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Fig. 1: We introduce OpenGraph, a framework of open-vocabulary hierarchical 3D graph representation in large-scale outdoor
environments. OpenGraph facilitates various downstream tasks, including zero-shot semantic segmentation, open-vocabulary object
retrieval, structured topology query, global path planning, interactive map updating, and so on.

Abstract— Environment representations endowed with so-
phisticated semantics are pivotal for facilitating seamless inter-
action between robots and humans, enabling them to effectively
carry out various tasks. Open-vocabulary maps, powered by
Visual-Language models (VLMs), possess inherent advantages,
including zero-shot learning and support for open-set classes.
However, existing open-vocabulary maps are primarily designed
for small-scale environments, such as desktops or rooms, and
are typically geared towards limited-area tasks involving robotic
indoor navigation or in-place manipulation. They face chal-
lenges in direct generalization to outdoor environments char-
acterized by numerous objects and complex tasks, owing to lim-
itations in both understanding level and map structure. In this
work, we propose OpenGraph, the first open-vocabulary hier-
archical graph representation designed for large-scale outdoor
environments. OpenGraph initially extracts instances and their
captions from visual images, enhancing textual reasoning by
encoding them. Subsequently, it achieves 3D incremental object-
centric mapping with feature embedding by projecting images
onto LiDAR point clouds. Finally, the environment is segmented
based on lane graph connectivity to construct a hierarchical
graph. Validation results from public dataset SemanticKITTI
demonstrate that OpenGraph achieves the highest segmentation
and query accuracy. The source code of OpenGraph is publicly
available at https://github.com/BIT-DYN/OpenGraph.

I. INTRODUCTION

A comprehensive understanding and representation of the
3D scene are crucial for robots to perform various down-
stream tasks [1]. Occupancy mapping [2] stands out as the
most prevalent technique for building maps, allowing for
the retrieval of geometric scene properties. By discerning
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obstacle positions and shapes, these maps facilitate spatial
navigation for autonomous obstacle avoidance. With the
advancement of deep learning technology, semantic infor-
mation is incorporated into classic geometric maps [3].
This integration enables robots to achieve semantic-level
intelligent navigation. However, such semantics are confined
to predefined labels during the training phase, presenting
challenges in heuristic comprehension and effective utiliza-
tion.

In recent years, the widespread adoption of visual lan-
guage models (VLMs) [4]–[6] has opened avenues for en-
capsulating conceptual semantics in maps. VLMs encode
images and text into a unified feature space through adver-
sarial learning, enabling seamless interaction between robots
and humans. These foundation models, trained on extensive
web-based datasets, can uncover novel objects and derive
simplistic understandings at inference time. However, the
main scope of current open-vocabulary mapping methods
is at room-level or desktop-level, primarily used for indoor
navigation or in-place manipulation tasks for robots. There
are two notable limitations, that restrict their applicability in
large-scale outdoor environments:

1) Weak object-centric comprehension and reasoning
capabilities. Most existing methods directly distil [7] or
project [8] 2D VLM features into 3D space as semantic
understanding of the constructed open-vocabulary maps.
Such primitive VLM features excel at broad recognition
but lack robust reasoning capabilities. For instance, when
encountering a patch of grass, VLM features capture its
category (grass), color (green), and other basic attributes
but not encompass common-sense knowledge such as its
function as a soccer field or a primary food for sheep.
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This limited understanding restricts their applicability when
handling various tasks encountered in outdoor environments
that demand a certain level of comprehension.

2) Limited and inefficient map architectures. Effi-
ciently storing, maintaining, and rapidly retrieving desired
objects in non-structured outdoor environments characterized
by numerous objects pose a key challenge. The original
point-wise open-vocabulary mapping methods [8], [9] are
computationally expensive and typically represent retrieval
results using feature similarity heatmaps, lacking object
boundaries. Although some subsequent methods [10], [11]
have achieved indoor instance-level map construction with
the assistance of segmentation models like SAM [12], they
remain challenging to effectively discriminate the desired
one when multiple corresponding objects are present in the
scene. This difficulty is compounded by the prevalence of
repetitive objects in outdoor settings, making it impractical
to directly apply existing open-vocabulary map architectures
to such environments.

To address the above limitations, this paper proposes
OpenGraph, a novel framework for open-vocabulary hi-
erarchical 3D graph representation. 1) Open reasoning:
Unlike approaches that directly employ VLM features for
environmental semantic understanding, OpenGraph leverages
VLMs as the cognitive front-end. It segments instances from
visual images and generates textual captions. Moreover, large
language models (LLMs) [13], [14], renowned for their ex-
ceptional performance in natural language processing tasks,
encode these captions to enrich the open-minded reasoning
capabilities. 2) Hierarchical graph: OpenGraph projects
caption features from 2D images onto 3D LiDAR point
clouds and incorporates them into the construction of object-
centric maps. To facilitate map maintenance and specific
object retrieval, OpenGraph introduces a hierarchical graph
representation. This representation segments the environment
based on the connectivity of the computed lane map and
associates it with jurisdictional instances. An illustrative
example of OpenGraph’s result is presented in Fig. 1. In
summary, our contributions are as follows:

• We introduce the first outdoor open-vocabulary object-
centric mapping system capable of discovering, build-
ing, and comprehending a vast number of instances. We
innovatively design the caption feature as the corner-
stone for object comprehension, thereby enhancing the
cognitive level of the maps.

• We propose a hierarchical 3D graphical representation
that supports efficient maintenance and rapid retrieval
in large-scale environments.

• Validation on outdoor dataset demonstrates that Open-
Graph enables a profound semantic understanding of the
environment and facilitates downstream applications.

II. RELATED WORKS

A. Closed-vocabulary semantic mapping
While early studies [15]–[17] introduced pretrained deep

learning-based segmentation models into basic spatial rep-
resentations (occupancies, point clouds, etc.) for semantic

3D mapping, their performance was largely constrained by
the model capabilities. Recent researches [18] exploit the
latest advances in implicit neural representations to achieve
geometric and semantic mapping within a unified feature
space. Despite these advances, these methods require time-
consuming self-supervision and are scenario-tailored, making
generalization to other scenarios challenging. Most impor-
tantly, all of them either use segmentation models pretrained
on a closed set of classes or can only utilize limited classes
in the current scene for learning from scratch. This limitation
makes them challenging to comprehend unseen object classes
in complicated and open scenes.

B. Open-vocabulary 3D mapping

With the impressive progress of web-based pre-trained
visual language models and large language models, an in-
creasing number of methods are attempting to extend their
2D open vocabulary understanding capabilities to the 3D
world, including the following three mainstream solutions.

1) Vision-only point-wise mapping. Originally, Open-
Scene [19] achieves 3D open-vocabulary scene under-
standing by projecting point-wise vision features extracted
from fine-tuned image segmentation model [20] onto a 3D
point cloud, facilitating easy utilization for open-vocabulary
queries. However, the fine-tuned models lose their original
ability to capture long-tail objects. Even if subsequent works
[8], [9] adopt well-designed point-wise feature extraction
methods to avoid object forgetting, the inconsistency between
point features blurs the boundaries of instances, making
object retrieval challenging during downstream robot tasks.

2) Vision-only instance-level mapping. The mainstream
method for instance-level open-vocabulary 3D mapping in-
volves extracting VLM features at the 2D image mask scale
and then fusing point clouds from potentially the same
instances in 3D space, considering both spatial and feature
similarities. Compared to OVIR-3D [10], which fuses text-
aligned 2D region proposals into 3D space using Periodic
3D Instance Filtering and Merging, OpenMask3d [11] lever-
ages predicted class-agnostic 3D instance masks to guide
the multi-view fusion of CLIP-based image embeddings.
Recently, Open3DIS [21] devises a 2D-guide-3D Instance
Proposal Module to further enhance the description of 3D
object shapes. However, the above methods still rely on fused
CLIP features, which encode limited visual context under
multi-view masks, thus lacking high-level natural language
reasoning capabilities.

3) Vision-language mapping. Although not instance-
level, the weakly supervised CLIP-Fields [7] first com-
bines visual features from CLIP and textual features from
Sentence-BERT [14] in the architecture of neural implicit
representations as robotic semantic memory. Beyond [10],
ConceptGraphs [22] further extracts structural captions for
each object, feeding them to LLMs for other applications,
such as LLM-powered scene graph creation and natural
language reasoning. Nonetheless, their reasoning capabilities
are still constrained by the utilization of underlying CLIP
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Fig. 2: The framework of OpenGraph consists of three main modules: Caption-Enhanced Object Comprehension, Object-Centric Map
Construction, and Hierarchical Graph Representation Formation.

features, and their effectiveness in large-scale outdoor scenes
is impeded by the reliance on depth cameras.

For OpenGraph, we employ the advanced vision language
model to extract visual-textural captions directly. These cap-
tions are then encoded using LLM, yielding textual features
enriched with natural language reasoning abilities.

C. 3D Scene graph

To overcome ambiguity in object retrieval by providing
context-aware specifications, 3D scene graphs (3DSGs) are
proposed to describe the 3D scene compactly as graph struc-
tures, where nodes represent spatial or semantic properties
of objects and edges encode inter-object relationships [23].
While original approaches [24] generate real-time closed-
set 3D semantic scene graph predictions from image se-
quences using graph neural networks, recent researchers have
explored integrating open-vocabulary foundation models for
3D scene graph generation. ConceptGraphs [22] and OVSG
[25] pioneered an open-vocabulary framework for generating
indoor robot scene graphs. However, their performance in
outdoor environments is compromised by focusing solely on
establishing object-level scene graphs. Inspired by closed-
vocabulary 3D hierarchical graph generation methods hydra
[23] and CURB-SG [26], our OpenGraph proposes the
first open-vocabulary hierarchical 3D graph representation
in large-scale outdoor environments.

III. OPENGRAPH

A. Framework Overview

OpenGraph takes a sequence of 2D RGB images I =
{I(1), I(2), ..., I(t)} and a sequence of 3D LiDAR point
clouds C = {C(1), C(2), ..., C(t)} with pose P =
{P (1), P (2), ..., P (t)} as input, and produces a global hierar-
chical graph M(t)

all of the observed environment as output.
The overall OpenGraph framework, as depicted in Fig.

2, consists of three primary modules. Firstly, the Caption-
Enhanced Object Comprehension module focuses on in-
stance segmentation and caption feature extraction from
2D images. Secondly, the Object-Centric Map Construction

module is responsible for projecting 2D images and their
interpretations into 3D LiDAR point clouds, enabling in-
cremental construction of object-centric maps. Lastly, the
Hierarchical Graph Representation Formation module deals
with lane graph extraction and segmentation to construct the
final hierarchical graph. By sequentially executing the three
modules, OpenGraph acquires a profound understanding of
the environment. The resulting hierarchical graph consists of
the following layers, which can be expanded or collapsed as
required by the actual scenario:

1) Point Cloud Layer represents the metric point cloud
Mpc, providing the most intuitive representation of the
environment.

2) Lane Graph Layer depicts the lane graph Mlg, which
contains its own topology and can be utilized for
downstream tasks such as path planning.

3) Instance Layer is a subgraph of instances Mins =
⟨O,E⟩, where instances O are composed of their cen-
ters of mass, bounding boxes, captions, and high-
dimensional semantic features. Spatial relationships be-
tween instances are represented by edges E connecting
them.

4) Segment Layer represents segments Mseg , partitioned
based on the connectivity of lane graph Mlg, with each
one having a center of mass.

5) Environment Layer encompasses the entire outdoor
environment node Menv connected to all segments.

Edges connect nodes within each layer (e.g., to model
traversability between segments) or across layers (e.g., to
model that point clouds belong to an instance, or that an
instance is in a certain segments).

B. Caption-Enhanced Object Comprehension

Vision provides a wealth of information about the shape,
size, texture, and location of objects and is an important
perception for understanding the environment. The Caption-
Enhanced Object Comprehension module sequentially uses
three visual language models to realize the caption extraction
of objects in each image frame as shown in Fig. 3.
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Fig. 3: We employ three sequential visual language models for
image instance segmentation and caption extraction. These models
sequentially perform recognition, detection, simultaneous segmen-
tation, and description generation of objects within the input image.

At the current time t, for the input RGB image I(t),
we first utilize Recognize Anything Model (RAM) [27]
Rec(·) to recognize the categories present in it. With its
open-set capability, RAM is feasible to recognize any com-
mon category. Subsequently, we feed the generated open-
vocabulary category names along with the original image
into the Grounding DINO model [28] Det(·, ·) for open-set
object detection. This yields the object detection bounding
boxes, which are precisely what is required for the TAP
(Tokenize Anything via Prompting) model [29] SegCap(·, ·).
Prompted by the object detection bounding boxes, the TAP
model segments and describes the main objects within them,
producing a set of masks {m(t)

i }i=1,,,m and a set of captions
{c(t)i }i=1,,,m for the current frame I(t). The entire process
can be represented as (1), and the specific model can be
substituted with others possessing similar functionality.

{m(t)
i , c

(t)
i } = SegCap

(
I(t),Det

(
I(t),Rec(I(t))

))
(1)

VLMs aid in expressing the visual semantic understanding
of objects through caption text, thereby facilitating the con-
version from visual to language modality. However, the cap-
tions {c(t)i } lack inherent common sense reasoning abilities.
Conversely, LLMs find widespread application across various
natural language processing tasks, having been pre-trained on
extensive text datasets. Hence, as depicted in (2), we leverage
LLMs to encode object captions, thereby generating high-
dimensional embedded features to enhance comprehension
and reasoning. Consequently, we employ the SBERT model
[14] in our experiments.

f(t)i = Embed(c
(t)
i ) (2)

After processing with the foundation model described
above, we derive the 2D masks {m(t)

i } and captions {c(t)i }
for candidate objects, along with their corresponding caption
features {f(t)i }, based on the input RGB images I(t) observed
at the current time.

C. Object-Centric Map Construction

To achieve 3D mapping, it’s crucial to incorporate metric
information regarding detected objects. We employ a multi-
sensor calibration and fusion method to project the 3D
point cloud acquired from LiDAR onto a 2D image plane.
Before projection, we employ 4DMOS [30] to detect and
filter dynamic points from the point cloud C(t) to eliminate
trailing shadows. The projection process generates 3D point
clouds p(t)

i of the object instances that are aligned with the
corresponding masks m

(t)
i :

p(t)
i = {lk|KTlk ∈ m

(t)
i , lk ∈ C(t)} (3)

where lk is the LiDAR point, K is the internal camera
parameter, and T is the external lidar-to-camera parameter.
Considering the existence of bias in the calibration param-
eters and the noise of the sensors themselves, we use the
DBSCAN clustering algorithm to reduce the noise of the
point clouds p(t)

i for each object and transform them to the
map frame according to the pose P (t).

For objects o(t)
i = ⟨p(t)

i , c
(t)
i , f(t)i ⟩ detected in the current

frame, we need to fuse them into the existing map M(t−1) =

{m(t−1)
j } = {⟨p(t−1)

j , c
(t−1)
j , f(t−1)

j ⟩}. We compute the geo-
metric similarity ϕgeo(i, j), caption similarity ϕcap(i, j) and
feature similarity ϕfea(i, j) of each newly detected object
with all objects in the map. Geometric similarity ϕgeo(i, j)
represents the 3D bounding box Intersection over Union
(IoU) of point clouds p(t)

i and p(t−1)
j . Caption similarity

ϕcap(i, j) is calculated using cosine similarity after vector-
izing the caption text c

(t)
i and c

(t−1)
j with TF-IDF (Term

Frequency-Inverse Document Frequency). Feature similarity
ϕfea(i, j) is the cosine similarity between the two features
f(t)i and f(t−1)

j . The overall similarity measure ϕ(i, j) is
obtained as the weighted sum of the three similarities:

ϕ(i, j) = ωgeoϕgeo + ωcapϕcap + ωfeaϕfea (4)

We perform object association using a greedy assignment
strategy, where each newly detected object o(t)

i is paired with
the existing object m(t−1)

j possessing the highest similarity
score. If an object fails to find a match with a similarity score
exceeding the threshold δsim, it is initialized as a new object
in the map M(t). For associated objects, we conduct object
fusion. This involves merging the point clouds as p(t)

j =

p(t)
i ∪ p(t−1)

j and updating the features as

f(t)j = (f(t)i + nmj
f(t)j )/(noj + 1) (5)

where nmj
is the number of detections associated with mj so

far. Additionally, to merge textual captions c
(t)
i and c

(t−1)
j ,

we utilize the open-source LLM LLaMA [13] to ensure a
comprehensive, conflict-free description through prompts.

After incorporating all the objects o(t)i of the current frame
into the map, we get the incrementally updated map M(t) =

{m(t)
j } = {⟨p(t)

j , c
(t)
j , f(t)j ⟩}.

4
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Fig. 4: We extract the lane graph Mlg from historical trajectories
P (1:t), whose nodes are derived from vector pinch angle Θ(n)

(breakpoints) and local disfluency λ(n) (inflection points or inter-
sections).

D. Hierarchical Graph Representation Formation

On the basis of the map M(t), we generate the hierarchical
graph representation M(t)

all.
For Point Cloud Layer, we stack the point clouds of

objects as Mpc =
⋃

j p(t)
j and downsample them. To

enhance the visualization, we can render the point cloud
using the commonly used colors of the 19 outdoor classes.
Specifically, we assign a class to the point cloud p(t)

j that has
the highest similarity to the caption c(t)j among all classes.

For Lane Graph Layer, lane graph Mlg is derived from
historical trajectories P (1:t). Initially, trajectories P (1:t) are
projected onto a 2D plane as P̃ (1:t) by eliminating vertical
displacements. Nodes in the lane graph Mlg represent inflec-
tion points, intersections, and breakpoints. To detect them,
we assess local disfluency λ(n) at each trajectory point P̃ (n).
Specifically, we consider a neighborhood within a radius R,
forming sets of neighborhood vectors as

V(n) = N
(
P̃ (n)

)
− P̃ (n) (6a)

N
(
P̃ (n)

)
=

{
P̃ (m)

∣∣∣∣∣∣P̃ (m) − P̃ (n)
∣∣∣ < R

}
(6b)

The angles are computed pairwise within the set of vectors,
and the difference between each angle and 0 or π is calcu-
lated. Then, the average of the smaller values is determined
and considered as the local disfluency measure:

Θ(n) =

{
arccos

(
vi · vj

∥vi∥ · ∥vj∥

)}
,∀vi, vj ∈ V(n) (7a)

λ(n) = mean (min (|θi| , |θi − π|)) ,∀θi ∈ Θ(n) (7b)

We employed DBSCAN to cluster trajectory points ex-
hibiting disfluency exceeding a threshold δdis, thereby iden-
tifying inflection points and intersections. To discern break-
points, we assess whether the mean of Θ(n) is proximate
to 0. Fig. 4 exemplifies the detection of lane graph nodes.
The edges of the lane graph Mlg are subsequently derived
from the inter-node links and are trimmed based on trajectory
alignment.

For Instance Layer, we calculate the bounding box and
center of mass for each object m(t)

j within the object-centric
map M(t), treating them as nodes O. Subsequently, we

compute the bounding box IoUs between pairs of objects,
resulting in a dense graph which we refine by estimating
a Minimum Spanning Tree (MST). Additionally, to infer
relations among nodes, we feed the captions, poses and
bounding boxes of object pairs into LLaMA, yielding an
open-vocabulary instance-layer scene graph Mins = ⟨O,E⟩.
The nodes O are connected to the corresponding point cloud
in the Point Cloud Layer.

For Segment Layer, connectivity of lane graph Mlg forms
the foundation for distinguishing segments as Mseg . We
designate a small section of the path as a subordinate area
near inflection and intersection points on the lane graph.
Additionally, intersections have been further categorized into
”intersections” and ”T-intersections”. Inflection points are
defined as ”L-intersections”. The stretch of roadway that
doesn’t intersect with any inflection or intersection points is
termed the ”straight roadway”. The nodes O in the Instance
Layer are linked to the closest road segments.

For Environment Layer, we construct a global environ-
ment node Menv that connects all road segments Mseg in
Segment Layer.

Collectively, the aforementioned layers constitute a com-
prehensive OpenGraph M(t)

all that encompasses a semantic
comprehension and a hierarchical topology of the outdoor
environment.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed Open-
Graph is validated through experiments performed on the
public ourdoor dataset SemanticKITTI [34]. We aim to use
experiments to validate our framework, through the following
specific questions:

1) Without fine-tuning any models, can OpenGraph accom-
plish zero-shot 3D semantic understanding?

2) Does Caption-Enhanced Object Comprehension provide
more comprehensible object retrieval?

3) What are the potential applications of open-vocabulary
hierarchical graph representation?

A. 3D Semantic Segmentation

We first validate OpenGraph’s ability for zero-shot se-
mantic understanding in outdoor environments. As detailed
in subsection III-D, we conduct 3D point cloud semantic
segmentation at the Point Cloud Layer using 19 predefined
classes from the SemanticKITTI dataset. Due to the ab-
sence of a direct zero-shot outdoor semantic segmentation
comparison baseline, we initially consider two classes of
fully supervised methods. The first class comprises a point
cloud segmentation technique trained and fine-tuned on the
SemanticKITTI dataset, namely RangeNet++ [31]. We gen-
erate a global semantic map using its predicted labels. The
second class consists of 2D image segmentation methods
trained on outdoor image datasets, including DeepLab v3
[32] and DecoupleSegNets [33]. We derive 3D semantic
maps by projecting their image segmentation onto point

5



RangeNet++ DeepLab V3 DecoupleSegNets CLIP-based BLIP-based OpenGraph GT RGB Image

Fig. 5: Semantic segmentation results on the SemanticKITTI dataset, utilizing 19 classes, indicate that despite not undergoing fine-tuning,
OpenGraph demonstrates higher segmentation accuracy and reduced noise levels.

TABLE I: Quantitative Results (IoU and F1 Score) of Semantic Segmentation on SemanticKITTI Dataset

Seq. Method Car Road Sidewalk Building Fence Veget. Pole T.-sign Average F1 Score

03

RangeNet++ [31] 0.4191 0.8096 0.4656 0.3962 0.3483 0.5410 0.1245 0.1302 0.4780 0.6115
DeepLab V3 [32] 0.2535 0.6784 0.3392 0.3262 0.0632 0.5445 0.1270 0.1521 0.4626 0.6025
DecoupleSegNets [33] 0.3075 0.8283 0.5314 0.3912 0.0646 0.6624 0.1412 0.2457 0.6025 0.7277
CLIP-based [4] 0.5851 0.4349 0.0000 0.1654 0.0823 0.3497 0.0000 0.0138 0.3972 0.5797
BLIP-based [6] 0.3215 0.4478 0.0000 0.3240 0.0227 0.3789 0.0122 0.1202 0.4017 0.5673
OpenGraph 0.4191 0.7299 0.2552 0.1737 0.6599 0.0083 0.2960 0.0000 0.6051 0.7302

05

RangeNet++ [31] 0.5634 0.8575 0.5591 0.5933 0.3605 0.5368 0.1285 0.0950 0.4990 0.6200
DeepLab V3 [32] 0.3627 0.7731 0.3749 0.5094 0.2855 0.6066 0.0986 0.0388 0.5203 0.6579
DecoupleSegNets [33] 0.4489 0.8501 0.5850 0.5228 0.3022 0.6293 0.1260 0.0845 0.5895 0.7212
CLIP-based [4] 0.5618 0.0356 0.0000 0.1769 0.3427 0.0028 0.0312 0.0000 0.2964 0.4518
BLIP-based [6] 0.5997 0.4334 0.0000 0.3318 0.1237 0.1926 0.0000 0.0342 0.3320 0.4781
OpenGraph 0.7000 0.7963 0.4823 0.7961 0.3957 0.6312 0.1552 0.1056 0.6598 0.7749

08

RangeNet++ [31] 0.6339 0.8214 0.4786 0.5500 0.1086 0.6083 0.1607 0.1504 0.5111 0.6295
DeepLab V3 [32] 0.4167 0.7162 0.3087 0.4923 0.0736 0.6758 0.1074 0.0691 0.5425 0.6733
DecoupleSegNets [33] 0.4445 0.8370 0.4870 0.5414 0.0845 0.7152 0.1026 0.0631 0.6376 0.7576
CLIP-based [4] 0.3942 0.3456 0.0000 0.2439 0.0952 0.2166 0.0033 0.0693 0.2753 0.4130
BLIP-based [6] 0.4025 0.4318 0.0000 0.3909 0.0633 0.2840 0.0008 0.0422 0.3677 0.5250
OpenGraph 0.6667 0.7436 0.3594 0.7581 0.1447 0.6384 0.1892 0.1635 0.6463 0.7633

clouds. Additionally, we compare methods that directly uti-
lize VLM features to replace caption features in OpenGraph,
specifically CLIP-based [4] and BLIP-based [6].

We selected three sequences from SemanticKITTI: short
(03), medium (05), and long (08). As shown in Fig. 5, due
to point-wise segmentation in 2D or 3D, the fully supervised
approaches generate many scattered points. Additionally,
small objects like bicycles suffer from lower segmentation
accuracy due to limited training samples. While CLIP-based
and BLIP-based, two methods employing VLM features for
scene understanding, fail to achieve accurate object classifi-
cation, OpenGraph excels in this aspect with the assistance
of LLM features. Tab. I presents the results of semantic seg-
mentation quantification, including IoU for common classes
and overall F1 scores. Notably, OpenGraph outperforms even
comparable fully supervised methods across these sequences.
These results demonstrate that OpenGraph achieves accurate
zero-shot semantic understanding in outdoor environments.

B. Open-vocabulary Object Retrieval

To illustrate the advantages of OpenGraph for complex
semantic queries, we conducted object retrieval experiments
that center around three distinct text types:

Ontology: A direct description of the object itself. For
instance, A tall tree.

Proximity: The description of the object relies on objects
related to it. For example, I want to find some green leaves
(a tree or a bush).

TABLE II: Quantitative Results (top-1,2,3 recall) of Object Re-
trieval

Seq. Query-Type Methods R@1 R@2 R@3 #Query

03/05/08

Onotology

CLIP-based [4] 0.60 0.70 0.73

30BLIP-based [6] 0.50 0.60 0.70
OpenGraph 0.90 0.90 0.90
OpenGraph-LLM 0.70 0.80 0.87

Proximity

CLIP-based [4] 0.37 0.47 0.53

30BLIP-based [6] 0.30 0.40 0.47
OpenGraph 0.80 0.87 0.87
OpenGraph-LLM 0.70 0.73 0.80

Functionality

CLIP-based [4] 0.47 0.53 0.57

30BLIP-based [6] 0.37 0.37 0.47
OpenGraph 0.63 0.80 0.80
OpenGraph-LLM 0.67 0.80 0.87

Functionality: The description focuses on the inferred
functions of the object in question. For instance, Something
that can be used for driving (a car).

The experiments involve small segments extracted from
the three sequences, each containing a diverse array of
objects. For each query type on each sequence, we gener-
ated 10 distinct descriptions, with relevant objects manually
chosen as ground truth values. The Fig. 6 illustrates some
of the comparison results of OpenGraph with other zero-
shot methods, where the colors are rendered according to the
degree of similarity of the features (VLM features for CLIP-
based and BLIP-based, LLM features for OpenGraph). Since
OpenGraph maintains an explicit caption for each object,
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Fig. 6: The outcomes from various open-vocabulary text queries (displaying the Top-3 objects). In the visual representation, OpenGraph-
LLM highlights the Top-3 objects in red, green, and blue, while the other methods render all objects based on relevance. The text beneath
each retrieved object in the figure corresponds to its actual category, where green signifies successful retrieval and red indicates failure.

Hi, I am currently situated at an intersection of L-shaped

roads. In my vicinity, there is a white truck with a set of

stairs, as well as several orange and white traffic cones.

On a separate note, my silver car is parked at a different L-

shaped intersection, where a yield sign is positioned on the

ground by the sidewalk. Please guide me to my car.

Copy that. I have successfully located you and your car based

on the provided description. Additionally, I have plotted the

shortest route for you to follow.

Open-

Graph

Your 

location. The car's 

location.

Fig. 7: OpenGraph efficiently identifies the start (green) and
end (red) points by utilizing user descriptions and performs path
planning to determine the optimal route (blue) between them.

it facilitates effortless access to LLM for object retrieval,
denoted as OpenGraph-LLM. To elaborate, we feed both the
map object captions and query text into GPT4 [35], tasking it
with identifying the top three most pertinent objects, labeled
red, green, and blue, respectively. Tab. II presents the overall
top-1, top-2, and top-3 recall measurements.

First, in ontology queries, OpenGraph demonstrates the
highest recall rate, mitigating the positional bias when LLM
is applied, such as recognizing a toilet in a previously
observed RV. Secondly, in proximity queries, the perfor-
mance of VLM-based methods sharply drops, due to limited
natural language comprehension like ’symbol of light’ versus

Hi, a bush with red flowers, located besides a street sign at 

an intersection, was trimmed.

Thanks for the message. The bush has been located and

removed from the existing map.

Open-

Graph

Hi, at a T-intersection with a black fence and white 

electrical box, a black car moved 8m in the direction of 

the intersection.

Thanks for the message. The car has been located and

moved in the existing map.

Open-

Graph

Fig. 8: OpenGraph’s open-vocabulary hierarchical map represen-
tation facilitates human-interactive map updating. Here shows the
updated point cloud in the Point Cloud Layer.

’lamp’. Lastly, OpenGraph excels in challenging functional
queries with LLM boosting its natural language reasoning.
In summary, OpenGraph and its LLM variants demonstrate
superior natural language reasoning in a variety of outdoor
object retrieval tasks.

C. Hierarchical Graph Structured Query

Hierarchical graphs offer the benefit of structured top-
down queries. By integrating with LLMs on the front end,
OpenGraph empowers users to accomplish a wide range of
tasks more effectively and efficiently. Imagine the queriers
situated within a scene, capable of observing only a limited
portion of their surroundings. By indicating the type of road
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(Segment Layer) they are on and the relationships between
objects nearby (Instance Layer), they can swiftly localize
themselves. Moreover, if they can provide hints about their
destination, OpenGraph can facilitate global path planning
on the lane graph to guide them effectively. A related case
is shown in Fig. 7.

Furthermore, OpenGraph facilitates human-interactive
map updating. Individuals within the environment can con-
tribute the latest map patches to OpenGraph by detecting
changes in their surroundings, ensuring the continual upkeep
of the environment map. Fig. 8 visually demonstrates this
process, where a person actively observes the removal of
a bush beneath a street sign at an intersection. OpenGraph
promptly identifies the object based on the description and
promptly updates the map accordingly.

V. CONCLUSION

This paper introduces OpenGraph, an open vocabulary hi-
erarchical 3D graph representation framework for large-scale
outdoor environments. Initially, the extraction of instance
masks, captions, and features occurs in the 2D images, facil-
itated by VLMs and LLMs. Subsequently, an object-centric
map is incrementally constructed and fused by projecting
onto 3D point clouds. Finally, the extraction of the lane
graph and subsequent scene segmentation culminates in the
derivation of a hierarchical graph. The results from evalu-
ations on public datasets reveal that OpenGraph, operating
as a zero-shot method, even exhibits superior performance
in 3D semantic segmentation compared to fully supervised
methods, while also demonstrating advantages in open-
vocabulary retrieval over alternative types. Moreover, the
hierarchical graph representation facilitates rapid structured
queries. Moving forward, we need to inject richer semantics
at the edges between instances and provide component-level
understanding.
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