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The need for structuring on micrometer scales is abundant, for example, in view of phononic
applications. We here outline a novel approach based on the phenomenon of active turbulence
on the mesoscale. As we demonstrate, a shear-thickening carrier fluid of active microswimmers
intrinsically stabilizes regular vortex patterns of otherwise turbulent active suspensions. The fluid
self-organizes into a periodically structured nonequilibrium state. Introducing additional passive
particles of intermediate size leads to regular spatial organization of these objects. Our approach
opens a new path towards functionalization through patterning of thin films and membranes.

Structuring materials on micro- and submicrometer
scales is of central importance to various types of prospec-
tive applications of functionalized components, such as
shape-changing nematic elastomers [1–4] or phononic
metamaterials [5]. The latter provide, for instance,
acoustic bandgaps [6–8]. This function relies on spa-
tially organizing colloidal particles on scales responsive to
acoustic excitations. Generally, such structuring requires
measures imposed from outside. We here introduce
a strategy that facilitates intrinsic patterning through
nonequilibrium effects. It relies on self-supported regular
organization of vortices in an otherwise turbulent suspen-
sion of active microswimmers. Key to this mechanism is
a shear-thickening carrier fluid.

Suspensions of microswimmers are a subclass of active
matter [9–13]. The interplay with the surrounding fluid
determines both the swimming behavior of individual
swimmers and their mutual interactions. These nonequi-
librium systems are amenable to structure formation. For
example, bacterial suspensions develop turbulent states,
swirling, and vortex formation [14–19] despite prevail-
ing low-Reynolds-number conditions. Being able to con-
trol or switch between different patterns is important
for possible applications such as microscale extraction of
work [20, 21], microfluidic mixing [22, 23], or cargo trans-
port [24–26]. Especially, regular mesoscale patterning is
eminent when creating functionalized materials. Previ-
ous experimental and theoretical studies have shown that
external fields [27] or geometrical constraints such as cou-
pled flow chambers [28–30] or small obstacles [31–34] can
stabilize regular vortex patterns [31, 33, 35]. However, it
is desirable to achieve such regular structure formation
intrinsically, without the need of external intervention.

Many previous considerations on microswimmers and
their collective behavior assume the solvent to be New-
tonian, although many biological fluids actually exhibit
non-Newtonian rheology or viscoelasticity. Few recent
exceptions deal with the effects of viscoelasticity [36–41].
Non-Newtonian behavior, such as shear thickening and
shear thinning, have been addressed [42–47], but only a
limited number of studies explores resulting collective dy-

namics [48–55]. The impact of the non-Newtonian effect
of shear thickening on the complex pattern formation in
active fluids has not been explored so far.
Here, we turn to this open question, based on previous

descriptions of the dynamics in suspensions of active mi-
croswimmers [56–59]. Past investigations correctly pre-
dicted the main features of mesoscale turbulence [60],
a dynamic state of vortex formation on an intermedi-
ate length scale much larger than the single-swimmer
scale [17, 60]. We now incorporate non-Newtonian effects
by a viscosity that increases with local shear rate. Our
results show that such shear thickening stabilizes regu-
lar structures, specifically centered rectangular lattice-
like patterns consisting of elongated vortices. Remark-
ably, geometrical constraints or other externally applied
means of control are not necessary for this dynamic ro-
tational symmetry breaking associated with anisotropic
regular pattern formation. Moreover, introducing passive
particles larger than the active swimmers leads to their
spatial organization and regular patterning according to
the vortex patterns. In this way, we reveal a novel path
towards structuring and functionalization of thin meta-
materials.
We describe the dynamics of the active suspension by

a generalized, incompressible Navier–Stokes equation for
the overall velocity field v(x, t) of the entire suspension,

∂tv + v · ∇v = −∇p̃+∇ · σ̃ , ∇ · v = 0 , (1)

rendering the approach Galilei invariant. Here, the con-
stant density ρ is absorbed into the pressure p (p̃ = p/ρ)
and the stress tensor σ (σ̃ = σ/ρ). Following recent
achievements to include the energy input by the mi-
croswimmers [56–58], we expand the stress tensor in gra-
dients of the deformation rate Σ = [(∇v) + (∇v)⊤]/2,

σ̃ = (Γ0 + Γ2∇2 + Γ4∇4)
[
(∇v) + (∇v)⊤

]
, (2)

where ⊤ marks the transpose. Often, the active stress
includes orientational order parameter fields, which are
governed by additional dynamic equations [11, 18]. In
our case, the orientational order parameters are “slaved”
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FIG. 1. Snapshots of the vorticity field ω(x, t) at a = 1.1 and n = 3 at arbitrarily chosen times t for different values of the
reference shear rate, (a) γ̇2 = 0.1, (b) γ̇2 = 0.9, and (c) γ̇2 = 2.5. Arrows denote the velocity field v. Both quantities are
rescaled for visualization purposes. For very small γ̇2, the flow field settles into a stationary vortex lattice, where vortices are
elongated along the director n shown as the dashed line. The structure can be represented by two wavevectors forming an
angle φ = π/4 (inset). For larger γ̇2 the flow field becomes increasingly irregular. The size of the snapshots is 16π × 10π.

to the suspension velocity [58]. In principle, one can in-
clude terms ∝ vv − |v|2I/d, where I is the unit ten-
sor and d spatial dimensionality. However, these terms
would only lead to a rescaling of the nonlinear advection
term and an additional contribution to the pressure [56].
Equation (2) captures essential experimental observa-
tions on active suspensions, for example, length scale se-
lection and emergence of turbulent vortex patterns [56].
Very good agreement with both bacterial microswimmers
and ATP-driven microtubular networks has been demon-
strated [58]. Recent work on passive suspensions showed
that higher-order gradients of the suspension-averaged
velocity can emerge in the effective stress tensor within a
rigorous derivation [61], which further supports our ap-
proach.

Positive values of the coefficients Γ0 and Γ4 ensure
asymptotic stability at long and short wavelengths, re-
spectively [56]. In the passive case, Γ4 = 0, Γ2 = 0,
and Γ0 = ν, introducing the kinematic viscosity ν. In
the active case, we adopt Γ0 = ν, while Γ2 can show ei-
ther sign. For Γ2 < 0, there is no active energy input
and the quiescent state v(x, t) = 0 is stable. Instead,
for Γ2 > 0, active stresses set in, which can excite in-
termediate wavelengths [56]. Thus, Γ2 characterizes the
strength of activity. When increasing Γ2 >

√
4νΓ4, lin-

ear stability analysis yields a finite-wavelength instabil-
ity of critical wavenumber kc =

√
Γ2/(2Γ4). Further

increasing Γ2, a band of unstable modes emerges, indi-
cating wavenumbers at which activity pumps energy into
the system. Similarly to driven Navier–Stokes fluids [62],
the nonlinear advection term v ·∇v relates to turbulence
and energy transport between wavenumbers. However,
driving in our case is internal, due to the active energy
input by the microswimmers. Resulting balances of ac-
tive energy input and dissipation lead to statistically sta-
tionary states, in line with main features of experimental
observations on bacterial suspensions [56]. Recent stud-
ies employing a similar description suggest a transition
between different spectral scaling regimes in active tur-
bulence upon an increase of activity [63]. In this context,

we here focus on the mildly active regime, see Ref. [63],
where the statistics of velocity increments follows a Gaus-
sian distribution.
Shear thickening of the carrier liquid is described by

a viscosity increasing with local shear rates γ̇(x). We
consider a so-called power-law fluid [64–66] of constant
zero-shear viscosity ν0,

ν(x) = ν0 + ν0

(
γ̇(x)

γ̇2

)n−1

, (3)

γ̇(x) =
√

2Σ(x) : Σ(x). The exponent n determines how
the viscosity ν(x) increases with local shear rate γ̇(x).
γ̇2 is a reference shear rate, indicating when the viscosity
reaches 2ν0.
We now rescale lengths by k−1

c , times by (k2cν0)
−1, and

thus velocities by kcν0. As a result, Eq. (1) becomes

∂tv+v · ∇v = −∇p̃+∇ · (2νΣ)+ a(2∇4v+∇6v) , (4)

where ν = 1 + (
√
2Σ : Σ/γ̇2)

n−1. In our incompressible
system, p̃ merely acts as a Langrange multiplier ensur-
ing ∇ · v = 0. The parameter a = Γ2

2/(4ν0Γ4) sets the
strength of active energy input relative to the zero-shear
viscosity ν0. For a < 1, the isotropic, quiescent state
v(x, t) = 0 is stable, implying that the active energy
input does not suffice to overcome viscous dissipation.
Thus, pattern formation is not observed. Conversely, for
a > 1, the system forms flow patterns characterized by a
specific length scale set by the fastest-growing mode km.
Close to the transition, km = kc = 1, yielding a length
scale of Λc = 2π/kc. For a = 0, we recover the pas-
sive Navier–Stokes equation for non-Newtonian, shear-
thickening behavior.
We employ a pseudo-spectral method to solve Eq. (4)

in a two-dimensional system with periodic boundary con-
ditions starting from random initial values, for details see
the Supplemental Material [67], which includes Refs. [68–
73]. The system size is set to 48π×48π, much larger than
the critical length scale Λc = 2π. Varying the values of
activity a, power-law exponent n, and reference shear
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FIG. 2. Characteristic quantities as a function of a and γ̇2 for different values of n. (a) Correlation time τ on a log-scale. (b)
Nematic order parameter |q| for the elongated vortices. High nematic order for small values of γ̇2 signifies a globally ordered
vortex structure with broken rotational symmetry. The gray circles in the plots for n = 3 indicate the parameter values where
the snapshots shown in Fig. 1 are taken. The column on the right-hand side includes the Newtonian case (ν = 1) for comparison.

rate γ̇2, we investigate the emerging patterns. Examples
are illustrated in Fig. 1, where snapshots of the vorticity
field ω = (∇ × v)z are shown for a = 1.1, n = 3, and
varying γ̇2.

For high reference shear rate γ̇2, that is, closer to New-
tonian behavior, the system develops a turbulent state,
similar to the case without shear thickening [56–58], see
Fig. 1(c). However, when γ̇2 is low, a rather regular
state emerges, which can be characterized as a centered
rectangular lattice of vortices. Figure 1(a) shows the vor-
ticity field in this state. The vortices become elongated
along a common axis, displaying an aspect ratio of about
3. For intermediate values of γ̇2, the system develops a
state of still clearly visible anisotropy of the vortices, see
Fig. 1(b), yet not stationary. Instead, numerous defects
and dynamic reorganization occur.

To further characterize the observed spatiotemporal
patterns, we first calculate the correlation time τ [67],
which quantifies how quickly the velocity field reorga-
nizes. Figure 2(a) shows τ in a-γ̇2-space for different
values of n. Consistently with our previous observations,
we find that τ is small for large values of both a and γ̇2,
indicating a turbulent state. Decreasing either a or γ̇2
increases τ , and the dynamics becomes slower until the
emerging patterns settle into a stationary state for very
small values of a and γ̇2. Since the system does not rear-
range anymore, τ diverges. Besides, τ tends to decrease
for increasing n, so that smaller n stabilize the regular
elongated vortex structure. For comparison, τ as a func-
tion of a is shown on the right-hand side of Fig. 2(a) for a
Newtonian suspension without shear thickening (ν = 1).
In this case, larger values of a lead to an increased in-
put of active energy into the system and, thus, to a more
turbulent state.

In Fig. 1(a) and (b), the elongated vortices on aver-

age align along a common axis. Thus, we determine the
global nematic order parameter q for orientational order
of elongated vortices [67]. |q| = 0 for a flow field of uni-
formly distributed vortex orientations, whereas |q| = 1
for completely ordered systems, such as in Fig. 1(a). Fig-
ure 2(b) shows |q| for different values of n. For smaller
reference shear rate γ̇2, we indeed find that the elon-
gated vortices are aligned along a common axis n, see
Fig. 1(a,b). Thus, shear thickening does not only lead
to local vortex elongation, but also to spontaneous over-
all rotational symmetry breaking. The system exhibits
global nematic order even for values of γ̇2 associated with
defects and reorganization as in Fig. 1(b). For developed
turbulence, |q| approaches zero, see the right-hand side
of Fig. 2(b). Again, we find that increasing n reduces
stabilization of the elongated vortex pattern and thus
suppresses |q|. Moreover, the impact of activity a on
stabilization seems to diminish.

Conceptually, the shear-thickening properties of the
suspension provide a saturation mechanism for the grow-
ing vortex patterns that does not rely on the turbulent
energy transfer to larger scales and subsequent dissipa-
tion. As a result, regular structures are stabilized. To
shed more light on these effects, we determine associated
amplitude equations. The stationary, centered rectangu-
lar lattice close to its emergence forms an orthorhombic
state that is represented by two modes of complex am-
plitudes A1 and A2 and wavevectors k1 and k2 [74]. As
inferred from the linear stability analysis outlined above,
the isotropic state becomes unstable to the growth of
perturbations of wavevectors |k| = kc = 1 when activity
is increased above a = 1. Close to this critical point,
we assume the length scale Λc = 2π/kc to dominate
the emerging patterns. We write the wavevectors of the
modes ki (i = 1, 2) as ki = kc(cosφi, sinφi). Without
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FIG. 3. Results obtained from the amplitude equations. (a)
Maximum growth rate of perturbations with respect to the
stationary solution for n = 3 [Eq. (8)] and n = 5 [67] as a
function of the angle φ between the two modes representing
the vortex pattern. (b) Amplitude |As| of the stationary so-
lution at φ = π/4 as a function of a and γ̇2 for n = 3 [Eq. (7)]
and for n = 5 [67].

loss of generality, we set one of the angles to zero, φ1 = 0.
Then φ2 = φ determines the relative angle between the
wavevectors. Thus, vortex structures as in Fig. 1(a) are
parameterized by

vx = A2 sin(φ) e
i[cos(φ)x+sin(φ)y] + c.c. , (5)

vy = −A1e
ix −A2 cos(φ) e

i[cos(φ)x+sin(φ)y] + c.c. ,

satisfying incompressibility, where c.c. denotes complex
conjugates.

Inserting Eq. (5) into Eq. (4), we restrict ourselves to
values n = 3 and 5 to make analytical progress, see also
Ref. [67]. Using symbolic computation software [75] and
collecting terms ∼ eix and ∼ ei[cos(φ)x+sin(φ)y], we find
for n = 3 [67]

∂A1

∂t
= (a− 1)A1 −

A1

γ̇2
2

{
3|A1|2 + 2|A2|2

[
2 + cos(4φ)

]}
,

∂A2

∂t
= (a− 1)A2 −

A2

γ̇2
2

{
3|A2|2 + 2|A1|2

[
2 + cos(4φ)

]}
.

(6)
Assuming |A1| = |A2| = |As|, the nontrivial amplitude
of the stationary solution becomes

|As| = γ̇2

[
a− 1

7 + 2 cos(4φ)

] 1
2

. (7)

A linear stability analysis yields the resulting decay
and/or growth rates

λ− = −2(a− 1) , λ+ =
2(a− 1)[1 + 2 cos(4φ)]

7 + 2 cos(4φ)
, (8)

where only λ+ can become positive for a > 1 and, thus,
determines stability.
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FIG. 4. Spatial organization of passive particles (dark dots)
of diameter d = 0.06Λc at Stk = 0.033 in an active shear-
thickening carrier fluid at time t = 16000 after starting from
random initial distributions. (a) Lighter particles (here half
the fluid density, R = 1) cluster in vortex centers, whereas
(b) heavier particles (here twice the fluid density, R = 2/5)
accumulate between vortices. Snapshot size is 6π × 6π.

Whether the stationary solution is stable is determined
by the angle φ, see Fig. 3(a). In particular, perpendicular
configurations of φ = π/2 are unstable (λ+ > 0), whereas
configurations of φ = π/4 are stable (λ+ < 0). These
analytical results confirm our numerical observations and
explain the geometry of the vortex lattice. Therefore,
shear thickening leads to skewed lattices of φ ̸= π/2 and
vortex elongation along a common axis n. In Fig. 1(a),
n is inclined by an angle of 3π/8 from each wavevector.
The case of n = 5 [67] leads to similar results, yet with a
slightly narrower region of stability, see Fig. 3(a).

Due to the nonlinear nature of advection, destabiliza-
tion becomes more important with increasing amplitude
of the emerging patterns. To explore this point, we plot
the stationary amplitude according to Eq. (7) for n = 3
and for n = 5 [67] in Fig. 3(b). It grows with increasing
activity a and reference shear rate γ̇2. This is caused by
pattern saturation being mediated via shear-thickening
effects and thus becoming stronger when these set in ear-
lier, that is, for smaller γ̇2. Comparing Fig. 3(b) with
the correlation times τ displayed in Fig. 2(a) adds to this
point. Increasing a or γ̇2 leads to faster dynamics of the
flow field and thus to a more turbulent state. The de-
pendence of As on the reference shear rate γ̇2 is linear
in Eq. (7). This implies substantial impact of variations
in γ̇2 on the emerging spatiotemporal structures, in line
with the results for the correlation time τ and the degree
of nematic order |q| shown in Fig. 2 for different values
of n.

As an immediate perspective, the emerging regular
vortex patterns facilitate the spatial organization of ob-
jects within the system. To demonstrate this effect,
we consider the dynamics of passively advected parti-
cles of intermediate size and perform additional simula-
tions using a simplified form of the Maxey–Riley equa-
tion [69, 71] coupled to the flow field obtained via Eq. (4),
see Ref. [67] for details. As is known from particle-laden
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flows [69–72], passive objects tend to accumulate in cer-
tain areas of the flow if their density, ρp, is different
from that of the carrier fluid, ρs. Lighter objects cluster
within vortices, whereas heavier objects are ejected from
them [73]. The density ratio is characterized by the fac-
tor R = 2ρs/(ρs +2ρp). We further introduce the Stokes
number Stk, which measures the characteristic time scale
of the particle dynamics relative to that of the flow. Un-
der present scaling, Stk is defined via Stk = 8π2d2/(9Λ2

c),
which grows quadratically with the particle diameter and
vanishes for point particles [67]. These effects in combi-
nation with the self-supported regular pattern formation
of our active shear-thickening carrier fluid can be used
to spatially organize objects into regular periodic struc-
tures, see Fig. 4 for snapshots from the numerical simu-
lations at Stk = 0.033 and different density ratios. Thus,
intrinsic pattern formation in shear-thickening active sus-
pensions opens a new strategy of generating sheets of
functionalized metamaterials based on regular positional
structuring of embedded objects on the microscale [6, 8].

To summarize, we reveal that shear thickening is able
to reorganize the flow field in active suspensions and in-
trinsically stabilizes regular vortex patterns in an other-
wise turbulent state. Elongation arises for the vortices
along a common axis. In contrast to other related ob-
servations on suspensions of active microswimmers, the
patterns here are intrinsically stabilized by the shear-
thickening carrier liquid and do not require external sta-
bilization via geometrical constraints, such as arrange-
ments of small obstacles [31–35], systems of coupled flow
chambers [28–30] or substrate friction [76]. The effect
can therefore be employed to intrinsically structure func-
tionalized components on the micrometer scale. Chang-
ing the properties of the microswimmers, for instance,
self-swimming speed or body size, allows to tune the in-
trinsic selection of length scales [17] and thus the lattice
constant of the stabilized patterns.
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NUMERICAL METHODS

We solve Eq. (4) in a two-dimensional system with periodic boundary conditions employing a pseudo-spectral
method to increase accuracy and speed of the evaluation of spatial derivatives. The spatial resolution is set to
400 × 400 grid points. Time integration is performed via a fourth-order Runge-Kutta method, which is combined
with an operator splitting technique where the linear and nonlinear parts are treated consecutively. Due to the
incompressibility condition ∇ · v = 0, the pressure p effectively becomes a Lagrange multiplier that can be used to
ensure that v(x, t) stays divergence-free. Every calculation is started with a quiescent velocity field, i.e., v(x, t) =
0, with the addition of a small random perturbation at every grid point taken from a uniform distribution over
[−0.01, 0.01]. The system size is set to 48π × 48π, which allows for more than 500 vortices in the system, at least in
the case of highly ordered states.

Before starting the analysis of the emerging structures, we always wait for 10, 000 units of rescaled time to ensure
that the system has developed a statistically stationary state. The characteristic quantities shown in the diagrams in
Fig. 2 in the main text are obtained by repeating the calculations for every pair of parameter values a and γ̇2 twelve
times starting from different realizations of the random perturbations to the initial state. The calculated quantities
are then averaged over these realizations.

To analyze the emerging structures, we first calculate the temporal correlation function of the flow fields,

C(∆t) = v−2⟨v(x, t) · v(x, t+∆t)⟩ . (S1)

Here, ∆t denotes a time a lag, v is the mean speed averaged over the whole system, and the average ⟨. . . ⟩ is performed
over both time t and space x. The correlation time τ , which characterizes how quickly the velocity field reorganizes,
is obtained via

τ =

∫ ∞

0

C(∆t) d∆t . (S2)

Before calculating the nematic vortex order parameter |q|, we must first determine the orientations of the vortices
from a snapshot of the vorticity field ω(x, t) at a certain time t. To this end, we identify vortices by searching for
local maxima of the absolute vorticity |ω|(x, t). Only fully developed vortices are taken into account. We identify a
local maximum as the center point of a vortex j when the vorticity |ω|j at that point is more than double the mean
absolute vorticity ⟨|ω|⟩ (averaged over the whole system). Then, as a function of the direction set by the angle φ and
measured from the center of the vortex, we determine the distance ℓj(φ) where |ω| has decayed to half of its value
|ω|j . We calculate the ratio

rj(φ) =
ℓj(φ)

ℓj(φ+ π/2)
, (S3)

which compares the extension of the vortex along mutually perpendicular directions. The angle of maximum rj(φ)
is identified as the orientation θj of the long axis of the vortex j. We finally determine the global nematic order
parameter q for orientational order of elongated vortices as the complex number

q =
1

N

N∑

j=1

e2iθj . (S4)

Here, N is the total number of vortices. The orientation of the nematic director is determined by the angle φq =
arg(q)/2 via n = (cosφq, sinφq).
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The evolution equations for the positions Xi and velocities Ui of the passive particles within the flow field (see
section of this supplemental) are propagated in time using a fourth-order Runge-Kutta scheme. Initially, particles
are distributed uniformly within the simulation box and their initial velocities are taken as the values of the velocity
field v at their positions.

DERIVATION OF AMPLITUDE EQUATIONS

In order to derive amplitude equations, we insert the representation of the vortex lattices, Eqs. (8), into Eq. (4).
Then, we collect terms containing identical modes as in the vortex lattice representation. We here provide details of
this procedure in the case of n = 3.

The ansatz in Eqs. (8) fulfills the incompressibility condition, ∇ · v = 0. However, the nonlinear terms can lead to
non-zero divergence, which in turn needs to be compensated by the pressure p. We expand the pressure to reflect the
representation in Eqs. (8) according to

p = p1e
ix + p2e

i[cos(φ)x+sin(φ)y] + c.c. . (S5)

Inserting Eqs. (8) and (S5) into Eq. (4) and calculating the divergence of the right-hand side, which must vanish, we
find expressions for the amplitudes p1 and p2. In particular, collecting terms ∼ exp{ix} yields

p1 =
2i

γ̇2
2

|A2|2A1 sin(4φ) , (S6)

whereas from terms ∼ exp{i[cos(φ)x+ sin(φ)y]} we find

p2 = − 2i

γ̇2
2

|A1|2A2 sin(4φ) . (S7)

Having determined the relation between amplitudes p1, p2, A1, and A2, we turn back to Eq. (4) after insertion of
Eqs. (8) and (S5). We derive the amplitude equations by collecting terms ∼ exp{ix} and ∼ exp{i[cos(φ)x+sin(φ)y]}.
This procedure yields four equations,

0 =− 2

γ̇2
|A2|2A1 sin(4φ)− ip1 , (S8)

∂A1

∂t
=(a− 1)A1 −

A1

γ̇2
2

{
3|A1|2 + 2|A2|2

[
2 + cos(4φ)

]}
, (S9)

∂A2

∂t
=(a− 1)A2 −

ip2
tan(φ)

− A2

γ̇2
2

{
3|A2|2 + 8|A1|2 sin2(φ)− 2|A1|2

}
, (S10)

∂A2

∂t
=(a− 1)A2 + ip2 tan(φ)−

A2

γ̇2
2

{
3|A2|2 − 8|A1|2 sin2(φ) + 6|A1|2

}
. (S11)

Equation (S8) is satisfied by the condition for p1, see Eq. (S6). Equation (S9), which is independent of p1, is the
amplitude equation already included in the main text for A1, see Eqs. (9). Inserting the expression for p2, Eq. (S7),
we find that both Eqs. (S10) and (S11) yield the same result, which is the amplitude equation for A2, see Eqs. (9) as
well.

For completeness, we note that evolution equations for A∗
1 and A∗

2 (the complex conjugates of A1 and A2) are
derived using the same procedure but collecting terms ∼ exp{−ix} and ∼ exp{−i[cos(φ)x + sin(φ)y]}, respectively.
In this way, we find that the evolution of A∗

1 and A∗
2 is governed by the same dynamics as for A1 and A2. All

coefficients in the derived amplitude equations are real. Thus, we conclude that the phases of the two modes can be
considered as free parameters that simply lead to a shift of the whole lattice-like structure.

We proceed with the derivation of amplitude equations for n = 5. Applying the same procedure as outlined for
n = 3 yields

∂A1

∂t
= (a− 1)A1 −

A1

γ̇4
2

{
10A4

1 + (12A2
1A

2
2 + 6A4

2)
[
3 + 2 cos(4φ)

]}
,

∂A2

∂t
= (a− 1)A2 −

A2

γ̇4
2

{
10A4

2 + (12A2
1A

2
2 + 6A4

1)
[
3 + 2 cos(4φ)

]}
,

(S12)
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which are then analyzed analogously. First, the amplitude of the nontrivial, stationary solution is

|As| = γ̇2

[
(a− 1)

64 + 36 cos(4φ)

] 1
4

. (S13)

Again, performing a linear stability analysis, we find the decay and/or growth rate of perturbations to this solution
as

λ− = −4(a− 1) , λ+ =
4(a− 1)[2 + 3 cos(4φ)]

16 + 9 cos(4φ)
. (S14)

The form of the eigenvalues λ± is structurally very similar to the one in Eq. (11). Again we find that the vortex
pattern is only stable in a configuration with an angle between the two wavevectors emerging at threshold close to
φ = π/4.

In the derivation of the amplitude equations, the integer values n = 3 and n = 5 favor the analytical procedure.
This is because, for odd integer values of n, the exponent in the nonlinear term ∝ (2Σ : Σ)(n−1)/2 in the viscosity [see
Eq. (3) in the main text] becomes an integer. When inserting the ansatz for the regular patterns [see Eq. (5) in the
main text] into the formula for the viscosity, we obtain a sum of harmonics via a multinomial expansion. Specifically,
the case of n = 3 is particularly straightforward. Here we find

(2Σ : Σ)
3−1
2 = 2Σ : Σ =−A2

1e
2ix + 2|A1|2 −A∗2

1 e−2ix −A2
2e

2i[cos(φ)x+sin(φ)y] + 2|A2|2 −A∗2
2 e−2i[cos(φ)x+sin(φ)y]

− 2A1A2 cos(2φ)e
i[cos(φ)x+x+sin(φ)y] + 2A1A

∗
2 cos(2φ)e

i[− cos(φ)x+x−sin(φ)y]

+ 2A∗
1A2 cos(2φ)e

i[cos(φ)x−x+sin(φ)y] − 2A∗
1A

∗
2 cos(2φ)e

−i[cos(φ)x+x+sin(φ)y] .
(S15)

Analytically, the procedure to derive the amplitude equation relies on expressing all terms as sums of harmonics.
Matching the prefactors of these harmonics yields the amplitude equations to lowest order. Therefore, the procedure
is analytically tractable for uneven integer values, especially in the simplest cases of n = 3 and n = 5 (and thus the
procedure for even integer values of n, or noninteger values, becomes significantly more challenging).

TRANSPORT OF PASSIVE PARTICLES

In order to explore how the vortex patterns impact the spatial organization of objects within the flow, we investigate
the dynamics of N passive spherical objects that are transported by the flow field. Here, we focus on objects that are
notably smaller than the characteristic length of the vortex patterns and, thus, do not significantly influence the flow
field. At the same time, they are larger than the typical size of the active objects suspended in the shear-thickening
fluid. Therefore, the active carrier fluid can still be described by a continuum approach.

Although we are dealing with small systems on the micron scale, the bare diffusion of the suspended objects can
be disregarded in our case. To demonstrate the validity of this assumption, we estimate the Peclet number, which
quantifies the ratio of advective to diffusive transport. The Peclet number is determined via Pe = Λava/D0, where
the length scale of the advecting flow and its average velocity are denoted by Λa and va and the bare diffusivity is
denoted by D0. First, D0 can be estimated at low Reynolds numbers via the Stokes–Einstein relation. Thus, D0 =
kBT/(3πηsd), where kB is the Boltzmann constant, T sets the temperature, ηs is the dynamic viscosity of the solvent
medium, and d denotes the diameter of our suspended object. Assuming normal conditions in water (T = 293.15K,
ηs ≈ 0.001N sm−2), an object of diameter d ≈ 10 µm is subject to a bare diffusivity of D0 ≈ 0.04 µms−2. Further,
taking the example of bacterial turbulence observed in suspensions of Bacillus Subtilis [1], the average velocity is of
the order of va ≈ 10 µms−1 and the advective length scale is of the order of the mean vortex size Λa ≈ 40 µm [1].
As a result, the Peclet number is determined as Pe ≈ 104, which means that diffusion is several orders of magnitude
weaker than advective transport and thus can be ignored.

The motion of small finite-size particles in nonhomogenous flow is described by the Maxey–Riley equation [2, 3].
Assuming that the diameters d of our objects are notably smaller than the length scale of the flow patterns and thus
neglecting Faxén corrections [4], the equations of motion can be significantly simplified. Under these assumptions,
the evolution of position Xi and velocity Ui of object i reads [4]

∂Xi

∂t
= Ui ,

∂Ui

∂t
=

3R

2

[
∂v

∂t
(Xi) + v(Xi) · ∇v(Xi)

]
− R

Stk

[
Ui − v(Xi)

]
+

(
1− 3R

2

)
g , (S16)
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where g denotes gravitational acceleration. The factor R depends on the densities of the carrier fluid, ρs, and the
objects, ρp, and is given as R = 2ρs/(ρs + 2ρp). Equation (S16) further includes the Stokes number Stk, which
measures the characteristic time of the motion of our objects with respect to the characteristic time of the flow.
Employing the same scaling as in the main text, that is, using the critical mode kc as an inverse length scale and
(k2cν0)

−1 as the time scale, the Stokes number in the present system is calculated as

Stk =
8π2

9

d2

Λ2
c

, (S17)

where we have used the definition of the characteristic length scale Λc = 2π/kc. In our numerical calculations we
set Stk = 0.033. This corresponds to a diameter of d ≈ 0.06Λc, implying that our objects are about an order of
magnitude smaller than the characteristic scale of the vortex patterns.

From numerous experimental, numerical, and theoretical studies of particle-laden flow [3, 5] we know that small
objects tend to accumulate in certain areas of the flow field when their density is different from that of the carrier
fluid. In particular, a lower density of the objects leads to aggregation within vortices, while denser objects are ejected
from vortices [6]. We transfer this effect to our present system to spatially organize passive objects by self-supported
regular vortex patterns of the active shear-thickening fluid. To this end, we vary the ratio of densities as the key
parameter, changing the value of R in Eq. (S16). As a result, for lighter objects, we find a flow-induced clustering at
vortex centers, as demonstrated in Fig. 5(a) in the main text for ρp = 0.5ρs. Conversely, heavier objects accumulate
between vortices, which leads to regular grids of elevated density of the objects, as shown in Fig. 5(b) in the main
text for ρp = 2ρs at an intermediate time scale. In the latter case, after longer times have passed, most objects are
found in the centers between any four neighboring vortices forming a rectangular structure. Our motion is restricted
to planar motion due to the geometrical confinement to thin films, sheets, or layers, which limits the influence of
gravity in Eq. (S16).
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