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Abstract

This work presents a comparative review and classification between some well-known
thermodynamically consistent models of hydrogel behavior in a large deformation set-
ting, specifically focusing on solvent absorption/desorption and its impact on mechanical
deformation and network swelling. The proposed discussion addresses formulation aspects,
general mathematical classification of the governing equations, and numerical implemen-
tation issues based on the finite element method. The theories are presented in a unified
framework demonstrating that, despite not being evident in some cases, all of them follow
equivalent thermodynamic arguments. A detailed numerical analysis is carried out where
Taylor-Hood elements are employed in the spatial discretization to satisfy the inf-sup con-
dition and to prevent spurious numerical oscillations. The resulting discrete problems are
solved using the FEniCS platform through consistent variational formulations, employ-
ing both monolithic and staggered approaches. We conduct benchmark tests on various
hydrogel structures, demonstrating that major differences arise from the chosen volumet-
ric response of the hydrogel. The significance of this choice is frequently underestimated
in the state-of-the-art literature but has been shown to have substantial implications on
the resulting hydrogel behavior.

Keywords: hydrogels, finite element method, thermodynamic consistency, mathematical
classification, large deformations, nonlinear coupled problems, FEniCS.
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1 Introduction

Hydrogels, a class of versatile soft materials with the unique ability to absorb and retain fluid
within their three-dimensional network structures, have gained widespread attention in recent
years across various industrial applications. Their diverse uses include serving as drug carriers
in biomedical applications (Sun and Tan, 2013; Kabir et al, 2018), absorbents of pollutants
in agriculture (Kabir et al, 2018), and smart sensors or actuators in engineering (Chaterji
et al, 2007; Lin et al, 2010). These properties can be fine-tuned by manipulating chemical
composition, crosslinking density, and fluid content (Cascone et al, 2018). In this work, we
aim to provide an in-depth examination of diffusion-deformation hydrogel theories and the
implications of selecting underlying constitutive theory in the large deformation setting.

Several comprehensive reviews have emerged in the study of hydrogels, discussing top-
ics ranging from hydrogel deformation theories to the microstructural impact on mechanical
behaviors. Liu et al (2015b) provided an exhaustive review of hydrogel deformation theories,
blending both theoretical analyses and practical applications, emphasizing mechanics’ role.
Huang et al (2020) delve into advances in constitutive models for hydrogels and shape memory
polymers (SMPs), categorizing six primary hydrogel types and highlighting potential hyper-
elastic model adaptations. Meanwhile, Lei et al (2021) offered insights into hydrogel network
models, discussing the microstructural impact on their mechanical behaviors like swelling, elas-
ticity, and fracture. This research underscores the potential synergy between network modeling
and continuum mechanics in capturing hydrogel dynamics.

Modeling the diffusion-deformation process in hydrogels necessitates a comprehensive
understanding of the material’s behavior during swelling and mechanical deformation. This
understanding hinges on a mathematical formulation that simultaneously accounts for the
diffusion of fluid molecules within the hydrogel’s polymer network and the corresponding
mechanical deformations induced by swelling. Two primary approaches can be employed to
describe these phenomena: mixture theories and macro-scale theories. Mixture theories, rep-
resenting the porous medium as spatially superimposed interacting layers (Ehlers and Bluhm,
2002), often involve a complex array of model parameters and constitutive choices, making them
challenging to calibrate in practical applications. Consequently, this paper focuses on macro-
scale poroelastic theories, which view the medium as a homogenous material characterized
by a coupled deformation-diffusion response, as developed in the seminal works by Biot (e.g.,
Biot and Willis, 1957). Within this framework, the key equations, such as the mass balance
and mechanical equilibrium equations, govern both the conservation of mass and the balance
of forces within the hydrogel. An appropriate chemo-mechanical constitutive description for
the macroscopic continuum completes the modeling framework. Constitutive laws couple the
mechanical response of the polymer network (accounting, for example, for hyperelastic or vis-
coelastic effects) with changes in fluid distribution within the hydrogel mesh, describing mixing
effects and the interaction between diffusion and deformation.

Over the years, various models have been developed to describe coupled diffusion-
deformation effects in elastomeric gels. These models couple a common general poroelastic
framework with the effects of different physical fields, resulting in a wide range of stimuli-based
responses encountered in various applications. Regarding the general poroelastic framework,
for instance, Hong et al (2008) and Zhang et al (2009) provided a continuum mechanics frame-
work, as well as analytical and finite element solutions, of the coupled problem in the large
deformation setting. Chester and Anand (2010) provided a comprehensive thermodynamics-
consistent formulation of the diffusion-deformation theory under isothermal conditions. In
contrast, Lucantonio et al (2013) benchmarked the diffusion-deformation theory against some
experiments involving localized exposure of the gel boundary to a solvent, where large bending
deformations appear during solvent absorption. With respect to more complex stimuli-based
responses, Chester and Anand (2011) extended the theory and accounted for temperature
effects as well. Chester et al (2015) summarized the main developments of the thermo-
mechanically coupled theory for fluid permeation in elastomeric materials and provided an
open-access Abaqus implementation to simulate hydrogel’s response in 3D.

A shared mathematical characteristic of these models is the saddle point structure of
the underlying variational formulation. As a result of the finite element implementations,
the Ladyzhenskaya-Babuska-Brezzi (LBB), i.e., discrete inf-sup, condition might be violated,
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requiring equilibrated inf-sup stable finite element spaces. Otherwise, oscillatory distributions
of chemical potential as the primary variable controlling species diffusion arise. These challenges
can be addressed in several ways. To name a few of these approaches, in Bouklas et al (2015),
an in-depth analysis of Taylor-Hood elements (see, e.g., Girault and Raviart (1986)) for gel
modeling is provided, while Krischok and Linder (2016) proposed an enhanced assumed strain
(EAS) method for the coupled problem. Böger et al (2017) proposed a minimization formula-
tion for the coupled diffusion-deformation problem of polymeric hydrogels at large strains and
compared this variational framework to classical saddle point-based structures. Large volume
changes with instability patterns in the presence of geometrical constraints were successfully
modeled. Wang et al (2018) developed a numerical platform to simulate the dynamic behav-
iors of responsive gels. The authors of this study addressed some of the challenges that were
not previously resolved, such as how to handle time-dependent and coupled mass diffusion and
deformation fields in a very short time, as well as numerical instability issues.

Overall, there is no consensus on formulating a constitutive model for hydrogels and its
numerical implementation. This study emphasizes the essential building blocks found in com-
mon across various hydrogel theories, mainly focusing on the standard poroelastic description.
It is unclear whether the underlying constitutive choices at the free energy level are equivalent.
The significance of fundamental choices in coupling diffusion and deformation is frequently
overlooked. For example, such choices may relate to whether volume changes in the hydro-
gel are solely attributed to fluid content or involve elastic mechanisms as well. In the latter
scenario, the detailed description of the volumetric response plays a crucial role. We aim to
analyze the impact of such assumptions on the constitutive model.

Not only do these fundamental constitutive choices lead to differences in the observed phys-
ical response, but they also influence the feasibility and appropriateness of different numerical
solutions. Some theories lend themselves to a monolithic implementation of the coupled prob-
lem, while others favor a staggered approach. Despite their importance, these considerations
have been largely neglected in existing literature.

1.1 General goals

This paper reviews some of the most notable models that describe the diffusion-deformation
process of elastomeric gels. The models were selected based on their consistency with thermo-
dynamic principles, their ability to represent different behaviors, and the easiness to reproduce
the results using the open-source computing platform FEniCS (Alnæs et al, 2015), serving as
a benchmark for future studies. We provide a common mathematical framework and classifica-
tions from which both staggered and monolithic numerical algorithms are derived for studying
the diffusion-deformation behavior of hydrogels despite their various derivation methods. We
carefully examine the distinctions and similarities between different constitutive equations
and analyze their impact on the deformation of hydrogels and the evolution of associated
fields through simulations. This lays the foundation for future theoretical extensions, including
additional mechanisms such as chemical reactions, degradation, or damage.

1.2 Open science context

Traditionally, researchers have relied on custom numerical solvers or commercial software like
Abaqus or COMSOL. While Chester et al (2015) made their Abaqus code publicly available,
a recent push has been towards open-source platforms for addressing coupled multiphysics
models. Emerging software libraries such as deal.II1, OpenFOAM2, MOOSE3, and FEniCS4

exemplify this trend, signaling a shift in the way researchers approach the complex challenges
of modeling hydrogels.

Unlike commercial software packages, open-source projects, like FEniCS, generally allow
the user to have a direct hand in implementing the problem statement, the discretization, the
numerical solution, and specific manipulations since all instances can be accessed. To this end,
more information about the mathematical-numerical classification and design of algorithms is

1https://www.dealii.org/
2https://www.openfoam.com/
3https://mooseframework.inl.gov/
4https://fenicsproject.org/
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required. While this provides an advantage, granting users more liberty to develop and test
novel numerical algorithms and discretizations, it also constitutes a challenge. The need for
more hands-on implementation and debugging is time-consuming.

To include readerships interested in open-source software and as part of the broader scope
of our paper, we establish mathematical classifications to derive numerical algorithms for the
coupled problem, enabling the precise study of well-posedness and facilitating rigorous numer-
ical analysis. This includes introducing inf-sup stable Taylor-Hood finite elements for spatial
discretization and using a strongly A-stable, first-order, implicit Euler scheme for tempo-
ral discretization. These technical developments are summarized into compact mathematical
formulations that serve as the starting point for our FEniCS implementation, allowing for
meticulous examination of the numerical algorithms.

1.3 Main contributions and paper outline

The main contributions of this paper are summarized as follows:

1. Unification in the formulation and notation of some representative diffusion-deformation
theories applied to the large deformation of hydrogels.

2. Mathematical classification and subsequent derivation and computational comparison of
monolithic and staggered numerical solutions accuracy in a variational setting using the
finite element method (FEM).

3. One- to three-dimensional numerical simulations of well-known prototype problems to study
the theories’ capabilities and robustness of the FEM implementation.

4. Comparison of the different constitutive models in a single benchmark problem highlighting
their main characteristics.

The paper is organized as follows. Section 2 provides a common background knowledge
of gels and the basic formulations of the chosen theories using a unified notation. Section 3
is devoted to the mathematical classification and numerical approximation using the FEM
in variational settings. Section 4 explains the general setting of the numerical simulations
campaign. Section 5 presents the simulation results for some well-known prototype problems
of the diffusion-deformation of hydrogels. Section 6 presents a unified benchmark problem for
the diffusion-deformation of hydrogels. Concluding remarks are given in Section 7.

2 Nonlinear theory for the diffusion-deformation of
elastomeric gels

In this section, we summarize some of the well-known theories describing the diffusion-
deformation mechanisms in elastomeric gels that undergo large deformations under isothermal
conditions.

As notation rules, we denote gradient in the reference and current configuration by Grad(•)
and grad(•), respectively, whereas the divergence in the reference and current configuration is
denoted by Div(•) and div(•), respectively. The time derivative of any field is denoted by ∂t(•).
The operator tr(A) refers to the trace of the second-order tensor A. We denote the spatial
dimension with d, and in this paper, we exclusively work with d = 3. Finally, let I := (0, T ) be
the time interval with end time value T > 0 and Ī its closure.

2.1 Kinematics of the deformation

Consider a continuum homogeneous elastomeric body B living in the Euclidean space R3 and
its boundary ∂B = ∂Bu ∪ ∂Bt̄ = ∂Bφ ∪ ∂BJ̄R

. Here, ∂Bu denotes the displacement boundary
(Dirichlet), ∂Bt̄ the traction boundary (Neumann), ∂Bφ the fluid concentration-related bound-
ary (Dirichlet), and ∂BJ̄R

the fluid flux boundary (Neumann). The outward normal vector to
the domain boundaries in the reference configuration is denoted by nR ∈ Rd. The current con-
figuration of this homogeneous body at any instant of time can be described by a one-to-one
transformation mapping φt : BR → Rd, where BR refers to the reference configuration. In prin-
ciple, selecting any state as the reference state BR (e.g., the stress-free dry gel) is possible. For
convenience, authors have also chosen to define the initial state BR as an isotropically swollen
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configuration from the dry state, leading to better reproduction of experimental conditions
(Bouklas and Huang, 2012; Hajikhani et al, 2021).

The position vector in the reference configuration X ∈ BR is related to the one in the
current configuration x ∈ B by x = φt(X, t). The displacement field reads u(X, t) = x − X.
The transformation map φt(X, t) can be described in terms of the deformation gradient,

F = Grad(x) = I+Grad(u), (1)

with J = J(X, t) = detF > 0, the determinant, representing the volume change of a volume
element dv = JdV from the reference (dV ) to the current (dv) configuration, and I being the
identity tensor.

As is standard,

C = FTF, (2)

b = FFT , (3)

denote the right and left Cauchy-Green tensors, respectively. Additionally, the first invariant
of C is given by

I1(F) = tr(C) = tr(FTF) . (4)

2.1.1 Chemical potential and swelling deformation

The solvent component of the hydrogel is described by introducing its chemical potential µ, that
is, the energy absorbed or released due to a change in its content. Fluid absorption/desorption
is kinematically described through an inelastic part of the deformation Ff . The volume change
Jf = detFf associated with fluid absorption/desorption is linked with the referential fluid
concentration variable cR, i.e., the number of absorbed fluid molecules per unit volume of the
reference configuration, by enforcing:

Jf = 1 + ΩcR , (5)

where Ω denotes the volume of a mole of fluid molecules. This relationship can also be
equivalently described by introducing the polymer volume fraction variable ϕ, defined as:

ϕ = (1 + ΩcR)
−1 = J−1

f , (6)

resulting 0 ≤ ϕ ≤ 1. The dry state of the gel corresponds to ϕ = 1, and ϕ < 1 represents a
swollen state.

A generally adopted choice is to assume an isotropic swelling deformation Ff , hence reading
as:

Ff = λsI with λs = J
1/3
f = ϕ−1/3 = (1 + ΩcR)

1/3 , (7)

where λs represents the polymer network stretch due to swelling. It is noteworthy that, since
cR > 0 by definition, it results in Jf , ϕ, λ

s > 0.

2.1.2 Elastic deformation

The total deformation of a hydrogel is obtained from the superimposition of the fluid-related
deformation gradient Ff and the elastic one Fe. The latter originates from the effects of
mechanical actions to restore compatibility. Based on the previously introduced choices, we
obtain:

F = (1 + ΩcR)
1/3Fe. (8)

At this standpoint, depending on the volume change associated with the elastic deformation
Je = detFe = J−1

f J , a general classification between two classes of models is introduced:

1. elastic compressible models (non-constrained formulations). In this case, the elastic part of
the deformation is assumed to be compressible. It is then allowed Je ̸= 1;
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2. elastic incompressible models (constrained formulations). In this case, the elastic part of the
deformation is assumed to be perfectly incompressible, and the total volume change of the
hydrogel is related only to fluid volume changes. In other words, it results in Je = 1 and
the kinematic constraint,

J
!
= Jf , (9)

has to be enforced within the theoretical formulation.

2.2 Governing partial differential equations

The two governing partial differential equations (PDEs) for the vector-valued displacements
u : B̄R → Rd and scalar-valued, time-dependent, fluid content in terms of the concentration
cR : B̄R × Ī → R when expressed in the reference configuration, consist of:

1. The local form of the balance of linear momentum reads:
Div(P) + bR = 0, in BR,

u = ū, on ∂Bu,

PnR = t̄, on ∂Bt̄,

P|t=0 = P0, in BR .

(10)

Here, P : BR → Rd×d denotes the first Piola-Kirchhoff stress tensor, and P0 : BR →
Rd×d its initial value at t = 0. An alternative stress measure also commonly employed is
the Cauchy stress tensor σ = J−1PFT . External actions consist of body forces per unit
deformed volume in the reference configuration bR : BR → Rd. Moreover, boundary condi-
tions prescribe displacement ū : BR → Rd and traction t̄ : ∂Bt̄ → Rd on separate portions
of the boundary. Notice that inertial effects have been neglected due to the considerably
slow dynamics of the fluid diffusion evolution w.r.t. the time scale of the wave propagation.

2. The local form of the mass balance of fluid content inside the hydrogel reads:
∂tcR +Div(JR) = 0, in BR × I,

µ = µ̄, on ∂Bφ × I,

−JR · nR = J̄R, on ∂BJ̄R
× I,

µ|t=0 = µ0, in BR × {t = 0} .

(11)

Here, JR is the fluid flux vector in the reference configuration, related to the one j in the
current configuration via JR = JF−1j. Boundary conditions prescribe values of chemical
potential µ̄ : ∂Bφ × I → R and fluid flux J̄R : ∂BJ̄R

× I → Rd in the reference configuration
on the boundaries. Moreover, µ0 : ∂Bφ → R refers to the initial value of the chemical
potential inside the hydrogel. Notice that the mass balance of fluid content is written in
terms of cR and JR, but its corresponding boundary and initial conditions involve a different
variable, the chemical potential µ. The connection of equation (11) with µ becomes clear
by introducing a constitutive relation for JR, e.g., through Fick’s laws of diffusion.

2.3 Constitutive equations: stress and chemical potential

This section introduces constitutive equations for the stress and chemical potential, addressing
both compressible or perfectly incompressible formulations.

2.3.1 Compressible formulations

Following standard thermodynamic arguments (Wriggers, 2008; Gurtin et al, 2010; Chester
and Anand, 2010, 2011), the local form of the second law of thermodynamics reads:

P : Ḟ+ µċR − JR ·Grad(µ)− ψ̇R ≥ 0, (12)

where ψR : BR× I → R is the free energy density function (per unit reference volume). Guided
by equation (12), the free energy density function can be regarded as a function of the total
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deformation F and fluid concentration cR, that is:

ψR = ΨR(F, cR) . (13)

Consequently, equation (12) can be reformulated as:

P : Ḟ+ µċR − JR ·Grad(µ)− ∂ΨR

∂F
: Ḟ− ∂ΨR

∂cR
: ċR ≥ 0, (14)

and the following thermodynamically-consistent constitutive relations can be established for
the first Piola-Kirchhoff stress tensor (PK1):

P =
∂ΨR

∂F
, (15)

and for the chemical potential:

µ =
∂ΨR

∂cR
. (16)

Alternative formulations can be found in the state-of-the-art for defining stresses and chemical
potential, built upon elastic stress and active chemical potential concepts. These are reviewed
and discussed in appendix A, showing that both approaches lead to identical results.

2.3.2 Incompressible formulations

Incompressible models require a special treatment of the kinematic constraint in equation (9)
that has to be satisfied a priori within the formulation. A first possibility is to extend the
free energy ΨR in equation (13) in the context of Lagrangian formulations by introducing a
constrained free-energy Ψc

R that reads:

Ψc
R(F, cR, P ) = ΨR(F, cR) + p(J − Jf (cR)), (17)

where p represents a pressure-like Lagrange multiplier to enforce the kinematic constraint in
equation (9) through a variational framework. By replacing ΨR with Ψc

R, equation (14) reads:

P : Ḟ+ µċR − JR ·Grad(µ)−
(
∂ΨR

∂F
− pJF−T

)
: Ḟ−

(
∂ΨR

∂cR
+Ωp

)
ċR ≥ 0, (18)

since ∂J/∂F = JF−T and ∂Jf/∂cR = Ω. From equation (18), the following thermodynamically
consistent choices can be introduced for the first Piola-Kirchhoff stress tensor:

P =
∂ΨR

∂F
− pJF−T , (19)

and for the chemical potential:

µ =
∂ΨR

∂cR
+Ωp. (20)

Such an approach has been followed, for instance, by Bouklas and Huang (2012); Chester and
Anand (2010).

Alternatively, the kinematic constraint in equation (9) can be embedded directly within the
free-energy function. For instance, this rationale is described and adopted by Liu et al (2015a,
2016). In this case, the fluid concentration cR is regarded as a dependent variable since it is
related to the deformation gradient F (or displacements u) through equation (9). Hence, the
free energy can be reformulated in the form:

ψR = Ψ̃R(F) . (21)
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Then, equation (14) reads:

P : Ḟ+
µ

Ω
J̇ − JR ·Grad(µ)−

(
∂Ψ̃R

∂F

)
: Ḟ ≥ 0, (22)

since ċR = J̇f/Ω = J̇/Ω from the incompressibility constraint. From equation (22) and noting

that J̇ = JF−T : Ḟ, the first Piola-Kirchhoff stress tensor can be expressed as:

P =
∂Ψ̃R

∂F
− µJ

Ω
F−T . (23)

As previously noted, the fluid concentration cR can no longer be considered as an independent
variable. Therefore, the chemical potential µ shall now be considered as the problem’s primary
variable. Consequently, a special treatment is required for the ∂tcR term in the mass balance
equation (28). As introduced by Liu et al (2015a, 2016), the following relationship holds true
from equation (9) between the time derivative of the fluid concentration and the determinant
of the deformation gradient:

∂tcR =
1

Ω
∂tJf =

J

Ω
div(∂tu) =

J

Ω
Grad(∂tu) : F

−T , (24)

which yields
J

Ω
Grad(∂tu) : F

−T +Div(JR) = 0, in BR × I . (25)

2.4 Constitutive equations: fluid flux

From equation (14), a thermodynamically motivated choice for the fluid flux j is to assume
that it is proportional to the gradient of the chemical potential in the current configuration,
namely,

j = − cD

kBT
grad(µ), (26)

with c the solvent concentration in the current configuration, related to the nominal concen-
tration by cR = Jc, and D is the solvent diffusivity assumed to be a constant. Notice that
grad(µ) can be pulled back to the reference configuration by grad(µ) = F−TGrad(µ). Hence,
the flux in the reference configuration reads:

JR = −JF−1

(
cD

kBT
grad(µ)

)
= −cRD

kBT
b−1Grad(µ) . (27)

Inserting equation (27) into (11) yields for the mass balance equation:

∂tcR −Div

(
cRD

kBT
b−1Grad(µ)

)
= 0, in BR × I , (28)

with µ = µ(F, cR) from equation (16).
Notice that to make the units of equation (28) consistent, cR must have units of [mol], kB

units of [J K−1], T units of [K], µ units of [J mol−1], D units of [m2 s−1], and b is dimensionless.
Some authors have defined constitutive equation (26) in terms of RT , where R is the gasses
constant, (see, e.g., Chester and Anand (2011) or Chester et al (2015)). In this case, µ units
of [J].

2.5 Specialization of constitutive theories

Specific choices for the free energy function characterize different state-of-the-art models linking
stress and chemical potential variations with diffusion-deformation mechanisms. We intro-
duce constitutive models in accordance with the framework outlined in equation (13) for
compressible formulations and equations (17) or (21) for incompressible formulations.
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Unless explicitly specified otherwise, we choose to characterize fluid content using the con-
centration variable cR. As a result, we express fluid-related volume changes and polymer volume
fractions as functions of cR, denoting them as Jf = Jf (cR) and ϕ = ϕ(cR), respectively, based
on equations (5) and (6), respectively. By inverting these relationships, we can reformulate the
proposed theories using different primary variables to describe fluid content whenever needed.

The free energy function is, in general, written in a separable additive form:

ψR = ψmix
R + ψmech

R . (29)

Here, ψmix
R describes the mixing of the solvent with the polymer network. Overall, there is

a rather consensus agreement that this is well described by the Flory-Huggins/Flory-Rehner
theory (see, e.g., Chester and Anand (2010); Bouklas and Huang (2012); Liu et al (2016)),
reading:

ψmix
R = Ψmix

R (cR) = µ0cR +
kBT

Ω

[
ΩcR ln

(
ΩcR

1 + ΩcR

)
+ χ

(
ΩcR

1 + ΩcR

)]
, (30)

where µ0 is the chemical potential of the unmixed pure solvent, kB refers to Boltzmann’s
constant, T is the absolute temperature, and χ is a dimensionless parameter named Flory’s
interaction parameter. The latter represents the disaffinity between the polymer and the fluid.
In particular, if χ is increased, the fluid molecules are expelled from the gel, and it shrinks,
while if χ is decreased, the gel swells.

Furthermore, ψmech
R is the contribution to the change in the free energy due to the defor-

mation of the polymer network, for which elastic incompressible or compressible formulations
differ by considering:

ψmech
R =

{
Ψs

R(F, J) incompressible,

Ψs
R(F, J) + Ψen

R (J, cR) compressible,
(31)

where Ψs
R is an entropic component and Ψen

R an energetic contribution.
The entropic component is usually defined following the arguments of classical statistical

mechanics models for rubber elasticity, (Chester and Anand, 2011). For small to moderate
values of stretching, Gaussian statistics provide an estimate of the entropy change due to
mechanical stretching of the polymer network resulting in the form of a Neo-Hooke material
that takes the form (Huang et al, 2020):

Ψs
R(F, J) =

G0

2
[I1(F)− 3− 2 ln (J)] , (32)

where I1 is given in equation (4) and G0 ≈ NkBT represents the shear modulus, with N being
the number of polymer chains per unit reference volume, i.e., crosslink polymer network density.

In contrast, different choices have been made by authors when it comes to defining the
energetic component Ψen

R of the free energy due to the deformation of the polymer network.
Some available solutions will be discussed in Section 2.5.2, and after that, some state-of-the-art
perfectly incompressible models will be presented.

2.5.1 Incompressible constitutive models

Two incompressible constitutive models are presented here.
Constitutive model I: Following the ideas by Hong et al (2008); Zhang et al (2009); Liu et al

(2016), this model assumes a perfectly incompressible elastic material response, by introducing
a constrained material response within the rationale presented in equation (21). Therefore, the
constraint in equation (9) is directly embedded in the free-energy function, leading to:

Ψ̃R(F) =
(
Ψs

R(F, J) + Ψ̃mix
R (J)

)∣∣∣
J=det(F)

, (33)

where the mixing part of the energy Ψ̃mix
R respects Ψ̃mix

R (J) = Ψmix
R (cR(J)) with cR(J) =

(J − 1)/Ω from equation (5) under the condition of equation (9). Considering the entropic
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component in equation (32), the first Piola-Kirchhoff stress tensor is derived from equation
(23) as:

P(F, µ) =
∂Ψs

R

∂F
+

(
∂Ψs

R

∂J
+
∂Ψ̃mix

R

∂J

)
JF−T − Jµ

Ω
F−T =

[
G0 (b− I)+Jpµ(J, µ)I

]
F−T . (34)

Here, pµ is the equivalent volumetric stress:

pµ(J, µ) = −µ

Ω
+
kBT

Ω

[
ln

(
1− 1

J

)
+

1

J
+

χ

J2

]
. (35)

Constitutive model II: This model has been introduced by Chester and Anand (2010). Also,
in this case, a perfectly incompressible elastic material response is assumed, introducing a
constrained material response by following a Lagrangian approach as described in equation
(17). By exploiting the kinematic constraints in equations (5) and (9), the entropic component
in equation (32) is re-formulated as Ψ̂e

R(F, cR) = Ψs
R(F, Jf (cR)) and the total free-energy reads:

ΨR = Ψmix
R (cR) + Ψ̂e

R(F, cR) . (36)

The first Piola-Kirchhoff stress tensor is derived from equation (19) yielding:

P(F, P ) =
∂Ψ̂s

R

∂F
− pJF−T = G0 (b− P I)F−T , (37)

where P = pJ is the pressure term in the reference configuration. To be consistent with the
original model, the fluid concentration cR is replaced in the formulation with the polymer
volume fraction ϕ by means of equation (6). Accordingly, the chemical potential can be obtained
from equations (20), (30), (32) and (36) as:

µ(ϕ, P ) =

(
∂Ψ̂mix

R

∂cR
+
∂Ψ̂s

R

∂cR
+Ωp

)∣∣∣∣∣
cR(ϕ)

= µ0 + kBT
[
ln (1− ϕ) + ϕ+ χϕ2

]
− ΩG0ϕ+ΩPϕ ,

(38)
where P = pJ = pJf = pϕ−1 follows directly from equations (5), (6) and (9).

2.5.2 Compressible models

Compressible models are characterized by the superposition of an entropic energetic component
(given in equation (32)) and an energetic part of the free energy. The latter reflects changes
in the internal energy associated with the volumetric mechanical deformation of the swollen
elastomer. Three well-established constitutive models for Ψen

R are here discussed:

Ψen
R (J, cR) =


Ψen

R,1(J, cR) =
K

2
[J − Jf (cR)]

2
(Bouklas et al, 2015)

Ψen
R,2(J, cR) =

K

2
ln(Jϕ(cR))

2 (Chester and Anand, 2011)

Ψen
R,3(J, cR) = ϕ(cR)

−1

[
K

2
ln(Jϕ(cR))

2

]
(Chester et al, 2015)

(39)

where K > 0 represents the bulk modulus of the gel.
Constitutive model III: The following formulation is based on the ideas by Bouklas et al

(2015). To be consistent with the original model, the swelling volume change Jf is considered
in place of cR within the formulation, but we highlight that this is straight linked through
equation (5). Recalling that J = det(F), the first Piola-Kirchhoff stress tensor considers the
entropic and energetic components in equations (32) and (39)1, reading from equation (15):

P(F, Jf ) =
∂Ψs

R

∂F
+

(
∂Ψs

R

∂J
+
∂Ψen

R,1

∂J

)
JF−T = G0

(
F+ α(F, Jf )JF

−T
)
, (40)
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with:

α(F, Jf ) = − 1

J
+
K

G0
(J − Jf ) . (41)

The chemical potential is obtained from equations (16), (29), (30) and (39)1 as:

µ(F, Jf ) =
∂Ψmix

R

∂cR

∣∣∣∣
cR(Jf )

= µ0 + kBT

[
ln

(
1− 1

Jf

)
+

1

Jf
+

χ

J2
f

]
− ΩK (J − Jf ) . (42)

It is worth noting that the mass balance equation (28) reads in this context as:

1

Ω
∂tJf −Div

(
M(F, Jf )Grad(µ(F, Jf ))

)
= 0 in BR × I, (43)

where M = M(F, Jf ) denotes the species mobility tensor:

M(F, Jf ) =
D

kBT

Jf − 1

Ω
b−1 . (44)

Constitutive models IV and V: Starting from the original incompressible model introduced
in Chester and Anand (2010) (constitutive model II ), the same group of authors presented
alternative compressible formulations by adding energetic components as given in equations
(39)2 (Chester and Anand (2011), constitutive model IV ) and (39)3 (Chester et al (2015),
constitutive model V ). To be consistent with the original models, the polymer volume fraction
ϕ is considered in place of cR within the formulation, but we highlight that this is straight
linked through equation (6). Hence, recalling that J = det(F), the first Piola-Kirchhoff stress
tensor follows, for constitutive model IV, from equation (15) with equations (32) and (39)2 as:

P(F, ϕ) =
∂Ψs

R

∂F
+

(
∂Ψs

R

∂J
+
∂Ψen

R,2

∂J

)
JF−T = [G0 (b− I) +K (ln(Jϕ)) I]F−T , (45a)

and, for constitutive model V with (39)3, as:

P(F, ϕ) =
∂Ψs

R

∂F
+

(
∂Ψs

R

∂J
+
∂Ψen

R,3

∂J

)
JF−T =

[
G0 (b− I) + ϕ−1K (ln(Jϕ)) I

]
F−T . (45b)

Equation (16), together with equation (30), (39)2 and (39)3, yields the chemical potential:

µ(F, ϕ) =


(
∂Ψmix

R

∂cR
+
∂Ψen

R,2

∂cR

)∣∣∣∣
cR(ϕ)

= µ0 + g(F, ϕ), model IV(
∂Ψmix

R

∂cR
+
∂Ψen

R,3

∂cR

)∣∣∣∣
cR(ϕ)

= µ0 + g(F, ϕ) +
1

2
ΩK (ln(Jϕ))

2
model V ,

(46)

with:

g(F, ϕ) = RT
[
ln (1− ϕ) + ϕ+ χϕ2

]
+

{
−ΩK (ln(Jϕ))ϕ model IV

−ΩK (ln(Jϕ)) model V
. (47)

It is noteworthy that, in the original papers, authors formulate the theories based on the
elastic PK1 and the active chemical potential, leading, however, to identical results as proved
in appendix A. Moreover, in these contexts, the mass balance equation (28) is conveniently
reformulated in terms of ϕ, instead of cR, as:

− 1

Ωϕ2
∂tϕ−Div

(
M(F, ϕ−1)Grad(µ(F, ϕ))

)
= 0 in BR × I , (48)

where M is given in equation (44) and Jf = ϕ−1 from equation (6).
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2.5.3 Preliminary comparisons between models and final considerations

In the context of compressible models, we can gain valuable insights by examining how different
choices of the energy component Ψen

R impact the stress constitutive relationships. To illustrate
this, let us focus on equation (40) within constitutive model III, which primarily penalizes
substantial elastic deformations, that is, when |J − Jf | = |Je − 1|Jf ≫ 0. In contrast, con-
stitutive models IV and V in equations (45) incorporate penalties for both significant elastic
deformations and the fully swollen state, as evidenced by the behavior of | ln(Jϕ)| = | ln(Je)|,
which approaches +∞ when |Je − 1| ≫ 0, and inversely, it approaches −∞ as the polymer
volume fraction ϕ approaches 0. However, it is worth noting that constitutive models IV and V
diverge from each other in treating large swelling deformations. Specifically, constitutive model
V penalizes these deformations, occurring when ϕ−1 = Jf → +∞, whereas constitutive model
IV does not.

Furthermore, as previously highlighted, constitutive models IV and V serve as the compress-
ible counterparts to constitutive model II. This connection becomes evident when we observe
that the Lagrange multiplier P in equation (37) is effectively replaced by a term related to bulk
modulus in equations (45). However, from a numerical implementation standpoint, this substi-
tution carries significant implications. In general, P represents an additional primary variable
that must be determined through the stationary conditions of the constrained functional (17)
with respect to the Lagrange multiplier. Only under specific circumstances, such as a traction-
free condition in the presence of plane stresses, can P be directly defined from equilibrium
conditions. In these instances, constitutive model II simplifies to having only two primary vari-
ables, namely, u and ϕ (as demonstrated in, for example, equation (78) in the subsequent
Section 5.2). From this point forward, we will exclusively focus on these special cases.

2.6 Weak formulations

The solution of the coupled PDE system consists of a vector-valued field of displacements (u)
and, depending on the formulation, a scalar-valued field (φ) given either by the concentration
(cR), polymer volume fraction (ϕ), or chemical potential (µ). Hence, it results φ ∈ {cR, ϕ, µ}.

Here we adopt standard notation for the usual Lebesgue and Sobolev spaces, e.g., Wloka
(1987). The functional space H1(BR)

d is a Sobolev space that consists of functions defined on
a bounded domain X ⊂ Rd, with square integrable partial derivatives up to the first order.

Here, X := BR. Specifically, a function w ∈ H1(BR)
d, if it satisfies the following conditions,

namely w is square integrable:
∫
BR

|w(x)|2dx < ∞ and the first-order partial derivatives of w

exist and are square-integrable such that
∫
BR

|∇w(x)|2dx <∞.
The norm associated with this space is given by

||w||H1(BR)d :=

(∫
BR

|w(x)|2dx+

∫
BR

|∇w(x)|2dx
)1/2

. (49)

This norm induces a complete metric space with respect to which the functions in H1(BR)
d

can be well-defined and approximated.
The coupled system of equations is formulated in terms of a variational coupled system. To

this end, we define the trial and test spaces as follows:

Q := H1 (BR) , Qφ̄ :=
{
φ ∈ Q

∣∣∣ h(φ) = h̄ on ∂Bφ

}
, Q0 :=

{
φ ∈ Q

∣∣∣ φ = 0 on ∂Bφ

}
,

V := H1 (BR)
d
, Vū :=

{
u ∈ V

∣∣∣ u = ū on ∂Bu

}
, V0 :=

{
u ∈ V

∣∣∣ u = 0 on ∂Bu

}
.

We notice that in Qφ̄, the boundary conditions may be given explicitly or implicitly through
the relation h(φ) = h̄. This is seen in the set of equations (11). To elucidate this, let us consider
two distinct scenarios: i. for constitute models II, IV, and V, we seek ϕ, and the boundary
condition is ϕ = ϕ̄, i.e., h(φ) := ϕ and h̄ := ϕ̄. On the other hand, ii. in constitutive model III,
we have φ := Jf and h̄ := µ̄. Then, we solve the coupled problem for Jf and µ, where Jf is
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implicitly obtained from equation (42). Once we know Jf or ϕ, then cR can be recovered from
(5).

To formulate both problem statements in an abstract fashion, we introduce for the displace-
ment system the semi-linear form a((u, φ))(v), which is nonlinear in the first argument (trial
function) and linear in the second argument (test function). Furthermore, let b(v) be the given
right-hand side data. Next, for the balance of fluid concentration, we use c((u, φ))(q) and d(q).
Then, the weak formulation can be written as:
Formulation 1. (Diffusion-deformation of gels in BR). Find (u, φ) ∈ Vū×Qφ̄, with φ(0) = φ0,
such that for t ∈ I it holds

a((u, φ))(v) + b(v) = 0, ∀v ∈ V0,

c((u, φ))(q) + d(q) = 0, ∀q ∈ Q0,
(50)

where

a((u, φ))(v) =

∫
BR

P(u, φ) : ∇vdV, (51)

b(v) = −
∫
BR

bR · vdV, (52)

c((u, φ))(q) =

∫
BR

∂tcR(φ) · qdV +

∫
BR

M(u, φ)∇µ (u, φ) · ∇qdV, (53)

d(q) = 0, (54)

with “ : ” denoting the double contraction of the second-order tensors P and ∇v, where
P(u, φ) is defined by either equation (34), (37), (40), or (45), depending of the constitutive
model adopted. Whereas M(u, φ) is given by equation (44).

Notice that the two balance equations are fully coupled through the constitutive equations of
the stress P(u, φ) and the species mobility tensor M(u, φ).

3 Classifications, discretization, and numerical solution

In this section, based on Formulation 1, we explain numerical coupling strategies, provide
mathematical classifications, and introduce spatial and temporal discretizations. These deriva-
tions serve as a starting point for the implementation in FEniCS. The reader is referred to
the introduction to understand the importance of this section, particularly when testing novel
algorithms, comparing them, and pursuing our own numerical developments, including code
debugging. This section provides the link between the strong form problem statements in
Section 2 and the numerical simulations carried out in Section 5 by following the road map
outlined in Wick (2023)[Section 12.3].

3.1 Coupling strategies

There exist several ways for realizing numerically the coupling of several PDEs. Here, we
discuss two fundamental strategies to be implemented later, namely, monolithic and partitioned
approaches. In the former, Formulation 1, it treated all-at-once, while in a partitioned approach,
the two subproblems are decoupled and solved in an iterative fashion. Here, we closely follow
the concepts and notation introduced by Wick (2020)[Chapter 3].

Variational-monolithic coupling: In the variational-monolithic setting, the coupling
conditions are realized in an exact fashion in the weak (i.e., variational) formulation. Formu-
lation 1 is given in such a variational-monolithic fashion and, more specifically, the coupling
conditions are of volume-coupling type Wick (2020)[Section 3.3.3].

In the monolithic approach, the entire PDE system can be either solved all-at-once, which
usually requires physics-based preconditioners. Either the system is decoupled on the solver
level within an outer monolithic iteration, e.g., GMRES (generalized minimal residual) or
multigrid, and the preconditioner is constructed based on decoupled subproblems. In general,
monolithic solutions can be computationally demanding depending on the complexity of the
problem at hand.
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The monolithic scheme can be naturally extended to account for time-dependent problems.
In this case, we need to introduce a suitable time discretization scheme and solve the previous
problem at each time step. As an alternative, a global space-time formulation can be formulated,
discretized, and solved accordingly; see e.g., Gander and Neumüller (2016) for a specific space-
time multigrid realization and analysis on the linear level.

Partitioned (staggered) approach: Conversely, in the partitioned approach, the system
of PDEs is broken down into smaller subsystems, and each subsystem is solved independently
using its own numerical method. The solutions of these subsystems are then coupled to obtain
the solution of the entire system. The partitioned approach typically involves the following
steps:

1. Initialization: provide initial guesses û0 and φ̂0 for the unknown fields u and φ.
2. Iteration: Let (ûj , φ̂j) and (ûj−1, φ̂j−1) be the trial values of u and φ at the current and

previous iterations, respectively.

Algorithm 1. For j = 1, 2, 3, . . . , iterate:

• Given φ̂j−1, find ûj:
a((ûj , φ̂j−1))(v) + b(v) = 0 (55)

• Given ûj, find φ̂j:
c((ûj , φ̂j))(q) + d(q) = 0 (56)

3. Check for convergence: compare the updated and previous trial values. The iteration is
considered converged if the difference is below a specified tolerance. That is, check whether

max
(
||ûj − ûj−1||, ||φ̂j − φ̂j−1||

)
< TOL. (57)

If the criterion is fulfilled, stop and assign u = ûj and φ = φ̂j . If not, increment j → j+1
and return to step 2.

The previous procedure extends to discrete formulations of time-dependent problems, for
which a sequence of unknown fields un and φn at time points tn with n = 1, 2, 3, ..., N is sought
for. Here, the previously introduced algorithm remains identical and performed at each time
point tn. In this context, trial quantities at iteration step j and time tn can be denoted as ûn,j

and φ̂n,j .

3.2 Mathematical classification

We follow the ideas presented by Wick (2020) and classify the diffusion-deformation prototype
problem in Formulation 1. This is the starting point to design appropriate algorithms, which
are of interest in this work and have been introduced before. Moreover, such classifications are
required for mathematical and numerical analysis, which both exceed the focus of this work.
To this end, we can formally analyze the problem statement as follows:

1. Orders in time and space: Equation (10) represents a quasi-static problem with no
time derivatives and second order in space. In the thermodynamic context, this quasi-static
problem is in a thermodynamic equilibrium at each instance. Equation (11) is a nonlinear,
time-dependent, and of advection-diffusion type when solved for cR or λs. Equation (11) is
first order in time and second order in space, i.e., a nonlinear parabolic PDE. On the other
hand, when it is solved for ϕ, a minus sign appears in front of the time derivative term (see
equation (48)), which is rather unusual.

2. Nonlinearities: They appear due to two reasons in Formulation 1. First, the constitutive
equations for P and µ are nonlinear. The constitutive theories are formulated in a large
deformation setting with compressibility constraints. Second, the coupling terms enter in a
nonlinear fashion in the respective other problem.

3. Type of coupling: The coupling is of domain-type and occurs via coefficients and solution
variables. In a partitioned approach (see Section 3.1), assuming that one variable is given, the
displacement PDE displays only the geometric nonlinearity coming from the Neo-Hookean
type of constitutive equation for the deformation. On the other hand, the fluid balance
concentration PDE can become quasi-linear if the problem is solved for cR or λs because

14



a lower-order term of the solution variable is multiplied with the highest derivative. It can
also remain fully nonlinear if the problem is solved for ϕ.

3.3 Temporal and spatial discretization

In this section, we discuss the discretization in time and space. A classical finite difference
scheme is employed for the temporal discretization of the fluid balance concentration PDE,
resulting in a quasi-stationary solution in space at each time point. The spatial discretization is
based on a Galerkin FEM formulation Ciarlet (1987). Here, due to the structure of Formulation
1 of saddle-point type, the inf-sup stability, i.e., LBB (Ladyzhenskaya-Babuska-Brezzi), must
be guaranteed, which requires on the discrete level using Taylor-Hood elements, also known as
P2/P1 elements. The Taylor-Hood elements consist of quadratic basis functions (P2) for the
displacement field and linear basis functions (P1) for the fluid concentration-related field. As
just mentioned, the main reason for using Taylor-Hood elements lies in their ability to satisfy
the LBB stability condition, which helps avoid numerical instabilities like spurious chemical
potential oscillations (Bouklas et al, 2015). The notation in this section mainly matches the
notation adopted by Logg et al (2012) and Wick (2020).

Assume the computational domain BR is partitioned into open elements K that depend
on the spatial dimension d. A mesh consists of quadrilateral, triangular, or hexahedron cells
K, all of them available in FEniCS. Here, we employ hexahedron cells. They perform a non-
overlapping cover of the computational domain BR ⊂ Rd. Let Th = {K} be a conforming mesh
of the bounded domain BR ⊂ Rd, with mesh size h.

We employ Taylor-Hood elements, i.e., a pair of finite element spaces (V TH
h , QTH

h ), where:

• QTH
h ⊆ Q is the space of continuous, piecewise linear functions on Th, i.e.,

QTH
h (Th) :=

{
qh ∈ [C (Bh)]

∣∣∣ qh|K ∈ [P1 (K)] ∀K ∈ Th, qh|∂Bqh
= 0
}
. (58)

• V TH
h ⊆ V is the space of continuous, piecewise quadratic functions on Th, i.e.,

V TH
h (Th) :=

{
vh ∈ [C (Bh)]

d
∣∣∣ vh|K ∈ [P2 (K)]

d ∀K ∈ Th, vh|∂Bvh
= 0
}
. (59)

Here, P1(K) denotes the space of linear polynomials over the element K in R and P2(K)d

denotes the space of quadratic polynomials over the element K in Rd.
Thus, the discrete variational monolithic formulation for the diffusion-deformation model

reads:
Formulation 2. (Semi-discrete in space variational monolithic diffusion-deformation of gels
in Th). Find (uh, φh) ∈ {ūh|∂Bū

+ V TH
h } × {φ̄h|∂Bφ̄

+QTH
h } , with φh(0) = φ0, such that for

t ∈ I it holds
a((uh, φh))(vh) + b(vh) = 0, ∀vh ∈ V TH

h ,

c((uh, φh))(qh) + d(qh) = 0, ∀qh ∈ QTH
h .

(60)

Moreover, the discrete variational formulation using the staggered approach reads:
Formulation 3. (Semi-discrete in space variational diffusion-deformation of gels in Th). Find
uh ∈ {ūh|∂Bū

+V TH
h } and φh ∈ {φ̄h|∂Bφ̄

+QTH
h }, with φh(0) = φ0, such that, for the nonlinear

iterations j = 1, 2, . . . and t ∈ I it holds

a((ûj
h, φ̂

j−1
h ))(vh) + b(vh) = 0, ∀vh ∈ V TH

h ,

c((ûj
h, φ̂

j
h))(qh) + d(qh) = 0, ∀qh ∈ QTH

h ,
(61)

until the iteration converges, i.e., equation (57) is fulfilled.
The time-dependent term in the balance of fluid concentration is approximated using the

first-order implicit Euler discretization for n = 1, 2, . . . , Nf , with Nf the final simulation time
index at the final time T , as

∂tcR(φ) ≈
cR(φ

n)− cR(φ
n−1)

∆t
, (62)
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where φn and φn−1 are the value of φ at the current and previous time step, respectively, and
∆t is the time step increment. Following Wick (2020)[Chapter 5, Definition 52, p. 90], we split
the semi-linear form c((u, φ))(q) into time derivative and non-derivative terms. To this end,
we have

c((u, φ))(q) := cT ((φ))(q) + cE((u, φ))(q)

:=

∫
BR

∂tcR(φ) · q dV +

∫
BR

M(u, φ)∇µ (u, φ) · ∇qdV . (63)

Then, the difference approximation of the time derivative with time step increment ∆t yields:

cT ((φ))(q) ≈ c∆t
T ((φn))(q) :=

∫
BR

cR(φ
n)− cR(φ

n−1)

∆t
· qdV . (64)

Then, the fully discrete variational monolithic formulation for the diffusion-deformation
model reads:
Formulation 4. (Fully-discrete in space variational monolithic diffusion-deformation of gels
in Th). Let h be the spatial discretization parameter and n the current time point index. Find
(un

h, φ
n
h) ∈ {ūh|∂Bū + V TH

h } × {φ̄h|∂Bφ̄ + QTH
h }, with φ(0) = φ0, such that for n = 1, . . . , Nf

it holds
a((un

h, φ
n
h))(vh) + b(vh) = 0, ∀vh ∈ V TH

h ,

c∆t
T ((φn

h))(qh) + cE((u
n
h, φ

n
h))(qh) + d(qh) = 0, ∀qh ∈ QTH

h .
(65)

We notice that the abstract cycle from monolithic problem statements until the final linear
solution is outlined in Wick (2020)[Section 7.8.4]. Using the same abstract concept, but replac-
ing the monolithic nonlinear solution with some iteration (Formulation 3), we obtain the fully
discrete variational formulation using the staggered approach:
Formulation 5. (Fully-discrete in space variational diffusion-deformation of gels in Th). Let h
be the spatial discretization parameter and n the current time point index. Find un

h ∈ {ūh|∂Bū+
V TH
h } and φn

h ∈ {φ̄h|∂Bφ̄ + QTH
h }, with φ(0) = φ0, such that, for the nonlinear iterations

j = 1, 2, . . . and n = 1, . . . , Nf it holds

a((ûn,j
h , φ̂n,j−1

h ))(vh) + b(vh) = 0, ∀vh ∈ V TH
h ,

c∆t
T ((φ̂n

h))(qh) + cE((u
n
h, φ

n
h))(qh) + d(qh) = 0, ∀qh ∈ QTH

h ,
(66)

until the iteration converges at time point tn, i.e., equation (57) is fulfilled, and then proceeds
to tn+1. Then, we set as initial guesses of the nonlinear iterative scheme at the next time step
(ûn+1,0

h , φ̂n+1,0
h ) := (un

h, φ
n
h).

3.4 Numerical solution

The numerical consequences of our previous classification (specifically the type of nonlineari-
ties) are that we will always have to solve at least one fully nonlinear PDE, independently of
whether the problem is solved in a monolithic, Formulation 4, or staggered way, Formulation
5. Here, we utilize a Newton-type solver (Deuflhard, 2011) and the consistent linearization of
the system of PDEs at each nonlinear iteration step. Specifically, for Formulation 4, a con-
venient way (see Wick (2020)[Section 3.3.3.2 and Section 3.3.3.3]) is to formulate a common
semi-linear form

A(Un
h)(Ψh) := a((un

h, φ
n
h))(vh) + c∆t

T ((φn
h))(qh) + cE((u

n
h, φ

n
h))(qh) , (67a)

and corresponding right-hand side:

F (Ψh) := b(vh) + d(qh) (67b)

with the joint unknown, trial function, Un
h := (un

h, φ
n
h) and the joint test function Ψh :=

(vh, qh). This corresponds to Step 4 Wick (2020)[Section 7.8.4.1]. Then, we can proceed with
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Step 5 (Newton’s method) in Wick (2020)[Section 7.8.4.1] for the nonlinear solution. The
resulting solving system is analogous to equations (67) for Formulation 5, but with Un

h replaced

by Ûn,j
h := (ûn,j

h , φ̂n,j
h ) that collects trial values of unknown fields at step j within the iterative

solution scheme.
In this work, automatic differentiation offered by FEniCS was employed rather than cal-

culating the Jacobian by hand. Sparse LU decomposition (Gaussian elimination) is used
inside each Newton step to solve the arising linear equation systems. As we have the specific
derivations in Formulation 4 and Formulation 5 at hand, a future extension is to employ iter-
ative methods, like GMRES - generalized minimal residuals (Saad, 2003), or multigrid solvers
(Hackbusch, 1985), for which however, preconditioners need to be developed.

Finally, it is well known that Dirichlet boundary conditions on the chemical potential, see
equation (11)4, might be the source of spurious numerical oscillations due to large sudden pres-
sures within the hydrogel at the start of the simulation. Hence, whenever needed, such boundary
condition is incrementally applied during the simulation, a strategy known as time-ramping
boundary condition. In each case, the boundary condition is increased as fast as possible to
meet a good compromise between numerical stability and physical reality. This is achieved by
introducing a time-dependent exponential term that multiplies the Dirichlet boundary condi-
tion, i.e., h(φ, t) = h̄(φ) (1− exp(−αrt)), where αr is a positive constant that determines the
rate of ramping.

4 General settings for the numerical simulation campaign

The coupled diffusion-deformation problem is faced by solving equations (10) with null body
forces bR = 0 and (11) and discretized either as in equation (65) (Formulation 4, monolithic)
or equation (66) (Formulation 5, staggered) together with the specific choices of Constitutive
models I to V introduced in Section 2. Table 1 summarizes the main features of the models
considered in this work and refers to their respective equations.

Two campaigns of numerical simulations will be presented. Section 5 addresses different
representative prototype problems by adopting parameter settings presented in the original
papers where each constitutive model has been originally presented. The aim is to explore the
robustness of the developed numerical implementations. Section ?? presents a unified bench-
mark problem to have a unique reference simulation example that shows the differences in the
response for each constitutive equation.

The solution strategy outlined in Section 3.1 is adopted in all simulation cases. The algo-
rithms are implemented in FEniCS, and the code is provided so the reader can reproduce and
verify the results (online repository link: https://doi.org/10.25835/5v49yfk0). The following
material parameters remain constant in all cases: kB = 1.38065×10−23 [Jmol−1], T = 298 [K],
Ω = 1.7 × 10−28 [mol−1] and NΩ = 0.001 [m3mol−1]. The remaining material parameters
vary depending on the specific constitutive model and the adopted simulation setup. They can
be found in the caption of the figures associated with each numerical result. For the sake of
notation, let E1,E2,E3 be introduced as a Cartesian coordinate system in the reference con-
figuration (resp., e1, e2, e3 in the current one), parametrized in X, Y and Z (resp., x, y and
z). Moreover, let the following stress components be introduced:

PX = P : (e1 ⊗E1) , PY = P : (e2 ⊗E2) , σx = σ : (e1 ⊗ e1) . (68)

Numerical results will be reported in terms of displacements u, stretch λ, and the evolution
of µ since they are the most relevant to analyze from a physical viewpoint.

5 Representative prototype problems

Four representative prototype problems are introduced. First, we consider a one-dimensional
transient swelling of a hydrogel bar along the Y -direction. The bar is fixed at Y = 0 and
free at Y = 0.01 [m] where PY = 0. At this latter end, the bar is exposed to a non-reactive
solvent (see Figure 1a). The deformation gradient takes the form

1D: F = diag(1, λ, 1) , (69)
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occurring along the Y direction. For perfectly incompressible models (i.e., constitutive models
I and II ), it then results in det(F) = λ = Jf = ϕ−1, that is the total stretch is equal to the
swelling volume change and inversely proportional to polymer volume fraction. Furthermore,
from the equilibrium condition (10), it follows that ∂P/∂Y = 0, which, after considering
traction free boundary conditions, leads to PY = 0 and, in consequence, σy = 0. This problem
has been studied previously by both linear and nonlinear theories, e.g., Bouklas and Huang
(2012); Bouklas et al (2015). Due to the simplicity of its numerical settings, this case study will
serve as a reference, providing an estimate of the correct order of magnitude of the quantities
of interest, i.e., λ, µ, PX or σx, in more complex case studies.

As a second example, we investigate the transient swelling of a constrained hydro-
gel slab in a two-dimensional setting in-plane strain (in the (X,Y ) plane). In this
example, the hydrogel block is placed in a rigid container with frictionless walls, and the defor-
mation in the X direction is constrained. Only the upper part of the hydrogel is exposed to
a non-reactive solvent (see Figure 1b). This example has been previously considered by, e.g.,
Chester and Anand (2010) and Liu et al (2016), and represents the 2D counterpart of the pre-
viously introduced 1D example. However, it is noteworthy that the one-dimensional problem is
numerically solved for a single scalar field (representing either λ or ϕ depending on the consti-
tutive model), and the other quantities of interest are computed in the post-processing stage.
On the other hand, the numerical solution of the two-dimensional problem is obtained by con-
sidering the complete sets of unknowns, that is, a scalar field describing the fluid content and
the vector displacement field u. Then, quantities of interest (e.g., the chemical potential µ) are
computed in the post-processing stage.

As a third example, we consider the transient free-swelling in a two-dimensional
setting (in the (X,Y ) plane) of a polymer gel with an initially square cross-section. A free
hydrogel block is immersed in a non-reactive solvent. Due to the symmetry of the deformation,
only a quarter of the whole model needs to be considered (see Figure 1c). A similar setup to
this example can be found in, e,g., Chester and Anand (2011) and Liu et al (2016). At the
steady state, the deformation gradient is uniform within the domain, reading in the Cartesian
representation as:

Free swelling: F2D
∞ = diag

(
λ2D∞ , λ2D∞ , 1

)
, (70)

with λ2D∞ referring to the (constant) 2D final stretch at the steady state.
The fourth and last example corresponds to the extension of the two-dimensional

block example into three-dimensions, namely, a cube is immersed in a non-reactive solvent
to swell due to the solvent absorption freely (see Figure 1d). In the steady state, the deformation
gradient results:

Free swelling: F3D
∞ = λ3D∞ I (71)

with λ3D∞ referring to the (constant) 3D final stretch at the steady state. This simulation resem-
bles that presented, e.g., by Lucantonio et al (2013) and will be only performed considering
the constitutive model I.

We estimate the convergence order with a well-known heuristic formula. Let us denote
the errors by Eh, Eh/2, and Eh/4, where h is the mesh size parameter as before. Under the
assumption that our discretized problem has a convergence order of p, then each error should be
roughly (1/2)p times the previous error. Therefore, we can estimate p by taking the logarithm
base 2 of the error ratios as:

p =
1

log(2)
log

(∣∣∣∣ Eh − Eh/2

Eh/2 − Eh/4

∣∣∣∣) . (72)

5.1 Constitutive model I

One-dimensional transient swelling. Here, we follow the ideas presented by Liu et al
(2016). Recalling equations (34) and (35) with equation (69), the balance of linear momentum
(10) reduces to:

PY = −µ

Ω
+
kBT

Ω

[
ln

(
1− 1

λ

)
+

1

λ
+

χ

(λ)2

]
+G0

(
λ− 1

λ

)
= 0. (73)
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Fig. 1 Representative examples setup. a. One-dimensional transient swelling of a hydrogel bar. The bar
is fixed at Y = 0.0 [m], while the opposite end, Y = 0.01 [m], is exposed to a non-reactive solvent. b. Two-
dimensional transient swelling of a constrained hydrogel slab. In this example, the hydrogel block is placed in a
rigid container with frictionless walls and the deformation in the X direction is constrained. The top surface at
Y = 0.01 [m] keeps traction-free and is in contact with the solvent during deformation. At the bottom surface
Y = 0.0 [m], the gel is fixed to the container wall and no fluid is allowed to diffuse through it. Due to the solvent
absorption, the hydrogel can only swell along the Y direction. c. Two-dimensional hydrogel block is immersed
in a non-reactive solvent with a reference chemical potential µ0 = 0. Only a quarter of the whole model is
considered because of the symmetry of the block. For the mechanical boundary conditions, the nodes along
edge ab are prescribed to have displacement component uy = 0, while the nodes along edge ad are prescribed
to have ux = 0. The edges bc and cd are taken to be traction-free. For the solvent concentration boundary
conditions, the edges ab and ad (the symmetry edges) are prescribed a zero fluid flux, and on the edges bc and
cd, the chemical potential is prescribed as µ = 0 on ∂Bµ, t = {0, T}. d. Three-dimensional cube immersed in a
non-reactive solvent. Only a quarter of the whole model is considered because of the symmetry of the 3D cube.
The mechanical boundary conditions are specified such that the uy = 0 in the front face, ux = 0 in the left face,
and uz = 0 in the face in the bottom part. For the solvent concentration boundary conditions, the front, left,
and bottom faces (the symmetry faces) are prescribed a zero fluid flux, and on the back, right, and top faces,
the chemical potential is prescribed as µ = 0 on ∂Bµ, t = {0, T}. Note: the remaining boundary conditions,
together with the initial conditions, are defined depending on the specific constitutive theory adopted to study
the diffusion-deformation process.

Additionally, the fluid balance equation (11) in a one-dimensional setting yields

∂tλ

Ω
=

∂

∂Y

(
D

ΩkBT
(λ)−1 ∂µ

∂Y

)
, in BR,

λ = λ̄, at Y = 0.01,
∂λ

∂Y
= 0, at Y = 0.0,

λ(t = 0) = λ0, in BR.

(74)

Differentiating equation (73) with respect to Y yields

∂µ

∂Y
= kBT

[
1

λ(λ− 1)
− 1

(λ)2
− 2χ

(λ)3

]
∂λ

∂Y
+ΩG0

(
1 +

1

(λ)2

)
∂λ

∂Y
. (75)

Substituting equation (75) into equation (74) leads to a nonlinear partial differential
equation with respect to λ(Y, t).
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Fig. 2 Constitutive model I : one-dimensional bar (black dots) and two-dimensional hydrogel con-
strained slab (colored lines) numerical solution comparison for different mesh densities Nh and
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due to swelling λ. c. Chemical potential µ normalized by kBT . d. Cauchy compressive stress σX . Simulation
parameters: G0 = 10 [MPa], χ = 0.2 [−−], D = 2.0× 10−5 [m2s−1].

The weak discretized form of equation (74) reads∫
BR

(
λnh − λn−1

h

∆t
qh +

D

ΩkBT
(λnh)

−1 ∂µ
n
h

∂Y

∂qh
∂Y

)
dY = 0, ∀qh ∈ Qh , (76)

where ∂µn
h/∂Y is given by equation (75) evaluated at λnh. After solving equation (76), the

chemical potential can be obtained from (73) and the stress component σx in the direction
orthogonal to swelling as σx = pµ(λ, µ), with pµ from equation (35).

The numerical results after solving equation (76) with the FEM are presented in Figure 2
(black dots). A one-dimensional mesh is created to discretize the hydrogel bar, with the number
of elements and time steps defined from a convergence study on λ(Y, t) (results not shown). In
the end, the reference solution is obtained with 200 elements and 50 time steps. The boundary
condition at Y = 0.01 [m] is obtained after solving equation (73) for λ with µ = 0, which yields
λ(Y = 0.01, t) = λ̄ = 1.498. The initial condition is defined as λ0 = 1.0. It is worth mentioning
that the obtained results accurately capture the ones presented by Liu et al (2016) in Figure
3 therein for the same problem setup.

Two-dimensional constrained hydrogel slab. Constitutive model I is now solved for
the constrained hydrogel slab considered in Figure 1b.

Figure 2 presents the comparison between the solution previously obtained for the one-
dimensional bar (black dots) and the two-dimensional constrained slab examples (different
colored lines). For the two-dimensional case, we show results from different simulations with
increasing number of elements and time steps. The deformed hydrogel at t = 10.0 [s] is displayed
in Figure 2a, and a time step equal to 0.2 (50 time steps) was used to get Figure 2a. It is
observed from Figures 2b - d that differences in numerical solution are rather small for mesh
densities higher than 50. A zoom-in is included in Figure 2b to better distinguish between the
different mesh densities. The discrepancy between the one- and two-dimensional cases can be
assessed from Figure 2, which shows the effect of approximating the time derivative in the fluid
concentration balance through the displacement and increasing the problem’s dimension.
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From Figure 2c, it is observed that the chemical potential’s rate increases fast in the begin-
ning when the solvent starts entering the gel and becomes slower when it tends to the steady
state. Stress σx follows a similar pattern as observed in Figure 2d. This behavior can be under-
stood as follows. The gradient of µ is relatively large close to the top surface, at Y = 0.01 [m],
and the compressive stress in the interior part of the hydrogel is the smallest, which are both
helpful for the diffusion of the solvent content. The hydrogel’s network is relaxed and allows
easy solvent absorption. The gradient of µ becomes smaller and σx larger as the solvent’s con-
centration increases in the hydrogel. This prevents the solvent from penetrating the hydrogel
further and slows the diffusion process. There is less space within the hydrogel network, and it
starts to saturate. Therefore, each quantity approaches the corresponding steady solution at a
decreasing rate.

Next, a computational convergence analysis is performed to investigate the robustness and
computational cost of the monolithic approach. We focus on investigating the effect of mesh
density and the time step size on the behavior of the implemented numerical algorithm. We
aim to understand how these parameters influence the performance of the algorithm in solving
the nonlinear system of equations associated with the FEM discretization.

First, we conduct performance studies of the Newton solver for each time step to assess
its efficiency in solving the nonlinear equations. We observe whether the mesh density and
time step size influence the number of Newton iterations, determining if it remains consistent
throughout the simulation. Figure 3 depicts time versus the number of Newton iterations,
where Figure 3a showcases variations in mesh density and Figure 3b displays variations in time
step size. From these findings, it is clear that at the beginning of the simulation, the number
of Newton iterations is highest but subsequently decreases until it reaches a steady value of
three iterations.

Additionally, we examine the Newton algorithm’s convergence behavior at five different time
points during the simulation. We aim to confirm whether the Newton iteration has quadratic
convergence in error. We also investigate whether changes in mesh density or time steps impact
the Newton iteration’s convergence. Figures 4 and 5 demonstrate the convergence behavior,
considering both absolute and relative errors. Figure 4 presents the results for various mesh
density values, while Figure 5 displays the results for different time step sizes. Figures 4 and
5 reveal that the error decays very quickly for all the cases, except for the first iteration. But,
the Newton iteration also converges in only 8 iterations in this case. These results support the
efficiency and robustness of the Newton algorithm. These findings are relevant as they assure
the reliability of the numerical solution for the coupled problem solved using a monolithic
approach.

After establishing that the Newton solver is reliable, we test whether using Taylor-Hood
elements and the Euler method leads to the expected convergence in space and time. Specifi-
cally, we measure the L2 error for various mesh densities and time step sizes with respect to
the highest fidelity solution and the values of both displacement and chemical potential at the
center of the top face of the two-dimensional hydrogel slab.

The convergence analysis is detailed in Tables 2 and 3, where the results demonstrate a
second-order convergence for spatial discretization and a first-order convergence for temporal
discretization. These findings are in accordance with the theoretically predicted orders from
the FEM and Euler discretization scheme.

Finally, it is noteworthy that we tested both monolithic and partitioned approaches for
the solution of the constitutive model I by Liu et al (2016). However, only the monolithic
implementation produced physically consistent results. The reason seems to be due to the
reformulation of the concentration-time derivative. The time-dependent concentration term
is expressed in terms of Grad(∂tu) : F−T in equation (25). Hence, such a term is highly
nonlinear in terms of displacements, and its accuracy is highly affected by the adopted spatial
discretization. Moreover, if the deformation process is very slow, i.e., ∂tu ≈ 0, which is the case
here, the time-dependent term in the balance of fluid concentration may become negligible,
and this equation becomes quasi-static. These issues cause some numerical difficulties in the
staggered approach to capture the transient behavior of the coupled problem.

Two-dimensional free swelling of a square block. A square block is immersed in
a solvent with a reference chemical potential µ0 = 0, as illustrated in Figure 1c. Recalling

22



T
a
b
le

2
S
p
a
ti
a
l
d
is
cr
et
iz
a
ti
o
n
co

n
v
er
g
en

ce
a
n
a
ly
si
s
fo
r
th

e
tw

o
-d
im

en
si
o
n
a
l
co

n
st
ra
in
ed

h
y
d
ro
g
el

sl
a
b
ex

a
m
p
le

co
n
si
d
er
in
g
co
n
st
it
u
ti
ve

m
od

el
I.

L
e
v
e
l

M
e
sh

d
e
n
si
ty

N
h

T
im

e
st
e
p
s

N
k

h
E
le
m

e
n
ts

D
o
F
s

µ
(0

.5
.1
.0
)

L
2

e
r
r
o
r
fo
r
µ

u
(1

.0
.1
.0
)

L
2

e
r
r
o
r
fo
r
u

1
2
5

5
0

0
.0
4

1
2
5
0

5
8
7
8

-0
.4
4
0
1
7
1
9
5

1
.3
8
9
6
e-
4

0
.3
3
4
5
9
0
4
1

3
.5
8
8
4
e-
5

2
5
0

5
0

0
.0
2

5
0
0
0

2
3
0
0
3

-0
.4
3
9
9
9
6
9
4

3
.4
4
2
5
e-
5

0
.3
3
4
6
1
5
1
6

9
.0
1
3
1
e-
6

3
1
0
0

5
0

0
.0
1

2
0
0
0
0

9
1
0
0
3

-0
.4
3
9
9
4
5
4
1

7
.1
0
9
2
e-
6

0
.3
3
4
6
2
1
5
6

1
.9
4
6
5
e-
6

4
2
0
0

5
0

0
.0
0
5

8
0
0
0
0

3
6
2
0
0
3

-0
.4
3
9
9
3
0
6
2

–
0
.3
3
4
6
2
3
1
8

–
c
o
n
v
.
o
r
d
e
r

1
.8
0

1
.9
3

1
.9
8

1
.9
3

23



T
a
b
le

3
T
im

e
d
is
cr
et
iz
a
ti
o
n
co

n
v
er
g
en

ce
a
n
a
ly
si
s
fo
r
th

e
tw

o
-d
im

en
si
o
n
a
l
co

n
st
ra
in
ed

h
y
d
ro
g
el

sl
a
b
ex

a
m
p
le

co
n
si
d
er
in
g

co
n
st
it
u
ti
ve

m
od

el
I.

L
e
v
e
l

M
e
sh

d
e
n
si
ty

N
h

T
im

e
st
e
p
s

N
k

k
µ
(0

.5
.1
.0
)

L
2

e
r
r
o
r
fo
r
µ

u
(1

.0
.1
.0
)

L
2

e
r
r
o
r
fo
r
u

1
2
5

2
5

0
.4

-0
.4
4
9
1
5
3
8
4

1
.2
3
5
3
e-
2

0
.3
3
1
9
5
6
8
8

3
.1
4
4
7
e-
3

2
2
5

5
0

0
.2

-0
.4
4
0
1
7
1
9
5

5
.5
7
1
3
e-
3

0
.3
3
4
5
9
0
4
1

1
.4
2
6
7
e-
3

3
2
5

1
0
0

0
.1

-0
.4
3
5
3
4
3
7
5

1
.9
3
3
3
e-
3

0
.3
3
6
0
1
3
4
3

4
.9
6
6
8
e-
4

4
2
5

2
0
0

0
.0
5

-0
.4
3
2
7
7
4
7
7

–
0
.3
3
6
7
7
2
5
8

–
c
o
n
v
.
o
r
d
e
r

0
.9
1

0
.9
0

0
.9
1

0
.8
8

24



simulation time [s]

1

4

7

10

N
e
w

to
n
 s

o
lv

e
r 

it
e
ra

ti
o
n
s

mesh density Nh

Nh = 25

Nh = 50

Nh = 100

Nh = 200

a

simulation time [s]

1

4

7

10

N
e
w

to
n
 s

o
lv

e
r 

it
e
ra

ti
o
n
s

time steps Nk

Nk = 25

Nk = 50

Nk = 100

Nk = 200

b

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

Fig. 3 Constitutive model I : newton iterations along the time steps. a. For different mesh densities
(Nh). b. For different time step sizes (Nk).
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Fig. 4 Constitutive model I : convergence analysis of the Newton solver for different mesh densities
(Nh). a. Nh = 25. b. Nh = 50. c. Nh = 100. d. Nh = 200.

equations (34) and (35), and following the same procedure as in Liu et al (2016), the theoretical
value of the steady state stretching results λ2D∞ = 1.35 (see equation (70)).

Figure 6 displays the simulation results of the transient diffusion-deformation process for the
two-dimensional square block. The thick gray line in each subfigure in Figure 6a indicates the
reference body. From Figure 6a, it is evidenced that the initially square block gets distorted at
the beginning of the deformation process while swelling. The origin is the pronounced λ gradient
in the early stage of the transient behavior as evidenced in Figure 6b. This distortion vanishes
as time progresses and all corners reach a similar stretching value as Figure 6c shows. The two-
dimensional blocks exhibit a diffusion-deformation process that aligns with the one observed in
the two-dimensional slab. The final stretch reaches the steady state at the previously computed
theoretical value λ2D∞ = 1.35.

Three-dimensional free swelling cubic block. The last example corresponds to the
extension of the previous example from two to three dimensions as illustrated in Figure 1d.
The steady-state stretching is estimated to be λ3D∞ = 1.45, which can be used to verify the
simulation results at the steady state.

Figure 7 presents the simulation results of the transient diffusion-deformation process for the
three-dimensional block. Compared to the two-dimensional block, the cube is less distorted, as
seen in the XY and Y Z plane projections in Figure 7a. This can be explained by the increment
in the diffusivity coefficient D from 2.5 × 10−5 to 5.0 × 10−5 [m2s−1], where the latter is the
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Fig. 5 Constitutive model I : convergence analysis of the Newton solver for different time steps
size (Nk). a. Nk = 25. b. Nk = 50. c. Nk = 100. d. Nk = 200.

minimum value that leads to the Newton algorithm iteration convergence. The diffusivity effect
is observed in Figure 7b when compared to Figure 6b. The former displays a faster evolution of
the stretch over time. Figure 7c shows the stretch evolution at different corners. It is observed
that each observed corner presents a different stretch at the beginning of the simulation, but it
fades over time. Consequently, as illustrated in Figure 7a, the three-dimensional block recovers
its cube shape.

It is noted that the two-dimensional and three-dimensional problems are addressed without
altering the diffusion-deformation model or its constitutive equations. Nonetheless, adjusting
the diffusivity coefficient value was necessary. This is because a pronounced stretch gradient
results in high-stress values and excessive distortion of the elements used for domain discretiza-
tion as more degrees of freedom are added to the problem. This stability issue is commonly
encountered in diffusion-deformation studies of hydrogels with non-reactive solvent absorption
(refer to Bouklas et al (2015) for an in-depth discussion). Although beyond the scope of this
study, stabilization methods can be employed to overcome this issue (see Krischok and Linder
(2016); Böger et al (2017) for more information). Our results provide a foundation for testing
some of the approaches.

5.2 Constitutive model II

The second model under consideration is composed of the balance equations (10) and (11)
together with constitutive equations (37) and (38).

One-dimensional transient swelling. Here, we follow the ideas presented by Chester
and Anand (2010). By considering the 1D deformation gradient in equation (69) under the
incompressibility condition, the stress equation (37) yields:

PY = G0ϕ
−1 − Pϕ = 0 . (77)

Hence, it results:
P = G0ϕ

−2 . (78)

Notice that this expression for P is case specific and equation (78) holds true exactly only
in the present 1D case. After some manipulations, the balance of fluid concentration given in
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Fig. 6 Constitutive model I : two-dimensional hydrogel block of an initially square cross-section
immersed in a non-reactive solvent at different simulation times. a. Deformed two-dimensional block
at three different time steps t = 1.0 [s], t = 5.0 [s], and t = 10.0 [s]. b. Stretch due to swelling λ at different
times across X = 0.005. c. Transient evolution of λ measured at different corners of the two-dimensional block.
Simulation parameters: G0 = 10 [MPa], χ = 0.2 [−−], D = 5.0× 10−5 [m2s−1].

equation (48) can be rewritten as

∂tϕ =
D

kBT

[
∂ϕ

∂Y

∂µ

∂Y
− ϕ2

(
1− ϕ

ϕ

)
∂2µ

∂Y 2

]
, in BR,

ϕ = ϕ̄, at Y = 0.01,
∂ϕ

∂Y
= 0, at Y = 0.0,

ϕ(t = 0) = ϕ0, in BR,

(79)

with
∂µ

∂Y
= kBT

[
− 1

1− ϕ
+ 1 + 2χϕ

]
∂ϕ

∂Y
− ΩG0

(
1 +

1

ϕ2

)
∂ϕ

∂Y
, (80)

obtained after differentiating equation (38) with respect to Y .
The discretized weak form of equation (79) reads∫
BR

(
ϕnh − ϕn−1

h

∆t
qh − D

kBT

[
∂ϕnh
∂Y

∂µn
h

∂Y
qh − (ϕnh)

2

(
1− ϕnh
ϕnh

)
∂µn

h

∂Y

∂qh
∂Y

])
dY = 0, ∀qh ∈ Qh,

(81)
where ∂µn

h/∂Y is given by equation (80) evaluated at ϕnh. Again, equation (81) can be directly
implemented in FEniCs with the corresponding boundary and initial conditions and solved
using the FEM. Solution of equation (81) serves as a reference solution for the diffusion-
deformation problem adopting constitutive model II. The stress can be computed replacing P
into equation (37), yielding:

σx = J−1PX(ϕ,u) = G0ϕ
[
1− ϕ−2

]
, (82)
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Fig. 7 Constitutive model I : three-dimensional hydrogel cubic block immersed in a non-reactive
solvent at different simulation times. a. Deformed three-dimensional cube projected to planes XY and
Y Z at two different time steps t = 0.1 and t = 1.0. b. Stretch due to swelling λ along Y at different times across
the plane XZ = 0.01 [m]. c. Transient evolution of λ measured at different corners of the three-dimensional
cubic block. Simulation parameters: G0 = 10 [MPa], χ = 0.2 [−−], D = 7.5× 10−5 [m2s−1].

which for ϕ ∈ [0, 1] results in a compressive stress state. Whereas the chemical potential in
equation (38) becomes

µ(ϕ) = µ0 + kBT
[
ln (1− ϕ) + ϕ+ χϕ2

]
+ΩG0

[
ϕ−1 − ϕ

]
, (83)

after the definition of P .
The numerical solution of equation (81) is presented in Figure 8 (black dots). A one-

dimensional mesh is created to discretize the hydrogel bar. As a result of a convergence study,
the final number of elements equals 200, and 50 time steps are chosen (∆t = 0.02). The
boundary condition at Y = 0.01 [m] is determined from equation (38), which gives ϕ(Y =
0.01, t) = 0.2. The initial condition is defined as ϕ0 = 0.75, which corresponds to a pre-swollen
state conveniently chosen to alleviate the numerics and allow for a comparison between the
one and two-dimensional models. In the original work by Chester and Anand (2010), this one-
dimensional problem is numerically approximated using a finite difference method in space.
The simulation results here obtained with the FEM can be quantitatively compared to those
reported by Chester and Anand (2010) for a similar example (see Figures 3, 5, and 7 in Chester
and Anand (2010)).

Two-dimensional constrained hydrogel slab. Constitutive model II is solved for the
constrained hydrogel slab considered in Figure 1b. Initial and boundary conditions for ϕ are
kept analogous to the one-dimensional case. Hence, since we have a dominant diffusion along
the Y -direction also in this case and an analogous stress state, we approximate the Lagrange
multiplier P by employing the one obtained in the 1D case, i.e. with equation (78). Under the
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Fig. 8 Constitutive model II : one-dimensional bar (black dots) and two-dimensional hydrogel
constrained slab (colored lines) numerical solution comparison for different mesh densities Nh

and at different simulation times. a. Deformed two-dimensional constrained slab at t = 1.0. b. Polymer
volume fraction ϕ. c. Chemical potential µ normalized by kBT . d. Cauchy compressive stress σX . Simulation
parameters: G0 = 1 [MPa], χ = 0.2 [−−], D = 2.5× 10−5 [m2s−1].

limitations of such approximation, the stress for the two-dimensional case hence reads:

σx = J−1PX(ϕ,u) = J−1G0

[
b− ϕ−2I

]
, (84)

after replacing equation (78) into equation (37). Since the same approximation for P would
be inaccurate in a free swelling condition, we will not face these case studies for constitutive
model II.

Figure 8 presents the comparison between the one-dimensional bar (black dots) and two-
dimensional constrained slab examples (different colored lines). The one-dimensional simulation
is taken as the reference solution to the problem. The two-dimensional slab problem is solved
for different mesh densities and different number of time steps. It was concluded that a mesh
density of Nh = 30 and 25 time steps are enough to produce accurate results, so the following
simulation results are produced using this simulation setup. The deformed hydrogel at t =
10.0[s] is displayed in Figure 8a. Figures 8b - d show the time evolution of ϕ, µ and σx. It is
observed that the numerical solutions for the one and two-dimensional problems coincide. This
is not surprising since the large deformation displayed by the hydrogel slab makes it behave
like a one-dimensional bar.

In Figure 8c, it is observed that the chemical potential’s rate increases fast in the beginning
when the solvent starts entering the gel and becomes slower when it tends to the steady state.
The pronounced gradient of µ along the spatial dimension in the beginning and a relaxed poly-
mer network facilitates solvent absorption. As the gradient of µ flattens out and the compressive
stress increases, solvent diffusion slows down.

Bouklas and Huang (2012) and Chester et al (2015) proposed to solve an additional non-
linear equation either for Jf or ϕ at the Gauss integration point to fully determine the time
derivative term and then solve the balance of fluid concentration for the chemical potential. If
equations (43) and (48) are solved for µ, either equation (42), (38), or (46) must be solved as
an implicit nonlinear equation at each Gauss integration point for either Jf or ϕ, depending of
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the adopted constitutive model, as suggested by Bouklas et al (2015) and Chester and Anand
(2010); Chester et al (2015).

In Chester et al (2015), the coupled problem was solved using the commercial software
Abaqus, via an UMAT routine. The coupled problem was solved for ϕ, µ, and u. In particular,
ϕ was defined as a local variable, and the nonlinear equation (38) was solved at each Gauss
integration point. This approach allowed to fully determine the time derivative in equation
(48)2 at each time instance. Thus, a static problem for µ and u is solved also at each time step.
A similar idea was adopted by Bouklas et al (2015).

We decided to test an alternative approach. That is, to find a suitable expression for Grad(µ)
in equation (48) from the constitutive equation (38). Then, solve the couple problem only for
ϕ and u. Such an approach allows us to avoid the computation of ϕ at each integration point.
By following this approach, we noticed that the solution becomes less prompt to numerical
instabilities, and monolithic and staggered formulations can be adopted to solve the resulting
coupled problem. It is worth remarking that without the automatic differentiation capabilities
of FEniCs, the computation of Grad(µ) can be a very tedious task, and it is not difficult to
imagine that was the reason why Chester et al (2015) opted for their approach.

We conduct an investigation to assess the staggered approach’s behavior. We verify the
number of staggered iterations between the displacement and polymer volume fraction sub-
systems and, as for the monolithic case, we examine the effects of mesh density and time step
size on the algorithm’s performance, focusing particularly on the Newton solver’s efficiency and
convergence.

For the staggered solution, we modify the strategy slightly. Instead of computing the total
number of Newton iterations required for convergence, we compute the average number of
Newton iterations over the inner iteration loop for each time increment for the displacement
and polymer volume fraction sub-systems. This approach provides us with insights into the
staggered solution’s convergence behavior and whether the number of staggered and Newton
iterations remains stable throughout the simulation time. It allows us to gauge the efficiency
and stability of the staggered approach, and compare it to the monolithic approach.

Figure 9 illustrates the time versus the staggered and Newton iterations for different mesh
densities and time step sizes. Figures 9a and 9d show how many staggered iterations are
necessary at each time step to reach an L2 error lower than 10−10 both for u and ϕ, respectively.
It is observed that the number of iterations is never higher than three, independent of the mesh
density and time step size. This highlights the effectiveness of the staggered approach.

The convergence patterns for the Newton iterations and the impact of variations in mesh
density and time step size were consistent with those observed in the monolithic approach.
Figures 9b, e focuses on the Newton iteration for the displacement sub-system, whereas Figure
9c,f reports the Newton iterations along time for the polymer volume fraction sub-system, for
different mesh densities and time step sizes, respectively. Results in Figure 9 reveal a similar
trend to the monolithic case regarding the Newton iterations at each time increment.

Additionally, we explored the Newton algorithm’s convergence behavior at five distinct
simulation moments, examining the quadratic convergence in error and the influence of mesh
density and time step size. Figure 10 shows the error decay with respect to the Newton itera-
tions. Sub-figures 10a, b, c, d correspond to the displacement, while sub-figures 10e, f, g, h
refer to the polymer volume fraction, both for different mesh densities. The results are anal-
ogous to the monolithic approach, where the absolute and relative errors decay fast as the
Newton iteration increases, demonstrating the staggered approach’s robustness.

The observed similarities in the convergence behaviors between the monolithic and stag-
gered approaches further underline the robustness and reliability of the numerical solutions,
confirming the applicability of both methods to the coupled problem at hand.

Concerning convergence analyses for the discretization itself, for the Taylor-Hood elements
and Euler method, our findings for spatial and temporal discretization yielded a second-order
and first-order convergence, respectively. These outcomes are summarized in Tables 4 and
5, reinforcing the staggered approach’s validity in solving the coupled diffusion-deformation
problem.
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Fig. 9 Constitutive model II : staggered algorithm and Newton iterations along the time steps.
For different mesh densities (Nh): a. for the staggered scheme, b. for displacement, and c. for the polymer
volume fraction. For different time step sizes (Nk): d. for the staggered scheme, e. for displacement, and f. for
the polymer volume fraction.

5.3 Constitutive model III

The third model under consideration comprises the balance equations (10) and (11) together
with constitutive equations (40) and (42).

One-dimensional transient swelling. The basic ingredients to describe the hydrogel
deformation considering an energetic constraint were presented by Bouklas and Huang (2012);
Bouklas et al (2015). By considering the 1D deformation gradient in equation (69), the balance
of fluid concentration reads

γ(λ)∂tλ = D
∂

∂Y

[
ξ(λ)

∂λ

∂Y

]
, in BR,

λ = λ̄, at Y = 0.01,
∂λ

∂Y
= 0, at Y = 0.0,

λ(t = 0) = λ0, in BR,

(85)

with

γ(λ) = λ0 +
NkBT

Kλ0

(
1 +

1

λ2

)
, (86)

and

ξ(λ) =

(
1

(λ20λ)
2
− 2χ(λ20λ− 1)

(λ20λ)
3

)(
NkBT (1 + λ2)

K(λ0λ2)2
+
λ20
λ2

)
+
NΩ(λ20λ− 1)(1 + λ2)

(λ0λ2)2
, (87)

where λ0 refers to the initial swelling ratio of the gel.
The discretized weak form of equation (85) reads∫

BR

(
γ(λnh)

λnh − λn−1
h

∆t
qh +Dξ(λnh)

∂λnh
∂Y

∂qh
∂Y

)
dY = 0, ∀qh ∈ Qh, (88)

where γ(λnh) and ξ(λnh) are given by equations (86) and (87) evaluated at λnh, respectively.
Equation (88) can be solved using the FEM with FEniCS. The postprocessing quantities µ

33



0 1 2 3 4
Newton iterations

10 13

10 10

10 7

10 4

10 1

a
b

so
lu

te
 a

n
d

 r
e
la

ti
v
e
 e

rr
o
rs

t = 0.3 s
t = 2.5 s
t = 4.7 s
t = 7.0 s
t = 10.0 s

mesh density Nh = 30

abs.

rel.

0 1 2 3 4
Newton iterations

10 13

10 10

10 7

10 4

10 1

a
b

so
lu

te
 a

n
d

 r
e
la

ti
v
e
 e

rr
o
rs

t = 0.3 s
t = 2.5 s
t = 4.7 s
t = 7.0 s
t = 10.0 s

mesh density Nh = 60

0 1 2 3 4
Newton iterations

10 12

10 9

10 6

10 3

100

a
b

so
lu

te
 a

n
d

 r
e
la

ti
v
e
 e

rr
o
rs

t = 0.3 s
t = 2.8 s
t = 5.3 s
t = 7.8 s
t = 10.0 s

mesh density Nh = 120

0 1 2 3 4
Newton iterations

10 12

10 9

10 6

10 3

100

a
b

so
lu

te
 a

n
d

 r
e
la

ti
v
e
 e

rr
o
rs

t = 0.3 s
t = 2.8 s
t = 5.3 s
t = 7.8 s
t = 10.0 s

mesh density Nh = 240

0 2 4 6 8
Newton iterations

10 12

10 9

10 6

10 3

100

a
b

so
lu

te
 a

n
d

 r
e
la

ti
v
e
 e

rr
o
rs

t = 0.3 s
t = 2.8 s
t = 5.3 s
t = 7.8 s
t = 10.0 s

mesh density Nh = 30

abs.

rel.

0 2 4 6
Newton iterations

10 13

10 10

10 7

10 4

10 1

a
b

so
lu

te
 a

n
d

 r
e
la

ti
v
e
 e

rr
o
rs

t = 0.3 s
t = 2.8 s
t = 5.3 s
t = 7.8 s
t = 10.0 s

mesh density Nh = 60

0 2 4 6
Newton iterations

10 12

10 9

10 6

10 3

100

a
b

so
lu

te
 a

n
d

 r
e
la

ti
v
e
 e

rr
o
rs

t = 0.3 s
t = 2.8 s
t = 5.3 s
t = 7.8 s
t = 10.0 s

mesh density Nh = 120

0 2 4 6
Newton iterations

10 13

10 10

10 7

10 4

10 1

102

a
b

so
lu

te
 a

n
d

 r
e
la

ti
v
e
 e

rr
o
rs

t = 0.3 s
t = 2.8 s
t = 5.3 s
t = 7.8 s
t = 10.0 s

mesh density Nh = 240

a b

c d

e f

g h

Fig. 10 Constitutive model II : convergence analysis of the Newton solver for different mesh den-
sities (Nh). For the displacement: a. Nh = 30. b. Nh = 60. c. Nh = 120. d. Nh = 240. For the polymer volume
fraction: e. Nk = 25. f. Nh = 50. g. Nh = 100. h. Nh = 200.

and σx results:

µ(λh) = kBT

[
ln

(
λ20λh − 1

λ20λh

)
+
λ20λh + χ

(λ20λh)
2

+
NΩ

λ20

(
λh − 1

λh

)]
, (89)

and

σx(λh) = NkBT

[(
λ0 −

1

λ0

)
−K

(
λh
λ0

)(
λh − 1

λh

)]
, (90)

respectively. Notice that Jf in equation (42) was replaced in by λ20λh to get equation (89).
More details about the derivation of equations (89) and (90) can be found in appendix A of
Bouklas et al (2015).
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Fig. 11 Constitutive model III : one-dimensional bar (black dots) and two-dimensional hydrogel
constrained slab (colored lines) numerical solution comparison at different simulation times. a.
Deformed two-dimensional constrained slab at t = 10.0 [m]. b. Stretch due to swelling λ. c. Chemical potential µ
normalized by kBT . d. Cauchy compressive stress σX . Simulation parameters: G0 = NkBT ≈ 41 [Pa],K =
100 NkBT [Pa], χ = 0.4 [−−], D = 2.5× 10−6 [m2s−1].

Two-dimensional constrained hydrogel slab. Example’s geometry corresponds to that
illustrated in Figure 1b. Initial and boundary conditions correspond to those defined for the
one-dimensional case.

Figure 11 presents the comparison between the one-dimensional bar (black dots) and
two-dimensional constrained slab examples (different colored lines). The two-dimensional slab
problem is solved for a mesh density Nh = 25 and 10 time steps (∆t = 1.0 [s]). This setup yields
an acceptable numerical accuracy for the two-dimensional configuration. The deformed hydro-
gel at t = 10.0 [s] is displayed in Figure 11a. Figures 11b - d show the time evolution of λ = Jf ,
µ and σx. It is observed that the numerical solutions for the one and two-dimensional problems
are on the same order of magnitude and get closer as the two-dimensional slab becomes larger
and progressively resembles a one-dimensional domain. The same pattern was observed for the
constitutive model I. However, the hydrogel experiences a lower level of stretch when consider-
ing the two-dimensional setup. This is the effect of determining first λ through the nonlinear
equation and then µ from the static PDE. The boundary condition can only be imposed on µ,
not λ as in the one-dimensional case.

The transient behavior of the hydrogel follows the already observed evolution for constitutive
models I and II. At the beginning of the deformation, the solvent enters the gel faster because
of the high µ gradient and low compressible stress. From Figure 11, it is noticed that the
hydrogel slab undergoes a rather large deformation, i.e., the final size is about 3 times the
original one, despite the presence of the energetic constrain in the free energy function. The
small shear modulus G0 value can justify this large deformation.

Constitutive model III as considered in this work was formally presented by Bouklas and
Huang (2012) and solved using the FEM by Bouklas et al (2015). The coupled problem was
solved for cR, µ, and u. In particular, cR was defined as a local variable, and the nonlinear
equation (42) was solved at each Gauss integration point to determine the time derivative in
equation (43) at each time instant. Next, µ and u are computed by the solution of a static
problem defined by equations (10) and (11) at each time step.
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Fig. 12 Constitutive model III : two-dimensional hydrogel block of an initially square cross-section
immersed in a non-reactive solvent at different simulation times. a. Deformed two-dimensional block
at three different time steps t = 1.0 [s], t = 5.0 [s], and t = 10.0 [s]. b. Polymer volume fraction ϕ at different
times across X = 0.005 [m]. c. Transient evolution of ϕ measured at different corners of the two-dimensional
block. Simulation parameters: G0 = NkBT ≈ 0.41 [MPa],K = 100 NkBT [MPa], χ = 0.4 [−−], D =
2.5× 10−6 [m2s−1].

Here we tried to find a suitable expression for Grad(µ) in equation (48) from the consti-
tutive equation (42) using FEniCS automatic differentiation tools and avoid the solution of
the nonlinear equation at the Gauss points for the two-dimensional example. Although we
got some numerical results, these appear highly inaccurate compared to the reference 1D out-
comes. Consequently, we only report the results obtained following Bouklas et al (2015) original
formulation.

It should be highlighted that among the constitutive models accounted for in this work,
constitutive model III numerical solution is the most fragile. There is not much room to explore
different values for the model parameters. Small changes in their values would lead to the
divergence of the Newton-Raphson algorithm. It is also not possible to arbitrarily increase
the mesh density or make the time step smaller. This is not surprising since Bouklas et al
(2015) presented a detailed analysis of the induced instabilities in hydrogels in the presence
of geometrical constraints. These instabilities arise because the exposure of a gel to a fluid
not only leads to a large increase in volume but also to a wave-like buckling pattern. Free
surfaces expand due to the species influx and are bonded to unswollen inner parts of the gel
simultaneously. For high osmotic pressure, this mechanism leads to buckling patterns, that
have extensively been analyzed within experimental setups (see, e.g., Guvendiren et al (2010);
Dervaux and Amar (2012); Liaw et al (2019) for more details on hydrogels instabilities).

Due to this numerical fragility, it was not possible to perform a convergence analysis in the
same manner as for the two previous constitutive models. However, for the chosen simulation
setup presented in this sub-section, both the absolute and relative errors decay faster as the
Newton iterations increase, in a manner similar to that observed for constitutive model II (see
Figures 4 and 5).

Two-dimensional free swelling of a square block. Figure 1c illustrates the consid-
ered example. For the solvent concentration boundary conditions, the edges ab and ad (the
symmetry edges) are prescribed a zero fluid flux, and on the edges bc and cd, the chemical
potential is set equal to zero. The initial condition for Jf is defined as Jf0 = 1.4. In this case,
it was not necessary to apply a time-ramping strategy.
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Fig. 13 Constitutive model IV : Two-dimensional hydrogel block of an initially square cross-section
immersed in a non-reactive solvent at different simulation times. a.Deformed two-dimensional block at
three different time steps t = 1.0 [s], t = 5.0 [s], and t = 10.0 [s]. b. Polymer volume fraction ϕ at different times
across X = 0.005 [m]. c. Transient evolution of ϕ measured at different corners of the two-dimensional block.
Simulation parameters: G0 = 1 [MPa], K = 100 [MPa], χ = 0.2 [−−], D = 7.5× 10−9 [m2s−1], αr =
10.0 [−−].

The simulation results for the two-dimensional square block are presented in Figure 12.
The box plotted with a thick gray line in Figure 12a corresponds to the reference body before
undergoing deformation. In contrast to the constitutive model I, the block tends to keep its
square shape along the simulation time. This can be attributed to the value of the diffusivity
that prevents high µ gradients as observed in Figure 12b. However, we chose this simulation
setup because it leads to numerical convergence. For simulation setup producing more pro-
nounced µ gradients, bigger distortion, or larger deformations, suitable stabilization techniques
are required (see, e.g., Krischok and Linder (2016); Böger et al (2017) for some approaches),
which are out of the scope of the current research. An important difference between constitu-
tive model III and the previous constitutive models is that λ does not tend to a steady state
value as time simulation progresses. This can be appreciated from Figure 12c.

5.4 Constitutive models IV and V

The fourth and fifth models under consideration are composed of the balance equations (10) and
(11) together with constitutive equations (45) and (46) for the stress and chemical potential,
respectively.

To avoid redundancies, we only present results for the two-dimensional free swelling of a
square block with constitutive models IV and V. It is worth recalling that the main difference
between constitutive model II and IV - V is the addition of an energetic component in the free
energy function, thus eliminating the need to introduce a Lagrange multiplier as in constitutive
model II.

The simulation results obtained for constitutive models IV and V are displayed in Figures
13 and 14, respectively. From these results, it becomes evident that both constitutive models
lead to a similar level of deformation and time evolution of ϕ.
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Fig. 14 Constitutive model V : Two-dimensional hydrogel block of an initially square cross-section
immersed in a non-reactive solvent at different simulation times. a.Deformed two-dimensional block at
three different time steps t = 1.0 [s], t = 5.0 [s], and t = 10.0 [s]. b. Polymer volume fraction ϕ at different times
across X = 0.005 [m]. c. Transient evolution of ϕ measured at different corners of the two-dimensional block.
Simulation parameters: G0 = 1 [MPa], K = 100 [MPa], χ = 0.2 [−−], D = 7.5× 10−9 [m2s−1], αr =
10.0 [−−].

6 A reference benchmark problem

In this section, the two-dimensional square block problem is studied again as a unified bench-
mark problem for the diffusion-deformation of hydrogels. As a matter of fact, previous results
cannot be directly compared due to the disparate value of the material parameters selected
by authors in the original papers (and adopted for the prototype problems presented in the
previous section). Our goal here is to have a unique reference simulation example and show
the differences in the response for each constitutive equation. We are interested in testing how
much the diffusion-deformation behavior is affected by the different constitutive choices under
the same simulation setup.

Hydrogels are a type of material that can vary significantly in their physical properties due
to factors such as the particular polymer used, the degree of crosslinking, and the presence of
any additives (Cascone et al, 2018). As such, the shear modulus (G0) and bulk modulus (K)
can have a wide range of values. Typically, the shear modulus of hydrogels can range from
1 [Pa] to 1 [MPa], with softer, more water-rich gels being at the lower end of the scale and
more crosslinked or polymer-rich gels being at the higher end. Among the studies considered
in this research, we found very different values for the shear modulus ranging from 0.1 [MPa]
in Chester and Anand (2010, 2011) to 10 [MPa] as reported by Liu et al (2010).

Similarly, the bulk modulus, which is a measure of a material’s resistance to uniform com-
pression, can also vary widely for hydrogels. The bulk modulus is typically larger than the
shear modulus. For many hydrogels, the bulk modulus can range from around 10 [kPa] to sev-
eral [MPa]. However, these values should only be used as a rough guide, as the specific values
for any particular hydrogel can vary significantly depending on its formulation and preparation
details. One needs to refer to specific experimental data for the particular hydrogel of inter-
est for a precise value. The most common value for K reported in the reviewed papers was
K = 100 G0.

In the present study, motivated by state-of-the-art values, we choose G0 = 1 [MPa] and
K = 100 [MPa]. The diffusion coefficient is used as the free parameter to tune the simulation
such that the results become comparable and the numerical stability is guaranteed. All other
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Fig. 15 Reference benchmark : two-dimensional hydrogel block of an initially square cross-section
immersed in a non-reactive solvent at different simulation times. a. constitutive model I, b. consti-
tutive model III, and c. constitutive model IV. Common simulation parameters: G0 = 1 [MPa], K =
100 [MPa], χ = 0.2 [−−].

parameters remain the same as for the previously reported simulation results. Notice that this
simulation setup is similar to the one used to solve constitutive models II, and IV - V and it
was inspired by Chester et al (2015).

Figure 15 shows the simulation results for the two-dimensional square block problem.
Results are reported for constitutive models I, III, and IV. The reason for this selection is
twofold: i. constitutive model II introduces an additional field represented by the Lagrange
multiplier, thus requiring ad hoc numerical treatments outside of the scopes of present work;
ii. the same example was solved for constitutive model V with the same parameters and results
in Figure 15 can be directly compared with those plotted in Figure 14.

From Figure 15, first column, it is possible to observe that the level of deformation achieved
in each case by the end of the simulation is different despite the similarity of the parameters.
However, it is not on the deformation or stretch where the main difference between the different
models becomes evident. It is on the transient evolution of the solvent as appreciated in the
second and third columns of the figure. Constitutive models I and IV reach their steady state
in about 4.0 [s] (Figure 15a, third column) and 6.0 [s] (Figure 15c, third column), respectively,
whereas constitutive model III is far from reaching the steady state (Figure 15b, third column).

It is important to note that the diffusivity values used in the benchmark problem for
constitutive models I and III are the lowest possible before encountering numerical issues. For
constitutive models III - IV, it is feasible to set the diffusivity to 8.5× 10−3[m2s−1], matching
constitutive model I. However, given our simulation setup, this is an exceptionally high value.
Consequently, the system will reach steady in both scenarios almost immediately, eliminating
any transient behavior. In summary, the mentioned diffusivity values differ significantly from
each other. They belong to different time scales. This difference can be attributed to the distinct
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solution strategies adopted for solving the diffusion equation in each case. We delved into the
specifics of this when introducing each constitutive model.

One takeaway drawn from this comparison study is that further refinement may be required
for the constitutive models such that closer predictions are achieved. In particular, each model
predicts a different level of deformation and requires a fine-tuning of some parameters to ensure
numerical convergence. This can complicate the model’s experimental validation because it
could lead to different values of the material parameters and, for instance, ambiguity regarding
which values are correct and their interpretability. Nonetheless, there is still room for improve-
ment in selecting the energetic component of the constitutive model, which can fix the issue.
In the end, all constitutive models capture the diffusion-deformation process in a reasonable
way and offer valuable insights into the coupled problem.

7 Conclusion

This study presented a detailed classification and analysis of various nonlinear models that
depict the diffusion-deformation process in hydrogels caused by non-reactive solvent absorp-
tion. We have consolidated these theories into a unified framework, demonstrating that, despite
not being evident, all theories follow equivalent thermodynamic arguments. For instance, while
having a common set of governing equations, each model showcases differences in the enforce-
ment of incompressibility and formulation of the constitutive model — particularly in terms
of the free energy function’s components, mainly at the energetic level. At present, further
research appears necessary to conveniently account for the energetic component, ultimately
aiming for a cohesive and unified constitutive model.

Different numerical approaches adopted by various researchers to solve these models
were analyzed. Our implemented numerical methods presented reasonable predictions for the
diffusion-deformation process. However, our findings suggest that the superiority of one strategy
over another remains inconclusive. The selection of an appropriate model should be grounded
in a comprehensive understanding of the hydrogel’s composition and must be validated exper-
imentally. Notice that some of the theories here introduced have been extended to account for
temperature variations, chemical reactions, and damage (refer to, e.g., Sain et al (2018); Mao
and Anand (2018); Konica and Sain (2020); Hajikhani et al (2021) for more details). So, they
represent a solid foundation for the study of elastomeric materials.

We emphasized on discerning the differences among the leading models in the literature
and verifying whether the results presented by different authors are still valid in light of open-
source general-purpose software available nowadays, such as FEniCS. To this end, an important
part of this work is Section 3 with the mathematical classification and resulting numerical
discretization and algorithms. These allowed us to carefully design mathematical formulations,
which were then implemented and used to study the previously mentioned models.

Advances in automated solution techniques for the finite element method (FEM), such as
FEniCS, provide the user with a streamlined approach for solving systems of partial differential
equations compared to traditional model development. Unlike models implemented on com-
mercial software (e.g., Abaqus), the implementation of our models grants users considerable
control over several components.

The simulation results indicate that there is not a one-size-fits-all model compatible with
the parameters across all scenarios. Depending on the specific problem configuration being
simulated, adjustments to one or multiple parameters are necessary to guarantee the numer-
ical stability of the solution. Our observations in Section 5 revealed a strong dependency of
the numerical solution’s convergence on the diffusion coefficient and bulk modulus value. In
fact, very different diffusion coefficients for each example featured in this study were required.
Nonetheless, once a suitable value for the material parameters is identified, the numerical solu-
tion achieves reliable accuracy and robustness, as evidenced by the convergence analysis. Here,
a consistent number of Newton iterations was displayed along the simulation time to reach
absolute and relative errors smaller than 10−10. Moreover, concerning the spatial and temporal
discretization, quadratic and linear convergence orders, respectively, for the FEM and Euler
schemes for both the monolithic and staggered approaches were observed.

Furthermore, constitutive model III stands to be the more fragile in terms of numerical
stability. Because constitutive model III directly penalizes the material compressibility, it calls
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for a numerical solution using a mixed formulation where the stress becomes a primary variable
as it is standard in the literature dealing with incompressible materials (see, e.g., Brink and
Stein (1996) or Pantuso and Bathe (1997)).

Another observation was regarding the application of boundary conditions. Depending on
the specific simulation scenario, it might be necessary to adopt a time-ramping strategy to
prevent numerical instabilities, which is well known in continuum mechanics and due to the
mathematical functional framework in order to have compatible conditions. However, these
mathematical assumptions might not be met in many engineering applications. Therefore, one
must be careful with any assumption made while numerically solving the problem at hand to
avoid unphysical numerical results.

As an overall outcome, in Section 5, we found that each model presents diverse deforma-
tion states and solute concentrations within the hydrogel, highlighting the complexity of the
investigated problem. It is evident that pinpointing a single appropriate model to describe the
diffusion-deformation of hydrogels remains a challenge, given the different calibration mecha-
nisms each offers. These differences underscore the need for more comprehensive experimental
data to reconcile these theoretical distinctions with actual observations. With the models’ val-
idation, we can transition from merely describing the process to predicting hydrogel behavior,
thereby using the model for designing new materials or optimizing the mechanical properties
of existing ones.

Some efforts have been made to validate the diffusion-deformation process of hydrogels as
predicted by the coupled model. For example, Chen et al (2020) performed a validation of a very
similar theory as presented by Bouklas and Huang (2012) with a major focus on the linear the-
ory. Several measurements of the strain experienced by a gelatin-glycerol-water hydrogel under
free-swelling conditions are reported, and the best-fitting parameters are identified. Neither
the time evolution of the diffusion process nor the internal stress were investigated. Bosnjak
et al (2020); Alkhoury et al (2022) performed an experimental work to validate an extension
of the original models presented by Chester et al (2015). The extended models account for
the viscoelastic response of elastomeric gels under isothermal and non-isothermal conditions.
Again, the transient behavior of the diffusion process is neglected, and only the stresses are
computed for the steady state under external loading conditions. Consequently, no study has
been carried out to validate the models as presented in this study.
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Appendix A Alternative forms: the notion of active
chemical potential

The total deformation gradient F depends on fluid concentration cR from equation (8). To
better distnguish between elasti- and fluid-related effects, the stress power can be reformulated
as:

P : Ḟ = JfPe : Ḟe +
1

3
tr(Me)J̇f , (A1)

where Pe represents the PK1 stress tensor from the intermediate to the current configuration
(also referred to as the elastic PK1) and Me is the Mandel stress tensor in the intermediate
configuration5:

Pe = J
−2/3
f P = JeσF

−T
e and Me = JeF

T
e σF

−T
e = FT

e Pe. (A2)

At this standpoint, a mean normal pressure p̄ can be introduced,

p̄ = −1

3
tr(Me) = −1

3
Jetr(σ) = −1

3
Pe : Fe , (A3)

representing the pull-back of the hydrostatic pressure from the current to the intermediate
configuration. Finally, upon enforcing the kinematic constraint defined in equation (5), the
stress-power equation (A1) may be written as:

P : Ḟ = Pe : Ḟe − p̄J̇f = Pe : Ḟe − Ωp̄ċR . (A4)

Hence, the local form of the second law of thermodynamics, equation (12), reads also as:

Pe : Ḟe + (µ− Ωp̄)ċR − JR ·Grad(µ)− ψ̇R ≥ 0 , (A5)

from which it appears convenient defining the free energy density function as function of the
elastic deformation Fe and fluid concentration cR, that is

ψR = Ψe
R(Fe, cR) . (A6)

By defining the active chemical potential µact as:

µact = µ− Ωp̄ , (A7)

equation (A5) yields:

JfPe : Ḟe + µactċR − JR ·Grad(µ)− ∂Ψe
R

∂Fe
: Ḟe −

∂Ψe
R

∂cR
: ċR ≥ 0 , (A8)

from which the following constitutive choices follow for the elastic PK1 stress tensor:

Pe = J−1
f

∂Ψe
R

∂Fe
, (A9)

and the active chemical potential:

µact =
∂Ψe

R

∂cR
. (A10)

5In the state-of-the-art, two different stress measures can be found in the present context, namely PR
e = JfPe and

MR
e = JfMe, (Chester and Anand, 2010). These definitions are analogous but the corresponding stress measures refer

to the reference configuration.
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It is straightforward to show that constitutive choices in equations (15) and (16) are
equivalent to the ones in equations (A9) and (A10) given that:

Ψe
R(Fe, cR) = ΨR(

J
1/3
f︷ ︸︸ ︷

(1 + ΩcR)
1/3 Fe, cR) . (A11)

In fact, by employing the chain rule and considering equation (A11), it results from equation
(A9):

Pe = J−1
f

∂Ψe
R

∂Fe
= J−1

f

(
J
1/3
f

∂ΨR

∂F

)
= J

−2/3
f

∂ΨR

∂F
, (A12)

where it follows that P = ∂ΨR/∂F by definition (cf. equation (A2)), recovering the constitutive
relationship for the PK1 stress tensor in equation (15).

Moreover, it results from equation(A3), (A7) and (A10) that:

µ =
∂Ψe

R

∂cR
− 1

3
ΩPe : Fe , (A13)

where, considering equation (A11), the first term reads also as (accounting for the dependency
F = F(cR) from equation (8)):

∂Ψe
R

∂cR
=
∂ΨR

∂F
:
∂F

∂cR
+
∂ΨR

∂cR
, (A14)

while the second term as (with equation (A12)):

1

3
ΩPe : Fe =

1

3
ΩJ−1

f

∂Ψe
R

∂Fe
: Fe =

∂ΨR

∂F
:

(
1

3
ΩJ

−2/3
f Fe

)
=
∂ΨR

∂F
:
∂F

∂cR
. (A15)

Hence, since:

µ =
∂Ψe

R

∂cR
− 1

3
ΩPe : Fe =

(
∂ΨR

∂F
:
∂F

∂cR
+
∂ΨR

∂cR

)
−
(
∂ΨR

∂F
:
∂F

∂cR

)
=
∂ΨR

∂cR
, (A16)

the chemical potential computed from equation (A10) is equivalent to the one from equation
(16), given that equation (A11) holds true.
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