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Abstract

Usuba has asked whether the k-mantle, the intersection of all grounds
that extend to V via a forcing of size <k, is always a model of ZFC.
We give a negative answers by constructing counterexamples where &
is a Mahlo cardinal, x = w; and where k is the successor of a regular
uncountable cardinal.

1 Introduction

Set-Theoretic Geology is the study of the structure of grounds, that is inner
models of ZFC that extend to V via forcing, and associated concepts. Motivated
by the hope to uncover canonical structure hidden underneath generic sets, the
mantle was born.

Definition 1.1. The mantle, denoted M, is the intersection of all grounds.
This definition only makes sense due to the uniform definability of grounds.

Fact 1.2. There is a first order e-formula ¢(x,y) such that

Wy = {zlp(z,r)}

defines a ground for all r € V' and all grounds are of this form. Moreover, if k
18 a cardinal and W extends to V' wvia a forcing of size <k then there is r € Vj
with W = W,.

This was proven independently by Woodin [Wooll] [Woo04], Laver [Lav07]
and was later strengthened by Hamkins, see [FHR15].

This allows us to quantify freely over grounds as we will frequently do.
It was quickly realized that every model of ZFC is the mantle of another model
of ZFC, see [FHR15], which eradicated any chance of finding nontrivial structure
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in the mantle. However, the converse question remained open for some while,
namely whether the mantle is provably a model of ZFC. This tough nut was
cracked by Toshimichi Usuba.

Fact 1.3 (Usuba,[Usul7]). The mantle is always a model of ZFC.

Thereby the mantle was established as a well behaved canonical object in the
theory of forcing. Fuchs-Hamkins-Reitz [FHR15] suggested to study restricted
forms of the mantle.

Definition 1.4. Let I be a class! T' of forcings.

(i) A T'-ground is a ground W that extends to V via a forcing P e T'".
(#4) The I'-mantle Mr is the intersection of all I'-grounds.

(7i7) We say that the I'-grounds are downwards directed if for any two I'-grounds
Wo, W1 there is a I'-ground W,, € Wy, Wj.

(tv) We say that the I'-grounds are downwards set-directed if for any set-
indexed collection of I'-grounds (W, | r € X) there is a I'-ground W,
contained in all W, for r € X.

(v) We say that T' is ground absolute if the I'-grounds of a I'-ground W are
exactly those common grounds of V' and W that are I'-grounds from the
perspective of V', i.e. being a I'-ground is absolute between V and all
I'-grounds.

Remark 1.5. Note that if T is provably (in ZFC) closed under quotients and
two-step iterations then I' is ground absolute.

Fuchs-Hamkins-Reitz [FHR15] have shown abstractly that if T' is ground
absolute and has directed grounds then Mrp = ZF. To prove M = AC they
seemingly need the stronger assumption that the I'-grounds are downwards set-
directed, the argument is as follows: Suppose X € M is not wellordered in M.
Then for every wellorder < of X, we choose W~ a I'-ground from which < is
missing. By downwards set directedness, there is a I'-ground W contained in
all such grounds W, but then X € W is not wellordered in W either, con-
tradiction. The main result of this part shows that indeed simple downwards
directedness does not suffice to prove choice in Mr in general.

We will be interested in M for I" the class of all forcings of size <k, where
k is some given cardinal. In this case, we denote the I'-mantle by M,, and call
it the k-mantle. The associated grounds are the k-grounds. The interest of the
k-mantle arose in different contexts.

The following is known:

11In this case, we think of I" as a definition, possibly with ordinal parameters, so that I can
be evaluated grounds of V.



Fact 1.6 (Usuba, [Usul8]). If k is a strong limit then M, = ZF.

Usuba proved this by showing that the x-grounds are directed in this case.
Usuba subsequently asked:

Question 1.7 (Usuba, [Usul8]). Is M, always a model of ZFC?

We will answer this question in the negative by providing counterexamples
for three different types of cardinals .

We also mention that Fuchs-Hamkins-Reitz demonstrated that Mr can fail
to be a model of choice for a different class of forcings, I' = {o-closed forcings}.

Fact 1.8 (Fuchs-Hamkins-Reitz, [FHR15]). If T is the class of all o-closed
forcings it is consistent that Mr = ZF A —AC.

It turns out that there is an interesting tension between large cardinal prop-
erties of xk and the failure of choice in M. On the one side, Usuba has shown:

Fact 1.9 (Usuba, [Usul8|). If x is extendible then M, = M. In particular M,
18 a model of ZFC.

Indeed, this result was the initial motivation of investigating the xk-mantle.
Sargsyan-Schindler [SS18] showed that a similar situation arises in the least
iterable inner model with a strong cardinal above a Woodin cardinal for « the
unique strong cardinal in this universe. See also [SSS21] and [Sch22b] for further
results in this direction.

On another note, Schindler has proved the following.

Fact 1.10 (Schindler, [Sch18]). If k is measurable then M, = ZFC.

The big difference to Fact 1.9 is that the existence of a measurable is con-
sistent with the failure of the Bedrock Axiom?. Particularly, we might have
M, # M for k measurable.

If we go even lower in the large cardinal hierarchy then even less choice princi-
ples seem to be provable in the corresponding mantle. The relevant results here
are due to Farmer Schlutzenberg.

Fact 1.11 (Schlutzenberg, [Sch22a]). Suppose that k is weakly compact. Then
(i) M, = k-DC and
(ii) for every A€ H,+ n M,
M, = “A € Hy+ is wellorderable” .

Definition 1.12. Suppose « is an ordinal and X is a set. (<a, X)-choice holds
if for any 8 < a and any sequence & := (z | 7 < ) of nonempty elements of X
there is a choice sequence for Z, that is a sequenece (y, | v < ) with y, € z,
for all v < .

2The Bedrock Axiom states that the universe has a minimal ground, which turns out to
be equivalent to “M is a ground”.



Fact 1.13 (Schlutzenberg, [Sch22a]). Suppose k is inaccessible. Then we have
(1) Vi n M, = ZFC and
(i1) My E “(<k, H.+)-choice”.
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2 Overview

In Section 3.1, we will argue that “k is measurable” cannot be replaced by “x is
Mahlo” in Fact 1.10, as wells as that (<k, H,.+)-choice cannot be strengthened
to (<k + 1, H.+)-choice in Fact 1.13.

Theorem 2.1. If ZFC is consistent with the existence of a Mahlo cardinal, then
it is consistent with ZFC that there is a Mahlo cardinal k so that My fails to
satisfy the axiom of choice. In fact we may have

My | “(<k + 1, Hy )-choice fails”.

In Section 3.2, we will investigate the k-mantle for k = wy, as well as the
I'-mantle where T' = {Cohen forcing}, denoted by Mc. We will first proof that
these mantles are always models of ZF and will go on to provide a result anal-
ogous to Theorem 2.1.

Theorem 2.2. It is consistent relative to a Mahlo cardinal that both M, and
Mc fail to satisfy the axiom of choice.

In Section 3.3, we will generalize this to any successor of a regular cardinal.
Theorem 2.3. Suppose that
(1) GCH holds,
(i) the Ground Aziom® holds and
(#i1) Kk is a regular uncountable cardinal.

Then there is a cardinal preserving generic extension in which the s -mantle
fails to satisfy the axiom of choice.

3The Ground Axiom states that there is no nontrivial ground. See [Rei06] for more infor-
mation on this axiom.



In this case however, it is not known if the x*-mantle is a model of ZF in
general. The proof of all these three theorems follows a similar pattern, though
the details differ from case to case and it seems that we cannot employ a fully
unified approach.

3 The Axiom of Choice May Fail in M,

3.1 The case “k is Mahlo”

Here, we will construct a model where the k-mantle for a Mahlo cardinal £ does
not satisfy the axiom of choice. We will start with L and assume that & is the
least Mahlo there. The final model will be a forcing extension of L by

<kK-support
P= [ Add(\1)

Aelnk

where [ is the class of all inaccessible cardinals. We define P to be a product
forcing and not an iteration (in the usual sense), as we want to generate many
k-grounds. Let G be P-generic over L. We will show that s is still Mahlo in
L[G] and that MEC! does not satisfy the axiom of choice. We remark that,
would we start with a model in which x is measurable, P would provably force
K to not be measurable.

First, let’s fix notation. For A < k, we may factor P as P<) x P~ where in each
case we only take a product over all v € I nk with v < X and v > A respectively.
Observe that Py is a <x-support product while Py is a full support product.
We also factor G as G<) x G~ accordingly. For A € I n k we denote the generic
for Add()\, 1)L induced by G as gy. In addition to this, for a < x we denote the
a-th inaccessible cardinal by 1.

For a < k let E: kK — 2 be the function induced by gr,. It will be convenient
to think of G as a k x k-matrix M which arises by stacking the maps (Fy)a<s
on top of each other, starting with Fj, and proceeding downwards, and then
filling up with 0’s to produce rows of equal length . Let us write

{Ea(ﬂ) if 8 < I,
€a,8 =

0 else.

The (€q,3)a,s<w are the entries of M:
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SR
60,0 60,1 60’2 DY O DY O DY O
Tl[ 61,0 61,1 6172 PR el)IO PR 0 PR 0 PR }
M = 0 0
€a,0 €a,1 €a,2 e €a,ly e €a,l; e 0
0

Mz,

=

We will give the a-th row of M the name r, and we denote the 5-th column of
M by cg. One trivial but key observation is that r, carries the same information
as gr, -

We will be frequently interested in the matrix M with its first a rows deleted
for some «a < k, so we will give this matrix the name Ms>,. Note that M=, cor-
responds to the generic G>1,. Finally observe that we may think of conditions
in P as partial matrices that approximate such a matrix M in the sense that
they already have the trivial 0’s in the upper right corner, in any row a < &k
they have information for </, many 3 < I, on whether e, g is 0 or 1 and they
contain non-trivial information in less than x-many rows.

Lemma 3.1. L and L[G] have the same inaccessibles.

Proof. First, we show that all limit cardinals of L are limit cardinals in L[G].
It is enough to prove that all double successors ™ are preserved. This is
obvious for § > k as P has size k. For § < k, Pss is <d™*-closed so that all
cardinals < 671 are preserved in L[Gss]. Furthermore, P.s has size at most
0% in L[G=s] by GCH in L. Hence 6™ is still a cardinal in L[G].

Now we have to argue that all A € I remain regular. Again, this is clear if
A > x. On the other hand, assume § := cof (\)I¢] < \. As P-; is <d-closed, A
is still regular in L[G~s]. Hence, a witness to cof(\) = § must be added in the
extension of L[Gxs] by P<s. But this forcing has size < A in L[G=s] and thus
could not have added such a sequence. O

In fact, P does not collapse any cardinals (if V' = L), but some more work is
required to prove this. This is, however, not important for our purposes. Next,
we aim to show that x remains Mahlo in L[G].

To prove this, it is convenient to introduce a generalization of Axiom A.

Definition 3.2. For « an ordinal, A a cardinal we say that a forcing Q satisfies
Axiom A(k, ), abbreviated by AA(k, A), if there is a sequence (<,| o < k) of
partial orders on Q so that

(AAG) Ya < 8 <k <pS<o,S<q;



(AA.i7) for all antichains A in Q, @ < k and p € Q there is ¢ <, p so that
{a € A|alg}| <X and

(AA.izi) for all B < k if P'= (po | @ < ) satisfies py <q po for all @ <y < § then
there is a fusion pg of p, that is pg <n po for all o < .

Remark 3.3. The usual Axiom A is thus Axiom A(w + 1,wy).

Proposition 3.4. Suppose A is regular uncountable cardinal and Q satisfies
AA(NX). Then Q preserves stationary subsets of .

Proof. Suppose S € A is stationary, C is a Q-name for a club in A and p € P.
We will imitate the standard proof that a <x-closed forcing preserves stationary
sets. Let (<,| @ < A) witness that Q satisfies AA(\, N).

Claim 3.5. For any q € Q,a < X there is 7 <, q and some a < v < X\ with
qg-yeC.

Proof. Construct a sequence (g, | & < w) of conditions in Q and an ascending
sequence (v, | n < w) of ordinals with

(i) g =q, 70 = a,
(17) Gn+1 <a+n gn for all n < w and
(i11) Gny1 - “Cn (Yn> Yns1) # &

for all n < w. The construction is immediate using that A is regular uncountable
and (AA.ii7). Then by (AA.i7), there is g« <, ¢ which is below all ¢,, n < w.
It follows that .

gx =¥ € C

where 7y, = sup,, <, Tn- (]

Suppose toward a contradiction that p |- CnS = By the claim above, we
can build sequences (p, | & < Ay of conditions in Q and an increasing sequence
(Va | @ < A) of ordinals below X so that

(i) po = p
(17) pg <o Po for all a < B < A and
(i) Pas1 - Fa € C for all o < \.
Let D be the set of all limit points <X of {7, | @« < A}. For any a < A, we have
Pa+1 IFDGVQQO
which shows that D n S = ¢, contradiction. o

Lemma 3.6. P satisfies AA(k, k).



Proof. For v < k define <, by r <, qifr<gandr | y=gq | yforgreP. We
will only show that (AA.ii) holds. Solet p e P, v < k and A € P a maximal
antichain. Let {go|o < §) be an enumeration of all conditions in P<gqmma below
p | v+ 1 with 6 = |P<,|. We construct a <,-descending sequence (p,|ce < &)
of conditions in P starting with py = p as follows: If a < § then choose some
<,-bound of (pg | B < ). This is possible as P, is <d-closed, as the next
forcing only appears at the next inaccessible. Moreover, if possible and o < §
make sure that

Uo Pa | (7,K)

is below a condition in A. This completes the construction. Set ¢ = ¢, we
will show that ¢ is compatible with at most d-many elements of A. Toward this
goal, suppose a € A and ¢ is compatible with a. We may find some o« < k so
that a | v+ 1 = g,. It follows that we must have succeeded in the construction
of p, with the additional demand that

do Pa | (7,K)

is below a condition in A, but this can only be true for a. We have shown that
for any a € A compatible with ¢ there is o < § with ¢ ¢ I (v, k) < a and note
that no single o can witness this for more than one element of A. O

Corollary 3.7. k is Mahlo in L[G].

Proof. This follows immediately from Lemma 3.1, Lemma 3.6 and Proposition
3.4. O

Next, we aim to find an easier description of Mi[G]. Recall the A-approximation
property introduced by Hamkins [HamO03]:

Definition 3.8. Let W < V be an inner model, A an infinite cardinal.

(i) For x € V, a A-approximation of z by W is of the form z ny where y e W
is of size <A.

(1i) W < V satisfies the A-approximation property if whenever z € V' and all
A-approximations of x by W are in W, then x € W.

All k-grounds satisfy the x-approximation property (cf. [FHR15]).

Lemma 3.9. MEIC! = (Maernr LIG=A]-

Proof. Suppose W is a s-ground of L[G]. It is enough to find A € I n k such
that L[G=,] € W. Clearly, Pe L € W. As k is a limit of inaccessibles, we may
take some A < k inaccessible so that W is a A-ground. Thus W < L[G] satisfies
the A\-approximation property. We will show G=) € W (even Gx € W). Find
a with A = I, it is thus enough to show M-, € W. To any A-approximation
Mso na of M=, by W corresponds some a’ € k\a x k, ' € W of size <) so
that

Mzona= Mz, tad ={eyp]|(7,B)ed).



We will show that all such restrictions of Mx, are in W. So let a € W, a <
K\axk, |a] < A. As 0% does not exist in W, thereisb e L, b S k\axx of size < A
with @ € b. For all & < v < &, the set of § < I, with (v, 8) € bis bounded in L,.
As described earlier, we may think of conditions in P as partial k x k matrices.
With this in mind, the conditions p € P that contain information on the entry
e,p for all (v,3) € b form a dense set of P. Thus M | b = (e, | (7,5) € b)
is essentially a condition pe P € W and hence M | a = (M | b)  ae W. As
W < L[G] satisfies the A-approximation property, we have M, € W.

o

Remark 3.10. The above argument shows that for any Ae I n s
MQ[GM] — Mﬁ[G].

In fact, whenever ¢ is a strong limit, the §-mantle is always absolute to any
d-ground. The use of Jensen’s covering lemma in the above argument is not
essential, in fact a model in which the x-mantle does not satisfy choice for
x Mahlo can be analogously constructed in the presence of 0f. However, the
absence of 0f simplifies the proof.

We will later show that P(/@)Mﬁ[c] does not admit a wellorder in MEL),
First, we analyze which subsets of x Mﬁ[G] knows of. We call a € K fresh if
an e L forall A < k.

Proposition 3.11. The subsets of k in Mﬁ[G]

k in L[G].

are exactly the fresh subsets of

Proof. First suppose a C k, a € MQ[G]. If A\ < k then a € L[G>)]. As Ps, is

<A-closedin L, an A e L.

For the other direction assume a € L[G] is a fresh subset of x and assume
W is a k-ground of L[G]. There is A < k so that W < L[G] satisfies the \-
approximation property. As a is fresh, all the Ad-approximations of a in W are
in W. Thus ae W. O

The columns cg, 8 < K, of M are the fresh subsets of k relevant to our
argument.

Proposition 3.12. All cs, § < k, are Add(k, 1)-generic over L.

Proof. The map 7: P — Add(k, 1) that maps p € P to the information that p
has on cg is well-defined as IP is a bounded support iteration of length . Clearly,
7 is a projection. O

This is exactly the reason we chose bounded support in the definition of P.
We are now in good shape to complete the argument.

Theorem 3.13. (< + 1, H,+)-choice fails in Mﬁ[G].



Proof. Note that any generic for Add(k, 1) is the characteristic function of a

[G

fresh subset of x so that cg € ME 1 for any 8 < k. Of course, the sequence

{cg|B < k) is not in MEL | as one can compute the whole matrix M (and thus
the whole generic G) from this sequence. However, we can make this sequence

fuzzy to result in an element of MQ[G]. Let ~ be the equivalence relation of

MS[G]

eventual coincidence on (*2) , 1e.

r~yeI<rkax![dr)=y!l][dkK).

We call {[cg]~|B < k) the fuzzy sequence.

Claim 3.14. The fuzzy sequence is an element of Mﬁ[G].

Proof. By Lemma 3.9, it is enough to show that for every a < k, L[Gx 1, ] knows
of this sequence. But L[G~_] contains the matrix M, and thus the sequence

(ep T (R\)|B < k)

so that L[Gs,] can compute the relevant sequence of equivalence classes from
this parameter. O

Finally, we argue that Mﬁ[G] does not contain a choice sequence for the fuzzy

sequence?. Heading toward a contradiction, let us assume that
(wp|B < Ky e ML)
is such a sequence. L[G] knows about the sequence

(018 < k)

where d3 is the least 6 with zg | (k\J) = ¢g | (k\d). The set of A < k that are
closed under the map 8 —— dg is club in k. As x is Mahlo in L[G], there is an
inaccessible o« = I, < & that is closed under 5 —— d3. Now observe that

zg(a) =1 cgla) =1 ry(f) =1

holds for all g < I, so that r, € Mﬁ[G]. But this is impossible as clearly r,, is
not fresh.
O

Theorem 2.1 follows.

Remark 3.15. The only critical property of L that we need to make sure that
M, is not a model of choice in L[G] is that L has no nontrivial grounds, i.e.
L satisfies the ground axiom. GCH is convenient and implies that no cardinals
are collapsed, but it is not necessary. The use of Jensen’s covering lemma can
also be avoided, as discussed earlier.

[G]

4That is, there is no sequence {(zg | 8 < k) € MECT with xzg € [cg]~ for all B < k.

10



3.2 The w;-mantle

Up to now, we have focused on the x-mantle for strong limit x. We will get
similar results for the wj-mantle. There is some ambiguity in the definition of
the wi-mantle, depending on whether or not w; is considered as a parameter or
as a definition. In the former case, it is the intersections of all grounds W so that
W extends to V via a forcing so that W = |P| < w}’, where in the latter case
we would require W = |P| < w]”. These mantles are in general not equal. To
make the distinction clear, we give the latter version the name “Cohen mantle”
and denote it by Mc. The reason for the name is, of course, that all non-trivial
countable forcings are forcing-equivalent to Cohen forcing.

Lemma 3.16. M, = ZF and Mc | ZF.

Proof. First let us do it for M. Clearly, Mc is closed under the Godel opera-
tions. It is thus enough to show that Mc n V,, € M for all « € Ord. Let W be
any Cohen-ground. As Cohen-forcing is homogeneous, M{ is a definable class
in W. Hence, Mc NV, = Mc n VWV € W. As W was arbitrary, this proves the
claim.

Now onto M,,,. The above argument shows that all we need to do is show
that M,,, is a definable class in all associated grounds. So let W be such a
ground. There are two cases. First, assume that w}' = w}". Then W extends to
V via Cohen forcing, so My, is definable in W. Next, suppose that w}’ < w}.
This can only happen if w} is a successor cardinal in W, say W = w} = ut.
In this case, W extends to V via a forcing of W-size < p and which collapses
1 to be countable. It is well known that in this situation, W extends to V via
Col(w, ), which is homogeneous as well, so once again, M, is a definable class
in W. O

Once again, choice can fail.

Theorem 3.17. Relative to the existence of a Mahlo cardinal, it is consistent
that there is no wellorder of P(wy )M«1 in My, .

We remark that the Mahlo cardinal is used in a totally different way than in
the last section. In the model we will construct, w; will be inaccessible in M,,, .
Let us once again assume V = L for the rest of the section and let £ be Mahlo.
Let P be the “<k-support version of Col(w, <x)”, that is

<Kk—support

P= H Col(w, ).
a<k
Let us pick a P-generic filter G over V. From now on, M,,, will denote M&[G]
and Mc will denote MZ &1

Proposition 3.18. Suppose Q is a forcing, v < XA and X is a cardinal. If Q is
AA(y, \) then in V@ there is no surjection from any B <~ onto .
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Proof. This is a straightforward adaptation of the proof that Axiom A forcings
preserve wy. O

The following lemma is the only significant use of the Mahloness of k.
Lemma 3.19. P satisfies AA(k, k).

Proof. We define <, independent of o < k as the order <*: Let p <* qiff p < ¢
and p | supp(q) = ¢. The only nontrivial part is showing that for any antichain
A and any p € P there is ¢ <* p with

{ae Alalg}] <&

Let

P! a:={peP|supsupp(p) < a}
for all @ < k. We will proceed to find some ¢ with the desired property. For
convenience, we may assume that A is a maximal antichain. As k is Mahlo, there
is a regular A < k so that pP [ A and any r € P | A is compatible with some
a€ AnP A AsV = L, Oy holds. Thus there is a sequence d := (do | a < \)
with

(d.i) do € P<q and
(d.ii) for all r € P<y there are stationarily many a < A with d = r | a.

Construct a sequence
<Qa | a < /\>

of conditions in P | A with ¢, <* ¢s for all @ < 8 < A as follows: Set ¢o = p.
If gp is defined for all § < a, let first ¢/, = U6<a gs and note that this is a
condition. Let 7, = supsupp(q,). Now find a € A n P | X that is compatible
with d,, and let

Qo =y al [Ya, )
Finally, set ¢ = |J,-) ¢a- We have to show that ¢ is compatible with only a

few elements of A, so suppose b € A is compatible with ¢g. The properties of d
guarantee that there is a < A so that

(i) 7o = a and
(auii) do =b | a.

Hence in the construction of g,+1 we found some a € AnP | A compatible with
b ! a and have ¢o41 | [a,A) < a | [a,N). If a # b, then a L b and the incom-
patibility must lie in the interval [a, A). But then ¢,4+1 and b are incompatible
as well, contradiction. Thus b = a and it follows that ¢ is compatible with at
most A-many elements of A. O

Corollary 3.20. We have

12



(G.9) wlL[G] =k and

(G.ii) if g: w — Ord € L[G] then there is some o < K so that g € V[G<a].

Proof. To see (G.i), note that P collapses all cardinals <x to w, so wlL[G]

As P satisfies AA(k, k), there is no surjection from w onto x in L[G].

Next, let us prove (G.ii). Let g € L be a name for g. In L[G], find a decreasing
sequence of conditions {(p, | n < w) in G so that p, decides the value of g(7n)
(from the perspective of L). Let a = sup,,_,, supsupp(p,). By (G.i), a < k.
But then L[G<,] can compute the whole of g. O

= K.

From now on, M,, denotes MULJl[G] and Mc is Mé[G] Let us define an

auxiliary model N = _,. L[G=q]. It is clear that M, < N.
Recall the following fact due to Solovay.

Fact 3.21 (Solovay, [Sol70]). If G, H are mutually generic filters over V' (for
any forcings) then V|Gl nV[H]| =V.

Proposition 3.22. We have that
(N.i) N =ZF and
(N.ii) NnP(k) =My, nP(k)=McnP(k)={aSk|Vi<kanfeV}

Proof. First, we will prove (N.7). Once again it is enough to show that N is
definable in all models of the form L[G~,] for @ < k. But this is clear from the
definition of V.

Next, we show (N.i7). My, nP(k) € Mc nP(k) € N nP(r) is trivial. If
a€ NnP(k)and 8 < k then a n § € L[G«,] for some a by clause (G.ii) of
Corollary 3.20. As a€ N, a n 3 € L[Gx,], too. Thus by Fact 3.21

a € L[G<o] N L[G=4] = L.

The final inclusion N nP (k) € M,,, nP(x) holds since if W is a ground of L[G]
which extends to L[G] via Q of size < x then Q cannot add a fresh subset of
K. (|

Proof of Theorem 3.17. We will show that in L[G], neither M, nor M possess
a wellorder of its version of P(k). In fact, we will show that N does not have
such a wellorder, which is enough by (N.ii) of the above proposition. Once
again, let ~ be the equivalence relation on functions f: kK — k € N of eventual
coincidence. For n < w, let

dn: k= K, dp(@) = ga(n)

where g, is the map w — « induced by the slice of G generic for Col(w, ).
As before, we get that the fuzzy sequence ([dy]~ | n < w) € N. If N had a
wellorder of P(x), then there would be a choice sequence {z,, | n < w) € N for
the fuzzy sequence. In L[G], one can define the sequence (4, | n < w) where
0p, is the least point after which z, and d,, coincide. As k = wy in L[G], the
0n are bounded uniformly by some § < x. But this means that G=s € N, a
contradiction. O

13



It is natural to conjecture that N = Mc = M,,, though we do not have
a proof of any of these equalities. The problem is that we cannot follow the
strategy from Section 3.1: L[G] has Cohen-grounds which do not contain any
Jo for a < k, let alone a tail of the sequence (ga)a<s-

Question 3.23. Is N = M = M,,,?

3.3 The successor of a regular uncountable cardinal case

We show that, again under V = L, for every regular uncountable  there is a
forcing extension in which M, + is not a model of ZFC. The upside here is that
we do not need any large cardinals at all in our construction, however we pay a
price: We do not know whether M, + is a model of ZF in general.

Theorem 3.24. Assume V = L and suppose k is reqular uncountable. Then
after forcing with

<kt —support

P:= J] Add(r1)

a<kt

M+ is not a model of ZFC.

First, lets do a warm-up with an initial segment of P. We thank Elliot Glazer
for explaining (the nontrivial part of) the following argument to the author.

Lemma 3.25 (Elliot Glazer). If k is reqular and . holds then

full support

Pe= ] Add(k1)

a<<Kk
satisfies AA(k + 1,kT).

An additional assumption beyond “k is regular” is necessary here: It is well

known that
full support

[] Addw1)

n<w

collapses 2“ to w.

Proof. Welet p <, qifp<qandp | a=q | a Itis easy to see that (AA.i)
and (AA.#i7) of Definition 3.2 hold, so let us show (AA.ii). Therefore, let a < &,
p € P<, and an antichain A in P, be given. As {, holds, there is a sequence
{dg | B < k) with dg € P<g so that for any ¢ € Pg, there is some S with
q ! B =dg. We will define a sequence (pg)a<p<x inductively so that p, <g pg
for all 8 <y < k. We put p, = p. At limit stages 5 we let pg be the canonical
fusion of (p, | & < v < B). So assume pg is defined. We choose pg41 <g pg so
that, if possible,
dgpg+1 < a

14



for some a € A. Otherwise, we are lazy and set pgi1 = pg.

Now clearly q = p. <o p and we will show that ¢ is compatible with at most
rk-many conditions in A. To see this, suppose a € A is compatible with q. We
may find 5 < x so that dg = a | 5. In the construction of pgy; from pg, we
tried to achieve that

dg ps+1 | [B,K)

is below some condition in A, which is possible and only possible for a. This
shows that for any a € A that is compatible with ¢, there is § < k so that
q ! [B8,k) <al [B,k). As P<g has size <k, it follows that there are at most
k-many such a € A. O

Corollary 3.26. Under the same assumptions as before, P, preserves all car-
dinals < k™.

Proof. Pg, is <k-closed and satisfies AA(k + 1,x7). O
We aim to prove a similar result for P.

Lemma 3.27. If k is reqular and <>, holds then P preserves all cardinals < k™.
Moreover, if G is P-generic and g: k — Ord is in V[G] then there is a < k™
with g € V[G<a]-

The argument is similar, but somewhat more complicated. To do so, we
introduce a further abstraction of AA(xk, A).

Definition 3.28. Suppose that P = (P, <) is a partial order, Q is a forcing,
Kk < A are ordinals. Q satisfies Strategic Aziom A(k, A\, P) (SAA(k,\,P)) if
there is a family (<,| z € P) of partial orders on Q so that

(SAA.) <,©<,S<q whenever z <y for z,y € P,
(SAA.i7) for any antichain A € Q, any z € P and p € Q, there is ¢ <, p with
{ae Alalp}| <A
and

(SAA.ii7) player II has a winning strategy in the following game we call G(Q, &, P):

Ul | o | [ fme| |
T [z ] Joi] .| |20l

The game has length k. In an even round « - 2, Player I plays some
condition p, € Q so that p, <z, pg for all 8 < a played so far. In an odd
round « - 2 + 1, player II plays some z, € P with 23 < z, for all 8 < a.
Player I wins the game iff some player has no legal moves in some round
<k. If the game last all x rounds instead, IT wins.

It is straightforward to generalize Proposition 3.18.

Proposition 3.29. Suppose Q satisfies SAA(k, A\, P). Then in VO, there is no
surjection f: 8 — X for any f < K.
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Lemma 3.30. If s is reqular and . holds then P satisfies
SAA(k + 1,67, Pu(sT))
where Py (k™) is ordered by inclusion.

Proof. For z € P(k*) we will write p <, qif p<qandp 2 =¢q | 2 Itis
clear that (SAA.7) holds.

Next, we aim to establish (SAA.iii). We describe a strategy for player II in the
relevant game. We will need to do some additional bookkeeping. Let

hik > KXEK

be a surjection such that if h(8) = (a,7) then o < 8. Suppose that p, is the
last condition played by player I and (x3)s<a have been played already. In
the background, we already have chosen some surjections sg: k — supp(pg) for
B < a and we will adjoin a surjection s, : kK — supp(ps) to that list. We set

Za = sno(m) U | 25

B<a

where (70,71) = h(a). As k is regular, o € Pe(k™).
Claim 3.31. Player I does not run out of moves before the game ends.

Proof. Suppose we reached round 2-« < k and let x = Uﬁ<a x3. We will find a
legal play ps for player I. For v € I€+\Uﬁ<a supp(pg), let ps«(7) be trivial. The
point is that for v € z, {pg(7y) | B < a) stabilizes eventually to some py(7y). If
« = K, then our bookkeeping made sure that we have

v = | supp(pp)

B<k

so that p, is already fully defined and a legal play. If @ < x instead, then there
are possibly v € U6<a supp(pg) — x, but then {pg(y) | < @) is a sequence of
length <k, so we may pick a lower bound py(y) € Add(x, 1) for it. O

It remains to show (SAA.ii) and here we will use that ¢, holds. Let {ds |
B < k) be the “{.-sequence for P,;” that appeared in the proof of Lemma 3.25
and let A be a maximal antichain in P. Choose 7 to be a winning strategy for
player IT in G(P, x + 1, P, (k1)) and we will describe a strategy o for player I:
Suppose a < k and pg, xg have already been played for 8 < a. This time, we
will have picked some surjections sg: K — xg for § < « in the background. Let
Teq = U5<a 2g. Then, assuming there is a legal move, pick some p, so that

(Pa-i) Pa <azj pp for all B < o and

(po-it) if possible, po | (kT\T<a) U €q | T<q is below a condition in A

16



where e, is defined by
ea(S’YO (71)) = da('y)

whenever v < a and h(y) = (70,71) (and e, is trivial where we did not specify
a value)®.

Let {po | @ < k), {xo | @ < k) be the sequences of moves played by player I and
IT in a game where player I follows ¢ and player II follows 7. As 7 is a winning
strategy, the sequence must be of length « + 1. We will show that ¢ := p, is
compatible with at most x-many elements of A. So let a € A and assume that
q is compatible with a.

Claim 3.32. There is a < k so that e, €P and ey | T<cq = a | T<qn-

Proof. We define b € P, by b(y) = a(s,(71)) whenever h(y) = (70,71). Then
there is o < Kk with

(a.i) b a=d, and

(i) T<a = {sy(11) [ 37 <a h(y) = (y0,m)}-
It is easy to see now that « is as desired. O

Thus in round « - 2 in the game, player I tried to make sure that

alTeqUpa ! (H+\I<a)

is below some condition in A. This is possible for a, and only for a as ¢ and a
are compatible.

We have shown that for any a € A that is compatible with ¢, there is a« < k
such that ¢ | (k"\ZT<a) < a | (k™\Z<q). As there are only <sx-many r € P
with support contained in x ., this implies that there are at most x-many such
a € A. O

Lemma 3.27 follows from Lemma 3.30 and Proposition 3.29 similarly to how
we proved Corollary 3.20.

Remark 3.33. If additionally GCH holds at " then P does not collapse any
cardinals at all by a standard A-system argument.

Proof of Theorem 3.24. Let G be P-generic over L. By Lemma 3.27, all L-
cardinals < k% are still cardinals in L[G] (in fact, all cardinals are preserved).
Let N =(),-,.+ L[G=q]. Using that N is definable in every model of the form
L[G=4], it is easy to check that N is a model of ZF. Once again, we call A € kT
freshif Anae L for all a < k™.

Claim 3.34. P(rt)Yet = P(kT)N = {A <kt | A is fresh)F1C]

5eq may fail to be a function, in which case (pa-it) is void.
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Proof. P(kt)Met < P(kF)N is trivial. Suppose A < £+, A€ N. Given a < k™,
by Lemma 3.27, there is 8 < k1 so that A n a € L[G<g] so that

AnaeL[Ggg]l n L[G=p] =L

by Fact 3.21. For the last inclusion assume A € L[G] is a fresh subset of
k* and W is any xT-ground of L[G]. Tt follows that W < L[G] satisfies the
kT-approximation property so that A € W as any bounded subset of A is in
LcW. O

We will show that there is no wellorder of P(k™)M«+ in M,+. So assume
otherwise. Let ~ be the equivalence relation of eventual coincidence on ~"9 in
N. We can realise G as a matrix where the a-th row is Add(k, 1)-generic over
L. Now the columns are in fact Add(x™, 1)-generic over L. Let us write ¢, for
the a-th column (o < k™) and dg for the S-th row (8 < k). For any a@ < k%
we have that {dg ! [, k1) | B < k) € L|G>4]. Thus

(dpl~ | B<ryeN

and by our assumption there must be a choice function, say (zg | 8 < k), in N.
In L[G], we can define the sequence (dg | B < k), where d3 is the least point
after which g and dg coincide. As k™ is not collapsed by P, we can strictly
bound all §3 by some d; < k*. But then

(@p(0x) | B<r)e N

is Add(k, 1)-generic over L, which contradicts that N and L have the same
subsets of k. O

Note that Fact 1.6 does not apply in the situation here, so we may ask:

Question 3.35. Is M.+ a model of ZF? Is M, .+ = N7

4 Conclusion

There are a number of open questions regarding the interplay between large car-
dinal properties of x and the x-mantle. The following table summarizes what
is known as presented in the introduction.

Large cardinal property of s | Theory of M, extends...

extendible ZFC + GA

measurable ZFC

weakly compact ZF + k-DC

inaccessible ZF + (< Kk, H,+)-choice

There is certainly much more to discover here. How optimal are these re-
sults? Optimality has only been proven for one of them, namely the first. This
is due to Gabriel Goldberg.
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Fact 4.1 (Goldberg, [Gol21]). Suppose k is an extendible cardinal. Then there
18 a class forcing extension in which k remains extendible and M, is not a
k-ground. In particular, if A < k and M | ZFC then M) has a nontrivial
ground.

The most interesting question seems to be up to when exactly the axiom
of choice can fail to hold in M. Since this can happen at a Mahlo cardinal,
the natural next test question is whether this is possible at a weakly compact
cardinal.

Question 4.2. Suppose that x is weakly compact. Must M, = ZFC?
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