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Asymptotically Near-Optimal Hybrid Beamforming
for mmWave IRS-Aided MIMO Systems

Jeongjae Lee, Student Member, IEEE and Songnam Hong, Member, IEEE

Abstract—Hybrid beamforming is an emerging technology for
massive multiple-input multiple-output (MIMO) systems due
to the advantages of lower complexity, cost, and power con-
sumption. Recently, intelligent reflection surface (IRS) has been
proposed as the cost-effective technique for robust millimeter-
wave (mmWave) MIMO systems. Thus, it is required to jointly
optimize a reflection vector and hybrid beamforming matrices
for IRS-aided mmWave MIMO systems. Due to the lack of
RF chain in the IRS, it is unavailable to acquire the TX-IRS
and IRS-RX channels separately. Instead, there are efficient
methods to estimate the so-called effective (or cascaded) channel
in literature. We for the first time derive the near-optimal
solution of the aforementioned joint optimization only using the
effective channel. Based on our theoretical analysis, we develop
the practical reflection vector and hybrid beamforming matrices
by projecting the asymptotic solution into the modulus constraint.
Via simulations, it is demonstrated that the proposed construction
can outperform the state-of-the-art (SOTA) method, where the
latter even requires the knowledge of the TX-IRS and IRS-RX
channels separately. Furthermore, our construction can provide
robustness for channel estimation errors, which is inevitable for
practical massive MIMO systems.

Index Terms—Intelligent reflecting surface, massive MIMO,
channel estimation, hybrid beamforming.

I. INTRODUCTION

Hybrid beamforming is a promising technique for massive
multiple-input multiple-output (MIMO) systems due to the
advantages of lower complexity, cost, and power consumption
[1]–[3]. This approach uses the combination of analog beam-
formers in the RF domain, together with digital beamforming
in the baseband, connected to the RF with a smaller number
of up/down-conversion chains (i.e., RF chains). This hybrid
structure is motivated by the fact that the number of RF chains
is only lower-limited by the number of data streams, whereas
the beamforming gain is attained by the number of antenna
elements if proper analog beamforming is constructed. There
have been many efforts to optimize the hybrid beamforming
[4]–[8]. Unfortunately, it is quite demanding due to the non-
convexity which is caused by the modulus constraints on the
analog precoder and combiner. In single-user MIMO (SU-
MIMO) systems, the asymptotically optimal solution was

J. Lee and S. Hong are with the Department of Electronic
Engineering, Hanyang University, Seoul, Korea (e-mail: {lyjcje7466,
snhong}@hanyang.ac.kr).

This work was supported in part by the Technology Innovation Program
(1415178807, Development of Industrial Intelligent Technology for Manufac-
turing, Process, and Logistics) funded By the Ministry of Trade, Industry
& Energy(MOTIE, Korea) and in part by the Institute of Information &
communications Technology Planning & Evaluation (IITP) under the artificial
intelligence semiconductor support program to nurture the best talents (IITP-
(2024)-RS-2023-00253914) grant funded by the Korea government(MSIT).

derived in [4], wherein the analog beamforming focused on
the array gains to a limited number of multiple paths in
the RF domain, while the digital beamforming focused on
the multiplexing data streams and the power-allocation in the
baseband. Beyond the asymptotic results, a number of practical
constructions of the hybrid beamforming have been proposed
in [5]–[7] for millimeter-wave (mmWave) SU-MIMO systems.
Exploiting the sparsity of mmWave channels, the optimization
problem of the hybrid beamforming was recast as a sparsity-
constrained matrix reconstruction problem [5]. Then, it can
be efficiently solved via compressed-sensing algorithms (e.g.,
orthogonal matching pursuit (OMP)). In [6], the analog beam-
formers were optimized by projecting the optimal fully-digital
beamformers into the modulus constraints, where the digital
beamformers are simply derived via singular value decom-
position (SVD). Also, the manifold optimization (MO)-based
method was proposed in [7], where the non-convex modulus
constraints are tackled via the Riemannian submanifold.

Recently, intelligent reflecting surface (IRS) (a.k.a. reflect-
ing intelligent surface (RIS)) has been proposed as the cost-
effective technique for robust mmWave MIMO systems [9],
[10]. An IRS consists of a uniform array with a massive
number of reflective elements, each of which can control the
phase and the reflection angle of an incident signal so that
the received power of the intended signal is improved. Thus,
IRS-aided hybrid beamforming can be a good candidate to
enhance the robustness and the spectral efficiency of mmWave
MIMO systems [11]. Toward this, it is necessary to jointly
optimize the reflection vector and the hybrid beamforming,
which becomes more challenging than the aforementioned
optimization of the hybrid beamforming only. In [12], the
reflection vector and the hybrid beamforming were optimized
using the MO-based two-state algorithm. However, the joint
optimization was not considered, although they influence each
other. By overcoming this limitation, the hybrid beamforming
proposed in [13] can achieve a near-optimal spectral efficiency
in the large-system limit. Despite its superior asymptotic-
performance, there is still a room to enhance the performance
in practical (or large but finite size) systems. In addition, to
construct the reflection vector in [13], it requires the channel
state information (CSI) of the TX-IRS and IRS-RX channels
(i.e., HTI and HIR in Fig. 1) separately. In [14], a dual-link
pilot transmission method was presented, which can estimate
the HTI and HIR separately with some approximation. How-
ever, this method is restricted to the single-antenna transmitter
system and an extension to the multiple-antenna case is non-
trivial. To the best of our knowledge, it is generally impractical
to estimate them separately due to the lack of the RF chains
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in the IRS.

As investigated in the existing works [15]–[19], there are
efficient methods to estimate the so-called effective (or cas-
caded) channel. Focusing on the SU-MIMO systems with
multiple antennas at the RX, which is the system model
considered in this paper, the effective channels in the literature
are categorized into two types. In [15], [16], the effective
channel is defined as the Kronecker product of the TX-IRS and
IRS-RX channels. Due to its large-dimension, this effective
channel might not be suitable for the joint optimization of the
reflection vector and the hybrid beamforming. Very recently in
[19], the effective channel is defined in a more compact form
(see Section II for details), thereby being more adequate for
the joint optimization. Also, the channel estimation method,
proposed in [19] by means of a collaborative low-rank approx-
imation, can yield the best estimation accuracy, while having
a lower training overhead. Motivated by this, we in this paper
study the joint optimization for IRS-aided mmWave MIMO
systems, only using the effective channel in [19]. Toward this,
our major contributions are summarized as follows.

• Due to the highly non-convexity, it is intractable to
tackle the aforementioned joint optimization directly. We
tackle this challenging problem with the following steps.
Relaxing the modulus constraint, we define the relaxed
optimization problem whose solution can yield the upper-
bound on the maximum spectral efficiency. Thanks to the
relaxation, the optimal solution of the relaxed problem
can be obtained, which includes the relaxed reflection
vector, the relaxed analog precoder and combiner, and the
digital precoder and combiner. We theoretically prove that
in the large-system limit, they become the near-optimal
solution of the original problem by satisfying the modulus
constraints.

• Specifically, in Lemma 2, it is proved that our relaxed
reflection vector, which is simply obtained from the
singular value decomposition (SVD) of the effective
channel in [19], is the near-optimal solution of the relaxed
problem. Here, the gap from the optimal performance
becomes negligible as signal-to-noise ratio (SNR) grows.
In Lemma 3, it is proved that our relaxed reflection vector,
and relaxed analog precoder and combiner can satisfy
the modulus constraints in the large-system limit. Putting
it all together, we can derive the asymptotically near-
optimal reflection vector and the hybrid beamforming
matrices (see Theorem 1).

• Based on our theoretical analysis, we can construct the
practical reflection vector and the hybrid beamforming
matrices by projecting the near-optimal ones into the
modulus constraints (i.e., just taking the phases of the
complex values). Via simulations, we demonstrate that
the proposed method can outperform the SOTA method
in [13] for large-but-finite mmWave SU-MIMO systems.
Furthermore, combining with the channel estimation
method in [19], it is shown that the proposed method is
robust to the channel estimation errors, almost achieving
the ideal performances while having a lower training
overhead. Due to its attractive performance and lower-

Fig. 1. Description of an IRS-aided mmWave MIMO system.

complexity, our construction would be a good candidate
for mmWave MIMO systems.

The remaining part of this paper is organized as follows. In
Section II, we describe the IRS-aided SU-MIMO systems and
define their wireless channel models. We state the main results
of this paper in Section III, by providing the asymptotically
near-optimal reflection vector and hybrid beamforming matri-
ces. Theoretical analysis is conducted in Section IV. Section
V provides the simulation results and Section VII concludes
the paper.

Notations. Let [N ]
∆
= {1, 2, ..., N} for any positive integer

N . Given a M ×N matrix H, let H(i, :) and H(:, j) denote
the i-th row and j-th column of H, respectively. Also, given
m < M and n < N , let H([m], :) and H(:, [n]) denote
the submatrices by taking the first m rows and n columns
of H, respectively. We use x and H to denote a column
vector and matrix, respectively. Also, ⊗ denotes the Kronecker
product. Given any two same dimension of vectors x and y,
let x ◦ y denotes the Hadamard product of x and conj(y),
where conj(y) and conj(H) is the complex conjugate vector
and matrix of y and H, respectively. And, given a vector
v, diag(v) denotes a diagonal matrix whose ℓ-th diagonal
element is equal to the ℓ-th element of v. We let I and 0 denote
the identity and all-zero matrices, respectively, where the sizes
of these matrices are easily obtained from the context. Given
a vector v (resp., a matrix V), P(v) (resp. P(V)) represents
the projection operator taking only the phase of each element
of v (resp. V). Without loss of generality, it is assumed that
in the diagonal matrix of SVD (or eigen-decomposition), the
diagonal elements (i.e., singular values or eigenvalues) are
sorted in the descending order of their absolute values.

II. SYSTEM MODEL

We consider a narrowband mmWave MIMO system with a
low-cost passive intelligent reflecting surface (IRS), which is
illustrated in Fig. 1. In this system, the IRS is equipped with
M reflective elements to assist the communication between
the TX with Nt antennas and the RX with Nr antennas. For
the sake of lower complexity, cost, and power consumption
[1], [2], both TX and RX are assumed to employ the hybrid
beamforming architecture with a limited number of RF chains,
where NRF

t ≤ Nt and NRF
r ≤ Nr denote the number of RF



3

chains at the TX and the RX, respectively. As shown in Fig. 1,
the channel responses from the TX to the IRS (i.e., the TX-IRS
channel), from the IRS to the RX (i.e., the IRS-RX channel),
and from the TX to the RX (i.e., the TX-RX channel) are
respectively denoted as HTI ∈ CM×Nt , HIR ∈ CNr×M , and
HTR ∈ CNr×Nt . In the IRS, a reflection vector is defined as

v = [v1, v2, ..., vM ]H with vm = ejϑm , (1)

where ϑm ∈ [0, 2π) is the phase shift of the m-th reflective
element. Including this, the total channel response from the
TX to the RX is defined as

Htot(v) = HTR +HIRdiag(v)HTI. (2)

To optimize the hybrid beamforming from the Htot(v), it is
required to estimate the channels HIR and HTI separately.
Such optimization has been investigated in [13]. However, in
practice, it is impractical to estimate them separately due to the
lack of RF chains in the IRS. As studied in the existing works
[15]–[19], there exist low-complexity methods to estimate the
so-called effective channel (or the cascaded channel). Follow-
ing the best-known method in [19], the effective channel is
defined as follows. The total channel response in (2) can be
rewritten as

Htot(v) = HTR +Heff(I⊗ v), (3)

where the (IRS-aided) effective channel is defined as

Heff
∆
=
[
H[eff,1] · · · H[eff,Nt]

]
∈ CNr×MNt , (4)

and H[eff,t] = HIRdiag (HTI(:, t)) ∈ CNr×M . Motivated by
this, we in this paper aim to jointly optimize the reflection
vector and the hybrid beamforming matrices, only exploiting
the estimated effective channel Heff . Focusing on the joint
optimization, in the following sections, it is assumed that
Heff (equivalently, H[eff,t]’s) is perfectly estimated. In our
simulations, the impact of channel estimation errors will be
investigated (see Section V).

A. IRS-aided mmWave MIMO systems

We describe the wireless channel in the IRS-aided mmWave
MIMO system. It is assumed that the TX, the IRS, and the RX
are equipped with a uniform planar array (UPA). Applying the
physical propagation model of the wireless channel [20], each
of the channel responses Hi is given by [21]:

Hi =

Ni
path∑
s=1

α[i,s]ar(ϕ
r
[i,s], θ

r
[i,s])a

H
t (ϕ

t
[i,s], θ

t
[i,s]), (5)

for i ∈ {TR, IR,TR}, where N i
path is the number of the

associated spatial paths. Also, α[i,s] denotes the complex gain
of the s-th spatial path in the Hi, which is independently dis-
tributed with CN (0, γ2

i 10
−0.1PL(di)), where the normalization

factor is given as

γi =
√
col (Hi) row (Hi) /N i

path,

and PL(di) is the path loss caused by the distance di between
the two associated entities [22]. Here, col(Hi) and row(Hi)

denote the number of columns and rows of Hi, respectively.
In the s-th path of Hi, the normalized receiver UPA steering
vector is represented as

ar(ϕ
r
[i,s], θ

r
[i,s]) (6)

=
1√
Nr

[
1, . . . , ej

2πd
λ (ih sin(ϕr

[i,s]) sin(θ
r
[i,s])+iv cos(θr

[i,s])),

. . . , ej
2πd
λ ((Nh

r −1) sin(ϕr
[i,s]) sin(θ

r
[i,s])+(Nv

r −1) cos(θr
[i,s]))

]⊺
,

where λ is the signal wavelength and d is the spacing between
the antennas or IRS elements. The horizontal and vertical
indices for the receive antennas are respectively denoted by
0 ≤ ih < Nh

r and 0 ≤ iv < Nv
r , where Nr = Nh

r N
v
r .

Also, the normalized transmit UPA steering vector of the s-th
path in Hi is defined as at(ϕ

t
[i,s], θ

t
[i,s]), which is identically

represented as in (6), by substituting ϕr
[i,s] and θr[i,s] into ϕt

[i,s]

and θt[i,s], respectively.

B. Hybrid Beamforming

In the IRS-aided MIMO system with hybrid beamforming,
the TX sends Ns ≤ min{NRF

t , NRF
r } data streams to the RX

using the digital precoder FBB ∈ CNRF
t ×Ns and the analog

precoder FRF ∈ CNt×NRF
t . On construction, the total transmit

power constraint is imposed:

∥FRFFBB∥2F ≤ PTX. (7)

To recover the data streams, the RX uses the analog combiner
WRF ∈ CNr×NRF

r and digital combiner WBB ∈ CNRF
r ×Ns .

Since the analog beamforming matrices WRF and FRF are
implemented phase shifters only, the so-called constant mod-
ulus constraint is imposed on each of their elements:

|WRF(i, j)| = 1/
√
Nr (8)

|FRF(i, j)| = 1/
√
Nt, (9)

for ∀(i, j). Then, the processed received signal is represented
as

y = WH
BBW

H
RF (Htot(v)FRFFBBs+ n) , (10)

where s ∈ CNs is the data symbol vector with E[ssH] = I and
n ∈ CNr×1 is an additive white Gaussian noise (AWGN) vec-
tor whose entries are independently and identically distributed
(i.i.d) with CN (0, σ2

n).

III. MAIN RESULTS

Our goal is to jointly optimize the reflection vector and
the beamforming matrices with respect to maximizing the
achievable spectral efficiency, only exploiting the effective
channel in (4). From the processed received signal in (10),
the achievable spectral efficiency is derived as

R(WRF,WBB,v,FRF,FBB) (11)
∆
= log2 det

(
I+R−1

n WH
BBW

H
RFHtot(v)FRFFBB

×FH
BBF

H
RFHtot(v)

HWRFWBB

)
,

where Rn = σ2
nW

H
BBW

H
RFWRFWBB. It is extremely chal-

lenging to directly solve this optimization due to the non-
convexity [4]–[8], [13]. Instead of directly tackling it, we
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first consider the relaxed optimization problem on the tricky
modulus constraints, defined as

Rupper
∆
=maxR(WRF,WBB,v,FRF,FBB)

subject to vHv = M

WH
RFWRF = I

FH
RFFRF = I

∥FRFFBB∥2F ≤ PTX. (12)

The key steps to derive the near-optimal solution to the
original problem in (11) are following:

• Thanks to the relaxation, we first derive the optimal
solution of the relaxed problem in the large-system limit
(see Lemma 1 and Lemma 2).

• We then prove that they converge to the near-optimal
solution of the original problem by satisfying the modulus
constraints (see Lemma 3 and Theorem 1).

• Based on our theoretical analysis, we construct the prac-
tical reflection vector and hybrid beamforming matrices
with an attractive performance.

Before stating the main result, we provide the useful defi-
nition and derive the key supporting lemmas.

Definition 1: Given a total channel response Htot(v), the
maximum (achievable) spectral efficiency is defined as

Rmax(Htot(v))
∆
=

Ns∑
ℓ=1

log2

(
1 +

Pℓ

σ2
n

(Σtot(ℓ, ℓ))
2

)
, (13)

where Htot(v) = UtotΣtotV
H
tot via SVD and the optimal

power allocations Pℓ’s are determined by the water-filling:

Pℓ = max

{
1

PTX
− σ2

n

(Σtot(ℓ, ℓ))2
, 0

}
, ℓ ∈ [Ns], (14)

with
∑Ns

ℓ=1 Pℓ = PTX. It can be achieved using fully-digital
SVD-based MIMO transmission.

■
Lemma 1: For any feasible solution in (12), we have the

upper-bound:

R(WRF,WBB,v,FRF,FBB) ≤ Rmax(Htot(v)). (15)

Letting Htot(v) = UtotΣtotV
H
tot via SVD, the upper-bound

is achieved with equality if

WRF = Utot(:, [N
RF
r ])

WBB = UH
tot(:, [N

RF
r ])Utot(:, [Ns])

FRF = Vtot(:, [N
RF
t ])

FBB = VH
tot(:, [N

RF
t ])Vtot(:, [Ns])PWF,

where PWF = diag([
√
P1, . . . ,

√
PNs

]) and Pℓ’s are given in
(14). Namely, these are the optimal solutions of the relaxed
problem in (12).

Proof: The proof is provided in Section IV-A.
From Lemma 1 and by optimizing v, Rupper in (12) can be
achieved, i.e.,

Rupper = max
v: vHv=M

Rmax(Htot(v)). (16)

This optimization is tricky since as shown in (13), the reflec-
tion vector v affects the singular values, which in turn deter-
mines the optimal power allocations. To handle this challenge,
we focus on the case of high-SNRs, which is reasonable in the
IRS-aided massive MIMO system [5]. In this case, it is well-
known that equal-power allocation is near-optimal. Based on
this, the maximum achievable spectral efficiency in (13) can
be well-approximated as

Rmax(Htot(v))≈
Ns∑
ℓ=1

log2

(
PTX

Nsσ2
n

(Σtot(ℓ, ℓ))
2

)
(a)

≤ Ns log2

(
PTX

Nsσ2
n

)
+ log2

(
∥Htot(v)∥2F

)
, (17)

where (a) is due to the Jensen’s inequality. We resort to seeking
a near-optimal reflection vector such as

v⋆ = argmax
v: vHv=M

∥Htot(v)∥2F . (18)

Lemma 2: In the case of either large-system limit (i.e.,
Nt, Nr,M → ∞ with some fixed ratios) or no direct-link
channel, the near-optimal reflection vector is derived as

v⋆ =
√
MUeff(:, 1), (19)

where
∑Nt

t=1 H
H
[eff,t]H[eff,t] = UeffΛeffU

H
eff via eigen-

decomposition.
Proof: The proof is provided in Section IV-B.

In the large-system limit, using v⋆ in Lemma 2, Rupper can
be nearly achieved as

∆gap
∆
= Rupper −Rmax(Htot(v

⋆)). (20)

Note that this gap becomes negligible as SNR (or PTX)
increases. From Lemma 1 and Lemma 2, we can construct
the near-optimal solutions of the relaxed problem in (12):

W⋆
RF = U⋆

tot(:, [N
RF
r ])

W⋆
BB =

(
U⋆

tot(:, [N
RF
r ])

)H
U⋆

tot(:, [Ns])

F⋆
RF = V⋆

tot(:, [N
RF
t ])

F⋆
BB = (F⋆

RF)
HV⋆

tot(:, [Ns])P
⋆
WF, (21)

where Htot(v
⋆) = U⋆

totΣtot(V
⋆
tot)

H via SVD.

Lemma 3: In the large system limit, the reflection vector
v⋆ and the hybrid beamforming matrices in (21) satisfy the
modulus constraints in (11). In particular, v⋆ in (19) converge
to the limit vlimit:

vlimit = MaIRr (ϕ[IR,1], θ[IR,1]) ◦ aTI
t (ϕ[TI,1], θ[TI,1]). (22)

Proof: The proof is provided in Section IV-C.
Based on the key lemmas, we state the main result below:
Theorem 1: In the large-system limit, the reflection vector

in Lemma 2 and the hybrid beamforming matrices in (21) can
achieve the spectral efficiency Rprop:

Rprop = Rachiev −∆gap, (23)

where Rachiev is the maximum achievable spectral efficiency
of the original problem in (11) under the constant modulus
constraints.
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Proof: Combining Lemma 1, Lemma 2, and Lemma 3,
the proof is completed.
Since ∆gap can be negligible as SNR (or PTX) increases,
the proposed method can guarantee the near-optimality in the
large-system limit.

We next focus on the practical RIS-aided MIMO systems,
in which the asymptotic results in Lemma 3 might not hold.
On the basis of our asymptotic results, the reflection vector is
constructed by only applying the projection operator P(·) to
the v⋆ in Lemma 2:

v̂⋆ = P(v⋆). (24)

Similarly, from (21), the analog beamforming matrices are
constructed as

Ŵ⋆
RF = P

(
U⋆

tot(:, [N
RF
r ])

)
, (25)

F̂⋆
RF = P

(
V⋆

tot(:, [N
RF
t ])

)
. (26)

Finally, to satisfy the transmit-power constraint in (11), the
normalized digital precoder is constructed as

F̂⋆
BB =

( √
PTX

∥F̂⋆
RFF

⋆
BB∥F

)
× F⋆

BB. (27)

Remark 1: We compare the proposed reflection vector in
(24) with that in the state-of-the-art (SOTA) method in [13].
In fact, the reflection vector in [13] is identical to our limit
vlimit in (22). While both methods have identical reflection
vector in the large-system limit, they are completely different
in practical large-but-finite IRS-aided MIMO systems. Via
experiments in Section V, it is demonstrated that the proposed
reflection vector can outperform the SOTA in [13], especially
due to the use of a better reflection vector. Noticeably, the
proposed v̂⋆ is indeed practical as it can be constructed only
using the effective channel in (4). In contrast, to construct the
reflection vector in [13] (i.e., vlimit in (22)), the TX-IRS and
IRS-RX channels should be estimated. More seriously, it is
intractable to recover the UPA steering vectors in (22) from
these channel matrices. We for the first time derive the near-
optimal and practical design of the reflection vector and hybrid
beamforming for IRS-aided mmWave MIMO systems.

IV. THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of the
proposed reflection vector and the hybrid beamforming, by
providing the proofs of the key lemmas.

A. Upper-Bound: Proof of Lemma 1

We note that Rmax(Htot(v)) in Definition 1 is the max-
imum achievable spectral efficiency when the fully-digital
architecture is considered (i.e., NRF

r = Nr and NRF
t = Nt).

Definitely, this is the upper-bound as the hybrid beamforming
cannot achieve a higher spectral efficiency than the fully-
digital counterpart. We next derive the optimal beamforming
matrices for the optimization in (12) by achieving the upper-
bound Rmax(Htot(v)).

We next prove the equality-part by constructing the optimal
beamforming matrices for the relaxed problem in (12). Based
on the SVD, we have:

Htot(v) = UtotΣtotV
H
tot. (28)

Thus, we can find the optimal beamforming matrices (that
achieve the upper-bound), by solving the equations subject to
the feasible solutions in (12):

WRFWBB = Utot(:, [Ns]) ∈ CNr×Ns (29)

FRFFBB = Vtot(:, [Ns])PWF ∈ CNt×Ns , (30)

where PWF = diag([
√
P1, . . . ,

√
PNs

]) with the optimal
power allocations Pℓ’s in (14). To solve these equations, we
first choose the analog combiner WRF as

WRF = Utot(:, [N
RF
r ]), (31)

which is the feasible solution because

(WRF)HWRF = Utot(:, [N
RF
r ])HUtot(:, [N

RF
r ]) = I.

Given the WRF, we derive the digital combiner WBB as the
solution of the resulting linear equation in (29):

WBB = W†
RFUtot(:, [Ns])

= Utot(:, [N
RF
r ])HUtot(:, [Ns]), (32)

since W†
RF = U⋆

tot(:, [N
RF
r ]). We remark that the least-square

solution (using the pseudo-inverse) in (32) gives the exact
on because the columns of Utot(:, [Ns]) lie in the column
space of WRF. Thus, the receive beamforming matrices in
(31) and (32) are the feasible solutions to satisfy the equations
in (29). Exactly following the same arguments, we can derive
the transmit beamforming matrices such as

FRF = Vtot(:, [N
RF
t ]) (33)

FBB = Vtot(:, [N
RF
t ])HVtot(:, [Ns])PWF. (34)

Definitely, they are the feasible solutions in (12) as the power-
constraint is satisfied, i.e.,

∥FRFFBB∥2F = ∥Vtot(:, [Ns])PWF∥2F
= ∥PWF∥2F = PTX.

This completes the proof of Lemma 1.

B. Optimal Reflection Vector: Proof of Lemma 2

For ease of exposition, we define the receive array response
matrix Ai

r, the complex gain matrix Gi and the transmit array
response matrix Ai

t: for i ∈ [IR,TI,TR],

Ai
r =

[
ar(ϕ

r
[i,1], θ

r
[i,1]) · · · ar(ϕ

r
[i,Ni

path]
, θr

[i,Ni
path]

)
]
,

Gi = diag([α[i,1], . . . , α[i,Ni
path]

]),

Ai
t =

[
at(ϕ

t
[i,1], θ

t
[i,1]) · · · at(ϕ

t
[i,Ni

path]
, θt

[i,Ni
path]

)
]
. (35)

Using them, the channel responses in (5) can be rewritten as

Hi = Ai
rGi

(
Ai

t

)H
, (36)
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for i ∈ [IR,TI,TR]. Without loss of generality, we assume
that the diagonal elements in Gi is sorted as |α[i,m]| ≥
|α[i,n]|,∀m,n ∈ [N i

path] with m < n.
First, we will prove that in the large-system limit, HTRH

H
TI

converges to the all-zero matrix, where

HTRH
H
TI = ATR

r GTR

(
ATR

t

)H
ATI

t GH
TI

(
ATI

r

)H
. (37)

In [17], the asymptotic orthogonality of UPA steering vector
was proved, i.e.,

lim
X→∞

aHX(f1, g1)aX(f2, g2) = 0, (38)

for ∀f1 ̸= f2, g1 ̸= g2 ∈ R, where aX(f, g) ∈ CX×1 (called
the general form of UPA response vector) is defined as

aX(f, g) (39)

=
1

X
[1, . . . , ej

2πd
λ (xhf+xvg), . . . , ej

2πd
λ ((Xh−1)f+(Xv−1)g)]T

where 0 ≤ xh < Xh and 0 ≤ xv < Xv , where X = XhXv .
From (38), we can immediately show that

lim
Nt,Nr,M→∞

(
ATR

t

)H
ATI

t = 0. (40)

This implies that each element of HTRH
H
TI converges to 0 as

Nt goes to infinity. In (40), it was shown that this convergence
occurs rapidly. Namely, the asymptotic orthogonality is nearly
satisfied with the 256 number of antennas or IRS reflective
elements.

We note that the matrix multiplication in (40) can rapidly
approach to the zero vector 0 as the number of transmit
antennas (i.e., Nt) grows. Based on this, we show that

lim
Nt,Nr,M→∞

Htot(v)(Htot(v))
H

= HTRH
H
TR +HIRdiag(v)HTIH

H
TIdiag(v)HHH

IR. (41)

From the definition of Rmax (Htot(v)), the (relaxed) IRS
reflection vector is optimized by taking the solution of

v⋆ = argmax
v: vHv=M

∥Htot(v)∥2F ,

= argmax
v: vHv=M

∥HTR +HIRdiag(v)HTI∥2F
(a)
= argmax

v: vHv=M

(
∥HTR∥2F + ∥HIRdiag(v)HTI∥2F

)
,

= argmax
v: vHv=M

∥HIRdiag(v)HTI∥2F ,

(b)
= argmax

v: vHv=M

vH

(
Nt∑
t=1

HH
[eff,t]H[eff,t]

)
v (42)

where (a) follows from (41), and (b) is from the definition of
the effective channel in (3) and due to the fact that

∥HIRdiag(v)HTI∥2F = ∥Heff (I⊗ v)∥2F
=
∥∥[H[eff,1]v · · · H[eff,Nt]v

]∥∥2
F

= vH

(
Nt∑
t=1

HH
[eff,t]H[eff,t]

)
v. (43)

Given the
∑Nt

t=1 H
H
[eff,t]H[eff,t] = UeffΛeffU

H
eff via eigen-

decomposition, the optimal solution of (42) is simply attained

by taking the scalar multiple of the eigenvector corresponding
to the largest eigenvalue:

v⋆ =
√
MUeff(:, 1).

Thus, in the large system limit (i.e., Nt → ∞), v⋆ is the
(relaxed) optimal reflection vector. Obviously, when there is no
direct-link channel, v⋆ is also the (relaxed) optimal reflection
vector because the optimization in (42) holds. This completes
the proof of Lemma 2.

C. Asymptotic Optimality: Proof of Lemma 3

We prove the asymptotic optimality of the beamforming
matrices and the reflection vector in Lemma 2 and Lemma 3,
respectively.

First, we will prove that v⋆ in Lemma 2 meets the
modulus constraints in the large-system limit. Toward this,∑Nt

t=1 H
H
[eff,t]H[eff,t] is rewritten as

Nt∑
t=1

HH
[eff,t]H[eff,t] =

(
HH

IRHIR

)
◦
(
HTIH

H
TI

)
,

=

[
M∑
i=1

λIR
i eIRi

(
eIRi
)H] ◦

 M∑
j=1

λTI
j eTI

j

(
eTI
j

)H ,

=

M∑
i=1

M∑
j=1

λIR
i λTI

j

(
eIRi ◦ eTI

j

) (
eIRi ◦ eTI

j

)H
, (44)

where HH
IRHIR =

∑M
i=1 λ

IR
i eIRi

(
eIRi
)H

and HTIH
H
TI =∑M

j=1 λ
TI
j eTI

j

(
eTI
j

)H
via eigen-decomposition.

In [13], it was proved that in the large system limit, the
diagonal elements of Gi in (35) converge to the singular
values of Hi. Due to the asymptotic orthogonality, Ar and
At in (35) converge to the eigenvectors of HiH

H
i and HH

i Hi,
respectively. In other words, {eIRs : s ∈ [N IR

path]} and
{eTI

s : s ∈ [NTI
path]} become respectively the UPA steering

vectors. Using this fact, eIRi ◦ eTI
j can be expressed as

eIRi ◦ eTI
j = aIRr (ϕ[IR,i], θ[IR,i]) ◦ aTI

t (ϕ[TI,j], θ[TI,j])

(a)
= aM

(
f[i,j], g[i,j]

)
, (45)

for ∀i ∈ [N IR
path] and ∀j ∈ [NTI

path], where (a) follows the
definition of the general form of UPA response vector in (39)
and

f[i,j] = sin(ϕ[IR,i])sin(θ[IR,i])− sin(ϕ[TI,j])sin(θ[TI,j])

g[i,j] = cos(θ[IR,i])− cos(θ[TI,j]).

This shows that each eIRi ◦ eTI
j can be considered as an UPA

steering vector. From the asymptotic orthogonality in (38), we
can get:(

eIRi ◦ eTI
j

)H (
eIRk ◦ eTI

l

)
= aHM

(
f[i,j], g[i,j]

)
aM

(
f[k,l], g[k,l]

)
= 0, (46)

for ∀i, j, k, l ∈ [M ] with i ̸= k and j ̸= l. In the large-system
limit, thus, (44) becomes the ED of

∑Nt

t=1 H
H
[eff,t]H[eff,t].

Since
√
M
(
eIR1 ◦ eTI

1

)
is the eigenvector corresponding to the
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largest eigenvalue 1
M λIR

1 λTI
1 , the optimal reflection vector v⋆

in Lemma 2 is equal to

v⋆ =
√
MUeff(:, 1)

= M
(
aIRr (ϕ[IR,1], θ[IR,1]) ◦ aTI

t (ϕ[TI,1], θ[TI,1])
)
,

where the second equality follows from (45). This implies that
in the large-system limit, v⋆ satisfies the modulus constraints.

Next, we will prove that in the large-system limit, U⋆
tot(:

[NRF
r ]) and V⋆

tot(:, [N
RF
t ]) satisfy the modulus constraints in

(11). Due to the fact that v⋆ =
√
MUeff(:, 1) in Lemma 2,

we can get:

lim
Nt,Nr,M→∞

Htot(v
⋆)HH

tot(v
⋆)

=

NTR
path∑
s=1

|αTR
s |2ar(ϕr

[TR,s], θ
r
[TR,s])a

H
r (ϕ

r
[TR,s], θ

r
[TR,s])

+ |αTI
1 |2|αIR

1 |2ar(ϕr
[IR,1], θ

r
[IR,1])a

H
r (ϕ

r
[IR,1], θ

r
[IR,1]), (47)

and

lim
Nt,Nr,M→∞

HH
tot(v

⋆)Htot(v
⋆)

=

NTR
path∑
s=1

|αTR
s |2at(ϕt

[TR,s], θ
t
[TR,s])a

H
t (ϕ

t
[TR,s], θ

t
[TR,s])

+ |αTI
1 |2|αIR

1 |2at(ϕt
[TI,1], θ

t
[TI,1])a

H
t (ϕ

t
[TI,1], θ

t
[TI,1]). (48)

Similarly to (36), they can be rewritten as

lim
Nt,Nr,M→∞

Htot(v
⋆)HH

tot(v
⋆) = Atot

r Θtot

(
Atot

r

)H
lim

Nt,Nr,M→∞
HH

tot(v
⋆)Htot(v

⋆) = Atot
t Θtot

(
Atot

t

)H
where

Atot
r =

[
ATR

r ar(ϕ
r
[IR,1], θ

r
[IR,1])

]
∈ CNr×(NTR

path+1)

Θtot = diag
(
[|αTR

1 |2, . . . , |αTR
NTR

path
|2, |αTI

1 |2|αIR
1 |2]

)
Atot

t =
[
ATR

t at(ϕ
t
[TI,1], θ

t
[TI,1])

]
∈ CNt×(NTR

path+1)
. (49)

As proved in the above, the diagonal elements of Θtot asymp-
totically converge to the eigenvalues of HH

tot(v
⋆)Htot(v

⋆).
From the asymptotic orthogonality of UPA in (40), the
columns of Atot

r and Atot
t are orthogonal to each other.

Using this fact, we can see that in the large-system limit,
U⋆

tot(:, [N
TR
path+1]), Σ⋆

tot([N
TR
path+1], [NTR

path+1]) and V⋆
tot(:

, [NTR
path + 1]) converge to Atot

r , Θtot, Atot
t , respectively.

Therefore, U⋆
tot(:, [N

RF
r ]) and V⋆

tot(:, [N
RF
t ]) can satisfy the

modulus constraints. This completes the proof of Lemma 3.

V. SIMULATION RESULT

We consider the IRS-aided mmWave MIMO systems in
Fig. 1. The number of paths are set by NTR

path = N IR
path =

NTI
path = 8. Regarding the distances among the TX, IRS,

and RX, dTR follows a uniform distribution over the range
{dTI + dIR − 10 m, dTI + dIR m}, where dTI and dIR are
uniformly distributed over [50 m, 60 m] and [10 m, 20 m],

Fig. 2. The impact of the transmit power on the spectral efficiency. Nr =
4×4 = 16, Nt = 8×8 = 64,M = 16×16 = 256 and NRF

r = NRF
t = 4

Fig. 3. The impact of the transmit power on the spectral efficiency. Nr =
Nt = M = 16× 16 = 256 and NRF

r = NRF
t = 4.

respectively. Then, the distance-dependent path loss PL(di)
is modeled as

PL(di) [dB] = α+ 10β log10(di) + ϵ, (50)

for i ∈ [TR,TI, IR], where ϵ ∼ N (0, σ2). According to the
experimental data for 28GHz channels in [22], the parameters
in (50) are set by α = 61.4, β = 2, σ = 5.8 dB for the
line-of-sight (LOS) path of Hi, and α = 72.0, β = 2.92, σ =
8.7 dB for the non-line-of-sight (NLOS) paths. To evaluate the
effectiveness of various IRS vector designs more accurately,
it is assumed that each path of HTR is a NLOS path that
passed through tinted-glass walls to experience an additional
penetration loss of 40.1 dB [23]. The element spacing, noise
power, and the number of data streams are each set by d =
λ/2, σ2

n = −91dBm, and Ns = 4. Lastly, all the simulation
results are averaged over 104 channel realizations.

Fig. 2 shows the impact of the transmit power PTX on the
spectral efficiency. Noticeably, the proposed method can out-



8

Fig. 4. The impact of the number of paths on the spectral efficiency. Nr =
4× 4 = 16, Nt = 8× 8 = 64,M = 16× 16 = 256 and PTX = 40dBm

Fig. 5. The impact of channel estimation accuracy on the spectral efficiency.
Nr = 4 × 4 = 16, Nt = 8 × 8 = 64,M = 16 × 16 = 256 and PTX =
40dBm

perform the SOTA in [13], while both can achieve near-optimal
performance in the large-system limit. The performance gain
is due to the construction of a better reflection vector. Namely,
our reflection vector v̂⋆ in (24) makes Rmax (Htot(v)) in Def-
inition 1 higher than the reflection vector in [13]. Comparing
the performance of fully-digital beamforming using random
reflection vectors, Both the proposed and SOTA methods can
attain significant gains, manifesting the effect of the optimized
reflection vectors. Also, in comparison between the upper-
bound (i.e., the performance-limit) and the proposed fully-
digital beamforming, we can identify that the effect of the mis-
match between v⋆ in Lemma 2 and its projection v̂⋆ = P(v⋆)
is not large. This implies that v̂⋆ is an almost optimal practical
reflection vector while ensuring the asymptotic optimality.

Fig. 3 shows the achievable spectral efficiency of the
proposed method in a larger MIMO system in which the
asymptotic orthogonality is nearly achieved. First, we can
identify the asymptotic optimality of the proposed method by

comparing the performances in Fig. 2 and Fig. 3, because the
achievable spectral efficiency of the proposed method becomes
closer to the upper-bound as the size of the system grows.
As expected, the achievable spectral efficiency by itself can
increase as the size of the system scales up. This can be
explained from our theoretical analysis. It is obvious that
Rupper in (12) is determined by the top-Ns eigenvalues of the
total channel Htot(v

⋆). Also, our analysis shows that in the
large-system limit, these eigenvalues converge to the diagonal
elements of Θtot in (49). Among the diagonal elements,
|αTI

1 |2|αIR
1 |2 is the dominant value to determine the Rupper

under the reasonable assumption that the path loss of the TX-
RX channel (or direct channel) is much greater than the others.
Also, this product can be computed as

E
[
|αTI

1 |2|αIR
1 |2

]
≥ M2n, (51)

where n = NrNt10
−0.1(PL(dTI)+PL(dIR))/NTI

pathN
IR
path. This

clearly shows that the achievable spectral efficiency of the
proposed method tends to be higher as the system scales up.

Fig. 4 shows the impact of the number of spatial paths on
the spectral efficiency. As expected, the achievable spectral
efficiency tends to be higher as the number of spatial paths
decreases. This shows that the proposed IRS-aided hybrid
beamforming is more suitable for mmWave MIMO systems,
which are usually composed of low-scattering and a small
number of spatial paths [24]. Also, as in Fig. 2 and Fig. 3, the
proposed method can outperform the SOTA in [13] regardless
of the number of signal paths (i.e., the channel sparsity).

Fig. 5 shows the impact of the channel estimation accuracy
on the spectral efficiency. As in [15]–[19], the estimation
accuracy is commonly measured by the normalized mean
square error (NMSE), given by

NMSE
∆
=

∥Heff − Ĥeff∥2F
∥Heff∥2F

, (52)

where Heff and Ĥeff denote the true and estimated effective
channel, respectively. We observe that the proposed method
can guarantee the robustness of the channel estimation errors.
Remarkably, the proposed method with imperfect CSI (i.e., the
estimated effective channel) can outperform the SOTA with
perfect CSI. Note that we could not evaluate the performance
of the SOTA with imperfect CSI since there is no practical
channel estimation method. Therefore, we can conclude that
the proposed method would be a good practical candidate for
IRS-aided mmWave MIMO systems with hybrid architectures.

VI. CONCLUSION

We investigated the joint optimization of the IRS reflec-
tion vector and the hybrid beamforming using the so-called
effective channel only. This channel can be estimated via
many efficient practical methods based on compressed sensing
or low-rank matrix approximation. For the first time, we
derived the near-optimal construction in the large-system limit.
Imposing the modulus constraints on the asymptotically near-
optimal construction, we developed the practical ones. Via
experiments, it was demonstrated that the proposed method
can outperform the SOTA method while providing more
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practical merits. Our on-going work is to extend the proposed
construction in the wideband OFDM MIMO and the multi-
user MIMO systems.
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