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4 The Axiom of Choice in the κ-Mantle
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Abstract

Usuba has asked whether the κ-mantle, the intersection of all grounds

that extend to V via a forcing of size ăκ, is always a model of ZFC.

We give a negative answers by constructing counterexamples where κ

is a Mahlo cardinal, κ “ ω1 and where κ is the successor of a regular

uncountable cardinal.

1 Introduction

Set-Theoretic Geology is the study of the structure of grounds, that is inner
models of ZFC that extend to V via forcing, and associated concepts. Motivated
by the hope to uncover canonical structure hidden underneath generic sets, the
mantle was born.

Definition 1.1. The mantle, denoted M, is the intersection of all grounds.

This definition only makes sense due to the uniform definability of grounds.

Fact 1.2. There is a first order P-formula ϕpx, yq such that

Wr “ tx|ϕpx, rqu

defines a ground for all r P V and all grounds are of this form. Moreover, if κ
is a cardinal and W extends to V via a forcing of size ăκ then there is r P Vκ

with W “Wr.

This was proven independently by Woodin [Woo11] [Woo04], Laver [Lav07]
and was later strengthened by Hamkins, see [FHR15].

This allows us to quantify freely over grounds as we will frequently do.

It was quickly realized that every model of ZFC is the mantle of another model
of ZFC, see [FHR15], which eradicated any chance of finding nontrivial structure
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in the mantle. However, the converse question remained open for some while,
namely whether the mantle is provably a model of ZFC. This tough nut was
cracked by Toshimichi Usuba.

Fact 1.3 (Usuba,[Usu17]). The mantle is always a model of ZFC.

Thereby the mantle was established as a well behaved canonical object in the
theory of forcing. Fuchs-Hamkins-Reitz [FHR15] suggested to study restricted
forms of the mantle.

Definition 1.4. Let Γ be a class1 Γ of forcings.

piq A Γ-ground is a ground W that extends to V via a forcing P P ΓW .

piiq The Γ-mantle MΓ is the intersection of all Γ-grounds.

piiiq We say that the Γ-grounds are downwards directed if for any two Γ-grounds
W0,W1 there is a Γ-ground W˚ ĎW0,W1.

pivq We say that the Γ-grounds are downwards set-directed if for any set-
indexed collection of Γ-grounds xWr | r P Xy there is a Γ-ground W˚

contained in all Wr for r P X .

pvq We say that Γ is ground absolute if the Γ-grounds of a Γ-ground W are
exactly those common grounds of V and W that are Γ-grounds from the
perspective of V , i.e. being a Γ-ground is absolute between V and all
Γ-grounds.

Remark 1.5. Note that if Γ is provably (in ZFC) closed under quotients and
two-step iterations then Γ is ground absolute.

Fuchs-Hamkins-Reitz [FHR15] have shown abstractly that if Γ is ground
absolute and has directed grounds then MΓ |ù ZF. To prove M |ù AC they
seemingly need the stronger assumption that the Γ-grounds are downwards set-
directed, the argument is as follows: Suppose X P M is not wellordered in M.
Then for every wellorder ă of X , we choose Wă a Γ-ground from which ă is
missing. By downwards set directedness, there is a Γ-ground W contained in
all such grounds Wă, but then X P W is not wellordered in W either, con-
tradiction. The main result of this part shows that indeed simple downwards
directedness does not suffice to prove choice in MΓ in general.

We will be interested in MΓ for Γ the class of all forcings of size ăκ, where
κ is some given cardinal. In this case, we denote the Γ-mantle by Mκ and call
it the κ-mantle. The associated grounds are the κ-grounds . The interest of the
κ-mantle arose in different contexts.

The following is known:

1In this case, we think of Γ as a definition, possibly with ordinal parameters, so that Γ can
be evaluated grounds of V .
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Fact 1.6 (Usuba, [Usu18]). If κ is a strong limit then Mκ |ù ZF.

Usuba proved this by showing that the κ-grounds are directed in this case.
Usuba subsequently asked:

Question 1.7 (Usuba, [Usu18]). Is Mκ always a model of ZFC?

We will answer this question in the negative by providing counterexamples
for three different types of cardinals κ.

We also mention that Fuchs-Hamkins-Reitz demonstrated that MΓ can fail
to be a model of choice for a different class of forcings, Γ “ tσ-closed forcingsu.

Fact 1.8 (Fuchs-Hamkins-Reitz, [FHR15]). If Γ is the class of all σ-closed
forcings it is consistent that MΓ |ù ZF^ AC.

It turns out that there is an interesting tension between large cardinal prop-
erties of κ and the failure of choice in Mκ. On the one side, Usuba has shown:

Fact 1.9 (Usuba, [Usu18]). If κ is extendible then Mκ “ M. In particular Mκ

is a model of ZFC.

Indeed, this result was the initial motivation of investigating the κ-mantle.
Sargsyan-Schindler [SS18] showed that a similar situation arises in the least
iterable inner model with a strong cardinal above a Woodin cardinal for κ the
unique strong cardinal in this universe. See also [SSS21] and [Sch22b] for further
results in this direction.
On another note, Schindler has proved the following.

Fact 1.10 (Schindler, [Sch18]). If κ is measurable then Mκ |ù ZFC.

The big difference to Fact 1.9 is that the existence of a measurable is con-
sistent with the failure of the Bedrock Axiom2. Particularly, we might have
Mκ ‰M for κ measurable.
If we go even lower in the large cardinal hierarchy then even less choice princi-
ples seem to be provable in the corresponding mantle. The relevant results here
are due to Farmer Schlutzenberg.

Fact 1.11 (Schlutzenberg, [Sch22a]). Suppose that κ is weakly compact. Then

piq Mκ |ù κ-DC and

piiq for every A P Hκ` XMκ,

Mκ |ù “A P Hκ` is wellorderable”.

Definition 1.12. Suppose α is an ordinal and X is a set. păα,Xq-choice holds
if for any β ă α and any sequence ~x :“ xxγ | γ ă βy of nonempty elements of X
there is a choice sequence for ~x, that is a sequenece xyγ | γ ă βy with yγ P xγ

for all γ ă β.
2The Bedrock Axiom states that the universe has a minimal ground, which turns out to

be equivalent to “M is a ground”.
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Fact 1.13 (Schlutzenberg, [Sch22a]). Suppose κ is inaccessible. Then we have

piq Vκ XMκ |ù ZFC and

piiq Mκ |ù “păκ,Hκ`q-choice”.
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2 Overview

In Section 3.1, we will argue that “κ is measurable” cannot be replaced by “κ is
Mahlo” in Fact 1.10, as wells as that păκ,Hκ`q-choice cannot be strengthened
to păκ` 1, Hκ`q-choice in Fact 1.13.

Theorem 2.1. If ZFC is consistent with the existence of a Mahlo cardinal, then
it is consistent with ZFC that there is a Mahlo cardinal κ so that Mκ fails to
satisfy the axiom of choice. In fact we may have

Mκ |ù “păκ` 1, Hκ`q-choice fails”.

In Section 3.2, we will investigate the κ-mantle for κ “ ω1, as well as the
Γ-mantle where Γ “ tCohen forcingu, denoted by MC. We will first proof that
these mantles are always models of ZF and will go on to provide a result anal-
ogous to Theorem 2.1.

Theorem 2.2. It is consistent relative to a Mahlo cardinal that both Mω1
and

MC fail to satisfy the axiom of choice.

In Section 3.3, we will generalize this to any successor of a regular cardinal.

Theorem 2.3. Suppose that

piq GCH holds,

piiq the Ground Axiom3 holds and

piiiq κ is a regular uncountable cardinal.

Then there is a cardinal preserving generic extension in which the κ`-mantle
fails to satisfy the axiom of choice.

3The Ground Axiom states that there is no nontrivial ground. See [Rei06] for more infor-
mation on this axiom.
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In this case however, it is not known if the κ`-mantle is a model of ZF in
general. The proof of all these three theorems follows a similar pattern, though
the details differ from case to case and it seems that we cannot employ a fully
unified approach.

3 The Axiom of Choice May Fail in Mκ

3.1 The case “κ is Mahlo”

Here, we will construct a model where the κ-mantle for a Mahlo cardinal κ does
not satisfy the axiom of choice. We will start with L and assume that κ is the
least Mahlo there. The final model will be a forcing extension of L by

P “
ăκ-support

ź

λPIXκ

Addpλ, 1q

where I is the class of all inaccessible cardinals. We define P to be a product
forcing and not an iteration (in the usual sense), as we want to generate many
κ-grounds. Let G be P-generic over L. We will show that κ is still Mahlo in

LrGs and that M
LrGs
κ does not satisfy the axiom of choice. We remark that,

would we start with a model in which κ is measurable, P would provably force
κ to not be measurable.

First, let’s fix notation. For λ ă κ, we may factor P as PďλˆPąλ where in each
case we only take a product over all γ P IXκ with γ ď λ and γ ą λ respectively.
Observe that Pąλ is a ăκ-support product while Pďλ is a full support product.
We also factor G as GďλˆGąλ accordingly. For λ P IXκ we denote the generic
for Addpλ, 1qL induced by G as gλ. In addition to this, for α ď κ we denote the
α-th inaccessible cardinal by Iα.
For α ă κ let Eα : κÑ 2 be the function induced by gIα . It will be convenient
to think of G as a κˆ κ-matrix M which arises by stacking the maps pEαqαăκ

on top of each other, starting with EI0 and proceeding downwards, and then
filling up with 0’s to produce rows of equal length κ. Let us write

eα,β “

#

Eαpβq if β ă Iα

0 else.

The peα,βqα,βăκ are the entries of M :

5



e0,0 e0,1 e0,2 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

e1,0 e1,1 e1,2 ¨ ¨ ¨ e1,I0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

...
...

...
. . .

...
. . . 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

eα,0 eα,1 eα,2 ¨ ¨ ¨ eα,I0 ¨ ¨ ¨ eα,I1 ¨ ¨ ¨ 0 ¨ ¨ ¨

...
...

...
. . .

...
...

...
. . . 0 ¨ ¨ ¨

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

r1

c2

Měα

M “

We will give the α-th row ofM the name rα and we denote the β-th column of
M by cβ . One trivial but key observation is that rα carries the same information
as gIα .

We will be frequently interested in the matrix M with its first α rows deleted
for some α ă κ, so we will give this matrix the name Měα. Note that Měα cor-
responds to the generic GěIα . Finally observe that we may think of conditions
in P as partial matrices that approximate such a matrix M in the sense that
they already have the trivial 0’s in the upper right corner, in any row α ă κ

they have information for ăIα many β ă Iα on whether eα,β is 0 or 1 and they
contain non-trivial information in less than κ-many rows.

Lemma 3.1. L and LrGs have the same inaccessibles.

Proof. First, we show that all limit cardinals of L are limit cardinals in LrGs.
It is enough to prove that all double successors δ`` are preserved. This is
obvious for δ ě κ as P has size κ. For δ ă κ, Pąδ is ďδ``-closed so that all
cardinals ď δ`` are preserved in LrGąδs. Furthermore, Păδ has size at most
δ` in LrGąδs by GCH in L. Hence δ`` is still a cardinal in LrGs.

Now we have to argue that all λ P I remain regular. Again, this is clear if
λ ą κ. On the other hand, assume δ :“ cofpλqLrGs ă λ. As Pąδ is ďδ-closed, λ
is still regular in LrGąδs. Hence, a witness to cofpλq “ δ must be added in the
extension of LrGąδs by Pďδ. But this forcing has size ă λ in LrGąδs and thus
could not have added such a sequence.

In fact, P does not collapse any cardinals (if V “ L), but some more work is
required to prove this. This is, however, not important for our purposes. Next,
we aim to show that κ remains Mahlo in LrGs.

To prove this, it is convenient to introduce a generalization of Axiom A.

Definition 3.2. For κ an ordinal, λ a cardinal we say that a forcing Q satisfies
Axiom Apκ, λq, abbreviated by AApκ, λq, if there is a sequence xďα| α ă κy of
partial orders on Q so that

pAA.iq @α ď β ă κ ďβĎďαĎďQ,
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pAA.iiq for all antichains A in Q, α ă κ and p P Q there is q ďα p so that
|ta P A | a}qu| ă λ and

pAA.iiiq for all β ă κ if ~p “ xpα | α ă βy satisfies pγ ďα pα for all α ă γ ă β then
there is a fusion pβ of ~p, that is pβ ďα pα for all α ă β.

Remark 3.3. The usual Axiom A is thus Axiom Apω ` 1, ω1q.

Proposition 3.4. Suppose λ is regular uncountable cardinal and Q satisfies
AApλ, λq. Then Q preserves stationary subsets of λ.

Proof. Suppose S Ď λ is stationary, 9C is a Q-name for a club in λ and p P P.
We will imitate the standard proof that a ăκ-closed forcing preserves stationary
sets. Let xďα| α ă λy witness that Q satisfies AApλ, λq.

Claim 3.5. For any q P Q, α ă λ there is r ďα q and some α ă γ ă λ with
q , γ̌ P 9C.

Proof. Construct a sequence xqα | α ă ωy of conditions in Q and an ascending
sequence xγn | n ă ωy of ordinals with

piq q0 “ q, γ0 “ α,

piiq qn`1 ďα`n qn for all n ă ω and

piiiq qn`1 , “ 9C X pγ̌n, γ̌n`1q ‰ H

for all n ă ω. The construction is immediate using that λ is regular uncountable
and pAA.iiiq. Then by pAA.iiq, there is q˚ ďα q which is below all qn, n ă ω.
It follows that

q˚ , γ̌˚ P 9C

where γ˚ “ supnăω γn.

Suppose toward a contradiction that p , 9CXŠ “ H. By the claim above, we
can build sequences xpα | α ă λy of conditions in Q and an increasing sequence
xγα | α ă λy of ordinals below λ so that

piq p0 “ p,

piiq pβ ďα pα for all α ď β ă λ and

piiiq pα`1 , γ̌α P 9C for all α ă λ.

Let D be the set of all limit points ăλ of tγα | α ă λu. For any α ă λ, we have

pα`1 , Ď X γα Ď 9C

which shows that D X S “ H, contradiction.

Lemma 3.6. P satisfies AApκ, κq.
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Proof. For γ ă κ define ďγ by r ďγ q if r ď q and r æ γ “ q æ γ for q, r P P. We
will only show that pAA.iiq holds. So let p P P, γ ă κ and A Ď P a maximal
antichain. Let xqα|α ă δy be an enumeration of all conditions in Pďgamma below
p æ γ ` 1 with δ “ |Pďγ |. We construct a ďγ-descending sequence xpα|α ď δy
of conditions in P starting with p0 “ p as follows: If α ď δ then choose some
ďγ-bound of xpβ | β ă αy. This is possible as Pąγ is ďδ-closed, as the next
forcing only appears at the next inaccessible. Moreover, if possible and α ă δ

make sure that
q"

α pα æ pγ, κq

is below a condition in A. This completes the construction. Set q :“ qκ, we
will show that q is compatible with at most δ-many elements of A. Toward this
goal, suppose a P A and q is compatible with a. We may find some α ă κ so
that a æ γ ` 1 “ qα. It follows that we must have succeeded in the construction
of pα with the additional demand that

q"

α pα æ pγ, κq

is below a condition in A, but this can only be true for a. We have shown that
for any a P A compatible with q there is α ă δ with q"

α q æ pγ, κq ď a and note
that no single α can witness this for more than one element of A.

Corollary 3.7. κ is Mahlo in LrGs.

Proof. This follows immediately from Lemma 3.1, Lemma 3.6 and Proposition
3.4.

Next, we aim to find an easier description ofM
LrGs
κ . Recall the λ-approximation

property introduced by Hamkins [Ham03]:

Definition 3.8. Let W Ď V be an inner model, λ an infinite cardinal.

piq For x P V , a λ-approximation of x by W is of the form xX y where y PW
is of size ďλ.

piiq W Ď V satisfies the λ-approximation property if whenever x P V and all
λ-approximations of x by W are in W , then x PW .

All κ-grounds satisfy the κ-approximation property (cf. [FHR15]).

Lemma 3.9. M
LrGs
κ “

Ş

λPIXκ LrGąλs.

Proof. Suppose W is a κ-ground of LrGs. It is enough to find λ P I X κ such
that LrGąλs ĎW . Clearly, P P L ĎW . As κ is a limit of inaccessibles, we may
take some λ ă κ inaccessible so that W is a λ-ground. Thus W Ď LrGs satisfies
the λ-approximation property. We will show Gąλ P W (even Gěλ P W ). Find
α with λ “ Iα, it is thus enough to show Měα P W . To any λ-approximation
Měα X a of Měα by W corresponds some a1 Ď κzα ˆ κ, a1 P W of size ăλ so
that

Měα X a “Měα æ a
1 :“ xeγ,β | pγ, βq P a

1y.
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We will show that all such restrictions of Měα are in W . So let a P W , a Ď
κzαˆκ, |a| ă λ. As 0# does not exist inW , there is b P L, b Ď κzαˆκ of sizeă λ

with a Ď b. For all α ď γ ă κ, the set of β ă Iγ with pγ, βq P b is bounded in Iγ .
As described earlier, we may think of conditions in P as partial κˆ κ matrices.
With this in mind, the conditions p P P that contain information on the entry
eγ,β for all pγ, βq P b form a dense set of P. Thus M æ b “ xeγ,β | pγ, βq P by
is essentially a condition p P P Ď W and hence M æ a “ pM æ bq æ a P W . As
W Ď LrGs satisfies the λ-approximation property, we have Měα PW .

Remark 3.10. The above argument shows that for any λ P I X κ

MLrGąλs
κ “MLrGs

κ .

In fact, whenever δ is a strong limit, the δ-mantle is always absolute to any
δ-ground. The use of Jensen’s covering lemma in the above argument is not
essential, in fact a model in which the κ-mantle does not satisfy choice for
κ Mahlo can be analogously constructed in the presence of 07. However, the
absence of 07 simplifies the proof.

We will later show that PpκqM
LrGs
κ does not admit a wellorder in M

LrGs
κ .

First, we analyze which subsets of κ M
LrGs
κ knows of. We call a Ď κ fresh if

aX λ P L for all λ ă κ.

Proposition 3.11. The subsets of κ in M
LrGs
κ are exactly the fresh subsets of

κ in LrGs.

Proof. First suppose a Ď κ, a P M
LrGs
κ . If λ ă κ then a P LrGąλs. As Pąλ is

ďλ-closed in L, aX λ P L.
For the other direction assume a P LrGs is a fresh subset of κ and assume
W is a κ-ground of LrGs. There is λ ă κ so that W Ď LrGs satisfies the λ-
approximation property. As a is fresh, all the λ-approximations of a in W are
in W . Thus a PW .

The columns cβ , β ă κ, of M are the fresh subsets of κ relevant to our
argument.

Proposition 3.12. All cβ, β ă κ, are Addpκ, 1q-generic over L.

Proof. The map π : P Ñ Addpκ, 1q that maps p P P to the information that p

has on cβ is well-defined as P is a bounded support iteration of length κ. Clearly,
π is a projection.

This is exactly the reason we chose bounded support in the definition of P.
We are now in good shape to complete the argument.

Theorem 3.13. păκ` 1, Hκ`q-choice fails in M
LrGs
κ .

9



Proof. Note that any generic for Addpκ, 1qL is the characteristic function of a

fresh subset of κ so that cβ P M
LrGs
κ for any β ă κ. Of course, the sequence

xcβ|β ă κy is not in M
LrGs
κ , as one can compute the whole matrix M (and thus

the whole generic G) from this sequence. However, we can make this sequence

fuzzy to result in an element of M
LrGs
κ . Let „ be the equivalence relation of

eventual coincidence on pκ2qM
LrGs
κ , i.e.

x „ y ô Dδ ă κ x æ rδ, κq “ y æ rδ, κq.

We call xrcβs„|β ă κy the fuzzy sequence.

Claim 3.14. The fuzzy sequence is an element of M
LrGs
κ .

Proof. By Lemma 3.9, it is enough to show that for every α ă κ, LrGěIαs knows
of this sequence. But LrGąIαs contains the matrix Měα and thus the sequence

xcβ æ pκzαq|β ă κy

so that LrGěαs can compute the relevant sequence of equivalence classes from
this parameter.

Finally, we argue that M
LrGs
κ does not contain a choice sequence for the fuzzy

sequence4. Heading toward a contradiction, let us assume that

xxβ |β ă κy PMLrGs
κ

is such a sequence. LrGs knows about the sequence

xδβ|β ă κy

where δβ is the least δ with xβ æ pκzδq “ cβ æ pκzδq. The set of λ ă κ that are
closed under the map β ÞÝÑ δβ is club in κ. As κ is Mahlo in LrGs, there is an
inaccessible α “ Iα ă κ that is closed under β ÞÝÑ δβ . Now observe that

xβpαq “ 1ô cβpαq “ 1ô rαpβq “ 1

holds for all β ă Iα, so that rα P M
LrGs
κ . But this is impossible as clearly rα is

not fresh.

Theorem 2.1 follows.

Remark 3.15. The only critical property of L that we need to make sure that
Mκ is not a model of choice in LrGs is that L has no nontrivial grounds, i.e.
L satisfies the ground axiom. GCH is convenient and implies that no cardinals
are collapsed, but it is not necessary. The use of Jensen’s covering lemma can
also be avoided, as discussed earlier.

4That is, there is no sequence xxβ | β ă κy P M
LrGs
κ with xβ P rcβs„ for all β ă κ.
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3.2 The ω1-mantle

Up to now, we have focused on the κ-mantle for strong limit κ. We will get
similar results for the ω1-mantle. There is some ambiguity in the definition of
the ω1-mantle, depending on whether or not ω1 is considered as a parameter or
as a definition. In the former case, it is the intersections of all groundsW so that
W extends to V via a forcing so that W |ù |P| ă ωV

1 , where in the latter case
we would require W |ù |P| ă ωW

1 . These mantles are in general not equal. To
make the distinction clear, we give the latter version the name “Cohen mantle”
and denote it by MC. The reason for the name is, of course, that all non-trivial
countable forcings are forcing-equivalent to Cohen forcing.

Lemma 3.16. Mω1
|ù ZF and MC |ù ZF.

Proof. First let us do it for MC. Clearly, MC is closed under the Gödel opera-
tions. It is thus enough to show that MC X Vα PMC for all α P Ord. Let W be
any Cohen-ground. As Cohen-forcing is homogeneous, MV

C
is a definable class

in W . Hence, MC X Vα “MC X V W
α PW . As W was arbitrary, this proves the

claim.
Now onto Mω1

. The above argument shows that all we need to do is show
that Mω1

is a definable class in all associated grounds. So let W be such a
ground. There are two cases. First, assume that ωW

1 “ ωV
1 . Then W extends to

V via Cohen forcing, so Mω1
is definable in W . Next, suppose that ωW

1 ă ωV
1 .

This can only happen if ωV
1 is a successor cardinal in W , say W |ù ωV

1 “ µ`.
In this case, W extends to V via a forcing of W -size ď µ and which collapses
µ to be countable. It is well known that in this situation, W extends to V via
Colpω, µq, which is homogeneous as well, so once again, Mω1

is a definable class
in W .

Once again, choice can fail.

Theorem 3.17. Relative to the existence of a Mahlo cardinal, it is consistent
that there is no wellorder of PpωV

1 q
Mω1 in Mω1

.

We remark that the Mahlo cardinal is used in a totally different way than in
the last section. In the model we will construct, ω1 will be inaccessible in Mω1

.
Let us once again assume V “ L for the rest of the section and let κ be Mahlo.
Let P be the “ăκ-support version of Colpω,ăκq”, that is

P “
ăκ´support

ź

αăκ

Colpω, αq.

Let us pick a P-generic filter G over V . From now on, Mω1
will denote M

V rGs
ω1

and MC will denote M
V rGs
C

.

Proposition 3.18. Suppose Q is a forcing, γ ă λ and λ is a cardinal. If Q is
AApγ, λq then in V Q there is no surjection from any β ă γ onto λ.

11



Proof. This is a straightforward adaptation of the proof that Axiom A forcings
preserve ω1.

The following lemma is the only significant use of the Mahloness of κ.

Lemma 3.19. P satisfies AApκ, κq.

Proof. We define ďα independent of α ă κ as the order ď˚: Let p ď˚ q iff p ď q

and p æ supppqq “ q. The only nontrivial part is showing that for any antichain
A and any p P P there is q ď˚ p with

|ta P A | a}qu| ă κ.

Let
P æ α :“ tp P P | sup suppppq ă αu

for all α ă κ. We will proceed to find some q with the desired property. For
convenience, we may assume that A is a maximal antichain. As κ is Mahlo, there
is a regular λ ă κ so that pP æ λ and any r P P æ λ is compatible with some
a P AX P æ λ. As V “ L, ♦λ holds. Thus there is a sequence ~d :“ xdα | α ă λy
with

p~d.iq dα P Pďα and

p~d.iiq for all r P Pďλ there are stationarily many α ă λ with dα “ r æ α.

Construct a sequence
xqα | α ă λy

of conditions in P æ λ with qα ď
˚ qβ for all α ă β ă λ as follows: Set q0 “ p.

If qβ is defined for all β ă α, let first q1
α “

Ť

βăα qβ and note that this is a
condition. Let γα “ sup supppq1

αq. Now find a P A X P æ λ that is compatible
with dγα

and let
qα :“ q1"

α a æ rγα, λq.

Finally, set q “
Ť

αăλ qα. We have to show that q is compatible with only a

few elements of A, so suppose b P A is compatible with q. The properties of ~d

guarantee that there is α ă λ so that

pα.iq γα “ α and

pα.iiq dα “ b æ α.

Hence in the construction of qα`1 we found some a P AXP æ λ compatible with
b æ α and have qα`1 æ rα, λq ď a æ rα, λq. If a ‰ b, then a K b and the incom-
patibility must lie in the interval rα, λq. But then qα`1 and b are incompatible
as well, contradiction. Thus b “ a and it follows that q is compatible with at
most λ-many elements of A.

Corollary 3.20. We have

12



pG.iq ω
LrGs
1 “ κ and

pG.iiq if g : ω Ñ Ord P LrGs then there is some α ă κ so that g P V rGďαs.

Proof. To see pG.iq, note that P collapses all cardinals ăκ to ω, so ω
LrGs
1 ě κ.

As P satisfies AApκ, κq, there is no surjection from ω onto κ in LrGs.
Next, let us prove pG.iiq. Let 9g P L be a name for g. In LrGs, find a decreasing
sequence of conditions xpn | n ă ωy in G so that pn decides the value of 9gpňq
(from the perspective of L). Let α “ supnăω sup suppppnq. By pG.iq, α ă κ.
But then LrGďαs can compute the whole of g.

From now on, Mω1
denotes M

LrGs
ω1

and MC is M
LrGs
C

. Let us define an
auxiliary model N “

Ş

αăκ LrGąαs. It is clear that Mω1
Ď N .

Recall the following fact due to Solovay.

Fact 3.21 (Solovay, [Sol70]). If G,H are mutually generic filters over V (for
any forcings) then V rGs X V rHs “ V .

Proposition 3.22. We have that

pN.iq N |ù ZF and

pN.iiq N X Ppκq “Mω1
X Ppκq “MC X Ppκq “ ta Ď κ | @β ă κ aX β P V u.

Proof. First, we will prove pN.iq. Once again it is enough to show that N is
definable in all models of the form LrGąαs for α ă κ. But this is clear from the
definition of N .
Next, we show pN.iiq. Mω1

X Ppκq Ď MC X Ppκq Ď N X Ppκq is trivial. If
a P N X Ppκq and β ă κ then a X β P LrGďαs for some α by clause pG.iiq of
Corollary 3.20. As a P N , aX β P LrGąαs, too. Thus by Fact 3.21

a P LrGďαs X LrGąαs “ L.

The final inclusion NXPpκq ĎMω1
XPpκq holds since if W is a ground of LrGs

which extends to LrGs via Q of size ă κ then Q cannot add a fresh subset of
κ.

Proof of Theorem 3.17. We will show that in LrGs, neither Mω1
nor MC possess

a wellorder of its version of Ppκq. In fact, we will show that N does not have
such a wellorder, which is enough by pN.iiq of the above proposition. Once
again, let „ be the equivalence relation on functions f : κÑ κ P N of eventual
coincidence. For n ă ω, let

dn : κÑ κ, dnpαq “ gαpnq

where gα is the map ω Ñ α induced by the slice of G generic for Colpω, αq.
As before, we get that the fuzzy sequence xrdns„ | n ă ωy P N . If N had a
wellorder of Ppκq, then there would be a choice sequence xxn | n ă ωy P N for
the fuzzy sequence. In LrGs, one can define the sequence xδn | n ă ωy where
δn is the least point after which xn and dn coincide. As κ “ ω1 in LrGs, the
δn are bounded uniformly by some δ ă κ. But this means that Gąδ P N , a
contradiction.
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It is natural to conjecture that N “ MC “ Mω1
, though we do not have

a proof of any of these equalities. The problem is that we cannot follow the
strategy from Section 3.1: LrGs has Cohen-grounds which do not contain any
gα for α ă κ, let alone a tail of the sequence pgαqαăκ.

Question 3.23. Is N “MC “Mω1
?

3.3 The successor of a regular uncountable cardinal case

We show that, again under V “ L, for every regular uncountable κ there is a
forcing extension in which Mκ` is not a model of ZFC. The upside here is that
we do not need any large cardinals at all in our construction, however we pay a
price: We do not know whether Mκ` is a model of ZF in general.

Theorem 3.24. Assume V “ L and suppose κ is regular uncountable. Then
after forcing with

P :“
ăκ`´support

ź

αăκ`

Addpκ, 1q

Mκ` is not a model of ZFC.

First, lets do a warm-up with an initial segment of P. We thank Elliot Glazer
for explaining (the nontrivial part of) the following argument to the author.

Lemma 3.25 (Elliot Glazer). If κ is regular and ♦κ holds then

Pďκ “
full support

ź

αăκ

Addpκ, 1q

satisfies AApκ` 1, κ`q.

An additional assumption beyond “κ is regular” is necessary here: It is well
known that

full support
ź

năω

Addpω, 1q

collapses 2ω to ω.

Proof. We let p ďα q if p ď q and p æ α “ q æ α. It is easy to see that pAA.iq
and pAA.iiiq of Definition 3.2 hold, so let us show pAA.iiq. Therefore, let α ă κ,
p P Pďκ and an antichain A in Pďκ be given. As ♦κ holds, there is a sequence
xdβ | β ă κy with dβ P Pďβ so that for any q P Pďκ there is some β with
q æ β “ dβ . We will define a sequence ppβqαďβďκ inductively so that pγ ďβ pβ
for all β ď γ ď κ. We put pα “ p. At limit stages β we let pβ be the canonical
fusion of xpγ | α ď γ ă βy. So assume pβ is defined. We choose pβ`1 ďβ pβ so
that, if possible,

d"

β pβ`1 ď a

14



for some a P A. Otherwise, we are lazy and set pβ`1 “ pβ.
Now clearly q :“ pκ ďα p and we will show that q is compatible with at most
κ-many conditions in A. To see this, suppose a P A is compatible with q. We
may find β ă κ so that dβ “ a æ β. In the construction of pβ`1 from pβ, we
tried to achieve that

d"

β pβ`1 æ rβ, κq

is below some condition in A, which is possible and only possible for a. This
shows that for any a P A that is compatible with q, there is β ă κ so that
q æ rβ, κq ď a æ rβ, κq. As Pďβ has size ďκ, it follows that there are at most
κ-many such a P A.

Corollary 3.26. Under the same assumptions as before, Pďκ preserves all car-
dinals ď κ`.

Proof. Pďκ is ăκ-closed and satisfies AApκ` 1, κ`q.

We aim to prove a similar result for P.

Lemma 3.27. If κ is regular and ♦κ holds then P preserves all cardinals ď κ`.
Moreover, if G is P-generic and g : κ Ñ Ord is in V rGs then there is α ă κ`

with g P V rGďαs.

The argument is similar, but somewhat more complicated. To do so, we
introduce a further abstraction of AApκ, λq.

Definition 3.28. Suppose that P “ pP,ĺq is a partial order, Q is a forcing,
κ ă λ are ordinals. Q satisfies Strategic Axiom Apκ, λ,Pq (SAApκ, λ,Pq) if
there is a family xďx| x P P y of partial orders on Q so that

pSAA.iq ďyĎďxĎďQ whenever x ĺ y for x, y P P ,

pSAA.iiq for any antichain A Ď Q, any x P P and p P Q, there is q ďx p with

|ta P A | a}pu| ă λ

and

pSAA.iiiq player II has a winning strategy in the following game we call GpQ, κ,Pq:

I p0 p1 . . . pω . . .

II x0 x1 . . . xω . . .

The game has length κ. In an even round α ¨ 2, Player I plays some
condition pα P Q so that pα ďxβ

pβ for all β ă α played so far. In an odd
round α ¨ 2` 1, player II plays some xα P P with xβ ĺ xα for all β ă α.
Player I wins the game iff some player has no legal moves in some round
ăκ. If the game last all κ rounds instead, II wins.

It is straightforward to generalize Proposition 3.18.

Proposition 3.29. Suppose Q satisfies SAApκ, λ,Pq. Then in V Q, there is no
surjection f : β Ñ λ for any β ă κ.
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Lemma 3.30. If κ is regular and ♦κ holds then P satisfies

SAApκ` 1, κ`,Pκpκ
`qq

where Pκpκ
`q is ordered by inclusion.

Proof. For x P Pκpκ
`q we will write p ďx q if p ď q and p æ x “ q æ x. It is

clear that pSAA.iq holds.
Next, we aim to establish pSAA.iiiq. We describe a strategy for player II in the
relevant game. We will need to do some additional bookkeeping. Let

h : κÑ κˆ κ

be a surjection such that if hpβq “ pα, γq then α ď β. Suppose that pα is the
last condition played by player I and pxβqβăα have been played already. In
the background, we already have chosen some surjections sβ : κÑ suppppβq for
β ă α and we will adjoin a surjection sα : κÑ suppppαq to that list. We set

xα “ sγ0
pγ1q Y

ď

βăα

xβ

where pγ0, γ1q “ hpαq. As κ is regular, xα P Pκpκ
`q.

Claim 3.31. Player I does not run out of moves before the game ends.

Proof. Suppose we reached round 2 ¨α ď κ and let x “
Ť

βăα xβ . We will find a

legal play p˚ for player I. For γ P κ`z
Ť

βăα suppppβq, let p˚pγq be trivial. The
point is that for γ P x, xpβpγq | β ă αy stabilizes eventually to some p˚pγq. If
α “ κ, then our bookkeeping made sure that we have

x “
ď

βăκ

suppppβq

so that p˚ is already fully defined and a legal play. If α ă κ instead, then there
are possibly γ P

Ť

βăα suppppβq ´ x, but then xpβpγq | β ă αy is a sequence of
length ăκ, so we may pick a lower bound p˚pγq P Addpκ, 1q for it.

It remains to show pSAA.iiq and here we will use that ♦κ holds. Let xdβ |
β ă κy be the “♦κ-sequence for Pďκ” that appeared in the proof of Lemma 3.25
and let A be a maximal antichain in P. Choose τ to be a winning strategy for
player II in GpP, κ ` 1,Pκpκ

`qq and we will describe a strategy σ for player I:
Suppose α ď κ and pβ , xβ have already been played for β ă α. This time, we
will have picked some surjections sβ : κÑ xβ for β ă α in the background. Let
xăα :“

Ť

βăα xβ . Then, assuming there is a legal move, pick some pα so that

ppα.iq pα ďxβ
pβ for all β ă α and

ppα.iiq if possible, pα æ pκ
`zxăαq Y eα æ xăα is below a condition in A
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where eα is defined by
eαpsγ0

pγ1qq “ dαpγq

whenever γ ă α and hpγq “ pγ0, γ1q (and eα is trivial where we did not specify
a value)5.
Let xpα | α ď κy, xxα | α ă κy be the sequences of moves played by player I and
II in a game where player I follows σ and player II follows τ . As τ is a winning
strategy, the sequence must be of length κ ` 1. We will show that q :“ pκ is
compatible with at most κ-many elements of A. So let a P A and assume that
q is compatible with a.

Claim 3.32. There is α ă κ so that eα P P and eα æ xăα “ a æ xăα.

Proof. We define b P Pďκ by bpγq “ apsγ0
pγ1qq whenever hpγq “ pγ0, γ1q. Then

there is α ă κ with

pα.iq b æ α “ dα and

pα.iiq xăα “ tsγ0
pγ1q | Dγ ă α hpγq “ pγ0, γ1qu.

It is easy to see now that α is as desired.

Thus in round α ¨ 2 in the game, player I tried to make sure that

a æ xăα Y pα æ pκ
`zxăαq

is below some condition in A. This is possible for a, and only for a as q and a

are compatible.
We have shown that for any a P A that is compatible with q, there is α ă κ

such that q æ pκ`zxăαq ď a æ pκ`zxăαq. As there are only ďκ-many r P P

with support contained in xăα, this implies that there are at most κ-many such
a P A.

Lemma 3.27 follows from Lemma 3.30 and Proposition 3.29 similarly to how
we proved Corollary 3.20.

Remark 3.33. If additionally GCH holds at κ` then P does not collapse any
cardinals at all by a standard ∆-system argument.

Proof of Theorem 3.24. Let G be P-generic over L. By Lemma 3.27, all L-
cardinals ď κ` are still cardinals in LrGs (in fact, all cardinals are preserved).
Let N “

Ş

αăκ` LrGąαs. Using that N is definable in every model of the form
LrGąαs, it is easy to check that N is a model of ZF. Once again, we call A Ď κ`

fresh if AX α P L for all α ă κ`.

Claim 3.34. Ppκ`qMκ` “ Ppκ`qN “ tA Ď κ` | A is freshuLrGs.

5eα may fail to be a function, in which case ppα.iiq is void.
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Proof. Ppκ`qMκ` Ď Ppκ`qN is trivial. Suppose A Ď κ`, A P N . Given α ă κ`,
by Lemma 3.27, there is β ă κ` so that AX α P LrGďβs so that

AX α P LrGďβs X LrGąβs “ L

by Fact 3.21. For the last inclusion assume A P LrGs is a fresh subset of
κ` and W is any κ`-ground of LrGs. It follows that W Ď LrGs satisfies the
κ`-approximation property so that A P W as any bounded subset of A is in
L ĎW .

We will show that there is no wellorder of Ppκ`qMκ` in Mκ` . So assume

otherwise. Let „ be the equivalence relation of eventual coincidence on κ`

2 in
N . We can realise G as a matrix where the α-th row is Addpκ, 1q-generic over
L. Now the columns are in fact Addpκ`, 1q-generic over L. Let us write cα for
the α-th column (α ă κ`q and dβ for the β-th row (β ă κ). For any α ă κ`

we have that xdβ æ rα, κ
`q | β ă κy P LrGąαs. Thus

xrdβs„ | β ă κy P N

and by our assumption there must be a choice function, say xxβ | β ă κy, in N .
In LrGs, we can define the sequence xδβ | β ă κy, where δβ is the least point
after which xβ and dβ coincide. As κ` is not collapsed by P, we can strictly
bound all δβ by some δ˚ ă κ`. But then

xxβpδ˚q | β ă κy P N

is Addpκ, 1q-generic over L, which contradicts that N and L have the same
subsets of κ.

Note that Fact 1.6 does not apply in the situation here, so we may ask:

Question 3.35. Is Mκ` a model of ZF? Is Mκ` “ N?

4 Conclusion

There are a number of open questions regarding the interplay between large car-
dinal properties of κ and the κ-mantle. The following table summarizes what
is known as presented in the introduction.

Large cardinal property of κ Theory of Mκ extends...
extendible ZFC`GA
measurable ZFC
weakly compact ZF` κ-DC
inaccessible ZF` pă κ,Hκ`q-choice

There is certainly much more to discover here. How optimal are these re-
sults? Optimality has only been proven for one of them, namely the first. This
is due to Gabriel Goldberg.
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Fact 4.1 (Goldberg, [Gol21]). Suppose κ is an extendible cardinal. Then there
is a class forcing extension in which κ remains extendible and Mκ is not a
κ-ground. In particular, if λ ă κ and Mλ |ù ZFC then Mλ has a nontrivial
ground.

The most interesting question seems to be up to when exactly the axiom
of choice can fail to hold in Mκ. Since this can happen at a Mahlo cardinal,
the natural next test question is whether this is possible at a weakly compact
cardinal.

Question 4.2. Suppose that κ is weakly compact. Must Mκ |ù ZFC?
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