filling. Moreover,
by scaling y →

√
cy, we notice that the integral over the phase

y in eq. (65) acts only on a region ∼ O(
√
c) and therefore for

small coupling we can write

nFluct(x, θ) =

ˆ
dy eiy

√
ck(θ;x)

×
sin
(
(µ− V (x))3/4y + y3c

24 ∂
2
x(µ− V (x))3/4 +O(c2)

)
πy

.

(68)

We obtain again the result of eq. (50), now with α ∼ c, giving
therefore a smearing of the δ functions in the zero-entropy
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GHD proportional to c1/3. Notice that the c correction to the
phase is the same order as the c correction to k in eq. (67). It
is therefore evident that the density ripples at small coupling
have a semi-classical nature. Taking the limit c → 0 in eq.
(68), we finally find that in the strict limit of the classical
NLS, the effects of the initial quantum fluctuations vanishes,
as expected, and quantum ripples, as the one carried by nFluct,
amount to subleading corrections, see Appendix E. On the
other hand we remark that NLS equation is known to have
density ripples caused by the dispersive wave breaking, as
extensively discussed in the literature using Whitham approach,
see e.g. [110–113]. It is clear that such ripples therefore have
a different origin, they must come from dispersive terms in the
GHD evolution, see eq. (69). Their study and a more direct
comparison of our approach with Whitham theory is postponed
to subsequent studies.

V. NUMERICAL RESULTS

We now move to the numerical simulations of the evolution
of nFluct via Euler GHD equation eq. (46).
Prepared in an initial density hump, Fig. 4 compares the evo-
lution of the density profiles given by nfluct for two cases: for
γ = 1 (panel (a)) and for γ = 100 (panel (b)), noting that the
latter is far into the Tonks-Girardeau regime. In Fig. 4(b), the
analytical calculations for the Tonks-Girardeau gas of Sec. III
allow us to distinguish between the small wavelength oscilla-
tions, or quantum fluctuations, and longer wavelength semi-
classical corrections. Away from this limit any clear separation
of these corrections is substantially more challenging. How-
ever, by observation, the leading corrections to the LDA density
in Fig. 4(a) appear to be mostly those corresponding to long
wavelength corrections as γ is decreased. These long wave-
length corrections are found most visibly at the edges of the
shock region, similarly to the long wavelength semi-classical
corrections of Fig. 4(b). Further corroboration of the semi-
classical origin for these corrections is the small c expansion
of the nfluct in the GPE limit, (see Sec. IV B), whose leading
order correction is found to exhibit an analogous form as those
semi-classical ripples in the Tonks-Girardeau limit. Altogether,
these observations suggest that the small and long wavelength
corrections to LDA originate from distinct mechanisms, and
that the semi-classical corrections persist into the GPE limit.

In Fig. 5(a), we plot a phase-space color map of nFluct
for different values of γ (increasing from top to bottom)
and times (increasing from left to right). Fig. 5(b) displays
a cross-section of the initial fluctuating state at x = 0 as
function of θ, emphasizing its deviations from a perfect Fermi
sea. Starting from the bottom row (corresponding to the
Tonks regime γ ≫ 1), we see that nFluct(t = 0;x, θ) has
several stripes near the Fermi edges (red curves), indicating
the initial correlations present in this fluctuating state. Similar
patterns have been previously observed and can be understood
as contours of constant semi-classical action (25), see
Ref. [13, 69].
On decreasing the interaction to finite values, these patterns
undergo substantial changes, qualitatively differing from the

LDA envelope (red curves) calculated using zero-entropy
GHD (48). In particular, we observe that the finer structures
at γ ≫ 1 group together to form large-scale oscillations (see
also the cross-sections in Fig. 5(b)), and spread much further
away from the Fermi edges. Explaining these oscillations
in terms of saddle points of the semi-classical action – as
in the Tonks-Girardeau regime – is challenging at finite
interactions. Nevertheless, a qualitative explanation of these
fringes can still be found by looking at the phase in eq. (43),
dΦint/dx = πρLDA/

√
K for a fixed density profile ρLDA:

while fine structures at γ ≫ 1 correspond to high-frequency
quantum ripples similarly to Friedel oscillations in boundary
systems, when γ is decreased K monotonically increases
[82, 83] and thus the scaling factor

√
K enhances long

wavelength modulations. This is consistent with standard
bosonization arguments, for which Friedel-like oscillations
in the shock region are expected to decay as ∼ 1/|x|K , thus
vanishing when K diverges [114].

Fig. 6 shows the evolution of particle density for the setup
of Figure 1. Specifically, the top row displays the dynamics
at different γ as predicted by nFluct, while the bottom row
shows the corresponding evolution obtained numerically.
Simulating the Lieb-Liniger gas (1) is notoriously challenging,
particularly for out-of-equilibrium analysis where MonteCarlo
methods are usually inapplicable. In Fig. 6, we simulate the
Lieb-Liniger gas exploiting its mapping to the XXZ spin chain
at small densities (as done e.g. in Refs. [96, 106, 115, 116]
and discussed in Refs. [117, 118]), employing time-dependent
Density-Matrix Renormalization Group (tDMRG) on this
lattice model. To access large times t ≳ ts, we consider
open boundary conditions on the spin chain, which induce
visible Friedel oscillations in the background, especially in the
limit of large γ. Despite these limitations, we have identified
a parameter set enabling the simulation of the post-shock
dynamics of the Lieb-Liniger gas. We are aware of other
methods, e.g. infinite Matrix Product States algorithms, which
may offer more accurate numerical analysis; however, these
are deferred to subsequent studies, possibly involving experts
in such numerical techniques.

In our opinion, Fig. 6 unequivocally validates our approach
based on the fluctuating initial state for finite interactions. In-
deed, for each value of γ and time, our method accurately
captures the shape, the number, and the location atop the LDA
solution of the density ripples. We observe some quantitative
deviations from the tDMRG data at small values of interaction,
for instance, at γ = 2 shown in the plot. Although we con-
ducted our numerics for density humps with larger variance
(within our computational capabilities), we still note slight
differences between the initial state in the DMRG and the LDA
result, thereby introducing errors in the observed quantum fluc-
tuations after the shock. Corrections to LDA, as discussed
for example in Ref. [115], may be considered for future im-
provements. These corrections are intimately connected to
higher-order derivative terms in the hydrodynamic evolution.
Indeed, in general, one has dispersive corrections also in the
LDA evolution, namely the Euler-scale hydrodynamics (46) is
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extended by

∂tnFluct + veff[nFluct]
∂xnFluct = ∂x(W[nFluct] · ∂

2
xnFluct),

(69)

where the dispersive kernel for the Lieb-Liniger gas has been
introduced in [72]. Such classical dispersive terms vanish
in the strong coupling limit as 1/c3 but they become more
important in the limit c → 0+, giving this way additional
oscillations, of different natures compared to the quantum
fluctuations introduced by nFluct. We leave the question of
including these terms to future work.

VI. CONCLUSIONS AND OUTLOOKS

In this paper we have provided a unified theory for density
ripples and wave breaking effects in the one-dimensional Bose
gas, by combining the hydrodynamic evolution and initial quan-
tum fluctuations. We have shown that typical density ripples
observed in density waves propagation emerges from quantum
fluctuations of the initial state, which can be characterized in
terms of effective fermionic excitations around the Fermi seas.
By evolving the initial Wigner function for such fermionic
degrees of freedom with Euler GHD evolution, we are able
to compute the quantum correction to the hydrodynamics, or
LDA, mean density.

Our work open numerous different directions. First, our
approach based on nFluct can be directly applied and extended
to different experimentally relevant settings, such harmonically
trapped bosons or domain walls in spin chains. Moreover, it
would be desirable to benchmark it with the more standards
approaches of quantum GHD and Luttinger liquid, based on
bosonized excitations [27]. Given the new approach to Lut-
tinger liquid correlations that our work employs, it is reason-
able to expect that such comparison will shine some lights in
different aspects of the connection between Luttinger liquid
and Bose gas, as for example the Luttinger liquids’ prefactors
for the static and dynamic correlation functions [119, 120], for
which a thermodynamic closed-form expression is still out of
reach. Moreover, a more precise connection with bosonization
will be important to understand how to extend our formalism
to compute observables beyond one-point functions of local
densities, as two-point functions [30, 33, 100, 121, 122] and
entaglement entropy [28, 31] .

The inclusion of higher-order derivatives to the Euler GHD
evolution of nFluct also represent a challenging topic for the
near future, and in particular the strictly classical limit to
the NLS equation. Moreover it would be tempting to extend
known concept of classical diffusion, to the quantum case. In
integrable models indeed diffusion is manifested by classical,
finite temperature, fluctuations due to random density waves
[123–126]. At zero temperature such thermal fluctuations
clearly vanish but quantum ones are instead present here inho-
mogenous cases: while nLDA is a zero-entropy distribution
(namely taking only 0 and 1 values), this is not the case for
nFluct, allowing therefore for diffusive-like fluctuations. How
to extend the formalism of GHD to include such quantum
diffusive terms and quantum fluctuating terms to access large

deviation functions [126–128], is an exciting quest for the near
future.
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APPENDIXES

Appendix A: Low-energy description of the excitations

This appendix serves as a dictionary of known results from
bosonization theory. For a detailed discussion on the following
equations, see e.g. Refs. [1, 82, 86, 87, 129].

To begin with, we consider the Haldane’s harmonic fluid
expansion [2, 3] of the (bosonic) density operator

ρ̂(x) =

(
ρ0 +

∂φ̂(x)

π

) ∞∑
m=−∞

Am : e2im(kF x+φ̂(x)) :

≃ ρ0 +
∂φ̂(x)

π
+ ρ0(A1 : e2i(kF x+φ̂(x)) :

+A−1 : e−2i(kF x+φ(x)) :). (A1)

kF ≡ pDr(θF ) = πρ0 here denotes the Fermi momentum of
the interacting gas; φ̂(x) is the bosonic fluctuating field (also
called height field), which can be decomposed into its chiral
components as

φ̂(x) =

√
K

2
(φ̂+(x) + φ̂−(x)) , (A2)

and the latter have two-point correlations

⟨φ̂σ(x)φ̂σ′(x′)⟩ = δσ,σ′ log(σi(x− x′). (A3)

Next, we write the density operator in (A1) as

ρ̂(x) = ρ0 + δρ̂long(x) + δρ̂short(x). (A4)

The first term, δρ̂long = ∂φ̂/π, contains the long wavelength
modulation of the density, occurring for those low-energy pro-
cesses that take place around the two Fermi points (particle-
hole pairs). Pictorially,

δρ̂long : (A5)
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with amplitude ⟨part.-hole|δρ̂(0)|g.s.⟩/L =
√
K in the ther-

modynamic limit [88, 89]. The second term,

δρ̂short = ρ0A±1(: e
2i(kF x+φ̂(x)) : + : e−2i(kF x+φ̂(x)) :)

(A6)
contains the Umklapp processes at lowest order

δρ̂short : . (A7)

The non-universal amplitudes Am(γ) are extracted from the
form factor of the density operator, ⟨Umklapp(m)|ρ̂(0)|GS⟩ ≡
Am. At lowest order, A1 = A−1 see e.g. Ref. [96] for its plot
as function of γ.

At this point, we consider an alternative description of
these excitations in terms of fermionic field, similarly to what
has been done in the main text. We introduce the following
fermionic operators

ĉ†(x) = ψ̂†
+(x) + ψ̂†

−(x) (A8)

ĉ(x) = ψ̂+(x) + ψ̂−(x) (A9)

with chiral components

ψ̂+(x) =
ηe−ikF x

√
2π

: e−iφ̂+(x) :, ψ̂−(x) =
η̄eikF x

√
2π

: eiφ̂−(x) :

(A10)

where {η, η̄} = 0, η2 = η̄2 = 1 are Klein factors ensuring
anticommutations of the chiral fermions in their bosonic repre-
sentation, {ψ̂+(x), ψ̂−(y)} = 0, {ψ̂†

+(x), ψ̂+(y)} = δ(x− y)
and so on. Usually, these are represented with Pauli
matrices η = σx, η̄ = σy. Since they are unimportant
in what follows, we shall omit these factors in the discus-
sion below. The factor 1/

√
2π is here inserted for convenience.

The fermionic propagator is easily calculated as

K(x, y) = ⟨ĉ†(x)ĉ(y)⟩ (A11)

= ⟨ψ̂†
+(x)ψ̂+(y)⟩+ ⟨ψ̂†

−(x)ψ̂−(y)⟩ =
sin(kF (x− y))

π(x− y)
,

and for x→ y we recover the value of density ρ0 = kF /π.

We remark that this description does not account for the
Umklapp processes that mix the two chiralities. In fact, defin-
ing the fermionic density operator as

ρ̂F − ρ0 = ĉ†(x)ĉ(x), (A12)

the shortwavelenght contribution in eq. (A6) reads as

δρ̂short
F (x) = ψ̂†

+(x)ψ̂−(x) + ψ̂†
−(x)ψ̂+(x), (A13)

and it cannot be simply expressed in terms of its bosonic coun-
terpart δρshort(x). The reason behind this limitation is the
non-universality of the process described by (A6). On the
other hand, the fermionic long wavelength contribution is

δρ̂long
F (x) = ψ̂†

+(x)ψ̂+(x) + ψ̂†
−(x)ψ̂−(x) (A14)

Such terms are ill-defined and must be computed using point
splitting

ψ̂†
+(x)ψ̂+(x) = lim

ϵ→0

(
ψ̂†
+(x+ ϵ)ψ̂+(x− ϵ)

− ⟨ψ̂†
+(x+ ϵ)ψ̂+(x− ϵ)⟩

)
=
∂φ̂+(x)

2π
, (A15)

and the same for the left part. Therefore,

δρ̂long
F (x) =

∂φ̂(x)

π
√
K

=
δρ̂long(x)√

K
, (A16)

which is indeed eq. (4) of the main text.

Appendix B: Calculation of post-shock density in the
Tonks-Girardeau regime

In this appendix, we detail the calculation of density ripples
in the Tonks-Girardeau regime.

We start by writing s(x) in eq. (19) as

s(x) =


ˆ x

−r

dx′

pF (x′)
, if θ > 0;

2L −
ˆ x

−r

dx′

pF (x′)
, if θ < 0,

(B1)

L =
´ r

−r
dx′/pF (x

′), where r is a reference point located
away from the external perturbation, V (±r) = 0. Its specific
value is unimportant since it drops out from the calculation of
physical quantities. We mention that this parametrization along
the contour can be related to a WKB quantization condition on
the phase space,

2πNr =

˛
ds θ0(s), (B2)

with Nr being the number of particles in the system in
the region [−r, r]. In addition, the upper- (θ > 0) and
lower- (θ < 0) half of the x-θ plane (corresponding to
the two chiralities) decouple and equally contribute to the
phase-space quantization condition above. Hence, without loss
of generality, one can focus on the upper contour and use (19)
as definition of the stretched coordinate s(x) ≡ s(x).

Next, we notice that the time-evolved two-point function

K±(t;x, x
′) = ⟨V |eitĤ ψ̂†

±(x)ψ̂±(x
′) e−itĤ |V ⟩ (B3)

is unambiguously defined in terms of s(x) and reads as

K±(x, x
′) = ∓i

∑
{x0,x′

0}

√∣∣∣∣ds(x0)dx

∣∣∣∣ ∣∣∣∣ds(x′0)dx

∣∣∣∣ e±i∆Φt(x0,x
′
0)

s(x0)− s(x′0)
.

(B4)
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Indeed, given the values of x and t, there might be multiple
points sa ∈ Γ0(s) such that x0(sa) = x− θ(sa)t.

At this point, we are ready to focus on the calculation of
particle density. Specifying to the points s1,2 ≡ s1,2(θ, y) such
that x0(s1,2) = x− tθ ∓ y/2, it can be defined as

⟨ρ̂(t, x)⟩ =
¨

dydθ eiθy

2π2

√∣∣∣∣ds1dx
∣∣∣∣ ∣∣∣∣ds2dx

∣∣∣∣
× sin(∆Φt[x0(s1), x0(s2)])

s2 − s1
. (B5)

Introducing the semi-classical action (25) S(θ, y) = −θy +
∆Φt, we look for the saddle point (θ, y)

∂S(θ, y)

∂θ

∣∣∣∣
y→0

= 0;

∂S(θ, y)

∂y

∣∣∣∣
y→0;θ→ dxt

dx0
×pF (x0)

= 0,

(B6)

implying that the main contribution to eq. (B5) is coming from
y → 0

⟨ρ̂(t, x)⟩ =
∑

{s1,2}

ˆ
dy
δ(y)

2π

√∣∣∣∣ds1dx
∣∣∣∣ ∣∣∣∣ds2dx

∣∣∣∣
sin(∆Φt[x0(s1), x0(s2)])

s2 − s1
. (B7)

The set {s1,2} in the sum contains the coordinates satisfying

{s1,2} = {s ∈ Γ0(s) : x0(s) = x∓ y/2− θ0(s)t} , (B8)

eventually becoming two indenpendent solutions of x0(s) =
x−θ0(s)twhen y is set to 0. The jacobians are easily evaluated
starting from eqs. (20) and (19), reading (cf. eq. (24) of the
main text)

dxt(s)

ds
= θ0(s)

(
1 + t p′F [x0(s)]

)
. (B9)

Three different regions need to be distinguished: i) LDA
region, x < x−(t) and x > x+(t); ii) shock region,
x−(t) < x < x+(t); and iii) caustic points, x ≈ x±(t).

Here, x±(t) are determined by eq. (28), which we rewrite
as

dxt(s)

ds

∣∣∣∣
s=s±

= 0, x±(t) ≡ xt(s±) (B10)

and we shall refer to s± as turning points on the contour.

We illustrate the phase-space configuration during the
post-shock dynamics in Figure 7. Notice that regardless of
the region, one always finds the solution s0 ∈ {s} which
amounts for half of the background contribution in the initial
state, θ0(s0)/(2π), to the particle density. Therefore, below
we consider ⟨δρ̂⟩ ≡ ⟨ρ̂⟩ − θ0(s0)/(2π), i.e. we exclude s0
from the set of coordinates in the sum of (B7): {s}⋆ ≡ {s}\s0.

FIG. 7. Illustration of the Fermi contour for t > ts.

i) LDA region, x < x− and x > x+

In this region, there is only one element in {s}⋆ and it is
located away from the turning points. The limit y → 0 yields
s2−s1 ≃ y∂xs and ∆Φt[x0(s1), x0(s2)] ≃ pF (x0(s))y. Sub-
stituting this in (B7), we obtain

⟨δρ̂⟩ = θ0(s)

2π
. (B11)

Note that this is exactly the expected LDA result.

ii) Shock region, x− < x < x+

In this case, there are three distinct roots sa < sb < sc in
{s}⋆ away from the turning points, see Fig. 7. For each of these,
selecting s1 = s2 in (B7) one obtains the LDA contribution in
the shock region (albeit with two Fermi seas)

⟨δρ̂⟩LDA =
θ0(sa)− θ0(sb) + θ0(sc)

2π
. (B12)

The minus sign in the second term comes from the fact that
∂xs < 0 on the middle brach of the contour.

In addition to such LDA terms, multiple solutions in {s}⋆
allow for “non-diagonal” contributions s1 ̸= s2. These terms
physically correspond to the quantum interference of two Fermi
points, and generate the density ripples over the LDA result.
Notably, this mechanism involves only the Fermi points sit-
ting along the upper contour (resp. lower contour for the left-
moving part). Indeed, the interference with s0 would require
traveling for an infinite distance along the contour. Specifically
there are 3 contributions, (i, j) = (a, b), (a, c) and (b, c). Each
of these gives,

⟨δρ̂⟩
∣∣∣∣
i,j

≈

√∣∣∣∣dsidx
∣∣∣∣ ∣∣∣∣dsjdx

∣∣∣∣ sin (limy→0 ∆Φt[x0(si), x0(sj)])

2π(si − sj)
.

(B13)
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The additional complication here is in determining of the phase
limy→0 ∆Φt[x0(si), x0(sj)]. Indeed, it should be noted that
the integral in eq. (23), which can be also written as

∆Φt(s1, s2) =

ˆ s2

s1

dxt(s) θ0(s), (B14)

now involves passing over turning points s± along the path
from si → sj , see also Fig. 7. This feature must be accounted
for when mapping the system to its initial state. A possibility
is to introduce Maslov indices [130], defined as Iij ≡ number
of counterclockwise turning points − number of clockwise
turning points along the path si → sj . Using this, we obtain

⟨δρ̂⟩
∣∣∣∣
i,j

≈

√∣∣∣∣dsidx
∣∣∣∣ ∣∣∣∣dsjdx

∣∣∣∣ sin
(
∆Φt[x0(si), x0(sj)]− Iij π

2

)
2π(si − sj)

.

(B15)

The phase shift involving Maslov indices in (B15) is physi-
cally interpreted as a boundary point reflecting the chiral modes
along the contour. At this point, the final step is to sum over
all the (i, j) pairs and to determine the corresponding Maslov
indices. The last task is easily done:

Iij =


−1, if (i, j) = (a, b)

+1, if (i, j) = (b, c)

0, if (i, j) = (a, c),

(B16)

then, defing Jij =
√

|(dsi/dx)(dsj/dx)|, the sum of all terms
gives eq. (31) of the main text.

iii) Caustic points, x ≈ x±

Finally, we discuss the corrections to LDA density in
the region x ≈ x±(t). Close to these points, the Fermi
contour develops what are known as caustics, i.e. points
where |dθ0(s)/dxt(s)|s=s± = ∞. Despite this compli-
cation, many methods for studying these regions have
been developed [98, 99]. For simplicity, below we focus
on point x+, although the analysis of x− proceeds analogously.

Close to the caustic x+, the top and the middle branches of
the Fermi contour connect, and two roots sb → sa coincide,
see Fig. 7. At this point, starting from eq. (B7) one finds as
above the LDA contribution

⟨δρ̂(x ≈ x+)⟩LDA =
θ0(sc)

2π
, (B17)

and the two regular interference terms (a, c) and (b, c) given
in eq. (B15). This leaves the contribution of (a, b) as sb → sa,
where it becomes singular, that requires a separate treatment.

By further expanding the phase in (B5) around y = 0 for
s ≈ s±, one finds

⟨ρ̂⟩UV ≈
¨

dθdy

(2π)2iy
exp

[
i(θ0(s)− θ)y + i

p′′F (x0(s))

24
y3
]

=

ˆ
dθ

2π
Ai1

([
−8i

p′′F (x0(s))

]1/3
(θ − θ0(s))

)
,

(B18)

with the special function Ai1(x) =
´
dq/(2πi) exp[i(qx +

q3/3)]/q. Alternatively, this expression may be written instead
in terms of the Fermi position and by so doing find an expres-
sion which remains valid near the caustic point caustic point at
time t:

⟨ρ̂⟩UV ≈
ˆ

dθ

2π
Ai1

([
i8

x′′F (θ0(s
′))

]1/3
(xt(s

′)− x)

)
.

(B19)

Here it is important to note that the free variable x and the
Fermi position xt(s′) are distinct from one another. To obtain
this result, consider the case where the free variable θ in the
initial state lies near the Fermi contour such that there exists
an s′ satisfying θ0(s′) ≃ θ. In this case the expansion

θ0(s)− θ ≈ p′F (x0(s
′))(x− xt(s

′))

=
x− x0(s

′)

xF (θ0(s′))
, (B20)

with p′F (x0(s)) = 1/(x′F (θ0(s)). Differention of the latter
identity with respect to the curve s yields after some algebra

p′′F (x0(s)) = − x′′F (θ0(s))

(x′F (θ0(s)))
3
. (B21)

This identity is particularly useful when combined with
eq. (20), since it implies that x′′F (θ0(s)) = x′′F (θt(s)), i.e. that
the second derivative of the Fermi position is time independent!
Taken together, the last two permit the identification[

−i8

p′′F (x0(s))

] 1
3

(θ − θ0(s)) ≈ (x0(s
′)− x)

[
i8

x′′F (θ0(s
′))

] 1
3

,

(B22)

it might appear that nothing has been accomplished, but
in this form the expansion around the caustic is now valid
for any time. More concretely x′t(s

±) = 0, so the small y
approximation is remains valid in the neighborhood of the
caustic point, and x′′F (θ0(s

′)) is time independent. So the
initial Fermi position can be mapped onto the Fermi position
at time t by the identification x0(s′) → xt(s

′) thus obtaining
eq. (B19).

All that remains now is to approximate the integral of
eq. (B19), which is most easily done by first taking the deriva-
tive with respect to the free variable x. From the definition of
Ai1 it follows that

∂x⟨ρ̂⟩UV =

¨
dθdq

2π
exp

[
i(x− xt(s

′))q +
i|x′′F (θ0(s′))|q3

24

]
,

(B23)
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with the θ dependence hidden in xt(s′). For points close to the
shock points at s± it is possible to expand xt(s′) making the
θ dependence explicit, then find (recall x′F = 0 at the caustic
point)

xt(s
′)− x±(t) ≈ x′′F (θ0(s±))

p2

2
, (B24)

where p = θ − θ0(s±). Using (B24) in (B23) and changing
coordinates to P = p + q

2 and Q = p − q
2 , one finds upon

substitution of these new variables that mixed terms cancel and
the integrand becomes separable

∂x⟨ρ̂⟩UV ≈
¨

dPdQ

(2π)2
ei(x−x±(t))(P−Q)+i

|x′′
F (θ0(s±))|

6 (P 3−Q3)

=

{
Ai

([
2i

x′′F (θ0(s±))

]1/3
(x− x±(t))

)}2

. (B25)

For brevity introducing κ± = [2i/x′′F (θ0(s+))]
1/3, δx± =

∓(x− x±), and so conclude that

∂x⟨δρ̂⟩UV = (κ±)2
[
Ai(κ±δx±)

]2
, (B26)

which can be integrated to give eq. (35) of the main text.

With the technical steps concluded, we remark that the ex-
pectation value of density for x ≈ x+(t) is thus given by the
sum of the LDA terms, of the regular terms in (B15) and of
(35), that is

⟨ρ̂(x ≈ x+(t))⟩ =
θ0(sc)

2π
+ Jbc

cos (∆Φt[x0(s(x)), x0(sc)])

π|s(x)− sc|

− Jac
sin (∆Φt[x0(s(x), x0(sc)])

π|s(x)− sc|

+ (κ+)2
[
δx+[Ai(κ+δx+)]2 −

[Ai′(κ+δx+)]2

κ+

]
(B27)

and, similarly,

⟨ρ̂(x ≈ x−(t))⟩ =
θ0(sa)

2π
− Jab

cos (∆Φt[x0(sa), x0(s(x))])

π|sa − s(x)|

− Jac
sin (∆Φt[x0(sa), x0(s(x))])

π|sa − s(x)|

+ (κ−)2
[
δx−[Ai(κ−δx−)]2 −

[Ai′(κ−δx−)]2

κ−

]
. (B28)

Appendix C: Dressing relations in the low-coupling limit

This appendix contains some basic results that are used at
small coupling in Sec. IV B. We remark that this small cou-
pling limit is different from that of NLS at finite temperature
considered in Ref. [108] . Here, we are interested to zero tem-
perature and weak coupling, which turns out to be a rather
singular limit. An important formula, from which the dressing
operation follows, is the so-called Tricomi formula [131], as

we now explain. Let us consider the principal value integral
(or finite Hilbert transform)

 b

a

f(x′)

x− x′
dx′ = g(x). (C1)

The latter can be inverted using the following formula

f(x) =
A− π−1

´ b

a
dt

√
t−a

√
b−t

x−t g(t)

π
√

(x− a)(b− x)
, (C2)

with

A =

ˆ b

a

dx f(x). (C3)

However, it is easy to see that this constant is zero for the
quantities below. In fact, this solution only gives the lead-
ing behaviour in c when taking the low coupling limit of the
Lieb-Liniger gas. The values at θ = θF , instead, require a
different treatment. Specifying to the quasicondensate regime,
the dressing operation (58) for f(θ) = 1 gives

1 =

ˆ θF

−θF

dµ

2π

2c

λ− µ
∂µ1

dr(µ), (C4)

which is solved by

∂θ1
dr(θ) =

−θ
c
√
θ2F − θ2

. (C5)

Once integrated, the last equation gives the semi-circle expres-
sion (59). Recalling that the root density is 2πρ(θ) = 1dr(θ),
we can then access all thermodynamic quantities in homoge-
neous states starting from (59). For non-homogeneous states,
one can use LDA and replace θF → θF (x). The effective
velocity is obtained using ε(θ) = θ2/2,

θ =

ˆ θF

−θF

dµ

2π

2c

θ − µ
∂µ[θ

dr(µ)], (C6)

which we invert to get

θdr(θ) =
θ
√
θ2F − θ2

2c
= veff(θ)1dr(θ). (C7)

This equation can be solved for effective velocity. Furthermore,
it also reproduces the static pressure P of a quasicondensate

P =

ˆ θF

−θF

dθρ(θ)veff(θ)θ =
θ4F
16c

= cρ2. (C8)

Appendix D: Proof of a useful identity

In this appendix, we prove the useful identity

πρLDA = pDr
F = θdr(θF )

√
K, (D1)

where here and in the following we drop the subscript [n] since
the relation is independent of the filling nwith respect to which
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the dressing is done. To show this, we consider the well-known
form of LDA density, and we perform integration by parts

ρLDA =

ˆ θF

−θF

dθ

2π
1dr(θ) =

ˆ θF

−θF

dθ

2π
(∂θθ)1

dr(θ)

=
θF 1

dr(θF )

π
−
ˆ θF

−θF

dθ

2π
θ∂θ1

dr(θ). (D2)

Now an identity for derivatives of dressed functions ∂θfdr(θ)
is inserted, which quickly simplifies the expression

ρLDA =
θF 1

dr(θF )

π
+

ˆ θF

−θF

dθ

2π
θ(T dr(θ, θF )1

dr(θF ))

−
ˆ θF

−θF

dθ

2π
θ
(
T dr(θ,−θF )1dr(−θF )

)
=

1

2π
(θdr(θF )1

dr(θF )− θdr(−θF )1dr(−θF )),

(D3)

having identified θdr(±θF ) with its definition. By recalling
θdr(θF ) = −θdr(−θF ) and 1dr(θF ) = 1dr(−θF ) ≡

√
K, the

identity in eq. (D1) follows.

Appendix E: Saddle point corrections to LDA density in the
low-coupling limit

In this appendix, we determine the saddle point corrections
to LDA density, corresponding to the quantum fluctuations,
in the Gross-Pitaevskii limit discussed in Sec. IV B. In doing
so, we shall approximate the Luttinger parameter with its
background value K(x) ≃ K0 since this simplification does
not change the scaling K ∼ 1/c, and thus it does not change
our conclusion below.

The calculation proceeds similarly to the Tonks-Girardeau
case (see Sec. III and Appendix B), therefore we here limit to
highlight the main differences. First, it is possible to define a
coordinate along the initial Fermi surface (cf with eq. (19))

s(x0) =

ˆ x0

−∞

dx′

veff [θF (x′)]
=

ˆ x0

−∞

dx′√
ρNLS(x′)

, (E1)

where we used that veff(θ) = θ/2 and eq. (60). In terms of this
coordinate, using that nFluct(t;x, k) = nFluct(0;x−veff(k)t, k),
we can write the time-evolved density as

⟨ρ̂(t, x)⟩ ≃
√
K0

¨
dkdy

2π2
J12

sin
(´ x2

x1
θdrF (x′t)

dx′
t

dx0
dx0

)
s2 − s1

eiky

(E2)

with J12 =
√

|ds1/dxt||ds2/dxt|, and backward-evolved co-
ordinates

x1,2 ≡ x0(s1,2) = x∓ y/2− veff(k)t. (E3)

Similarly to eq. (24), the jacobian is easily evaluated from the
equation of motion xt(s) = x0(s) + tθ0(s)/2 and reads as
dxt(s)

ds
=
√
ρNLS[x0(s)]

(
1 +

t

2

ρ′NLS[x0(s)]√
ρNLS[x0(s)]

)
. (E4)

Moreover, this allows us to rewrite the quantity θdrF (xt)
dxt

dx0
≡

F(x0) entering in the phase of eq. (E2) as

F(x) =

√
π

c
ρ

3
4

NLS(x)

(
1 +

t

2

ρ′NLS(x)√
ρNLS(x)

)
. (E5)

At this point, similarly to the Tonks-Girardeau regime, the
saddle point for the semi-classical action S(k, y) = −ky +´ x2

x1
dx′ F(x′) sets the main contribution of eq. (E2) to be

⟨ρ̂(t, x)⟩ ≃
√
K0

∑
{s1,2}

J12
sin
(´ x2

x1
dx′F(x′)

)
2π(s2 − s1)

(E6)

with the set {s1,2} specified by the solutions of

x1,2 ≡ x0(s1,2) = x∓ y/2− veff(θdr[x0(s1,2)])t

= x∓ y/2− tg[x0(s1,2)]/
√
c, (E7)

where in the second line we wrote veff(θdr(x0)) = g(x0)/
√
c

(g a function of order O(1)), since we expect that veff to have
the same order of scaling as θdrF .

It is then easy to see that the “diagonal” contributions in the
sum of eq. (E6), i.e. those for which y → 0 corresponds to
x1 → x2, reproduce the LDA density. For instance,

⟨δρ̂⟩
∣∣∣∣
i,i

≃
√
K0

θdrF (x0(si))

2π
=
pDr(x0(si))

2π
∼ O(1/c).

(E8)
On the other hand, “non-diagonal” contributions (i, j) give

⟨δρ̂⟩
∣∣∣∣
i,j

≃
√
K0Jij

sin
(´ xj

xi
dx′F(x′)

)
2π(si − sj)

∼ O(1). (E9)

At small coupling c → 0+ eq. (E7) implies xj − xi ∼
O(
√

1/c) from which it follows that sj − si ∼ O(
√
1/c).

Thus, the phase
´ xj

xi
dx′F(x′) ∼ O(1/c) scales as the density,

while the amplitude ∼ O(1) since
√
K ∼ O(1/

√
c) and all

other quantities are expressed in terms of rescaled variables.
We can therefore conclude that quantum ripples in the small
coupling limit c → 0+ are highly-oscillating subleading cor-
rections to ρLDA ∼ O(1/c).
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[86] D. Sénéchal, An introduction to bosonization (arXiv:9908262,

1999).
[87] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-

tion and strongly correlated systems (Cambridge, 1998).
[88] J. D. Nardis and M. Panfil, J. Stat. Mech. 2015, P02019 (2015).
[89] I. Bouchoule, J. Dubail, L. Dubois, and D. M. Gangardt, Phys.

Rev. Lett. 130, 140401 (2023).
[90] E. Wigner, Phys. Rev. 40, 749 (1932).
[91] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner,

Physics Reports 106, 121 (1984).
[92] C. Ferrie, Rep. Progr. Phys. 74, 116001 (2011).
[93] J. E. Moyal, Math. Proceedings of the Cambridge Philosophical

Soc. 45, 99 (1949).
[94] T. Veness and L. I. Glazman, Phys. Rev. B 100, 235125 (2019).
[95] Y. Brun and J. Dubail, SciPost Phys. (2017).
[96] Y. Brun and J. Dubail, SciPost Phys. (2018).
[97] S. Scopa, L. Piroli, and P. Calabrese, J. Stat. Mech. 2020,

093103 (2020).
[98] M. V. Berry, Phil. Trans. Royal Soc. A 287, 237–271 (1977).
[99] V. I. Arnold, Mathematical Methods of Classical Mechanics

(Springer New York, 1978).

[100] P. Ruggiero, Y. Brun, and J. Dubail, SciPost Phys. (2019).
[101] J. Dubail and S. Scopa, in preparation.
[102] M. Fishman, S. R. White, and E. M. Stoudenmire, SciPost

Phys. Codebases , 4 (2022).
[103] S. Prolhac, J. Phys. A: Math. Theor. 50, 144001 (2017).
[104] M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell,

P. Engels, and V. Schweikhard, Phys. Rev. A 74, 023623
(2006).

[105] R. Meppelink, S. B. Koller, J. M. Vogels, P. van der Straten,
E. D. van Ooijen, N. R. Heckenberg, H. Rubinsztein-Dunlop,
S. A. Haine, and M. J. Davis, Phys. Rev. A 80, 043606 (2009).

[106] S. Peotta and M. D. Ventra, Phys. Rev. A 89, 013621 (2014).
[107] Y. Bezzaz, L. Dubois, and I. Bouchoule, SciPost Phys. Core 6,

064 (2023).
[108] G. del Vecchio del Vecchio, A. Bastianello, A. D. Luca, and

G. Mussardo, SciPost Physics 9 (2020).
[109] R. Koch, J.-S. Caux, and A. Bastianello, Journal of Physics A:

Mathematical and Theoretical 55, 134001 (2022).
[110] G. B. Whitham, Linear and Nonlinear Waves (Wiley-

Interscience, 1974).
[111] M. G. Forest and J.-E. Lee, in Oscillation Theory, Computation,

and Methods of Compensated Compactness (Springer New
York, 1986).

[112] M. V. Pavlov, Theor. and Math. Phys. 71, 584–588 (1987).
[113] G. A. El and M. A. Hoefer, Physica D: Nonlinear Phenomena

Dispersive Hydrodynamics, 333, 11–65 (2016).
[114] The non-universal amplitude A(γ) of this process drops quicky

to zero when γ is decreased from the Tonks-Girardeau limit,
enforcing the disappearance of Friedel-like oscillations.

[115] F. Riggio, Y. Brun, D. Karevski, A. Faribault, and J. Dubail,
Phys. Rev. A 106, 053309 (2022).

[116] B. Schmidt and M. Fleischhauer, Phys. Rev. A 75, 021601
(2007).

[117] B. Golzer and A. Holz, J. Phys. A: Math. Gen. 20, 3327 (1987).
[118] B. Pozsgay, J. Stat. Mech. 2011, P11017 (2011).
[119] A. Shashi, M. Panfil, J.-S. Caux, and A. Imambekov, Phys.

Rev. B 85, 155136 (2012).
[120] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov,

and V. Terras, J. Stat. Mech. 2011, P12010 (2011).
[121] G. D. V. Del Vecchio, M. Kormos, B. Doyon, and A. Bas-

tianello, Phys. Rev. Lett. 131, 263401 (2023).
[122] G. D. V. D. Vecchio and B. Doyon, Journal of Statistical Me-

chanics: Theory and Experiment 2022, 053102 (2022).
[123] J. D. Nardis, D. Bernard, and B. Doyon, SciPost Phys. 6, 049

(2019).
[124] S. Gopalakrishnan, D. A. Huse, V. Khemani, and R. Vasseur,

Phys. Rev. B 98, 220303 (2018).
[125] M. Medenjak, J. D. Nardis, and T. Yoshimura, SciPost Phys.

9, 075 (2020).
[126] S. Gopalakrishnan, E. McCulloch, and R. Vasseur,

arXiv:2401.05494 (2024).
[127] S. Gopalakrishnan, A. Morningstar, R. Vasseur, and V. Khe-

mani, Phys. Rev. B 109, 024417 (2024).
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